
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

VYHLEDÁVÁNÍ VÝRAZŮ V ŘEČI POMOCÍ MLUVENÝCH
PŘÍKLADŮ
QUERY-BY-EXAMPLE SPOKEN TERM DETECTION

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. MICHAL FAPŠO
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. JAN ČERNOCKÝ
SUPERVISOR

BRNO 2014

Abstract

This thesis investigates query-by-example (QbE) spoken term detection (STD). Queries are
entered in their spoken form and searched for in a pool of recorded spoken utterances, providing
a list of detections with their scores and timing. We describe, analyze and compare three different
approaches to QbE STD, in various language-dependent and language-independent setups with
diverse audio conditions, searching for a single example and five examples per query.

For our experiments we used Czech, Hungarian, English and Levantine data and for each
of the languages we trained a 3-state phone posterior estimator. This gave us 16 possible
combinations of the evaluation language and the language of the posterior estimator, out of which
4 combinations were language-dependent and 12 were language-independent. All QbE systems
were evaluated on the same data and the same features, using the metrics: non-pooled Figure-of-
Merit and our proposed utterrance-normalized non-pooled Figure-of-Merit, which provided us
with relevant data for the comparison of these QbE approaches and for gaining a better insight
into their behavior.

QbE approaches presented in this work are: sequential statistical modeling (GMM/HMM),
template matching of features (DTW) and matching of phone lattices (WFST). To compare the
performance of QbE approaches with the common query-by-text STD systems, for language-
dependent setups we also evaluated an acoustic keyword spotting system (AKWS) and a sys-
tem searching for phone strings in lattices (WFSTlat). The core of this thesis is the develop-
ment, analysis and improvement of the WFST QbE STD system, which after the improvements,
achieved similar performance to the DTW system in language-dependent setups.

Keywords

Query-by-Example, Spoken Term Detection, Finite State Transducers, System comparison, Lan-
guage dependency, Low-resource languages

Bibliographic citation

Michal Fapšo: Query-by-Example Spoken Term Detection, Ph.D. Thesis, Brno, Brno University
of Technology, Faculty of Information Technology, 2014

Abstrakt

Tato práce se zabývá vyhledáváńım výraz̊u v řeči pomoćı mluvených př́ıklad̊u (QbE STD).
Výrazy jsou zadávány v mluvené podobě a jsou vyhledány v množině řečových nahrávek,
výstupem vyhledáváńı je seznam detekćı s jejich skóre a časováńım. V práci popisujeme, analyzu-
jeme a srovnáváme tři r̊uzné př́ıstupy ke QbE STD v jazykově závislých a jazykově nezávislých
podmı́nkách, s jedńım a pěti př́ıklady na dotaz.

Pro naše experimenty jsme použili česká, maďarská, anglická a arabská (levantská) data, a
pro každý z těchto jazyk̊u jsme natrénovali 3-stavový fonémový rozpoznávač. To nám dalo 16
možných kombinaćı jazyka pro vyhodnoceńı a jazyka na kterém byl natrénovaný rozpoznávač.
Čtyři kombinace byly tedy závislé na jazyce (language-dependent) a 12 bylo jazykově nezávislých
(language-independent). Všechny QbE systémy byly vyhodnoceny na stejných datech a stejných
fonémových posteriorńıch př́ıznaćıch, pomoćı metrik: nesdružené Figure-of-Merit (non pooled
FOM) a námi navrhnuté nesdružené Figure-of-Merit se simulaćı normalizace přes promluvy
(utterrance-normalized non-pooled Figure-of-Merit). Ty nám poskytly relevantńı údaje pro
porovnáńı těchto QbE př́ıstup̊u a pro źıskáńı lepš́ıho vhledu do jejich chováńı.

QbE př́ıstupy použité v této práci jsou: sekvenčńı statistické modelováńı (GMM/HMM),
srovnáváńı vzor̊u v př́ıznaćıch (DTW) a srovnáváńı graf̊u hypotéz (WFST). Abychom porovnali
výsledky QbE př́ıstup̊u s běžnými STD systémy vyhledávaj́ıćımi textové výrazy, vyhodnotili jsme
jazykově závislé konfigurace také s akustickým detektorem kĺıčových slov (AKWS) a systémem
pro vyhledáváńı fonémových řetězc̊u v grafech hypotéz (WFSTlat). Jádrem této práce je vývoj,
analýza a zlepšeńı systému WFST QbE STD, který po zlepšeńı dosahuje podobných výsledk̊u
jako DTW systém v jazykově závislých podmı́nkách.

Kĺıčová slova

vyhledáváńı podle vzor̊u, detekce mluvených výraz̊u, konečné stavové automaty, srovnáńı systémů,
závislost na jazyku, jazyky s malým množstv́ım dostupných dat

Bibliografická citace

Michal Fapšo: Query-by-Example Spoken Term Detection, disertačńı práce, Brno, FIT VUT v
Brně, 2014

Declaration of Originality

I hereby declare that this thesis and the work reported herein was composed by and originated
entirely from me. The work has been supervised by Doc. Dr. Ing. Černocký. Information
derived from the published and unpublished work as of others has been acknowledged in the
text and references are given in the list of sources. Some of the reported systems and texts were
written by Igor Szőke, Frantǐsek Grézl and Javier Tejedor and are included in this thesis for
comparison purposes. These parts are always marked explicitly.

Prohlášeńı

Prohlašuji, že jsem tuto disertačńı práci vypracoval samostatně pod vedeńım Doc. Dr. Ing. Jana
Černockého. Uvedl jsem všechny literárńı prameny a publikace, ze kterých jsem čerpal. Některé
prezentované systémy a texty byly napsány Igorem Szőkem, Frantǐskem Grézlem a Javierem
Tejedorem a jsou v této práci zahrnuty z d̊uvodu porovnáńı r̊uzných systémů. Tyto části jsou
vždy explicitně označeny.

Acknowledgments

I would like to thank Honza Černocký for his guidance, support, friendship and endless patience
not only during my work on this thesis, but since we first met. At the same time I have to thank
all members and my friends of the Speech@FIT and Graph@FIT research groups for the positive
and inspirational atmosphere they all create. I would especially like to thank Igor Szőke, Franta
Grézl, Lukáš Burget, Petr Schwarz, Ondra Glembek, Martin Karafiát, Pavel Matějka, Mirko
Hanneman, Karel Veselý, Olda Plchot, Pepa Žižka, Tom Cipr, Kamil Chalupńıček and Miro
Skácel for all the inspiring conversations, ideas and simply for all the time we spent together.

I would also like to thank Javier Tejedor for visiting our research group, sharing ideas and
working together, Tom Kašpárek for keeping our computing clusters in an excellent shape, and
our secretaries Sylva Otáhalová and Jana Slámová, for their service and patience.

I have to thank also authors of papers referenced in this thesis, for sharing their knowledge,
ideas and inspiration.

Very special thanks to my wife Hanka and my son Maťko, my parents and my parents-in-law
for their patience, support, service and for cheering me up especially while I was finishing this
thesis.

Contents

1 Introduction 13
1.1 Motivation . 14
1.2 Scope of Chapters . 14
1.3 Claims of this Thesis . 15

2 Query-by-Example Systems Overview 17
2.1 Spoken Term Detection (STD) . 17
2.2 Query-by-Example Spoken Term Detection (QbE STD) 18
2.3 Evaluation . 19

2.3.1 DET . 20
2.3.2 TWV (ATWV, UBTWV) . 22
2.3.3 EER . 23
2.3.4 ROC and FOM . 23

2.3.4.1 Oracle FOM . 24
2.3.4.2 Unpooling Queries . 25
2.3.4.3 Unpooling Queries and Utterances . 25

2.3.5 Choosing the right metric . 26
2.3.6 Reading Result Figures . 26

2.4 Related Work . 27
2.4.1 Spoken Term Detection . 27
2.4.2 Query-by-Example STD . 28

3 Experimental Setup 31
3.1 Data . 31

3.1.1 Query Selection . 33
3.1.2 Reference Transcriptions . 33

3.2 Audio Preprocessing and Feature Extraction . 34
3.2.1 Voice Activity Detection . 34
3.2.2 Speaker Adaptation . 35
3.2.3 Feature extractor . 36

4 Acoustic Keyword Spotting (AKWS) – Upper-bound 41
4.1 Results . 42

5 GMM/HMM-based Query-by-Example Detector 45
5.1 Results . 46

5.1.1 Language-dependent . 46

8

CONTENTS 9

5.1.2 Language-independent . 46

6 DTW-based Query-by-Example detector 49
6.1 Query Construction from Example Combination . 49
6.2 Similarity Matching of Posteriorgrams . 50
6.3 DTW-Based Query Detector . 51
6.4 Results . 51

6.4.1 Language-dependent . 52
6.4.2 Language-independent . 53

7 WFST-based Query-by-Example detector 57
7.1 Introduction to Finite State Transducers . 57
7.2 Using Lattices (WFSTlat) . 58

7.2.1 Converting Evaluation Lattices to WFSTs . 59
7.2.2 Preparing Query WFSTs . 61
7.2.3 Composing WFSTs and extracting detections 62

7.3 Using Confusion Networks (WFSTcn) . 62
7.3.1 Converting Evaluation Confusion Networks to WFSTs 64
7.3.2 Preparing Query WFSTs . 64
7.3.3 Composing WFSTs and extracting detections 64

7.4 Combining Query Examples . 65
7.5 Initial Results . 66

7.5.1 Lattice Pruning . 66
7.5.2 Dictionary Pronunciations . 67
7.5.3 Examples from Lattices . 70

7.6 Analysis . 71
7.6.1 From Posteriorgrams to Lattices and Back . 71

7.6.1.1 Posteriorgrams to Lattices . 73
7.6.1.2 Lattices to Posteriorgrams . 73
7.6.1.3 Results . 74

7.7 Improvements . 74
7.7.1 Confusion Networks . 74

7.7.1.1 Single Example per Query . 74
7.7.1.2 Combining Examples . 76

7.7.2 Dealing with Silence . 78

8 Overall Results and Discussion 81
8.1 Language-Dependent . 81
8.2 Language-Independent . 82
8.3 Combining Systems . 83
8.4 Practical Considerations . 83

9 Conclusions and Future Work 87
9.1 Future Work . 88

Appendices 95
A Implementation and Tools . 97

10 CONTENTS

A.1 WFST QbE . 97
A.2 Scoring and Evaluation . 97

B Set of queries per language . 97

Glossary

AKWS Acoustic Keyword Spotting

CTS Conversational Telephone Speech

DTW Dynamic Time Warping

FA False Alarm

FOM Figure-Of-Merit

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

LVCSR Large Vocabulary Continuous Speech Recognizer

MFCC Mel-Frequency Cepstral Coefficients

NIST National Institute of Standards and Technology (United States of America)

npFOM non-pooled Figure-Of-Merit

OOV Out-Of-Vocabulary (word/term)

oracleFOM oracle Figure-Of-Merit

SDR Spoken Document Retrieval

STD Spoken Term Detection

STK Toolkit for speech processing developed at FIT BUT

unnpFOM utterance-normalized non-pooled Figure-Of-Merit

WFST Weighted Finite State Transducer

11

12 CONTENTS

Chapter 1

Introduction

With the growing amount of spoken data, which is recorded, stored and also shared nowadays,
the need for its effective indexing and retrieval increases as well.

The most common approach to speech search systems is the “spoken term detection” (STD),
which aims at searching a phrase of one or more words in spoken data, outputting a list of
detections with score and timing information. Users can enter the search query either in form of
text (henceforth, query-by-text or QbT STD1) or in form of speech (query-by-example or QbE
STD).

Best performing QbT STD systems search in an output of large vocabulary continuous speech
recognizers (LVCSR), which are available only for several most widespread languages. Building
such recognizer for a new language requires a lot of training data and linguistic resources, so it
is not a viable option for most of the world’s languages and dialects.

On the other hand, QbE STD systems where queries are entered in their spoken form, can
be language-independent and thus they are usually the only option for searching in new or
low-resource languages. These systems search in phone posteriorgrams or other, usually unsu-
pervisedly trained, appropriate features. Other applications of QbE STD systems are: searching
in multi-language or multi-dialect spoken data, voice-based information systems, searching for
out-of-vocabulary words of LVCSR-based QbT STD systems, or for relevance feedback in QbT
STD systems.

In this work, we concentrate on the query-by-example spoken term detection. We describe
and analyze three different QbE STD systems and compare their performance across several
language-dependent and language-independent setups with various audio conditions, using a
single example or five examples per query. A major part of this work describes our development,
implementation and analysis of a QbE STD system which searches in phone lattices or confusion
networks derived from phone posteriorgrams.

1STD is commonly interpreted as query-by-text STD, but in this work we use the abbreviation QbT STD to
differentiate it from generic STD and QbE STD

13

14 CHAPTER 1. INTRODUCTION

1.1 Motivation

The main motivation for this work was to gain a better insight into the behavior of most com-
mon types of query-by-example STD systems across various language-dependent and language-
independent setups with diverse audio conditions. Since there was no such thorough comparison
available, we started to work on it. Part of this work has been already published in [Tejedor et al.,
2012].

Since we started our effort, MediaEval evaluations targeting language-independent setups
of QbE STD were held several times. Participants were also provided with data to evaluate
language-dependent setups, but only few participants compared their own systems for both
language-dependent and language-independent setups. A global comparison of participating
QbE systems was shown in [Metze et al., 2014], but only for language-independent setups. Also,
the MediaEval metric is ATWV and MTWV, where results are influenced by calibration of scores
across queries, not only by the differences between QbE STD systems themselves. Nevertheless,
there was only a single participating QbE STD system searching in lattices [Barnard et al., 2011],
where authors tried to use phone lattices to refine search results, but they were unsuccessful in
implementing it correctly and did not report any results with the lattice-based system.

Three main types of QbE STD systems are described in literature, according to the match-
ing technique they deploy: template matching of features (DTW), sequential statistical model-
ing of features (GMM/HMM) and lattice matching (WFST). Out of these, DTW is the most
widespread approach. Sequential statistical modeling and lattice matching approaches are used
much less.

Actually there have been only few published QbE STD systems searching in lattices or
confusion networks. In [Shen et al., 2009], authors compared several techniques for matching
confusion networks of query and utterance, in [Lin et al., 2008, 2009], authors used graphical
models for multi-lattice alignment, and in [Parada et al., 2009], authors used transducers to
search for out-of-vocabulary words in phone lattices generated by an LVCSR system. In all
cases, there was no comparison with other QbE approaches or other languages.

Therefore, we decided to implement the lattice-based QbE STD system and to thoroughly
compare all three main types of QbE STD systems. We use a two-blocks architecture in all
our STD systems: the first block is the feature extractor which encodes the speech into low
dimensional feature vectors, and the second block is the query detector (or spoken-term detector)
which hypothesizes putative query detections from the features. To make the comparison of
all STD systems more relevant, the feature extractor block remains the same in all our STD
systems, so the only difference in their performance can be caused by query detector blocks. In
this work, we evaluate the QbE STD systems in four language-dependent setups (Czech, English,
Hungarian and Levantine), and twelve language-independent setups (all other combinations of
the four target languages with four language-specific phone posterior feature extractors), using
a single example or five examples per query.

1.2 Scope of Chapters

Chapter 2 describes STD and QbE STD systems in general with references to related works,
and also describes commonly used evaluation metrics.

Chapter 3 introduces our experimental setup including used data, their preparation and the

1.3. CLAIMS OF THIS THESIS 15

process of extracting features for our QbE STD systems.

Chapter 4 defines our baseline AKWS system, its architecture and shows its results.

Chapters 5 and 6 present our GMM/HMM and DTW QbE STD systems and their results.

Chapter 7 deals in detail with our WFSTdict baseline system, WFST QbE STD systems,
analyzes their various aspects, their performance, and outlines several improvements.

Chapter 8 summarizes and discusses results of all presented systems.

Chapter 9 concludes the work.

1.3 Claims of this Thesis

The goal of this work was to implement a lattice-based query-by-example spoken term detection
system and to compare it with other state-of-the-art systems across various language-dependent
and language-independent setups. Several parts of this thesis were partly contributed by Igor
Szőke and Frantǐsek Grézl from the BUT Speech@FIT research group and by Javier Tejedor
from the HTCLab at Madrid university. We also worked together on several of the presented
experiments. My own claims of this thesis are the following:

• Analysis of STD evaluation metrics, especially the FOMmetric and its proposed unnpFOM
variant, which simulates an ideal calibration of scores across utterances.

• Implementation, analysis and improvements of two WFST-based QbE systems. Although
these systems were inspired by [Parada et al., 2009], our systems are different and original
in several aspects.

• Comparison and analysis of DTW, GMM/HMM and WFST QbE systems in several
language-dependent and language-independent setups with a single example or five ex-
amples per query. I worked on some of the experiments with Igor Szőke from the BUT
Speech@FIT research group, and Javier Tejedor from the HTCLab at Madrid university.
Our joint work was published in [Tejedor et al., 2012], but many experiments and results
are new and original in this thesis.

The source code for our WFST system, scoring tool and other relevant scripts are available at
http://michalfapso.github.io.

http://michalfapso.github.io

16 CHAPTER 1. INTRODUCTION

Chapter 2

Query-by-Example Systems
Overview

Generally speaking, query-by-example can be defined as a method of searching for an example
of an object or a part of it in other objects. Besides spoken term detection, query-by-example
approach has been widely used in audio applications like sound classification [Zhang and Kuo,
1999; Helén and Virtanen, 2007, 2010], music retrieval [Tzanetakis et al., 2002; Tsai and Wang,
2004; Salamon et al., 2013], and spoken document retrieval [Chia et al., 2010]. In this work, we
concentrate on query-by-example systems searching for a spoken query in speech data, related
to spoken term detection.

2.1 Spoken Term Detection (STD)

STD aims at searching textual queries (terms) in already recorded spoken data, where queries
consist of a single word or a phrase of several words. We denote this approach as query-by-text
STD to differentiate it from the query-by-example STD. In literature, it is also referred to as
keyword spotting.

In query-by-text STD, it is usually assumed, that the target language is well known and we
have enough resources like transcribed data, phone sets, and pronunciation dictionaries, to train
an LVCSR system or at least a phone recognizer for that language. For rare words not included
in the LVCSR dictionary (out-of-vocabulary words), or in case of using only a phone recognizer,
user queries have to be first automatically transcribed to strings of phones or other sub-word
units. The gap between the text form of queries and spoken form of data we search in, make
the query-by-text STD difficult to employ for low-resource languages.

Although query-by-text STD has many applications, there are scenarios where it is unsuit-
able. For example, in voice-based information systems or in the security field where users may
not be able to enter text queries, or they have no knowledge of textual representation of queries,
or the target language is low-resource making it impossible to train language-specific acoustic
models. In all these cases, the query-by-example approach to STD, becomes more appropriate.

17

18 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

Figure 2.1: General diagram of a query-by-example spoken term detection system. User-defined
spoken query is searched in a database of spoken utterances, providing the user with occurrences
of the query. The query can be defined by direct input from a microphone or by a region of
speech selected in another utterance.

2.2 Query-by-Example Spoken Term Detection (QbE STD)

Query-by-example STD systems search for a spoken query in a pool of spoken utterances, pro-
viding a list of detections with their scores and timing. Unlike query-by-text STD systems where
queries are entered in their textual representation, queries in QbE STD systems can be entered
through a microphone or selected in already recorded spoken data. A general diagram of a QbE
STD system is shown in Figure 2.1.

There are several scenarios where QbE STD is more appropriate than the query-by-text STD.
There may be no target-language data for training even a basic phone recognizer, the user may
not know the textual representation of a query, or he/she may not be able to enter the query
through a keyboard.

We can even consider a scenario where the two types of STD systems are combined together.
User enters a text query into a query-by-text STD system and while browsing through search
results, he/she marks some detections as hits. These selected detections are then used as queries
for a QbE STD system, which then provides a new list of detections that can be merged with
the previous list, adding new detections and/or re-ranking detections previously obtained from
the query-by-text STD system. This can be performed also without the user’s interaction, when
the query-by-text STD system automatically selects first few hits and uses them as examples for
the QbE STD pass. These techniques are also known as relevance-feedback [Chen et al., 2013].

To achieve speaker and channel independence, spoken queries and utterances for QbE STD
systems have to be converted to more robust features, usually to posteriorgrams of phones
[Hazen et al., 2009; Tejedor et al., 2012] or other unsupervisedly trained units [Zhang and Glass,
2009].

Three main approaches dominate in QbE STD systems:

Template matching of features (DTW), where a distance matrix is computed between
query features and utterance features, and then the shortest paths traversing the whole
query and any part of utterance, are searched through the distance matrix [Hazen et al.,
2009].

Sequential statistical modeling (GMM/HMM), where the query model is trained on query

2.3. EVALUATION 19

Figure 2.2: Example of a hit, false alarm and miss as implemented in HTK toolkit. This figure
was taken from [Szöke, 2010].

features and a background model is trained on features of all utterances in the data pool.
Then both these models are matched against utterance features and their likelihood ratio
in each frame of the utterance provides the confidence score of query ending in that frame
[Velivelli et al., 2003].

Lattice matching (WFST), where both query and utterance features are first converted to
phone lattices or phone confusion networks, then they are converted to weighted finite
state transducers. The search is performed by a composition operation of the query trans-
ducer with the utterance transducer, which results in a new transducer from which actual
detections have to be extracted [Parada et al., 2009].

In this work, we analyze all three described types of QbE STD systems in two main setups:
language-dependent, where we have enough resources to train a phone recognizer, and language-
independent, where we don’t have any information about the target language (no target phone
recognizer).

2.3 Evaluation

There are several evaluation metrics commonly used in the area of Spoken Term Detection
(STD). We will describe them in this section and eventually choose some of them for evaluating
our systems.

To compute any of these metrics, an STD system has to provide a list of detections with
their start time, end time and confidence score. Then we have to compare detections with a
reference transcription and mark each detection either as hit or false alarm. Figure of merit
(FOM) metric as implemented by the HTK toolkit considers a detection to be a hit when the
mid-point of a reference is between start and end time of the detection (see Figure 2.2). Term
weighted value (TWV) metric loosens this requirement and considers a detection to be a hit
when the mid-point of the detection is within 0.5s range from the reference time span, but only
one hit is allowed for each reference. All other detections which overlap with the same reference
are considered to be false alarms (see Figure 2.3). For the evaluation of our systems, we allowed
the 0.5s range around a reference, but when more detections overlap with the same reference,
we take only the one with the highest confidence score and discard the others.

Let Q be a search query, ∆ the set of queries, thr a certain threshold, Ntarget(Q) the number
of all occurrences of the query Q in the evaluation data, Nnontarget(Q) the number of oppor-
tunities for incorrect detection of Q in the evaluation data (constrained by some predefined
sampling, e.g. “a detection can occur every second”), NHIT (Q, thr) the number of detections

20 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

Figure 2.3: Example of a hit and false alarm as defined by NIST for STD evaluation metric
TWV. In the LSE toolkit we only keep the best detection and discard all others that point to
the same reference. This figure was taken from [Szöke, 2010].

of the query Q which are identified as hits and their score remains above the threshold thr, and
NFA(Q, thr) the number of false detections (i.e., FAs) of the query Q with a score larger than
thr. Probability of hit is

pHIT (Q, thr) =
NHIT (Q, thr)

Ntarget(Q)
(2.1)

probability of miss is

pMISS(Q, thr) = 1− pHIT (Q, thr) = 1− NHIT (Q, thr)

Ntarget(Q)
(2.2)

and probability of false alarm is

pFA(Q, thr) =
NFA(Q, thr)

Nnontarget(Q)
. (2.3)

In all scoring tools we used, a detection was considered to be a hit in case its start– and
end–times were within a 500ms margin of those of the reference. We chose such a loose time
constraints to cancel incorrect timing errors possibly introduced by converting posteriors to
lattices and further to confusion networks. When more detections belong to the same reference,
we take only the one with the highest score, and remove the others from scoring.

2.3.1 DET

Detection error trade-off is defined by NIST [Fiscus et al., 2006] as a dependency of miss prob-
ability pMISS(thr) and false alarm probability pFA(thr) where

pMISS(thr) = average
Q

{pMISS(Q, thr)}

pFA(thr) = average
Q

{pFA(Q, thr)}.

pMISS and pFA are averaged over only those terms with a non-zero number of true occur-
rences in the evaluation data, so that pMISS is defined. Instead of providing a single value, DET
curve is a more complex graph showing system’s performance for various operating points. DET
curves of systems with the best performance approach the lower bottom corner of the graph.
For comparing two or more systems, their DET curves can be stacked together into one graph
as shown in Figure 2.4.

2.3. EVALUATION 21

Figure 2.4: Example of DET curves of several STD systems. As STD systems provide limited
number of detections, DET curves do not spread across all possible pFA values (x axis). The
figure shows performance of our systems submitted for NIST STD 2006 evaluations [Fiscus et al.,
2007].

22 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

2.3.2 TWV (ATWV, UBTWV)

Actual term weighted value (ATWV) metric was defined by NIST for 2006 spoken term detection
evaluations as

ATWV (thr) = 1− average
Q

{pMISS(Q, thr) + βpFA(Q, thr)} (2.4)

where

β =
C

V
(Pr−1

Q − 1),

C is cost of a false alarm, V is value of a hit, PrQ is prior probability of a query. For NIST STD
2006 evaluations, the ratio C

V
was set to 0.1 and PrQ to 10−4, which made β constant and equal

to 999.9. However, for other tasks and datasets, the value of β might be set differently, e.g. for
2012 MediaEval evaluations β was set to 15.32.

When we carefully look at denominators in equations for pMISS(Q, thr) and pFA(Q, thr)
(Eqs. 2.2 and 2.3), we can see that pMISS(Q, thr) depends mainly on the number of reference
occurrences of Q, while pFA(Q, thr) depends mainly on the length of evaluation data, and almost
not at all on Q. Thus the cost of a false alarm is roughly the same for all queries, while the cost
of miss is the higher the fewer reference occurrences the particular query has.

As was stated in [Wegmann et al., 2013], ATWV can be an extremely unstable performance
measure, e.g., small changes in underlying recognition performance may result in large changes
to ATWV.

For computing ATWV, a hard threshold has to be specified. Although it is suitable for
production-ready STD systems, maximum term weighted value is more appropriate for develop-
ment. It is computed as the ATWV for the optimal threshold:

MTWV = max
thr

TWV (thr)

There is still a drawback that MTWV uses only one global threshold for all queries. This
restriction is loosened in upper bound term weighted value [Szöke, 2010] which finds an optimal
threshold for each query separately:

thrideal(Q) = argmax
thr

TWV (Q, thr)

and the metric is then defined as

UBTWV = 1− average
Q

{pMISS(Q, thrideal(Q)) + βpFA(Q, thrideal(Q))}. (2.5)

The main drawback of all these three TWV metrics might be setting of the β constant which
defines a particular operating point of the STD system. Another drawback is the dependence of
miss cost on the number of reference occurrences of each query. For these reasons, to compare
two different systems, we can not only compare their term weighted values, but we also have to
take into account the β constant and also counts of reference occurrences of searched queries.
Despite these drawbacks, TWV metrics were used in 2006 NIST STD evaluations, in many

2.3. EVALUATION 23

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC curve
npFOM
ROC curve
FOM

Figure 2.5: Example of a receiver operating characteristics (ROC) and figure of merit (FOM),
showing pooled and non-pooled variants of the metrics. The huge difference between pooled
and non-pooled variants in this particular example is caused by an inconsistency of scores for
different queries. If scores across all queries were well calibrated, pooled results would be much
closer to non-pooled ones.

following STD-related papers, in MediaEval Spoken Web Search task, and are preferred also in
the current BABEL program1 of IARPA.

2.3.3 EER

Equal error rate (EER) reflects the QbE STD system “accuracy” for threshold thrEER. It
represents the percentage of missed detections for the threshold where the system achieves the
same number of missed detections and false alarms. The EER is a pooled metric, incorporating
only one global threshold for all queries and is defined as follows:

EER =

∑

Q∈∆Ntarget(Q)−NHIT (Q, thrEER)
∑

Q∈∆Ntarget(Q)
, (2.6)

where the following equation is satisfied:

∑

Q∈∆

Ntarget(Q)−NHIT (Q, thrEER) =
∑

Q∈∆

NFA(Q, thrEER). (2.7)

2.3.4 ROC and FOM

Receiver operating characteristics (ROC) for a particular query Q is a plot of pHIT (Q, thr) as
a function of NFA(Q, thr) per hour (see Figure 2.5 for an example). The larger the area under
the ROC curve is, the better the system performs.

1www.iarpa.gov/index.php/research-programs/babel

www.iarpa.gov/index.php/research-programs/babel

24 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

Figure of merit is a keyword-spotting accuracy averaged over 1 to 10 false alarms per hour.
The FOM calculation assumes that the total duration of the evaluation speech is T hours. All
detections are sorted by score and a hit percentage PHIT (i) of queries found before the ith false
alarm is calculated for i = 1 . . . N +1 where N is the first integer ≥ 10T −0.5. Figure of merit
is then defined as

FOM =
1

10T
(PHIT (1) + PHIT (2) + . . .+ PHIT (N) + aPHIT (N + 1)), (2.8)

where a = 10T −N is a factor that interpolates to 10 false alarms per hour and PHIT (i) is:

PHIT (i) =
∑

Q∈∆

NHIT (Q, thrFA(i))

Ntarget(Q)
× 100%, (2.9)

where the auxiliary function thrFA(i) finds the proper threshold thr for the ith false alarm in
all queries. Since this metric does not distinguish individual queries, the thrFA(i) threshold
should be ideally similar for all evaluation queries and thus it requires a proper calibration of
detection scores across different queries.

According to the FOM definition in [Young et al., 2006], a putative detection is considered
to be a hit in case the midpoint of a reference occurrence is between the start and end times of
the given detection. However, in our implementation we loosen the time constraints to cancel
the effect of incorrect timing in lattices and confusion networks, and we stretch each reference
by 0.5s to both directions and when more detections overlap with the same reference, we keep
only the one with the highest score and the others are discarded from scoring.

Higher value of FOM means better performance. A drawback of the FOM metric might be
the artificial restriction of false alarms per hour from 1 to 10. Even though there are applications
which could operate even with a higher number of false alarms, this restriction is valid for most
real use cases.

2.3.4.1 Oracle FOM

Similarly to an oracle term weighted value described in [Wegmann et al., 2013], it is possible to
compute an oracle FOM value which simulates ideal ordering of hits and false alarms, when all
hits have better scores than false alarms across all queries. It is just a theoretical FOM which
we could get by modifying scores of the detections we already got from our STD system.

FOMoracle =
1

10T
(N + a)oraclePHIT , (2.10)

where a is same as in Eq. 2.8 and oraclePHIT is the overall hit probability

oraclePHIT =
∑

Q∈∆

NHIT (Q)

Ntarget(Q)
× 100%. (2.11)

However, if the STD system produces a detection for each second of evaluation data,
FOMoracle can get easily to 100%. So the interpretation of the value of FOMoracle should
always take into account also the STD system’s detection rate

detrate = average
Q∈∆

{

Ntarget(Q) +Nnontarget(Q)

T

}

where T is the total duration of evaluation data in seconds.

2.3. EVALUATION 25

2.3.4.2 Unpooling Queries

On the contrary to a global threshold inside the FOM metric, a non-pooled figure of merit
(npFOM) calculates the threshold for each query independently and it is therefore more suitable
for evaluating STD systems in early stages of their development. The metric was defined by
NIST [NIST, 1991] and can be interpreted as an upper-bound estimate of FOM. For each query
Q, all detections are first sorted by score. Then the non-pooled figure of merit is defined as

npFOM =
1

10T
(npPHIT (1) + npPHIT (2) + . . .+ npPHIT (N) + anpPHIT (N + 1)),(2.12)

where a is same as in Eq. 2.8 and npPHIT (i) is defined as

npPHIT (i) =
∑

Q∈∆

NHIT (Q,npthrFA(Q, i))

Ntarget(Q)
× 100%. (2.13)

The auxiliary function npthrFA(Q, i) finds the proper threshold thr for given query Q and
the ith false alarm per hour. The non-pooled FOM metric calculates an individual value of the
FOM metric (2.8) for each query separately. Then, the resulting npFOM is a weighted average
of FOMs for the whole set of queries, where each term’s contribution depends on the number of
its reference occurrences. This metric simulates the scenario when a user searches for a single
query and then browses through query detections sorted by confidence scores.

The contribution of a given query Q to the overall npFOM can be written as

npFOMcontrib(Q) = npFOM(Q)
Ntarget(Q)

∑

Q∈∆

Ntarget(Q)

where npFOM(Q) is the npFOM computed only for a single query Q.

2.3.4.3 Unpooling Queries and Utterances

In our experiments, we used also another non-pooled FOM metric which simulates an ideal
calibration across evaluation utterances, denoted in this work as unppFOM , the “utterance-
normalized npFOM”. Inside this metric, npFOM is “unpooled” even further. The optimal
threshold is evaluated separately not only for each query, but also for each evaluation utterance.

unnpFOM =
1

10T
(unnpPHIT (1) + . . . + unnpPHIT (N) + a unnpPHIT (N + 1)),(2.14)

where a is same as in Eq. 2.8 and unnpPHIT (i) is defined as

unnpPHIT (i) =
∑

Q∈∆

∑

U∈Υ

NHIT (Q,U, npthrFA(Q,U, i))

Ntarget(Q,U)
× 100%. (2.15)

where Υ is a set of all evaluation utterances, NHIT (Q,U, thr) the number of detections of the
query Q in utterance U which are identified as hits and their score remains above the threshold
thr, the auxiliary function npthrFA(Q,U, i) finds the proper threshold thr for given query Q,
utterance U and the ith false alarm per hour and Ntarget(Q,U) is the number of all occurrences
of the query Q in the utterance U .

26 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

The value of unnpFOM tells us how well an STD system could perform if we perfectly
calibrated scores across both queries and utterances. It can also be interpreted as an average
FOM if we searched for only one query in one utterance. It has to be noted that using this
metric is appropriate only for longer test utterances with a large enough number of opportunities
for incorrect detections. High value of unnpFOM tells us that for each query and utterance
pair, hits have higher scores than false alarms, so sorting detections by scores moves true hits
to the top of the list.

It should be noted that for each query Q, this metric takes into account only utterances where
Q occurs in the reference. All other utterances together with all their detections are discarded.
This significantly reduces number of false alarms, especially when the ratio of utterances where
Q occurs is low.

In our work, we did not incorporate techniques for calibrating scores across utterances, but
they were described e.g. in [Srikanth, 2013].

2.3.5 Choosing the right metric

In this work, we present results of several query-by-example systems, each with 16 combinations
of data and recognizer languages. Besides that, we had to score and compare many other
results during the development. Therefore we needed to use a metric which produces a single
score. Since we did not calibrate our systems, candidates for the primary scoring metric were
npFOM and UBTWV. Because the term weighted value has an inherent dependence of miss
cost on the reference occurrences of each query, and also it requires to set the β constant to
define the system’s operating point, we decided for the npFOM metric. It is more coherent and
in all papers it is reported for the same operating point, so it is much better for comparison
across systems and data sets. For some experiments we will also present npROC curves to show
systems’ performance over a wider range of operating points and also the pooled FOM metric
to show systems’ inherent calibration across queries. The smaller the difference between pooled
and non-pooled FOM (i.e., FOM and npFOM) is, the better the system is calibrated.

During the development, we often needed to compare results of our systems. It turned out
that comparing only overall npFOM values may be a bit misleading, because one system could
perform better on some set of queries, while the other performs better on another set of queries.
Thus we compute also the best npFOM for each query and calculate the overall value:

npFOMmax(A,B) =
∑

Q∈∆

max{npFOMcontrib(Q,A), npFOMcontrib(Q,B)}

where A and B are sets of detections generated by two STD systems and npFOMcontrib(Q,A)
is the contribution of query Q to the overall npFOM for system A. When the value of
npFOMmax(A,B) is considerably higher than the best overall npFOM score of the two in-
dividual systems, it means that the systems are complementary to some extent. Each of the
systems outperforms the other one for some set of queries, so it could be possible to create a
fusion which combines them to produce results closer to npFOMmax(A,B).

2.3.6 Reading Result Figures

Throughout this work, we present results in form of figures which we find more readable than
tables. An example with description of important figure elements is shown in Figure 2.6. For
comparing multiple results, we omit npROC curves and show only npFOM part of these figures.

2.4. RELATED WORK 27

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H
I
T
[
%
]

npROC

E
N

d
a
t
a

CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

1.

2.

3.

4.

5.

Figure 2.6: Example of results figure as used for presenting results in this work. Left part
contains npROC curves, right part npFOMmetric and its derivatives, unnpFOM and oracleFOM.
“1.” denotes the evaluation dataset, either one of the four languages (CZ, EN, HU, LE) or a
language dependent setup, where the dataset language corresponds to each system. “2.“ shows
the oracleFOM, “3.” unnpFOM, “4.” is the maximum npFOM of all 5 examples of queries and
“5.” is npFOM.

Performance of systems with a single example per query is influenced by the choice of exam-
ples. To show the potential of the systems, we show the maximum npFOM of all five examples
for each query by a “+” marker in the figures. As it denotes npFOM of the single best example,
it is shown only for systems with a single example per query.

2.4 Related Work

In this section, we present an overview of published works, related to query-by-example spoken
term detection, which helped us during the research and development of our own work.

2.4.1 Spoken Term Detection

The main boom in STD research was launched by the 2006 NIST STD evaluations, where we
participated with 9 other institutions and companies [Fiscus et al., 2007]. The main objective of
these evaluations was to help develop technology for rapidly and accurately searching very large
quantities of audio data. Therefore, systems had to be implemented in two phases: indexing
and search. Also, a new metric was defined for evaluating STD systems, the term-weighted
value (TWV) [Fiscus et al., 2006]. This metric, although being very popular since then, has few
specific drawbacks already described in Section 2.3.2.

Various types of input data were investigated for STD systems. Using 1-best string output
of a recognizer is usable only for very low word or phone error rates and was investigated
in [Pinto et al., 2008], where authors used a probabilistic pronunciation model for queries to
compensate for errors in the 1-best phone output of a recognizer. Results were comparable with
using phone lattices only for longer queries of at least 14 phones. The lower was the number of
phones, the larger was the degradation of performance of 1-best strings. The main advantage
of using 1-best phone strings was the index size and search speed.

The predominant STD approach seems to be using word, phone or hybrid lattices, or more
compact confusion networks [Mangu et al., 2014], which contain also less probable hypotheses

28 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

[Szöke et al., 2008; Wallace et al., 2007; Norouzian and Rose, 2014]. Phone or hybrid lattices
are needed to address the out-of-vocabulary (OOV) issue of LVCSR. In [Parada et al., 2010],
authors converted word lattices to phone lattices using a pronunciation dictionary to be able
to search for OOVs. To get more detections, each word query converted to a phone string was
enriched by a pre-trained phone confusion matrix which lead to a considerable performance gain.

To speed up the search phase of STD systems, lattices can also be indexed, usually by
creating an inverted index similar to the one used in text search systems. The index contains
individual words, phones [Mamou et al., 2007] or their n-grams [Iwami et al., 2010]. A drawback
of this indexing approach may be that even though two words or phones may appear close to
each other in the inverted index, they may not share a common path in the original lattice. As
an extension to this basic inverted index scheme, in [Burget et al., 2006] we proposed a method
for fast verification of word, phone and hybrid sequences in indexed lattices. However, a more
elegant indexing approach was proposed in [Can and Saraclar, 2011], where authors use WFSTs
to create an inverted index where all paths from original lattices are inherently preserved and
directly traversed during the search.

2.4.2 Query-by-Example STD

As we mentioned earlier in Section 2.2, in contrast to query-by-text STD systems where queries
are entered in a textual form, queries in QbE STD systems are in spoken form, which has to be
converted to appropriate features, lattices or confusion networks.

As the interest in query-by-text STD grew up after the 2006 NIST STD evaluations, similarly
the interest in QbE STD grew up rapidly after 2011 MediaEval evaluations, particularly its
Spoken Web Search task, which is held annually since then. It aims at QbE for low-resource
languages [Metze et al., 2014].

Majority of QbE STD systems are based on template matching (DTW) of
phone posteriorgrams or other, usually unsupervisedly trained, appropriate features
[Hazen et al., 2009; Zhang and Glass, 2009; Chan and Lee, 2010; Anguera et al., 2010;
Anguera, 2011; Muscariello and Gravier, 2011; Szöke et al., 2011; Muscariello et al., 2011;
Mantena and Prahallad, 2013]. Similar template matching techniques are also applied in mo-
tif/word discovery task [Jansen et al., 2010; Muscariello et al., 2009; Park and Glass, 2008],
which can be considered an extension to the QbE STD. Depending on the used set of fea-
tures, some of these approaches are language-independent, having no knowledge of the target
language, and are therefore suitable for low-resource languages. Several works also investigated
ways of speeding up the DTW approach [Zhang and Glass, 2011; Schmalenstroeer et al., 2011;
Mantena and Anguera, 2013; Anguera, 2013] which is otherwise too slow for most applications.

Sequential statistical models (GMM/HMM) are used in much fewer works. In this approach,
GMM/HMM (or similar) model is trained on query features, a background model is trained on
features of all available utterances and they are both matched against each utterance, providing
likelihood ratios of the two models as detection scores [Velivelli et al., 2003; Chan and Lee, 2011;
Szöke et al., 2012; Abad et al., 2012].

There are also several QbE STD systems working with lattices or confusion networks
[Lin et al., 2008; Parada et al., 2009; Shen et al., 2009; Lin et al., 2009; Barnard et al., 2011],
where the matching of a query lattice against utterance lattices is done usually either by dynamic
programming, discrete HMMs (DHMMs), graphical models or by composition of transducers
(WFST). In [Hazen et al., 2009], authors compared QbE performance of DTW on phone poste-

2.4. RELATED WORK 29

riorgrams and DHMMs on confusion networks, finding out that DTW outperformed DHMMs
probably because of the larger granularity of DHMM (time-aligned segments) than that of DTW
(frames).

All these three approaches to QbE STD seem to be complementary to some extent and their
fusion can lead to improved performance [Abad et al., 2013; Szöke et al., 2014]. For example in
[Parada et al., 2009], authors use lattice representation of both queries and utterances, convert
them to WFSTs, and then perform search in two steps. First they compose the query with an
inverted index providing a list of matching utterances, and afterwards the query is composed
with each utterance transducer returned in the first step. They experimented also with the
relevance feedback technique, where for each query, the best detection returned by a query-by-
text STD was searched also by the QbE STD system, enriching the list of results, leading to
better performance, without any fusion of scores. In [Szöke et al., 2014], phone posteriorgrams
of 13 different languages were employed for both DTW and GMM/HMM QbE systems, then
fused together leading to considerable improvement in term weighted value metrics.

There were also efforts to build language-independent phone recognizers [Schultz and Waibel,
2001; Walker et al., 2003; Kempton et al., 2011; Knill et al., 2014], which could be directly used
for language-independent QbE STD, but they still have relatively high phone error rates.

In this work, we describe, compare and analyze the three main approaches to QbE STD:
template matching (DTW), sequential statistical modeling (GMM/HMM) and composition of
lattice transducers (WFST), while all three systems will be evaluated in four language-dependent
setups (Czech, English, Hungarian and Levantine), and twelve language-independent setups (all
other combinations of the four target languages with four language-specific phone posterior
feature extractors).

30 CHAPTER 2. QUERY-BY-EXAMPLE SYSTEMS OVERVIEW

Chapter 3

Experimental Setup

A significant portion of this chapter was originally written by Igor Szőke and Frantǐsek Grézl from
the BUT Speech@FIT research group and it was published with few differences in [Tejedor et al.,
2012]. Igor and Frantǐsek also trained the feature extractor used for our experiments.

Description of our experimental setup is important for interpretation of our results, for
comparing the systems and for reproducibility of our experiments. In this work, we evaluate
DTW, GMM/HMM and WFST query-by-example systems on Czech, English, Hungarian and
Levantine evaluation datasets. A phone recognizer, trained on different datasets of the same set
of languages, produces input data for all the three query-by-example systems.

We used two main setups for our experiments. Language-dependent setup where the phone
recognizer was trained on the evaluation data language and language-independent setup where
the evaluation language and the language on which the phone recognizer was trained, do not
match.

There is an important fact to note here, about our experimental setup: all our evaluated
systems ran on the same data (features, queries, ...) which makes their comparison more relevant.
The only exception is the GMM/HMM system which we evaluated, besides the common posterior
features, also with bottleneck features.

3.1 Data

In order to inspect the language-independent setup across the different techniques, we trained
and evaluated proposed approaches on several languages across different groups: Czech (Slavic),
English (Germanic), Hungarian (Uralic), and Levantine (Arabic).

We used conversational telephone speech (CTS) for training and evaluation of English and
Levantine. Hungarian was trained and evaluated only on prompted read telephone speech, Czech
training data contained partly prompted read speech. Therefore, we would expected that the
Hungarian language would present the best performance.

Since all our QbE STD approaches are composed of two steps (i.e., feature extraction and
query detection), three different sets of data, which correspond to the training part of both
steps and the evaluation data, are necessary. They are called the feature training set, query
training set, and evaluation set. The feature training set is used to train the feature extractors
corresponding to each language in Table 3.1. The query training set was used for extracting
query examples and, if necessary, for parameter and model estimation. Finally, the evaluation

31

32 CHAPTER 3. EXPERIMENTAL SETUP

Data (hours) Queries Data
typeLanguage Feature

training
Query
training

Eval. Unique Examples occurrences

English 277.7 12.5 2.3 168 840 2007 CTS

Hungarian 8.5 0.9 2.4 8 40 337 PRTS

Levantine 19.9 2.8 2.5 51 255 609 CTS

Czech 100.9 2.2 1.4 58 290 1019 CTS
RTS
PTS

Table 3.1: Overview of data. The table consists of three parts. The first one shows amounts of
data used as feature training set, query training set, and evaluation set. The second one shows
numbers of queries, examples and query occurrences in evaluation data for each language. The
third part shows the type of data: CTS - continuous telephone speech, PRTS - prompted read
telephone speech, RTS - radio telephone speech, PTS - prompted telephone speech.

set was used for testing the approaches.

English - as a feature training set, CTS data from the Switchboard I, Switchboard Cellular,
and Call Home English corpora, were used, whereas the Fisher corpus was used as a query
training set and the NIST STD 2006 development set was used for evaluation.

Hungarian - telephone prompted read speech from the Hungarian part of the SpeechDat East
corpus, was divided into a feature training set, query training set, and an evaluation set1.

Levantine - Levantine Arabic CTS Corpus, was also divided into a feature training set, a
query training set and an evaluation set was used for the Levantine. We employed only
nondiacritized forms of transcripts.

Czech - data created for project No. VD20072010B16 (supported by the Czech Ministry of
Interior), were used. In contrast to the rest of the languages, the feature training set is a
mixture of several audio conditions (45.6 hours of real CTS, 18.9 hours of radio telephone
speech (people calling into broadcasts), and 36.4 hours of read or prompted speech recorded
via telephone). The expansion of training CTS data with read speech was not found
harmful according to our previous experiments on acoustic keyword spotting [Szöke et al.,
2010]. In addition, it made the system more robust without any significant degradation of
accuracy on CTS data.

Different acoustic conditions across the languages and the differences inherent to each group of
languages make the data setup appealing enough for our QbE STD task. Table 3.1 shows the
data statistics for these languages.

For the approaches that work with the phone transcription for each query term (i.e., AKWS
system and WFST from the pronunciation of the search terms), the transcription is obtained
from a reference dictionary, and hence the pronunciation derived from each query is the correct
one. However, for nondiacritized Levantine, the query transcription is derived directly from the

1http://www.fee.vutbr.cz/SPEECHDAT-E/

http://www.fee.vutbr.cz/SPEECHDAT-E/

3.1. DATA 33

Language
Duration [h]

Average duration
per utterance [h]

Utterances
count

Total Speech Total Speech

English 5.9 2.3 0.082 0.032 72

Hungarian 3.5 2.4 0.017 0.012 200

Levantine 5.0 2.5 0.100 0.050 50

Czech 1.9 1.4 0.026 0.019 76

Table 3.2: Evaluation data summary.

set of graphemes that compose the query term. Therefore, both the feature extractor training
and the phone transcription employed in the AKWS and WFST from dictionary pronunciation
systems make use of this set of graphemes. In Levantine, a grapheme can represent several
phones, which may vary depending on the context. This typically leads to lower recognition
accuracy, and hence we expected worse overall performance on this language, no matter the
method employed to hypothesize detections.

3.1.1 Query Selection

Similarly to previous work [Hazen et al., 2009; Tejedor et al., 2010], we have randomly selected
queries with at least five examples in the query training set. In so doing, five examples per query
were used through all the experiments. In addition, the queries fulfill the following requirements:
they are longer than four phones, queries which are substrings of longer queries are discarded
and the queries contain only a single word. Czech, English, and Levantine query training sets
provide a sufficient number of queries. We were able to extract only eight queries fulfilling
the above-mentioned conditions for Hungarian data. The numbers of queries, query examples
along with the numbers of occurrences in the evaluation set for all languages are summarized
in Table 3.1. A complete list of the queries along with the number of phones, the average time
length per query, and the number of occurrences of each query in the evaluation set is in the
Appendix B.

3.1.2 Reference Transcriptions

The purpose of this work is to identify regions in utterances that match the spoken query. To get
closer to the spoken query nature, we transformed word transcriptions for each evaluation set
to phone ones. Word/orthographic transcriptions together with pronunciation dictionaries were
used to derive corresponding reference phone transcriptions for our set of languages. Forced
alignment was carried out to get the time information for each phone. Then each query was
transcribed to phones by a pronunciation dictionary and these phone sequences for each query
were looked up in the phonetic forced-alignment producing a new phone based reference. So
if a sequence of phones representing the detected query also appears in the underlying phone
alignment, it is classified as a hit (regardless of the orthographic transcription, i.e., no matter
if it actually represents a whole word or not). This way we generated references suitable for
query-by-example systems working at the phone level instead of words.

For the interpretation of the unnpFOM metric described in Section 2.3.4.3, lengths of indi-
vidual evaluation utterances are important. Table 3.2 summarizes them.

34 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.1: High-level schema of our query-by-example STD system.

3.2 Audio Preprocessing and Feature Extraction

Our QbE STD system is shown in Figure 3.1. It contains four different blocks: voice activity
detection (VAD); vocal tract length normalization (VTLN); and speaker mean normalization
(SMN) blocks represent standard preprocessing steps. First, a VAD is employed to filter out
nonspeech parts of the audio representing the queries and the utterances for proper estimation
of the speaker normalization/adaptation parameters in the subsequent step. In the second step,
we apply both VTLN and SMN to the remaining audio. The core of this work is the query
detector block. All other blocks were developed by the BUT Speech@FIT research group and
are briefly described in following sections.

Since one of our goals is to evaluate various QbE STD systems across language-dependent
and language-independent setups, the core of our QbE STD systems is split into two blocks:
Feature extractor encodes the speech in low dimensional feature vectors, and the query detector
(or spoken-term detector) hypothesizes putative query detections from the features. To localize
the differences of our query-by-example systems only into the query detector block, we kept the
feature extractor block the same for all our systems.

We experimented with two sets of features: 3-state phone posteriors derived from the output
of an artificial neural net (NN) classifier and bottle-neck features, which are also based on a NN
classifier, derived as output of a hidden compression layer of the NN.

We experimented with three configurations of the QbE detector: (1) a DTW-based approach
where a DTW-based search over a phonetic posteriorgram matrix hypothesizes detections; (2)
a GMM/HMM-based approach where an AKWS-based search is employed from a GMM/HMM
representing the query and the background models; (3) a WFST-based approach, where phone
lattices are employed to represent both the query examples and the evaluation data and a WFST-
like framework hypothesizes detections. Table 3.3 presents the features used within each query
detector in this thesis.

3.2.1 Voice Activity Detection

VAD is conducted to properly derive the speaker normalization/adaptation parameters, as de-
picted in Figure 3.2. Raw features of an input audio signal are sent to a 4-layer NN, with 200
neurons in each of its two hidden layers and N +1 outputs in the output layer that represent N
phones and one silence. The output of the NN is further passed through a decoder to obtain the
phone segmentation. All nonsilence phones are then merged into speech segments. It should

3.2. AUDIO PREPROCESSING AND FEATURE EXTRACTION 35

query-by-example detector Upper-bound

Feature extraction DTW GMM/HMM WFST AKWS WFSTdict

3-state phone posteriors X X X X X

Bottle-neck features X

Table 3.3: Combination of Feature Extraction and QbE STD Approaches in this thesis. The
WFSTdict system is derived from our WFST approach where “language-dependent” lattices
were generated and reference query pronunciations (i.e., as in query-by-text STD) were used for
searching.

Figure 3.2: Voice activity detector.

be noted that to derive the raw features, both VTLN and SMN techniques are omitted. For the
VAD NN, the length of the temporal patterns is 310 ms (LTP = 31). The patterns are further
reduced by the discrete cosine transform (DCT) to 16 coefficients (LDCT = 16). The reason we
used a NN-like VAD is its better performance than standard GMM/HMM-based approaches for
phone recognition [Schwarz, 2009].

3.2.2 Speaker Adaptation

The VAD segmentation is taken “as is” for the VTLN parameter estimation, while for a robust
SMN parameter estimation, speech segments are expanded by a 100 ms-length silence. These
parameters are applied on the speech representing the queries and the utterances before going
into the feature extraction block (see Figure 3.1). Informed by the results of previous experi-
ments [Szöke et al., 2010], we did not use speaker-based variance normalization.

The speaker adaptation is on an utterance basis. Parameters are estimated on the speech of
the whole telephone call in the case of Levantine, Czech, and English data. For Hungarian data
(SpeechDat corpus), all utterances belonging to the particular speaker are concatenated to one
“utterance” and then the speaker adaptation parameters are estimated.

The fast VTLN estimation proposed in [Welling et al., 1999] is employed to derive the VTLN
parameters properly. This approach uses maximum a posteriori (MAP) adaptation from a
universal background model (UBM), with 32 diagonal Gaussians to derive specific models for
each warping factor. These models are next retrained using the maximum mutual information
(MMI) criterion. The features used to derive these models are 13 perceptual linear prediction
(PLP) coefficients, including c0 with deltas and double deltas (without any normalization).

36 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.3: Feature extraction.

Figure 3.4: Universal context (UC) neural net architecture.

3.2.3 Feature extractor

This block, depicted in Figure 3.3, converts the input audio signal to features (3-state phone
posteriors or bottleneck features). The input speech is first segmented into 25ms frames with
a 10ms frame-shift, and its power spectrum is calculated for each frame. Pre-estimated VTLN
is applied, and energies from 15 Mel-scale critical bands, ranging from 64 Hz to 3800 Hz, are
extracted and passed through a logarithm. Next, speaker mean normalization is performed. We
obtain a log-critical band spectrogram (CRB), from which long temporal patterns of length 15
are extracted. Hamming window and dimensionality reduction by DCT to six coefficients are
applied to each long temporal critical band trajectory. Finally, these reduced temporal patterns
are concatenated to one feature vector to derive the raw features in Figure 3.3 which are next
fed into the NN. These raw features are the same as those used in the VAD, but here, VTLN
and SMN are applied.

The topology of the NN classifier to derive the final set of features in Figure 3.3 is crucial.
Based on our previous experiments in LVCSR [Grézl et al., 2009], we use a hierarchical structure
called a bottleneck universal context network, depicted in Figure 3.4, which consists of two
different parts: a context network and a merger.

The input of the context network is a context of 15 frames around the current one, each
represented by six DCT coefficients. The input size is 15 × 6 = 90. The context NN is a
so-called bottleneck network. It is trained as a five-layer network with the 3rd layer as the
bottleneck of size 80 neurons. The size of the 2nd and 4th layers are size(hid UC(Lang)) and
the number of outputs (5th layer) size(out(Lang)), corresponds to the number of phone states:
size(out(Lang)) = 3× (phn(Lang)+1) and phn(Lang) is the number of phones of the language

3.2. AUDIO PREPROCESSING AND FEATURE EXTRACTION 37

Class
probability
estimations

���
���
���
���

���
���
���
�����

��
��

��

���
���
���
���

���
���
���
���

����

������

������

��
��

��

������
���
���
���
���

��
��
��
��

���
���
���
���

5−layer MLP

In
pu

t f
ea

tu
re

s
Part used for
bottle−neck feature
computation

Figure 3.5: Training of the context bottleneck neural network. A 5-layer neural network with an 80-

neuron bottleneck layer in the middle and 3-state phone posterior classes are trained first. Then the 4th

and 5th layers are removed and the output of the network is taken from the bottleneck layer.

on which the feature extractor is trained. For size(hid UC(Lang)), it holds that the size of the
whole NN (five layers) is fixed to 500k parameters. Since the size of the output layer depends
on the number of phones, the size of the hidden layers also depends on the language. Table 3.4
shows the sizes of this output layer for each language and Table 3.5 shows the phone recognition
performance on the four evaluation languages.

After training the context network as a 5-layer network, the fourth and fifth layers are cut-off
so the output size of the context network is 80, as shown in Figure 3.5.

The merger receives five context net outputs sampled every five frames (for frame t, this is
t− 10, t − 5, t, t + 5, t + 10), so it actually “sees” a 310ms context in the CRB matrix, and the
merger input size is 5× 80 = 400. The merger is one of the following

• A standard 4-layer NN. Its outputs are size(out(Lang)) 3-state phone posteriors (including
silence). An example of a 3-state phone posteriorgram is depicted in Figure 3.6.

• A 5-layer bottle-neck NN. Its outputs are size(out(Lang)) and they are used only for
training. The size of the bottleneck is fixed to 30 for all languages.

There are several differences between posterior and bottleneck features

• The most remarkable difference is the size of the feature vector. The posterior feature
vector size varies according to the language on which the feature extractor is trained,
according to the column size(out) in Table 3.4. On the other hand, the bottleneck feature
vector always has the size fixed to 30.

• Theoretically, the amount of information encoded in the feature vector should be the same.
This is because the bottleneck neural network is trained to classify the same number of
classes as the “posterior” neural net. In LVCSR, bottleneck features achieved higher
accuracy than posterior features (reduced to the same dimensionality) [Grézl et al., 2007].

• An important difference relies on the distribution of the features. While bottleneck features
have a normal (Gaussian) distribution (Figure 3.7f), 3-state phone posteriors have a non-
Gaussian distribution (Figures 3.7b and 3.7d). Posterior features have a limited range

38 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.6: An example of 114 3-state phone posteriors (38 phones times 3 states per phone) for
2 seconds of speech. The 3 states represent beginning, center, and end of a phone. The x-axis
represents the time in a hundredth of a second and the y-axis represents the indices of 3-state
phone posteriors.

Language Phones size(hid UC) size(hidMer 3stphn) size(hidMer BN) size(out)

Czech 37 1373 495 871 114

English 44 1298 488 840 135

Hungarian 64 1128 470 765 193

Levantine 32 1432 500 894 99

Table 3.4: Numbers of Phones and Sizes of Layers for Different Languages. size(hid UC)
represents the size of the hidden layer in the universal context NN. size(hidMer 3stphn) is the
size of the hidden layers in the merger with 3-state phone posterior output. size(hidMer BN)
is the size of the hidden layer in the merger with bottleneck output, and size(out) is the size of
the 3-state phone posterior output layer.

from 0 to 1. According to [Grézl and Fousek, 2008], the bottleneck features are Gaussian
and can be approximated by a GMM more accurately than phone posteriors.

• The last difference is in computational effectiveness. Both posterior and bottle-neck fea-
tures are trained with an equal number of parameters in the merger. However, the size
of the bottleneck NN merger (3-layer NN) is half the trained size (5-layer NN) (see Fig-
ure 3.5).

3.2. AUDIO PREPROCESSING AND FEATURE EXTRACTION 39

Language Corr. [%] Acc. [%] H D S I N

English 56.39 47.36 82198 35701 27865 13162 145764

Hungarian 69.38 66.18 65442 11061 17823 3014 94326

Levantine 64.00 43.76 40595 9818 13018 12839 63431

Czech 66.93 63.24 41129 10036 10283 2269 61448

Table 3.5: Phone recognition performance on evaluation data. H is the number of correct
phone labels, D is the number of deletions, S is the number of substitutions, I is the number of
insertions and N is the total number of phone labels in transcriptions.

0 0.5 1
0

10

20

30

40

(a) Posteriors of the middle state of
phone “aa” across all utterances.

0 0.5 1
0

5

10

15

20

(b) Posteriors of the middle state
of phone “aa” only for reference oc-
currences of “aa”.

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

(c) Log posteriors of the middle
state of phone “aa” across all ut-
terances.

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

(d) Log posteriors of the middle
state of phone “aa” only for refer-
ence occurrences of “aa”.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

(e) Single bottleneck feature “bn01”
across all utterances.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

(f) Single bottleneck feature “bn01”
only for reference occurrences of
the phone “aa”.

Figure 3.7: Example histograms of posterior and bottleneck features, showing the inherent
Gaussian-like distribution of bottleneck features.

40 CHAPTER 3. EXPERIMENTAL SETUP

Chapter 4

Acoustic Keyword Spotting (AKWS)
– Upper-bound

The acoustic keyword spotting system’s setup and experiments were done by Igor Szőke from
the BUT Speech@FIT research group, where the AKWS system was developed. Igor also wrote
a major part of this chapter, which was published with the same results in our common paper
[Tejedor et al., 2012].

We took the acoustic keyword spotting as our upper-bound technique and also derived the
GMM/HMM approach for QbE STD from it. The schema of the acoustic keyword spotter
appears in Figure 4.1. First, the utterances are passed through a VAD that removes the non-
speech parts. Next, the remaining audio is converted to 3-state phone posterior features, whose
logarithm is taken and fed into the decoder. The keyword-spotting network in the decoder is
depicted in Figure 4.4, and is built from the given set of queries (i.e., keywords) and their pro-
nunciations. The output of the decoder is a set of hypothesized detections whose final score is
the likelihood ratio divided by the length of the detection in frames to compensate for different
lengths of the queries. Note that our acoustic keyword spotter contains neither language model
nor vocabulary (except the list of searched keywords). The searched keywords do not affect each
other. Also note that the AKWS system is not a state-of-the-art spoken term detection system,
since the list of query terms is used for speech decoding, and does not employ any language
model, but it is the most comparable standard language-dependent approach. A full description
of the acoustic keyword-spotting system can be found in [Szöke, 2010].

The core of our AKWS system is a standard Viterbi-based decoder, modified to calculate
the likelihood ratio (see Figure 4.2). The filler models (A) and (C) should model all the speech
preceding and succeeding the keyword, and are represented by a free phone loop. The keyword
model (B) is a concatenation of phone models of which the keyword consists. The background
model (D) is again a single phone loop. It must be noted that this configuration allows for
multiple keywords to appear in a single utterance and multiple instances of the same keyword
in the same utterance.

The utterance is modeled using model A-B-C (concatenation of models A, B, and C), and
model A-D-C (concatenation of models A, D, and C). Models B and D score exactly the same part
of utterance, so the likelihoods of models A-B-C (LABC) and A-D-C (LADC) differ only because
of models B and D. If there is a keyword beneath model B, LRatio = LADC/LABC will approach 1
and will be lower for nonkeywords. If a noise appears in the speech, both likelihoods LABC

41

42 CHAPTER 4. ACOUSTIC KEYWORD SPOTTING (AKWS) – UPPER-BOUND

Figure 4.1: Schema of acoustic keyword-spotting system.

Figure 4.2: General acoustic keyword-spotting network.

and LADC will be lower, but due to the likelihood ratio, the influence of noise should be limited.
For simplification, the filler model C is omitted, as depicted in Figure 4.3, since LC is a

constant on both sides of the term, and hence it is simpler to implement likelihood ratio calcu-
lation just after model B. In addition, in the real recognition network, there is only one phone
loop representing both A and C, as depicted in Figure 4.4. This simplification does not affect
the ability of the keyword spotter to detect any number of putative hits of a term in the whole
utterance. The keyword spotter produces a term likelihood ratio for each frame.

4.1 Results

We built the acoustic keyword-spotting system as an upper-bound reference for each of our
evaluation languages. Results are summarized in Figure 4.5. We can see that the Hungarian
system, which is trained and tested on clean read telephone speech provides the best overall
performance among all four languages. The worst accuracy was on Levantine data. This was
probably caused by the nondiacritized approach, with a complex structure for acoustic model
training and recognition (i.e., we are actually recognizing graphemes, as one grapheme may
contain several phones, depending on the context). Czech data exhibit the second worst overall
performance, due to its data mismatch (read speech versus CTS). Gaps between npFOM and
utterance-normalized npFOM values show that all four AKWS systems could benefit from an
utterance normalization technique. By comparing unnpFOM and oracleFOM results, we can see
that for Levantine data, the gap between the two metrics is larger than for the other languages.
It means that even for a single evaluation utterance, the Levantine system produces slightly

4.1. RESULTS 43

Figure 4.3: Likelihood ratio computation in acoustic keyword-spotting.

Figure 4.4: Example of a real keyword-spotting network in AKWS. Each phone model is represented by

a 3-state hidden Markov model tied to 3-state phone posteriors.

larger amount of false alarms with higher confidence scores than hits. The Levantine system has
also significantly higher detection rate, which may cause higher value of oracleFOM. Levantine
system produces 0.27 detections per second, while the other systems range from 0.028 to 0.038.

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

Figure 4.5: Results of acoustic keyword-spotting experiments.

44 CHAPTER 4. ACOUSTIC KEYWORD SPOTTING (AKWS) – UPPER-BOUND

Chapter 5

GMM/HMM-based
Query-by-Example Detector

The GMM/HMM QbE system setup was done by Igor Szőke from the BUT Speech@FIT research
group. Some of the presented experiments were done by Javier Tejedor from the HTCLab at
Madrid university. Major part of this chapter was written by Igor and Javier and was published
with similar results and minor differences in our common paper [Tejedor et al., 2012].

Filler model-based acoustic keyword spotters, the one like in Section 4, have been successfully
applied when spotting words from speech signals [Manos and Zue, 1997; Cuayahuitl and Serridge,
2002; Kim et al., 2004; Xin and Wang, 2001; Ou et al., 2001; Szöke et al., 2005; Hazen and Bazzi,
2001; Tejedor, 2009]. However, this approach is still language-dependent, since both the key-
word models and the filler models are built from a predefined set of phone models belonging
to a target language. To address language-independence in our QbE STD task, this should be
mitigated. In this direction, our GMM/HMM-based QbE STD system is inspired by acoustic
keyword spotting, similarly to [Velivelli et al., 2003].

The query (keyword) model in AKWS is a linear concatenation of phone models represent-
ing the pronunciation of the keyword. We retain an acoustic representation of the query in
GMM/HMM-based QbE, as previously discussed in Section 4, but in contrast with concatena-
tion of pretrained phone models in AKWS, the query GMM/HMM is trained on examples. The
number of states of each query model is set to three times the number of phones of which the
pronunciation consists (in the “query” target language). This is the only knowledge we use from
the “query” language in terms of word/phone transcriptions. In our future work, this number
of phones will be estimated from the length of the query to completely remove the language-
dependency of this approach. The five examples from the training query set (see Section 3)
were used to train each query model. One GMM component was found to be optimal to model
each state in experiments (by a margin of at least 2.6% relative compared with more GMM
components both for language-dependent and language-independent setups).

In contrast to AKWS, where the background model consists of a free loop of phone and silence
models (see Section 4), in our GMM/HMM-based QbE detector, we define the background model
as a GMM, whose number of components was empirically set to 40. This background model was
trained on the query training set and hence data from the target language is necessary. However,
no transcription is needed.

The same decoder as for AKWS is employed to hypothesize detections, with the recogni-

45

46 CHAPTER 5. GMM/HMM-BASED QUERY-BY-EXAMPLE DETECTOR

Figure 5.1: Recognition network for the GMM/HMM-based QbE detector. The background model is

represented by a single state with 40 Gaussian mixtures. The query model is a linear concatenation of

states (HMM), each represented by a single Gaussian.

tion network illustrated in Figure 5.1. As in the AKWS system, the likelihood ratio divided
by the length of the detection represents each detection score. Both 3-state phone posteriors
and bottleneck features have been experimented with for query/background modeling in the
GMM/HMM-based QbE detector.

5.1 Results

Similarly to all our QbE STD systems, we evaluate the GMM/HMM system in all language-
dependent and language-independent setups of Czech, English, Hungarian and Levantine lan-
guages with 3-state phone posterior features, using a single example and five examples per query.
Besides that, the GMM/HMM system is evaluated also with bottleneck features.

5.1.1 Language-dependent

Results of language-dependent setups with single example and five examples per query are
summarized in Figure 5.2. We can see that in the case of a single example per query, the
performance is quite low due to low amount of training data for GMM/HMM models of queries.
However, for five examples per query, performance increases considerably. We clearly see that
bottle-neck features outperform 3-state phone posteriors in all language-dependent setups except
for the Hungarian data where the difference is not significant. We consider that this discrepancy
is due to the small amount of data used to train the Hungarian feature extractor, which makes
a poorer estimation of the bottle-neck features.

5.1.2 Language-independent

Results for all language-dependent and language-independent setups are shown in Figure 5.3.
By inspecting Hungarian data in the figure, we can see that Czech bottleneck feature extractor
performs the best, which supports our conjecture that the small amount of data used for training
the Hungarian feature extractor results in a worse feature estimation in such a way that a better
training of a language-independent feature extractor provides much better performance. In
addition, this is also consistent with the results corresponding to the Hungarian feature extractor
on the rest of the language-independent setups.

5.1. RESULTS 47

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

AKWS
GMM/HMM 1P
GMM/HMM 1B
GMM/HMM 5P
GMM/HMM 5B

Figure 5.2: Comparison of results of GMM/HMM-based QbE STD systems for language-
dependent setups. “1” and “5” denote the number of examples used for training each query, “P”
and “B” denote 3-state phone posterior and bottleneck features.

When the language-dependent and the language-independent feature extractors are com-
pared, we can see the former outperform the latter consistently, except for the Hungarian data,
which is due to the small amount of data employed to train the Hungarian feature extractor
and for the Levantine data due to the nondiacritized approach. We also note that bottleneck
features from the Czech feature extractor slightly outperform the language-dependent feature
extractor for Levantine data due to Levantine data complexity.

When the performance across the different datasets is compared, we can see that the Levan-
tine and Czech data exhibit the worst overall performance, depending on the feature extractor
used. This is because of the mixed audio conditions of the Czech data (read speech versus CTS)
and the nondiacritized approach of the Levantine data. Hungarian data, which is read speech,
achieved the best performance across each language-independent feature extractor due to the
nature of the data.

We can conclude that the set of features used in the GMM/HMM approach is stable across
each target language for both language-dependent and language-independent setups in such a
way that bottleneck features outperform the 3-state phone posteriors in case the feature extractor
is provided with enough training data.

48 CHAPTER 5. GMM/HMM-BASED QUERY-BY-EXAMPLE DETECTOR

0

20

40

60

80

100

system

p
H

IT
 [
%

]
npFOM

CZ EN HU LE

C
Z

 d
a

ta

GMM/HMM 1P
GMM/HMM 1B
GMM/HMM 5P
GMM/HMM 5B

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

GMM/HMM 1P
GMM/HMM 1B
GMM/HMM 5P
GMM/HMM 5B

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

GMM/HMM 1P
GMM/HMM 1B
GMM/HMM 5P
GMM/HMM 5B

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

GMM/HMM 1P
GMM/HMM 1B
GMM/HMM 5P
GMM/HMM 5B

Figure 5.3: Results of the GMM/HMM-based QbE STD systems for all language-dependent
and language-independent setups. “1” and “5” denote the number of examples used for training
each query, “P” and “B” denote 3-state phone posterior and bottleneck features.

Chapter 6

DTW-based Query-by-Example
detector

The DTW-based system was developed by Miroslav Skácel from the BUT Speech@FIT research
group, the system for combining query examples was developed by Javier Tejedor from the
HTCLab at Madrid university, who also helped us with experiments and wrote a substantial
part of this chapter. This chapter with similar results was published in our common paper
[Tejedor et al., 2012].

The DTW-based QbE detector relies on template matching. The features (i.e., 3-state
phone posteriors) are used to compute a similarity measure between query and utterance and
the template matching employs a DTW-like search to hypothesize detections.

To explain our DTW-based approach for QbE, let us first explain how the query is con-
structed from its five examples and next how the similarity matching of posteriorgrams works.
Finally, we explain how the DTW-like search hypothesizes detections.

6.1 Query Construction from Example Combination

As shown in our previous work [Tejedor et al., 2010], a combination of several individual exam-
ples into one “average” representative of the query, should lead to a better performance than
using a single example as a query. As in [Tejedor et al., 2010], the combination in this work for
two or more query examples relies on a feature level-based combination. In so doing, the new
query example is built from multiple single examples. First, let us explain how the combination
of two examples works: (1) order the examples by score according to a certain metric; (2) run
the DTW search with the best example acting as “query” and the worst acting as “utterance”;
and (3) update the phone state posteriors of the best example (“query”) with the phone state
posteriors of the worst example (“utterance”) according to the best path derived from the DTW
search.

Let us now explain the process in detail for k examples (five in our case). We order the
examples by a DTW-based metric: a DTW search is conducted in the same way as in the search
step for every example. Therefore, a k×k scoring matrix is derived in which the score produced
by the DTW search of each query example on the rest of the examples is stored. The individual
score assigned to each example cDTW (Ei) is the sum of the ith row in the scoring matrix. As
during the search phase, the similarity function that will be explained in Section 6.2 (i.e., cosine

49

50 CHAPTER 6. DTW-BASED QUERY-BY-EXAMPLE DETECTOR

Figure 6.1: An example of a combination of posterior vectors of the best example (Q) and the
worst example (R) using the DTW path.

distance) was employed to compute the score for each example. The example with the lowest
score is considered to be the best.

For the third step, where two examples have to be combined, let us define the best example
Q = {q1, . . . ,qN} containing N frames and the worst example R = {r1, . . . , rM} containing M
frames. Let us define P as the best path found by the DTW search between Q andR, containing
pairs of indices pointing to Q and R, respectively.

The combination of the best and worst example posterior matrices consists of updating the
phone state posteriors of Q by the frames of R according to path P . The new value of qi is
simply computed as an average of qi and all rj assigned to i by path P:

qnew
i =

qi +
∑

∀j:{i,j}∈P rj

1 +Nj

, (6.1)

where Nj is the number of vectors in R belonging to qi.
To combine more than two examples, the combination must be split in several example

subcombinations. In so doing, we get the 5-example-based combination referred to before, as
follows: we combine the fourth and fifth examples into a temporary one E45, and the third and
second ones into another one, E23. After that, we combine these two temporal examples into
E2345, and finally we merge E2345 with the best example to derive the merged query Ec, as
depicted in Figure 6.2. Thus the final length of the combined example keeps the length of the
first example. The reason is to follow the same length of the first (best) example in the combined
example as the final query length. It must also be noted that weights for averaging examples by
this approach, are 1

2
for the first example and 1

8
for all other four examples. Finding the optimal

weights of query examples has yet to be investigated more deeply.

6.2 Similarity Matching of Posteriorgrams

Inspired by our previous work [Tejedor et al., 2010], we compute the similarity between the
query example and regions of the utterance from phonetic posteriorgrams, as illustrated in
Figure 3.6. The phonetic speech classes are 3-state phones, similar to standard HMM in our
case. To hypothesize similar audio segments in the utterance and the query, a similarity function
is needed. Based on our previous work [Tejedor et al., 2010], our similarity function is a log-
likelihood based on the cosine distance:

6.3. DTW-BASED QUERY DETECTOR 51

Figure 6.2: Combination of five examples. The Ec is the final “average” (combined) example.

Figure 6.3: An example of a path and a path cost normalization for the DTW search.

D(q, r) = − log

(

qT r

|q||r|

)

, (6.2)

where q is a vector drawn from a 3-state phone posteriorgram of the query and r comes from
the searched utterance.

We compute the similarity between each individual posterior distribution for all N frames
representing the query against each individual posterior distribution for all M frames represent-
ing the utterance. It results in an N ×M matrix.

6.3 DTW-Based Query Detector

As query detector, a standard DTW search is conducted to hypothesize regions that match
the query well with putative segments in the utterance. It is run iteratively for every frame
of the utterance. The DTW search finds the minimum scoring path via the similarity matrix.
After the DTW search, overlapped regions that hypothesize the same term are removed and the
utterance region whose score produces a local minimum is sent to the output. The final score
for every path computed during the DTW search is normalized by the length of the path. As
in our previous work [Tejedor et al., 2010], right or down steps have cost 1, and diagonal steps
have cost

√
2 (see Figure 6.3).

6.4 Results

Similarly to all our QbE STD systems, we evaluate the DTW system in all language-dependent
and language-independent setups of Czech, English, Hungarian and Levantine languages with

52 CHAPTER 6. DTW-BASED QUERY-BY-EXAMPLE DETECTOR

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

la

n
g

u
a

g
e

−
d

e
p

e
n

d
e

n
t CZ

EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

Figure 6.4: Results of language-dependent setups for DTW-based QbE STD systems with single
example per query for Czech, English, Hungarian and Levantine datasets.

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

AKWS
DTW 1ex
DTW 5ex

Figure 6.5: Comparison of results of language-dependent setups for AKWS baseline and DTW-
based QbE STD systems with single example and five examples per query for Czech, English,
Hungarian and Levantine datasets.

3-state phone posterior features, using a single example and five examples per query.

6.4.1 Language-dependent

Figure 6.4 shows the performance of our basic DTW-based QbE STD system for language-
dependent setups where each query is represented by a single example. Comparing it to the
AKWS baseline results in Figure 6.5, we can see that with only a single example per query,
DTW performs significantly worse. Ranking of languages is similar with the lowest performance
for Levantine and the highest for Hungarian. One thing should be pointed out in these results:
Hungarian has a very high value of unnpFOM and also for other languages, unnpFOM is much
higher than npFOM, which means that detection scores are not well calibrated across utterances.

Results for combining five examples of each query are shown in Figure 6.5. We can see that
all systems performed better than for the single example per query case. The most significant
improvement was achieved for English which performed similarly to Hungarian, while having
even a steeper npROC curve in the range of very low false alarm rates (npROC curves are shown
in Figure 6.6). Levantine results show the worst performance, similarly to the baseline AKWS
results, due to the nondiacritized approach.

6.4. RESULTS 53

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

Figure 6.6: Results of language-dependent setups for DTW-based QbE STD systems with five
examples per query for Czech, English, Hungarian and Levantine datasets.

6.4.2 Language-independent

DTW results for all combinations of data and system languages, where DTW uses only a single
example per query, are shown in Figure 6.7. The figure clearly shows, that language-independent
setups perform significantly worse than language-dependent setups, the only exception being
Hungarian data where English and Czech systems performed closer to the language-dependent
Hungarian system. This is probably due to the read nature of the Hungarian data, which may
lead to better phone posterior estimates, even when we are dealing with a language-independent
feature extractor. Czech system worked also relatively well as language-independent for Levan-
tine data, compared to the Levantine system. Language-independent performance is also low
for Czech data, due to the mismatch issue (read speech versus CTS, see Table 3.1).

The performance increased, when we combined five examples of each query, as is shown in
Figure 6.8.

Similar patterns were observed across each language for both language-dependent and
language-independent feature extractors. As expected, it was observed that the language-
dependent setup outperforms the language-independent one, since posterior features are more
robust when the feature extractor matches the target language. The figures also show that
for language-independent setups, performance dramatically decreases. This is due to unreli-
able scores assigned to each putative hit when unreliable phone posteriors (corresponding to
language-independent setups) are fed into the DTW search.

From the DTW-based experiments, we can conclude that DTW achieves good performance
for language-dependent QbE STD, and this performance is dramatically decreased when applied
in language-independent setups.

54 CHAPTER 6. DTW-BASED QUERY-BY-EXAMPLE DETECTOR

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

C

Z
 d

a
ta

CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

E
N

 d
a

ta

CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

H
U

 d
a

ta

CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

L
E

 d
a

ta

CZ
EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

Figure 6.7: Results of the DTW-based QbE STD systems with single example per query for
Czech, English, Hungarian and Levantine datasets. For each dataset, results of Czech, English,
Hungarian and Levantine query-by-example STD systems are shown.

6.4. RESULTS 55

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

C
Z

 d
a

ta

DTW 1ex
DTW 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

DTW 1ex
DTW 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

DTW 1ex
DTW 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

DTW 1ex
DTW 5ex

Figure 6.8: Comparison of results for DTW-based QbE STD systems searching for a single
example and five examples per query.

56 CHAPTER 6. DTW-BASED QUERY-BY-EXAMPLE DETECTOR

Chapter 7

WFST-based Query-by-Example
detector

The WFST-based QbE detector forms the core of this thesis. Part of this chapter with early
experiments and results was published in [Tejedor et al., 2012]. In this thesis, we developed the
system further and achieved substantial improvements.

All the approaches presented earlier used phone posterior features directly when searching
for queries. In this chapter, we work with phone lattices1 or confusion networks2, derived from
phone posterior features, representing both queries and utterances. This approach aims at
finding all occurrences of a query lattice inside an utterance lattice, while preserving the timing
and score of each occurrence. Weighted finite state transducers (WFSTs) offer a well-defined
framework for this purpose.

Inspired by the work of [Parada et al., 2009] who aimed at searching OOV terms using
WFSTs, we focus on the language-independent aspect of QbE and instead of using LVCSR or
hybrid word/phone lattices, we create phone lattices from posteriors generated by the phone
recognizer described in Section 3.2.

We start this chapter by a brief introduction to transducers and by description of our two
WFST systems, one that works with lattices and the other one that works with confusion
networks. Then we present initial results of our WFST system as they were published in
[Tejedor et al., 2012]. Afterwards, we analyze the system’s performance and describe several
improvements.

7.1 Introduction to Finite State Transducers

For working with lattices, weighted finite state transducers (WFST) offer a very flexible frame-
work commonly used in LVCSR systems [Mohri et al., 2008; Stoimenov and Schultz, 2009],
spoken document retrieval [Allauzen et al., 2004], spoken term detection [Parada et al., 2009;
Mangu et al., 2014], etc. All these research areas use WFSTs mainly for combining sequences
of noisy probabilistic data in various parts of their systems.

1Acyclic graphs of weighted phone hypotheses produced by speech recognizers. Links in these graphs usually
include label, likelihood and time information.

2Sausage-like structures derived from lattices, consisting of a single sequence of hypotheses groups, where
hypotheses of each group overlap in time.

57

58 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

The following brief introduction to transducers is taken with minor modifications from
[Pereira et al., 1994]. We do not describe all aspects of WFSTs here, only those which are
required for understanding this thesis.

In language processing tasks, we are usually given an observation sequence o, and we have
to find out which intended message w is most likely to generate that observation sequence by
maximizing

P (w, o) = P (o|w)P (w),

where P (o|w) characterizes the transduction between intended messages and observations,
and P (w) is a prior probability of messages which characterizes the message generator. More
generally, the transduction between messages and observations may involve several intermediate
stages

P (so, sk) = P (sk|so)P (so) (7.1)

P (sk|so) =
∑

s1,...,sk−1
P (sk|sk−1) · · ·P (s1|s0) (7.2)

where P (sk|s0) is the probability of transducing s0 to sk through the intermediate stages, as-
suming that each step in the cascade is conditionally independent on the previous ones. Each sj
is a sequence of units in an appropriate representation (phones, syllables, words, ...). A straight-
forward but useful observation is that any such a cascade can be factored at any intermediate
stage

P (si|sj) =
∑

sk
P (si|sk)P (sk|sj) (7.3)

In the transduction cascade (7.2), each step corresponds to a mapping from input-output
pairs (r, s) to probabilities P (s|r). More formally, steps in the cascade will be weighted trans-
ductions T : Σ∗×Γ∗ → K where Σ∗ and Γ∗ are sets of strings over the alphabets Σ and Γ, and
K is an appropriate set of weights, for instance the real numbers between 0 and 1 in the case of
probabilities.

The equation (7.3) is represented by a composition operation of transducers. Given two
transductions S : Σ∗ × Γ∗ → K and T : Γ∗ ×∆∗ → K, we can define their composition S ◦ T by

(S ◦ T)(r, t) =
∑

s∈Γ∗

S(r, s)T (s, t).

For example, if S represents P (sk|sj) and T P (sj |si) in (7.3), it is clear that S ◦T represents
P (sk|si).

Query-by-example systems based on WFSTs usually convert phone lattices into transducers.
The search is then performed by a composition of query transducer with utterance transducer.
The resulting transducer contains all occurrences of the query in the utterance with correspond-
ing probabilities. This process will be described in more detail in Section 7.2.3.

7.2 Using Lattices (WFSTlat)

Using only a one-best string output of a phone recognizer for a query-by-example system would
lead to a low number of detections and consequently to a low performance when data are not

7.2. USING LATTICES (WFSTLAT) 59

0

1

c

t=0.1 / β(0)

2

ae

3

ah

t=0.2 / β(1)

4

t

t=0.2 / β(2)

t

t=0.3 / β(3)

t=0.4 / β(4)

ε / -α(4)

t=0.1 / α(0)

t=0.2 / α(1)

t=0.2 / α(2)

t=0.3 / α(3)

t=0.4 / α(4)

(a) An example of a WFST E.

t= : t= c : c ae : ae t : t ε : W=CAT t= : t=

(b) An example of a term “CAT” encoded into Q transducer.

ε : ε / -α(4)
0

t=0.1 : t=0.1 / α(0)
1

c : c
2

ae : ae
4

t : t ε : W=CAT t=0.4 : t=0.4 / β(4)

(c) Result of a composition R = E ◦Q.

Figure 7.1: Examples of R, E and Q transducers generated from lattices.

perfectly clean (noise, mismatched training/evaluation data, etc.). It can be overcome by using
phone lattices which preserve also hypotheses with lower probabilities not included in the one-
best string output.

Our phone recognizer generated tri-state phone posteriorgrams, which we converted to lat-
tices by the HVite decoder3 [Young et al., 2006]. A certain amount of information from the
posteriorgrams is lost during such conversion caused by pruning in the decoder. Because of
the loss, query-by-example systems based on phone posteriorgrams should perform better than
the ones based on pruned lattices. However, the pruning factor and thus the amount of lost
information can be tuned arbitrarily to keep only necessary information in lattices (see Section
7.5.1).

Both query and evaluation lattices are converted to a WFST representation. By a com-
position of query and evaluation transducers we obtain a transducer R which represents all
detections of the query in the evaluation data, [Allauzen et al., 2007]:

R = E ◦Q, (7.4)

where E is a transducer for evaluation data, and Q represents the query. We present some
examples of transducers in Figures 7.1a, 7.1b, and 7.1c. Let us now describe the process of
converting lattices to E and Q transducers in more detail.

7.2.1 Converting Evaluation Lattices to WFSTs

To be able to search in lattices using the WFST framework, we need to properly convert them
to a transducer representation. We inject links with timing information to the WFST, so that

3Included in the Hidden Markov Model Toolkit (HTK), http://htk.eng.cam.ac.uk

http://htk.eng.cam.ac.uk

60 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

Algorithm 7.1 A detailed algorithm for creating the transducer E from a traditional lattice.

1. Each link Lij : Ni → Nj is copied from a lattice to the transducer E, containing a phone
label and the link’s likelihood l. In our case we used only acoustic likelihoods la (with an
optionally added phone insertion penalty penins). Weights in the log semiring are encoded
in − log domain: weight(L) = − log(la) + penins.

2. Forward (α) and backward (β) likelihoods are computed for each node in the lattice using
the Baum–Welch forward-backward algorithm [Baum et al., 1970].

3. Two new nodes Nfirst−1 and Nlast+1 are added. Then, for each node i, two time links
are added: Lin : Nfirst−1 → Ni with weight(Lin) = α(Ni) (forward likelihood to node i)
and Lout : Ni → Nlast+1 (Nlast is the lattice’s final node) with weight(Lout) = β(Ni)
(backward likelihood to node i). The labels of both links carry the time of the node i (e.g.,
“t=14.23”).

4. A new node Nfirst−2 and a new link Lnorm : Nfirst−2 → Nfirst−1 with an ǫ label and
weight(L) = −α(Nlast) (likelihood of the best path through the lattice) are prefixed to
the transducer, where Nfirst−1 is the node from which all time links start and Nfirst−2 is
a new start node.

each possible path through an evaluation WFST E starts and ends with a time link. After a
composition with a query lattice Q, each possible path in the resulting WFST R starts and ends
with a time link. In this way, we preserve the timing of each detection.

When injecting time links, we add links with timing information in labels from the start
node of the lattice to all other nodes, and similar links from all nodes to the final node. Then,
we can jump in and out of the WFST only through these time links, as depicted in Figure 7.1a.
To preserve correct posterior probabilities, we need to set a forward probability in each start-
time link and a backward probability in each end-time link. To normalize all paths by the full
probability of the whole lattice, another link is prefixed to the WFST. See Algorithm 7.1 for
details of creating the transducer E.

Figure 7.1a illustrates such a transducer: any path traversing E must now start with links
Lnorm, Lin, and must end with Lout. Therefore, the links carrying time information in their
labels are always at the beginning and at the end of each path. Also, the weight of each path
corresponds to the log posterior probability of the path, as follows:

weight(path(L1, L2, ...LM)) = −α(Nlast)

+α(start(L1))

+l(L1) + l(L2) + ...+ l(LM)

+β(end(LM)),

where start(L) and end(L) represent start and end nodes of link L. It is obvious that in linear
domain:

p(path) =
α(start(L1))l(L1)l(L2)...l(LM)β(end(LM))

α(Nlast)
(7.5)

so that p(path) represents the posterior probability for a certain path.

7.2. USING LATTICES (WFSTLAT) 61

Algorithm 7.2 A detailed algorithm for creating the transducer Q from a traditional lattice.

1. For each link Lcut start : Ni → Nj , where time(Ni) < cut start time and time(Nj) >
cut start time, the link’s start node is replaced by Nfirst with weight(Lcut start) = α(Nj).
Similarly for links traversing the cut end time, the end node is replaced by Nlast with
weight(Lcut end) = β(start(Lcut end)).

2. A new link Ltstart : Nfirst−1 → Nfirst with weight = α(Nlast) and the ρ label (“t=”) is
prefixed to the lattice.

3. A new link Lterm : Nlast → Nlast+1 with an output label describing the term (e.g.,
“W=HELLO”) is suffixed to the lattice. The input label has to be set to ǫ to be cor-
rectly composed with E.

4. A new link Ltend : Nlast+1 → Nlast+2 with the ρ label (“t=”) is suffixed to the lattice.

Another way of converting evaluation lattices to WFSTs is described in [Parada et al., 2009],
who put the timing information on the output label of each link and then used a weight-pushing
algorithm to convert weights (likelihoods) to posterior probabilities, as previously described
by [Allauzen et al., 2004].

7.2.2 Preparing Query WFSTs

Similarly to evaluation lattices, we also have to convert the query lattices to transducers, but
the process is slightly different. First, we need to cut out the part of a lattice where the
query example resides. The example lattice is then converted to a transducer Q suitable for a
composition with evaluation transducer E.

We use special WFST symbols ρ or σ (denoted by “t=” in our case) for the first and the
last links of Q, which match all start- and end-time links in the utterance WFST E. The time
labels of E are then copied to the output labels of R, providing us with the timing information
of detections.

In case we know the dictionary pronunciation of a word (query-by-text WFST STD), we can
simply create a chain of phones and add the time-consuming labels and keyword label as shown
in Figure 7.1b. In this case, the query is simply a phone string.

In QbE STD, we want to use phone lattice examples of terms as queries. By knowing the
start- and end-times of an example in a query training utterance, we want to cut it from a phone
lattice, while preserving correct posterior probabilities. All the links overlapping the example’s
start time will be reconnected to a joint start state, and similarly links overlapping with the
example’s end time will be reconnected to a joint end state. Weights of these starting and
finishing links are set to forward or backward probabilities to those links in the original lattice.
The rest of the lattice outside the example’s time boundaries is thrown away. More formally,
for cutting examples with time boundaries cut start time and cut end time and creating the
transducer Q, we use Algorithm 7.2.

It must be noted that our approach for cutting examples from lattices differs from the one
described in [Parada et al., 2009], where the authors preprocessed the labels of a WFST and
then extracted only the desired part of the lattice from a composition with a filter transducer.

62 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

7.2.3 Composing WFSTs and extracting detections

From the composition in (7.4), we obtain a transducer R, in which all paths represent detections
of Q in E. The result R of composing E in Figure 7.1a with Q in Figure 7.1b is shown in
Figure 7.1c. All paths in R start with a time label (e.g., “t=0.15”) and end with a term label
(e.g., “W=HELLO”) followed by an end-time label (e.g., “t=0.40”). All paths of R must then
be traversed and overlapping detections of the same term must be merged.

The resulting transducer R is much more complex for real data than the one shown in
Figure 7.1c. In the case when the query transducer Q is created from a lattice cut, the R
transducer usually contains lots of parallel detections. A more realistic example is shown in
Figure 7.2.

To avoid recursive traversal of all paths in the R transducer, we used dynamic programming.
Nodes of the transducer are topologically sorted, so for each node, we just forward detection
data to all node’s successors, and then for each node, we have data about all paths leading
to that node. Detection data contain start time of the detection, individual phone labels and
collected likelihood. For nodes tagged as a detection end, time label is read from the following
link together with the likelihood till the end of utterance. Then, a new detection instance is
created from the data propagated into the detection end node, and this detection is added to
detections pool. In the pool, overlapping detections are merged together by taking the best
path’s weight and timing. We also tried summing up weights of the overlapping detections
(logadd in the log domain), but the results were worse and we have yet to further investigate
the reason of this deterioration.

7.3 Using Confusion Networks (WFSTcn)

Phone lattices described in the previous section can be further converted to confusion networks
(also called sausage lattices because of their sausage-like structure). They have a special property
that each path from the start node to the end node goes through all other nodes, while all paths
from the original lattice are preserved and some new paths are added. Confusion networks are
more efficient than traditional lattices, in terms of size and structure, without compromising
recognition accuracy. Since they force the competing phones to be in the same group, they
enforce the alignment of the phones that occur at the same approximate time interval in the
lattice. Posterior probability of each phone in the group is the sum of probabilities of all paths
traversing that phone at around that approximate time frame. Posterior probabilities of all
phones in the group sum to one. [Mangu et al., 2000; Hakkani-Tür et al., 2006].

Similarly to lattices, also confusion networks have to be converted to WFST representation.
The conversion process is however much simpler, mainly because confusion networks have simpler
structure and also links already carry posterior probabilities (not likelihoods).

Again, by a composition of evaluation E and query Q transducers we obtain a transducer
R:

R = Q ◦ E (7.6)

Note that the order of Q and E is swapped in the composition when compared to (7.4) due
to our particular implementation.

7.3. USING CONFUSION NETWORKS (WFSTCN) 63

ε/-28900

t=30.76/-82481

t=30.77/-82453

t=30.77/-82422

t=30.77/-82479

t=86.10/-77226

t=86.10/-77231

t=86.75/-77109

t=86.76/-77177

t=89.77/-76955

t=89.80/-76927

t=89.81/-76934

t=89.83/-76936

t=89.86/-76926

t=89.86/-76934

t=91.07/-76812

t=91.25/-76775

t=91.28/-76752

t=91.30/-76743

t=91.30/-76732

t=91.30/-76776

t=91.33/-76742

t=91.33/-76762

t=99.01/-76045

t=99.02/-76046

t=99.03/-76043

t=99.03/-76044

t=99.69/-75985

t=99.73/-75968

t=99.74/-75967

t=148.37/-71679

t=148.37/-71675

t=148.37/-71681

t=148.41/-71671

t=148.47/-71671

t=148.50/-71663

t=148.52/-71656

t=148.52/-71647

t=160.37/-70362

t=160.37/-70376

t=160.40/-70363

t=160.42/-70365

t=160.47/-70366

t=160.49/-70350

t=160.51/-70361

t=160.51/-70344

t=214.86/-65205

t=214.86/-65211

t=214.88/-65201

t=214.89/-65196

t=245.43/-62366

t=245.55/-62329

t=245.57/-62313

t=245.58/-62334

t=245.69/-62318

t=245.70/-62284

t=245.70/-62262

t=245.70/-62259

t=245.71/-62293

t=264.74/-60218

t=264.74/-60226

t=264.74/-60238

t=264.74/-60214

t=300.70/-56648

ay/14786

ay/14782

ay/14782

ay/14782

sil/15095

sil/15095

sil/14971

sil/14969
ay/14782

ay/14781

ay/14779

ay/14779

ay/14778

ay/14782

ay/14766

ay/14766

sil/14808

sil/14782

ay/14794

ay/14774

ay/14762

ay/14774

ay/14774

ay/14762

ay/14766

ay/14766

sil/14816

sil/14810

sil/14808

sil/14808

ay/14778

ay/14826

ay/14823

ay/14832

t/14770

t/14770

t/14770

t/14769

ay/14775

ay/14767

ay/14763

ay/14763

t/14770

t/14770

t/14767

t/14768

ay/14799

ay/14793

ay/14794

ay/14787

ay/14786

ay/14779

ay/14786

ay/14779

ay/14771

ay/14771

ay/14760

ay/14759

sil/14823

sil/14832

sil/14770

sil/14779

sil/14764

sil/14773

sil/14763

sil/14772

ay/14767

ay/14766

ay/14796

ay/14765

ay/14764

ay/14765

ay/14764

ay/14765

ay/14764

ay/14793

ay/14763

ay/14763

ay/14763

ay/14763

ay/14802

ay/35.82

ay/41.73

ay/40.71

ay/20.74

s/55.89

s/54.21

ay/53.28

ay/21.04

s/47.18

s/52.72

ay/37.6

ay/85.83

ay/86.39

uw/46.13

ay/34.94

k/54.46

ay/59.18

ay/52.71

k/30.92

k/41.77

k/25.91

ay/26.78

ay/25.79

ay/55.65

ae/28.8

k/26.37

k/29.52

k/35.18

ch/41.62

ch/43.21

ch/45.4

s/54.29

s/46.58

s/49.28

k/57.19

ch/51.16

ch/49.01

s/55.89

s/54.21

t/29

t/30.98

s/47.18

s/52.72

s/25.25

t/58.39

uw/46.13

uw/18.12

k/54.46

uw/48.83

k/30.92

k/41.77

k/41.71

uw/54.9

ch/73.29

k/26.37

k/30.56

k/36.21

ch/32.62

ch/34.21

ch/36.4

sh/46.98

uw/46.53

uw/34.77

uw/28.62

uw/24.33

uw/25.85

uw/27.03

sh/40.46

uw/42.96

uw/31.2

uw/22.3

uw/18.01

uw/19.53

sh/38.95

sh/37.9

sh/40.14

t/53.73

s/23.87

t/26.19

k/23.57

ax/50.45

t/60.23

t/62.26

ax/49.64

t/29

t/30.98

t/28.8

t/30.83

t/35.55

t/51.7

t/53.73

ax/56.54

s/25.25

t/58.39

t/52.37

t/43.88

t/45.91

uw/18.12

ax/33.14

ax/68.09

ax/30.46

ax/65.41

ax/43.38

ax/78.33

ax/49.99

ax/84.94

ax/62.03

ax/96.98

uw/48.83

ax/23.6

ax/58.55

k/41.71

uw/54.9

ax/22.66

ax/57.61

ax/39.81

sh/40.46

uw/42.96

uw/31.2

uw/22.3

uw/18.01

uw/19.53

sh/38.95

sh/37.9

sh/40.14

uw/19.59

uw/13.49

sh/39.64

uw/19.59

ax/52.43

ax/87.38

ax/42.48

ax/77.43

ax/28.89

ax/63.84

ax/21.47

ax/56.42

ax/19.66

ax/54.61

ax/19.86

ax/54.81

ax/20.54

ax/55.49

ax/21.98

ax/56.93

ax/32.87

ax/67.82

ax/52.43

ax/42.48
ax/28.89

ax/22.82

ax/21.01

ax/21.21

ax/21.89

ax/23.32

ax/34.22

t/26.71

t/28.74

t/33.46

ax/43.54

ax/31.75

ax/25.09

ax/29.62

s/33.5

ε/70372

ε/70372

ε/70387

ε/70372

t/28.8

t/30.83

t/35.55

t/51.7

t/53.73

ax/56.54

ε/70372

ε/70387

ax/66.84

ε/70372

ε/70387

ε/70372

t/52.37

t/43.88

t/45.91

dh/48.73

ε/70372

ε/70387

ax/33.14

ax/68.09

ax/30.46

ax/65.41

ax/43.38

ax/78.33

ax/49.99

ax/84.94

ax/62.03

ax/96.98

ε/70372

ε/70382

ax/53.65

ax/60.27

ax/72.3

ε/70372

ε/70382

ε/70372

ε/70382

ε/70372

ε/70382
ε/70372

iy/50.03

iy/44.9

ε/70382

ax/23.6

ax/58.55

ε/70372

ε/70382

uw/54.9

ax/22.66

ax/57.61

ε/70372

ε/70382

ε/70372

uw/19.59

uw/13.49

sh/39.64

uw/19.59

ax/52.43

ax/87.38

ax/42.48

ax/77.43

ax/28.89

ax/63.84

ax/52.43

ax/42.48
ax/28.89

ax/22.82

ax/21.01

ax/21.21

ax/21.89

ax/23.32

ax/34.22

ax/21.47

ax/56.42

ax/19.66

ax/54.61

ax/19.86

ax/54.81

ax/20.54

ax/55.49

ax/21.98

ax/56.93

ax/32.87

ax/67.82

ax/40.32

ε/70372

ε/70382

ax/37.72

ε/70372

ε/70382

ax/37.42

ε/70372

ε/70382

ax/39.26

ax/40.69

ax/51.59

ε/70372

ε/70382

ε/70372

ε/70382

ε/70372

ε/70382

ε/70372

ε/70382

ε/70372

ε/70382

ε/70372

ih/54.72

ih/55.58

ih/58.26

ih/62.04

ih/50.6

ih/51.46

ih/54.14

ih/57.92

ih/52.68

ih/55.36

ih/59.14

ih/55.19

ih/57.87

ih/61.65

ε/70382

ε/70372

ε/70387

ey/31.24

ey/37.26

ey/35.47

ey/41.49

ih/20.61

ih/23.29

ih/27.07

ih/22.54

ih/25.22

ih/29

ih/32.08

ih/34.76

ih/38.54

ax/42.05

ax/35.39

ax/39.92

dh/40.99

ε/70372

ε/70372

ε/70372

t/66.78

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:ε/70382

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:ε/70371

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:ε/70375

ε:ε/70368

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

iy/16.61

ε/70399

ε/70407

ε/70365

iy/16.19

iy/16.9

iy/17.64

iy/22.61

ε/70399

ε/70407

ε/70365

ε/70399

ε/70407

ε/70365

ε/70399

ε/70407

ε/70365

ε:W=ACTUALLY

ε/70402

ε/70372

ε/70402

ε/70372

ε/70399

ε/70407

ε/70365

ε/70399

ε/70407

ε/70365

ε/70399

ε/70407

ε/70365

ε/70382

ε/70382

ε/70382

ε/70371

iy/39.21

iy/34.09

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ax/23.29

t=30.95/26199

t=30.96/26209

t=30.96/26195

t=90.00/20705

t=90.01/20678

t=90.03/20659

ε:W=ACTUALLY

t=91.51/20501

t=99.95/19725

t=99.96/19689

t=99.99/19736

t=100.01/19689

t=100.02/19701

ε:W=ACTUALLY

t=148.74/15369

t=160.79/14063

t=215.02/8932

t=245.90/6034

t=245.91/6037.9

t=245.92/6032.6

t=245.93/6026.3

t=245.94/6032.8

t=245.95/6027.9

t=245.96/6060.2

t=245.97/6018.3

t=245.98/6044.6

ε/70368

ε:W=ACTUALLY

ε/70368

ε/70368

ε/70368

ε/70368

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

t=264.90/3962

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε/70375

ε/70368

t=264.93/3960.8

t=264.94/3954.6

t=264.95/3952.1

ε/70372

ax/50.3

t=91.52/20501

t=100.08/19670

ε:W=ACTUALLY

t=246.02/6024.6

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

ε:W=ACTUALLY

t=246.03/6013.2

t=246.04/6035.4

t=246.05/6032.6

t=264.93/3960.8

t=264.94/3954.6

t=264.93/3960.8

t=264.94/3954.6

t=264.95/3952.1

t=264.99/3989

ε:W=ACTUALLY

ε:W=ACTUALLY

ε/70382

t=246.05/6018

t=246.06/6024.5

t=246.07/6042

t=246.08/6005.5

t=246.10/6031.3

t=265.02/3967.3

t=300.92/386.86

ε:W=ACTUALLY

t=300.95/369.21

Figure 7.2: Example of the result transducer R for an example of query “ACTUALLY”, visual-
izing complexity of the transducer. Paths overlapping in time share the same color. Start time
and end time links are dotted, appearing on the left and right side of the graph. Links right
before the end time links represent the query label. All other solid links represent phones.

64 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

7.3.1 Converting Evaluation Confusion Networks to WFSTs

Each link is copied from a confusion network to the transducer E, having phone in the input
label and start time in the output label. The only exception are ε transitions4 which have ε in
both input and output labels in the WFST. Weight of the link remains its posterior probability
from the confusion network.

7.3.2 Preparing Query WFSTs

Query transducers are slightly different from evaluation transducers. The following parts are
concatenated in a sequence to form a query transducer:

1. Self-loop with ρ or σ symbols on both input and output label (ρ and σ are equivalent in
this case).

2. Helper link denoting the beginning of the query (TERM START in our system).

3. Confusion network converted to transducer similarly as for evaluation confusion networks,
but without time labels. In this case, both output and input labels represent the link’s
phone.

4. Helper link denoting the end of the query (TERM END in our system).

5. Same self-loop as at the beginning.

Beginning and end self-loops consume the part of an evaluation transducer which does not match
the query and have a similar role as filler models in the acoustic keyword spotter (models A and
C in the Figure 4.1). Helper links denoting start and end of the query are useful for extracting
detections after the composition operation (7.6), specifically for assigning start and end time for
each detection.

Since there is no query label in the transducer, we can search only for a single query in a
single utterance. Query transducers generated from lattices (Section 7.2.2) include also query
labels and thus a set of queries can be merged into a single query transducer which is then
searched as a whole in a single utterance. However, according to our experiments, composition
of these merged query transducers requires significantly more memory than in the case of a
single query.

7.3.3 Composing WFSTs and extracting detections

The process of composing WFSTs and extracting detections is similar to WFSTs generated from
lattices in the WFSTlat system (Section 7.2). From the composition in Eq. (7.6), we obtain a
transducer R, in which all paths represent detections of Q in E. However the paths are a bit
different in this case. Time information of all phones in the evaluation WFST is preserved in
the output symbols, so we do not only know the start and end time of a detection, but also of
all phones the detection contains. So, every path in R consists of:

1. An optional sequence of the filler-model’s output containing only ǫ links or ρ or σ links.

4ε transitions are denoted by *DELETE* label in confusion networks generated by SRILM’s lattice-tool. Open-
FST uses <eps> for that purpose.

7.4. COMBINING QUERY EXAMPLES 65

m : t=0.1 ay : t=0.2 c : t=0.3 ae : t=0.42

ah : t=0.45

t : t=0.5 s : t=0.61

z : t=0.63

(a) An example of a WFST E.

ρ : ρ

TERM_START : ε c : c

k : k

ae : ae

ah : ah

t : t TERM_END : ε

ρ : ρ

(b) An example of a term “CAT” encoded into Q transducer.

0
TERM_START : ε TERM_END : ε

(c) Result of a composition R = Q ◦ E.

Figure 7.3: Examples of R, E and Q transducers generated from confusion networks.

2. A link denoting the detection’s start (with label TERM START in our system).

3. Links with phones matching both query and evaluation transducers. Each of these phone
links has phone symbol in the input label and its start time in the output label. When
there are more phones in a sausage (aligned group) matching in both query and evaluation
transducers, the sausage structure is preserved also in R. This is helpful for optimization
during traversing the R transducer and extracting detections.

4. A link denoting the detection’s end (with label TERM END in our system).

5. Again an optional sequence of the filler-model’s output.

Traversing, extracting and merging of detections is similar to the case of transducers generated
from lattices (Section 7.2.3), with few differences. In the WFSTlat system, time links injected
into lattices in the process of creating evaluation transducers, allow the composition algorithm
to jump directly to the matching part of evaluation transducer, and thus the R transducer
contains only parts representing the query. On the other hand, in the WFSTcn system, the filler
ρ or σ-loops at the beginning and end of the query transducer, together with ǫ links added into
overlapping groups in confusion networks, make the R transducer significantly larger. Another
difference is that for overlapping paths in the WFSTlat system, only the best path is taken into
account, while in the WFSTcn system, weights of links in the same sausage (aligned group) are
summed up.

The result of composing Q in Figure 7.3b with E in Figure 7.3a is shown in Figure 7.3c.

7.4 Combining Query Examples

In QbE systems and their applications, a query may be represented by more than one example.
There are several techniques for dealing with it in WFST-based QbE systems:

Merge posteriorgrams of all examples of a query into one posteriorgram as was described
in Section 6.1. The rest of the processing (lattice generation, transducer composition and

66 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

detections extraction) remains the same as for a single example per query. We used this
approach for the WFSTcn system.

Merge transducers of all examples of a query into one transducer. All examples share the
same start node, but if we want to know which detection came from which example, we
need to add example’s ID to TERM START or TERM END labels. This technique can be also
used when the search needs to be performed for a set of queries. In that case, in addition
to example ID, query ID needs to be also included in each query label. This would lead
to a huge query transducer consisting of many parallel paths. It seems like an elegant
solution, but during our experiments we found that a composition with such huge query
transducers requires too much memory and is infeasible for our setups.

Merge detections of all examples of a query into one detection when detections overlap. This
method can also be denoted as a post-search merging. All query examples are treated
as separate single-example queries during all phases of the query-by-example system, till
all detections are extracted. Each evaluation utterance is composed with each example of
each query separately. Each R transducer is then converted to a list of non-overlapping
detections containing the term name, timing, and posterior probability. To merge over-
lapping detections of all examples of each query, we tested two approaches: we either
summed up weights of the overlapping detections or we took only the best weight. In both
cases, timing of the best detection was taken. We used this approach for WFSTdict and
WFSTlat and experimented with it also for the WFSTcn system.

7.5 Initial Results

In this section, we present initial results of our WFST-based query-by-example STD system
which worked with lattices, as was described in Section 7.2. These results were published in our
paper [Tejedor et al., 2012].

We present two different WFST-based approaches: WFST based on pronunciation dictionar-
ies (WFSTdict) related to query-by-text STD, serving as our WFST baseline, and WFST based
on examples from lattices related to QbE STD (WFSTlat). These two systems differ only in
input queries, which are either taken from the pronunciation dictionary as phone strings in case
of WFSTdict, or they are cut from speech data in case of WFSTlat.

7.5.1 Lattice Pruning

During the decoding process involved in generating lattices from posteriors, certain amount of
information is lost. This amount can be tuned to fit a particular application. Too aggressive
pruning produces very narrow lattices with low number of alternative hypotheses. On the other
hand, too vague pruning produces very wide lattices which consume a lot of disk space and also
a lot of processing power during all operations including search in WFST-based QbE systems.

For our experiments, we generated very wide lattices by the HVite decoder and then we used
STK toolkit5 to prune them to various densities. The pruning factor in STK toolkit depends on
both the feature extractor and the target language, so we measured an average number of links
per second in speech segments and tuned the pruning factor to produce the desired amount of

5http://speech.fit.vutbr.cz/software/hmm-toolkit-stk

http://speech.fit.vutbr.cz/software/hmm-toolkit-stk

7.5. INITIAL RESULTS 67

links per second in lattices. Pruning factors were tuned separately for all combinations of four
feature extractors, four target languages and five desired counts of links per second (70, 230,
380, 540 and 700). Performance of these selected lattice densities is evaluated in the following
section.

7.5.2 Dictionary Pronunciations

The acoustic keyword spotting STD system described in Chapter 4, works with full posterior
features and thus it can serve as a reliable baseline for the DTW and GMM/HMM-based query-
by-example STD systems. However, the WFST-based system works with lattices which contain
only a subset of the information present in full posterior features. To cancel the effect of
the information loss introduced by converting posterior features to phone lattices, we created
another baseline which is more comparable to our WFST query-by-example experiments, the
query-by-text WFST STD system. Similarly to the AKWS system, it also derives queries from
a pronunciation dictionary, leading to a simple phone string representing each query.

Because the system searches in phone lattices, their width is one of important factors af-
fecting the system’s performance and can be controlled by posterior pruning (also described in
Section 7.6.1). Results for various pruning factors are summarized in Figure 7.4. It shows that,
as expected, the performance increases with denser lattices since more information is kept. The
system performance saturates with 700 links per second of speech for all the languages. There-
fore, we chose the 700 links per second as the configuration for the rest of WFST experiments.
This configuration allows us to be sure that enough information is kept in lattices, which is espe-
cially needed for language-independent experiments, where the 3-state phone posteriors become
blurred. However, as we will see later in this work, ideal lattice densities might be different for
language-independent setups.

Results of the two baseline systems, AKWS and WFSTdict (with 700 links per second
lattices), are summarized in Figure 7.5 for an easy direct comparison across languages. Similarly
to what we have seen in previous chapters, Hungarian presents the best overall performance,
and Levantine again shows the worst performance, due to the nondiacritized approach, where
we model graphemes instead of phones. We can also see in the figure, that the WFSTdict
system performs almost as well as the AKWS system for all languages except English, where
the performance dropped significantly. The oracleFOM and unnpFOM for English WFSTdict
system are very close to its npFOM which means that the system is very well calibrated across
different utterances and almost all hits have higher scores than false alarms. However, generating
more detections could possibly improve the performance. This could be achieved with lattices
even wider than 700 links per second.

For a deeper insight into the density of lattices, we present the number of unique parallel
links per frame in Figure 7.6. It shows that even such a high number of parallel links per second
represents only around 30 parallel links per frame, while only around 4 of them have unique
labels (the rest of the links differs only in timings), which can be seen approximately also in
the posteriorgram example in Figure 7.12d. By inspecting the figure, we can see that for all
languages, the total number of parallel links per frame rises linearly with the number of links per
second. The only exception are English lattices with 700 links per second, where the numbers
of total and unique parallel links per frame dropped. This could also be the reason for the lower
performance of WFSTdict on English when compared to the AKWS system.

68 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

C
Z

 d
a

ta

70
230
380
540
700
AKWS

0

20

40

60

80

100

70 230 380 540 700 AKWS
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

E
N

 d
a

ta

70
230
380
540
700
AKWS

0

20

40

60

80

100

70 230 380 540 700 AKWS
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

H
U

 d
a

ta

70
230
380
540
700
AKWS

0

20

40

60

80

100

70 230 380 540 700 AKWS
system

npFOM

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

L
E

 d
a

ta

70
230
380
540
700
AKWS

0

20

40

60

80

100

70 230 380 540 700 AKWS
system

npFOM

Figure 7.4: Results of the query-by-text WFST QbE STD systems for Czech, English, Hungarian
and Levantine datasets. The systems search for dictionary pronunciations in lattices. System
labels “70”, ...”700” represent width of lattices, in the average number of links per second in
lattices. The AKWS system is shown as the baseline. For each dataset, only results for the
system corresponding to the evaluation data language, are shown.

7.5. INITIAL RESULTS 69

0

20

40

60

80

100

language

p
H

IT
 [
%

]
npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

AKWS
WFSTdict

Figure 7.5: Comparison of results of the AKWS and WFSTdict baseline STD systems search-
ing for dictionary pronunciations in Czech, English, Hungarian and Levantine datasets. The
WFSTdict systems search in lattices with 700 links per second.

0
5

10
15
20
25
30
35
40
45
50

[li
n

ks
/f
ra

m
e

]

[links/s]

70
t

70
u

230
t

230
u

380
t

380
u

540
t

540
u

700
t

700
u

CZ
EN
HU
LE

Figure 7.6: Numbers of links (hypotheses) per frame of speech kept in lattices with different den-
sities. Subscript “t” stands for total number of parallel links per frame, subscript “u” for number
of parallel links with unique labels per frame. Many parallel links differ only in time alignment,
which makes the number of unique hypotheses per frame low. Only language-dependent setups
are shown. For language-independent setups, the numbers of unique hypotheses per frame are
only slightly higher.

70 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

la

n
g

u
a

g
e

−
d

e
p

e
n

d
e

n
t CZ

EN
HU
LE

0

20

40

60

80

100

CZ EN HU LE
system

npFOM

Figure 7.7: Results of WFSTlat systems with single example per query in language-dependent
setups.

7.5.3 Examples from Lattices

Our basic WFST query-by-example STD system is very similar to the query-by-text WFSTdict
STD system. The only difference is that queries are now represented by lattices cut from
utterance lattices generated from audio data, instead of simple phone strings looked up in a
pronunciation dictionary.

Results for the language-dependent setup with a single example for each query, are shown in
Figure 7.7. It can be seen that example-based queries perform worse than queries extracted from
dictionary pronunciations (see Figure 6.5 for comparison). This is due to the inherent advantage
of the pronunciation dictionary, which was used for training the feature extractor itself. Also,
the amount of variation across examples of a single query is non-negligible and examples taken
from lattices are noisy, while the dictionary contains only “clean” data.

When we combine five examples of each query using the post-search “merge detections” strat-
egy, the results improve significantly. However, even for five examples per query, the performance
is still lower than that of the WFSTdict baseline. Comparison of the WFSTdict baseline and
WFSTlat systems for a single example and five examples per query is shown in Figure 7.8. The
English system with five examples per query exhibits the closest performance to the query-by-
text WFST baseline. We consider that this is due to the large amount of data used to train the
English feature extractor, which leads to more robust lattice generation, and hence to improved
performance.

By comparing npFOM values for combined five examples per query and maximum npFOM
values among those five examples (“+” markers in Figure 7.8), we can see that the method for
combining examples is suboptimal for all languages except Czech, where five combined examples
perform very close to a single best example. In the comparison figure, we can also see that for
English and the single example case, when we take only the best example of the five for each
query (“+” marker), npFOM result is even higher than for the WFSTdict system, which is a
very promising observation. This might be caused by some queries pronounced a bit differently
than in the pronunciation dictionary, and it shows that QbE systems could be complementary
to query-by-text STD systems in some cases.

All language-dependent and language-independent results for searching five examples per
query withWFSTlat QbE STD systems are shown in Figure 7.9. We can see a considerable degra-
dation of performance for language-independent setups when compared to language-dependent

7.6. ANALYSIS 71

0

20

40

60

80

100

language

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t
WFSTdict
WFSTlat 1ex
WFSTlat 5ex

Figure 7.8: Comparison of results of query-by-text WFSTdict systems and WFSTlat QbE STD
systems with a single example and five examples per query for the language-dependent setups.
The systems search in lattices with 700 links per second. For WFSTlat systems with a single
example per query, the “+” marker shows npFOM of the best example among those five.

setups, especially for Czech and English data. However, for the clean speech in Hungarian data,
the degradation is less significant. For Levantine data, all systems achieve quite poor perfor-
mance due to the nondiacritized approach described earlier, which results in more errors, even
when the feature extractor matches the target language.

By inspecting unnpFOM values (circle markers in the figure), we can see that for Hungarian
data, all systems perform well when only a single evaluation utterance is considered. According
to this metric, Czech system works well across all evaluation languages. This is probably caused
by mixed audio conditions of training data for the Czech feature extractor which make it more
robust.

7.6 Analysis

Comparison of the WFSTlat and DTW-based QbE systems for language-dependent setups is
shown in Figure 7.10. We can see that DTW systems significantly outperform WFSTlat sys-
tems for both a single example and five examples per query. The performance gap for the single
example case is the main issue of the WFSTlat system. The case of five combined examples
is influenced also by different combination strategies used for the two QbE systems, since the
DTW system combines posteriorgrams of five examples to create a single posteriorgram repre-
senting the query, and WFSTlat system searches for each of the five examples and combines the
detections afterwards.

In this section, we analyze possible causes of the performance gap between the DTW and
WFSTlat systems.

7.6.1 From Posteriorgrams to Lattices and Back

During the conversion from phone-state posteriorgrams to lattices, certain amount of informa-
tion is lost. In Section 7.5.2 we already compared the performance of the AKWS and WFSTdict
systems, where the former one works with full posteriorgrams and the second one with phone
lattices, but queries for these systems were simple phone strings taken from a pronunciation

72 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

0

20

40

60

80

100

system

p
H

IT
 [
%

]
npFOM

CZ EN HU LE

C
Z

 d
a

ta

WFSTlat 1ex
WFSTlat 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

WFSTlat 1ex
WFSTlat 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

WFSTlat 1ex
WFSTlat 5ex

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

WFSTlat 1ex
WFSTlat 5ex

Figure 7.9: Comparison of results of the lattice-based WFST QbE STD systems for a single and
five examples per query in lattices with 700 links per second.

7.6. ANALYSIS 73

0

20

40

60

80

100

language

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

WFSTdict
WFSTlat 1ex
WFSTlat 5ex
DTW 1ex
DTW 5ex

Figure 7.10: Comparison of results of query-by-text WFSTdict systems and WFSTlat QbE STD
systems with a single example and five examples per query for the language-dependent setups.
The systems search in lattices with 700 links per second.

dictionary. In this section, we will analyze the difference between full posteriorgrams and lat-
tices from the perspective of a query-by-example system. We used DTW search over original
posteriorgrams and over posteriorgrams generated from lattices to analyze the information loss
introduced by converting posteriorgrams to lattices. This way we can isolate the cause of po-
tential performance degradation only to the information loss introduced by lattices themselves,
since the WFSTlat system is not present at all in this experiment. The original full phone-state
posteriorgrams (Figure 7.12a) were considered a baseline for this experiment.

7.6.1.1 Posteriorgrams to Lattices

Phone-state posteriorgrams were converted to phone-state lattices using the HVite decoder. We
experimented with two types of decoding networks. One where the order of phone states is not
constrained, so that any phone state can be active in any frame. And another one where the
order of phone states is constrained, so that after the first state of a phone, only the second
state of the same phone can follow and switching to another phone is possible only from the last
state of the phone.

7.6.1.2 Lattices to Posteriorgrams

Phone-state lattices were used for pruning the original posteriorgrams. We traversed lattices
and for each link we copied the corresponding posteriors from the original posteriorgram to a
new pruned posteriorgram. This way we created posteriorgrams pruned by lattices. Examples of
posteriorgrams generated from an unconstrained and constrained phone-state lattices are shown
in Figures 7.12b and 7.12c respectively.

Another set of posteriorgrams was created by computing each link’s posterior probability
in lattices and adding the probability to a new posteriorgram on the corresponding position.
In this case we did not use any direct information from the original posteriorgrams, those new
posteriorgrams were generated directly from lattices.

Posteriors with zero probability were raised to slightly above zero to better fit the distance
metric of the DTW system.

74 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

0 2 4 6 8 10
0

20

40

60

80

100

FA [1/term/h]

p
H

IT
 [
%

]

npROC

E

N
 d

a
ta

OR
PC
GC
GU

0

20

40

60

80

100

OR PC GC GU
posteriorgrams

npFOM

Figure 7.11: Results of DTW-based QbE system with language-dependent setup for English
searching for a single example per query in four different versions of posteriorgrams: original
full posterior features (OR), posteriorgrams pruned by constrained phone-state lattices (PC),
posteriorgrams generated from constrained phone-state lattices (GC), posteriorgrams generated
from unconstrained phone-state lattices (GU).

7.6.1.3 Results

We run this experiment only for the English language-dependent setup. Results in Figure 7.11
show that the performance drops for posteriorgrams pruned by constrained phone-state lattices,
it drops further when posteriorgrams are directly generated from constrained phone-state lattices,
and even further when posteriorgrams are generated from unconstrained phone-state lattices.
Thus the loss of information introduced by converting posteriorgrams to lattices is not negligible
and we can not expect same results for WFST QbE system as for the DTW QbE system which
works with full posteriorgrams.

7.7 Improvements

In this section, we describe several improvements over the basic WFSTlat system published
in [Tejedor et al., 2012].

7.7.1 Confusion Networks

As the WFSTlat system working with lattices performed considerably worse than the DTW
system working with full posteriorgrams, we decided to develop and experiment with a confusion
network-based WFST system as described in Section 7.3.

7.7.1.1 Single Example per Query

We first consider the basic language-dependent setup where we search only for a single example
per query. The results for the confusion network-based WFST QbE system (WFSTcn) together
with the WFSTdict, WFSTlat and DTW systems for comparison, are shown in Figure 7.13.
We can see in the figure, that the WFSTcn system significantly outperformed the WFSTlat
system, and is now on par with the DTW system for Czech and English, slightly better for
Hungarian and slightly worse for Levantine. Also, the unnpFOM metric is now very similar for
both WFSTcn and DTW systems.

7.7. IMPROVEMENTS 75

st
at

es

frames

20

40

60

80

100

120

5 10 15 20 25 30

(a) Original posteriorgram.

st
at

es

frames

20

40

60

80

100

120

5 10 15 20 25 30

(b) Posteriorgram generated from an unconstrained
state lattice.

st
at

es

frames

20

40

60

80

100

120

5 10 15 20 25 30

(c) Posteriorgram generated from a constrained state
lattice.

ph
on

es

frames

5

10

15

20

25

30

35

40

45
5 10 15 20 25 30

(d) Posteriorgram generated from a phone lattice.

ph
on

es

frames

5

10

15

20

25

30

35

40

45
5 10 15 20 25 30

(e) Posteriorgram generated from a phone confusion
network.

Figure 7.12: Comparison of posteriorgrams of one example of the term “ACTUALLY”. Pruning
factor for generating lattices was chosen to emit approximately 700 links per second. These
figures visualize the information loss during conversion of posteriorgrams to lattices and further
to confusion networks.

76 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

0

20

40

60

80

100

language

p
H

IT
 [
%

]
npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

WFSTdict
WFSTlat 1ex
WFSTcn 1ex
DTW 1ex

Figure 7.13: Comparison of results of WFSTlat and WFSTcn systems with language-dependent
setup searching for a single example per query. WFSTdict

The reason why using confusion networks instead of lattices caused such a significant increase
in performance, could be in extracting detections from the R transducer. For lattices, there are
significantly more parallel links than for confusion networks, which makes the technique for
combining overlapping parallel paths much more important. As shown in Figure 7.2, each
detection consists of many overlapping paths. For lattices, only the best path of the overlapping
paths is taken as the detection, while for confusion networks, probabilities of overlapping links
in the R transducer, belonging to the same time-aligned group (sausage), are summed up, and
then the best “sausage-path” is taken as the detection. Thus for confusion networks, many paths
contained in the best sausage-path are considered, which seems to improve confidence scores of
detections. As we wrote before, the technique used for merging overlapping detections, seems
to be an important factor influencing the WFST QbE system’s performance. We have yet to
investigate techniques for considering all overlapping sausage-paths, which could improve the
performance even further. In addition to these reasons, confusion networks were reported to
outperform lattices also in query-by-text STD [Mangu et al., 2014].

Let us now analyze the results for language-independent setups, still with only a single
example per query. The comparison of WFSTlat, WFSTcn and DTW systems is shown in
Figure 7.14, where we can see that for language-independent setups, the WFSTcn system still
performs considerably worse than the DTW system. However, we should also note that for the
best example case (“+” marker in the figure), for Czech data with Hungarian and Levantine
feature extractors, the WFSTcn system performs even better than the DTW system, although
the unnpFOM values are still better for the DTW system. Investigating the unnpFOM metric
across the whole figure, we can see that the difference between WFSTcn and DTW systems
is relatively low, which means that the WFSTcn system is worse calibrated across different
evaluation utterances than the DTW system.

7.7.1.2 Combining Examples

As was written in Section 7.4, there are several possible strategies for combining multiple exam-
ples per query. In our initial experiments with the WFSTlat system, we used the post-search
“merge detections” strategy, where probabilities of overlapping detections were summed up and
the timing was taken from the best detection among them. For the WFSTcn system, we ex-
perimented also with taking only the single best detection of each overlapping group. Since

7.7. IMPROVEMENTS 77

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

C
Z

 d
a

ta

1ex WFSTlat
1ex WFSTcn
1ex DTW
5ex WFSTlat
5ex WFSTcn
5ex DTW

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

1ex WFSTlat
1ex WFSTcn
1ex DTW
5ex WFSTlat
5ex WFSTcn
5ex DTW

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

1ex WFSTlat
1ex WFSTcn
1ex DTW
5ex WFSTlat
5ex WFSTcn
5ex DTW

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

1ex WFSTlat
1ex WFSTcn
1ex DTW
5ex WFSTlat
5ex WFSTcn
5ex DTW

Figure 7.14: Comparison of results of WFSTlat, WFSTcn and DTW QbE STD systems search-
ing for a single example or five examples per query in both language-dependent and language-
independent setups.

78 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

the DTW system uses the “merge posteriors” strategy, we tried that one also for the WFSTcn
system, where we generated query lattices from the merged posteriorgrams. Results for language-
dependent setups are shown in Figure 7.15. They reveal that the posteriors merging strategy
performs significantly better than the post-search merging of detections.

Both post-search merging strategies seem to perform similarly; only for Levantine, summing
up probabilities of overlapping detections seems to outperform the case of taking only a single
best detection of the group. It means that for Levantine, more vividly then for the other
languages, the more examples agree on the same detection, the better score the detection should
have, while also taking into account the actual scores of overlapping detections.

Another important observation revealed in the figure is, that the performance of WFST-
lat and WFSTcn systems for the post-search merge detections strategy is similar, which does
not correspond to their performance for the single example per query case (Figure 7.13). For
Hungarian, the performance of WFSTlat system is even considerably better than that of the
WFSTcn system. So the merging strategy seems to hurt the performance the more, the better
the system performs for individual examples. However, the reason for this behavior could be of
course more complex and has yet to be investigated more deeply.

Also, when we inspect the unnpFOM metric for Czech and Hungarian systems, we see that
the post-search merging of detections and the merging of posteriorgrams perform similarly, which
means that the main cause of their significant difference in npFOM values is caused by a better
calibration of merged posteriorgrams across different utterances.

Comparison of overall results for both a single example and five examples per query cases
is shown in Figure 7.14, where five examples for the WFSTlat system are combined by the
post-search merging strategy and for the WFSTcn system by merging posteriors. We can see
that also for language-independent setups, merging of posteriors outperforms the post-search
merging of detections. Although for language-dependent setups with five examples per query, the
performance of WFSTcn system is similar to that of the DTW system, for language-independent
setups, WFSTcn performs worse. The possible cause of this performance deterioration seems to
be again in the technique of merging overlapping detections in the R transducer. In language-
independent setups, the number of overlapping detections in the R transducer is higher than
in language-dependent setups. This could lead to a larger difference between considering only
a single best detection out of an overlapping group of detections, and taking into account all
detections in the group. As we wrote before, we tried summing up probabilities of overlapping
detections, but the results were significantly worse than for taking only the best detection.

Also, we should note, that the post-search example merging technique, either taking the
best path or summing up weights of overlapping paths, is basically the same merging technique
as is used in the process of extracting detections from the R transducer, when they overlap in
time. As we have seen in Figure 7.15, this merging technique is suboptimal, inferior to merging
of posteriorgrams. When the same suboptimal technique is used in the process of extracting
detections from the R transducer, we get suboptimal results as well. As we have pointed out
already, there are more overlapping detections in language-independent setups, which is probably
the reason for their worse performance.

7.7.2 Dealing with Silence

Silence in speech data is handled in our phone recognizers by a sil phone model, which is then
propagated from posteriorgrams to lattices and confusion networks. It may happen that in

7.7. IMPROVEMENTS 79

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t
WFSTlat 5sum
WFSTcn 5sum
WFSTcn 5bst
WFSTcn 5mp

Figure 7.15: Comparison of results of various strategies for combining five examples per query
in WFSTlat and WFSTcn systems and language-dependent setups. “5sum” stands for the
post-search “merge detections” strategy, where scores of overlapping detections are summed up
(logadd in our case of log scores), “5bst” selects only the best score among the overlapping
detections, and “5mp” stands for the “merge posteriors” strategy where for each query, poste-
riorgrams of all five examples are first merged into a single posteriorgram, and then the QbE
system works as in the single example per query case.

examples cut from audio data, silence appears at the beginning or end of an example. Then the
silence is expected to be contained also in detections of that example in evaluation utterances.
If time boundaries of our query examples were perfectly correct, there would be no silence at
the beginning and end of the examples. We even know apriori that examples of our queries are
all single words, so they should not contain any silence at all.

Thus we tried to set zero probability for silence in query posteriorgrams, which effectively
discarded silence also from lattices and confusion networks. Results of these examples without
silence (further denoted by “NOSIL”) were very similar to the original examples (“ORIG”).
For language-dependent setups, npFOM improved by 0.66% absolute in average, for language-
independent setups by 0.2%. However, when we take best results of both NOSIL and ORIG
setups for each query, npFOM improves by another 0.46% for language-dependent and by 0.37%
for language-independent setups. It means that some query examples perform better with silence
discarded from them, while other examples perform better with silence untouched.

Since the overall results are better for examples without silence, in all our experiments with
the WFSTcn system, silence was discarded from all query examples.

80 CHAPTER 7. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

Chapter 8

Overall Results and Discussion

In this section we compare and discuss results of our experiments with systems described earlier
in Chapters 4, 6, 5 and 7. This chapter was previously written with Igor Szőke from the BUT
Speech@FIT research group and Javier Tejedor from the HTCLab at Madrid university, and
was published in [Tejedor et al., 2012], but it was completely rewritten in this thesis.

8.1 Language-Dependent

Let us first compare all systems for language-dependent setups in Figure 8.1. For the single
example per query case, GMM/HMM system performs the worst, needing more than a single
example of a query to reliably train its model. It is outperformed by DTW and WFSTcn
systems which achieve very similar overall performance (npFOM, unnpFOM and oracleFOM)
for all languages and clearly outperform the GMM/HMM in the single example per query case.
Although their npFOM values are still far from the AKWS and WFSTdict baselines, when we
artificially select a single best example out of the five examples for each query (“+” markers in
the figure), the performance gets on par with baselines. For English, the best example case even
outperforms the WFSTdict baseline which is probably caused by insufficient density of English
lattices when a query is represented by only a single phone string, or it might be also caused
by slightly different pronunciation in the pronunciation dictionary than in actual evaluation
occurrences.

By inspecting the systems with five examples per query, we can see that the performance of
all systems improved significantly, however for Hungarian, the increase was the lowest among
all four languages. This is probably caused by the read prompted speech audio condition in
Hungarian data, which results in high similarity of the five examples and their occurrences in
evaluation data for each query.

With five examples per query, the GMM/HMM system improved significantly, especially
for English and Levantine, where it reached the performance of DTW and WFSTcn systems,
for Levantine it even slightly outperformed them. However, for Czech and Hungarian it again
performed worse. DTW and WFSTcn systems perform consistently and similarly well for all
four languages. Comparing npFOM of the AKWS baseline and the best of the three QbE
systems for each language, the deterioration is around 14% in average (20% for CZ data with
WFSTcn, 8% for EN data with DTW, 8% for HU data with WFSTcn and 22% for LE data
with GMM/HMM).

81

82 CHAPTER 8. OVERALL RESULTS AND DISCUSSION

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

la
n

g
u

a
g

e
−

d
e

p
e

n
d

e
n

t

AKWS
WFSTdict
1ex GMM/HMMb
1ex DTW
1ex WFSTcn
5ex GMM/HMMb
5ex DTW
5ex WFSTcn

Figure 8.1: Comparison of results of QbE systems in language-dependent setups. The “b” suffix
of GMM/HMM system denotes bottleneck features. All other systems use posterior features or
confusion networks derived from them. AKWS and WFSTdict baseline systems are in green,
GMM/HMM, DTW andWFSTcn for a single example per query are in blue and for five examples
per query in brown.

We can conclude that for language-dependent setups, DTW and WFSTcn QbE systems
perform better than the GMM/HMM QbE system. The performance of an artificially selected
single best example for DTW and WFSTcn systems shows, that the technique for merging
examples is still suboptimal and can be potentially improved, which could lead to performance
similar to the baseline AKWS system.

8.2 Language-Independent

Overall results for all language-dependent and language-independent setups are shown in Fig-
ure 8.2, where we also show the GMM/HMM system working with phone posteriors, for clearer
comparability of the three QbE STD approaches working with exactly the same set of features
– 3-state phone posteriors. In this section, we focus only on language-independent setups.

For the case of a single example per query, DTW performs the best of the three QbE sys-
tems in all language-independent setups. GMM/HMM and WFSTcn systems perform similarly
in most cases, only for Hungarian data with Czech feature extractor, WFSTcn performs consid-
erably better than the GMM/HMM system.

Let us now analyze the case of five examples per query in language-independent setups for
each system separately.

The GMM/HMMb approach is the most accurate of the three QbE systems, having the best
results with the Czech feature extractor. This is caused by large amount of data used to train the
feature extractor and also by the mixed audio conditions of Czech data, which makes the system
more robust. English feature extractor performs also very well with this system, but although its
amount of training data was large, they contained only the CTS audio condition which probably
made the system less robust for language-independent setups than the Czech system. We can see,
that considering only the GMM/HMMb system, a language-independent feature extractor may
achieve comparable results to those obtained with a language-dependent GMM/HMMb system

8.3. COMBINING SYSTEMS 83

in case of more challenging conditions, e.g. nondiactitized data in Levantine or low amount
of training data for Hungarian. Also, for the GMM/HMM system, bottleneck features were
found to effectively compress the important information contained in 3-state phone posteriors.
Together with their Gaussian-like distribution, it lead to better trained query models in the
GMM/HMM system with five examples per query.

The DTW-based QbE STD system achieves about 50% to 75% of precision of the
GMM/HMMb system in language-independent setups, except for Hungarian data, where the
DTW system gets closer to the GMM/HMMb. This is caused by the small amount of training
data used to train the GMM/HMMb query background model. It confirms our conjecture that
a model-based approach is able to deal with the phone posterior uncertainty in a language-
independent setup where enough training data is available.

The WFST approach shows the lowest performance of the three QbE systems for language-
independent setups, where its performance is even lower than that of the DTW system, similarly
to the single example per query case. This is most probably caused by a suboptimal method for
merging overlapping detections.

8.3 Combining Systems

Results of a very naive combination of the three QbE systems, where for each query, we select the
best result among a set of systems, is shown in Figure 8.3. It is a cheating (oracle) experiment and
it shows, that especially for language-dependent setups, all three systems are complementary to
some extent, so that there are some queries having best results with one particular QbE system.
For language-independent setups, the perfomance gain of this simple way of combining systems
is less significant and it is sufficient to combine GMM/HMM system with DTW. Combination
of GMM/HMM and WFSTcn systems performs slightly worse for language-independent setups.

According to these preliminary results, it should be possible to fuse the three QbE systems
to increase the performance.

8.4 Practical Considerations

In real world applications, the system accuracy may not be the only criterion. We should also
take into account the speed of indexing and search and the amount of disk space needed to store
the utterances.

The phase of extracting features is the same for all our QbE systems. The GMM/HMM
system then has to train or adapt the background model. The WFSTcn system has to convert
phone-state posteriorgrams to lattices and then further to confusion networks. However, these
steps are relatively fast for all the systems. Where the real difference comes, is in the search
speed. However, we have to also note here, that our implementations of the three QbE systems
were not specifically optimized for speed.

As we mentioned in Section 2.4.2, there are techniques for speeding up the DTW search, but
in its basic implementation, it is certainly the slowest of the three systems. GMM/HMM and
WFSTcn systems are, in our implementation, approximately on par in terms of search speed.
However, an efficient inverted index can be created for the WFSTcn system to significantly
speedup search times [Can and Saraclar, 2011].

84 CHAPTER 8. OVERALL RESULTS AND DISCUSSION

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

C
Z

 d
a

ta

1ex GMM/HMMb
1ex GMM/HMM
1ex DTW
1ex WFSTcn
5ex GMM/HMMb
5ex GMM/HMM
5ex DTW
5ex WFSTcn

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

1ex GMM/HMMb
1ex GMM/HMM
1ex DTW
1ex WFSTcn
5ex GMM/HMMb
5ex GMM/HMM
5ex DTW
5ex WFSTcn

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

1ex GMM/HMMb
1ex GMM/HMM
1ex DTW
1ex WFSTcn
5ex GMM/HMMb
5ex GMM/HMM
5ex DTW
5ex WFSTcn

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

1ex GMM/HMMb
1ex GMM/HMM
1ex DTW
1ex WFSTcn
5ex GMM/HMMb
5ex GMM/HMM
5ex DTW
5ex WFSTcn

Figure 8.2: Comparison of results of the GMM/HMM, DTW and WFSTcn QbE STD systems
in both language-dependent and language-independent setups. The “b” suffix of GMM/HMM
system denotes bottleneck features. All other systems use posterior features or confusion net-
works derived from them. Single example per query cases are in blue and five examples per
query in brown.

8.4. PRACTICAL CONSIDERATIONS 85

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

C
Z

 d
a

ta

GMM/HMM
DTW
WFSTcn
GMM/HMM+DTW
GMM/HMM+WFSTcn
DTW+WFSTcn
ALL

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

E
N

 d
a

ta

GMM/HMM
DTW
WFSTcn
GMM/HMM+DTW
GMM/HMM+WFSTcn
DTW+WFSTcn
ALL

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

H
U

 d
a

ta

GMM/HMM
DTW
WFSTcn
GMM/HMM+DTW
GMM/HMM+WFSTcn
DTW+WFSTcn
ALL

0

20

40

60

80

100

system

p
H

IT
 [
%

]

npFOM

CZ EN HU LE

L
E

 d
a

ta

GMM/HMM
DTW
WFSTcn
GMM/HMM+DTW
GMM/HMM+WFSTcn
DTW+WFSTcn
ALL

Figure 8.3: Comparison of results of the GMM/HMM, DTW and WFSTcn QbE STD systems
in both language-dependent and language-independent setups. Single example per query cases
are in blue and five examples per query in brown.

86 CHAPTER 8. OVERALL RESULTS AND DISCUSSION

Considering the disk space, DTW system has highest requirements, because 3-state phone
posteriorgrams are large themselves. The GMM/HMM system works with bottleneck features
which require around 20% of the disk space needed for posteriorgrams. Finite state transducers
for the WFSTcn system require even less: 3% of the disk space needed for posteriorgrams.
Moreover, the size of transducers can be tuned for a particular application.

Chapter 9

Conclusions and Future Work

In this work, we have presented three query-by-example STD systems and two query-by-text
STD baselines. All systems were described, evaluated and analyzed in language-dependent
and language-independent setups, for a single example and five examples per query. In our
experiments, all STD systems worked with the same set of features, while GMM/HMM worked,
besides the common 3-state phone posterior features, also with bottleneck features.

We found out, that for language-dependent setups, for both a single example and five exam-
ples per query, DTW and WFSTcn QbE STD systems achieve the best performance. For five
examples per query, performance of all three QbE systems increases significantly, although it is
still not as good as that of the baseline AKWS system. For clean Hungarian data, WFSTcn
slightly outperformed DTW, while for more challenging nondiacritized Levantine data, DTW
performed slightly better. For Levantine and English data with five examples per query, also the
GMM/HMM bottleneck system caught up the other two systems, but for Czech and Hungarian
its performance is still considerably inferior to the other two systems.

For language-independent setups with a single example per query, the DTW system outper-
forms the other two systems, but with five examples per query, the GMM/HMM bottleneck
system improves significantly and outperforms the others. Our experiments also showed that
bottleneck features are more sensitive to amount of training data than 3-state phone posterior
features.

Based on the presented results, we can conclude that query-by-example STD systems are a
viable alternative to query-by-text STD systems, especially when more examples per query are
available.

As we expected, language-independent setups show a significant decrease of performance,
compared to language-dependent setups. However, there is an exception to this behavior, seen in
Levantine data, where the Czech GMM/HMM bottleneck system outperformed even all language-
dependent Levantine QbE systems. In general, we can say that the mismatch between training
and target languages of a feature extractor, are the main reason for the significant decrease of
performance in language-independent setups.

In this work, we have also analyzed and significantly improved our WFST system, which now
performs on par with the DTW system in language-dependent setups. Moreover, the WFST
system’s search is considerably faster and requires only about 3% of the disk space, compared
to the DTW system.

87

88 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Future Work

During our work, we saw many possible directions for future research, which we were not able
to investigate in more depth yet.

• The presented unnpFOM metric showed that the main problem of all our STD systems is
in calibration across different utterances. We will investigate various known normalization
techniques which could improve the npFOM performance towards the unnpFOM.

• Techniques for merging overlapping detections of the WFST system showed suboptimal
performance. We will analyze the applied techniques more deeply to increase the perfor-
mance of the WFST system in language-independent setups, to match the performance of
the DTW system similarly as in language-dependent setups.

• Our WFST system is able to produce various lattice-based features for each detection.
According to our preliminary experiments, training a statistical model with these features,
has a potential to improve scores of detections and the whole system’s performance as
well.

• Comparing performance of an artificially selected single best example per query and five
merged examples per query, we can see a considerable space for improvement. Thus we
will also analyze and investigate methods for combining examples.

• For the GMM/HMM system, bottleneck features performed considerably better than 3-
state phone posterior features. They are, however, not directly suitable for DTW and
WFST systems. We will explore possibilities to use bottleneck features for all our QbE
systems.

• Our preliminary experiments with combination of QbE systems showed a potential for per-
formance improvement, but it has to be analyzed more deeply with real fusion techniques.

• All systems were evaluated with the non-pooled FOM metric. We did not yet pay attention
to calibration of scores across queries, nor to providing hard decisions for detections of our
QbE systems. These topics will have to be also investigated, as they are needed for many
real world applications.

Bibliography

Abad, A., Astudillo, R. F., and Trancoso, I. 2012. The L2F spoken web search system
for MediaEval 2012. In MediaEval.

Abad, A., Rodŕıguez-Fuentes, L. J., Penagarikano, M., Varona, A., and Bordel,

G. 2013. On the calibration and fusion of heterogeneous spoken term detection systems. In
INTERSPEECH. 20–24.

Allauzen, C., Mohri, M., and Saraclar, M. 2004. General indexation of weighted au-
tomata: application to spoken utterance retrieval. In Proceedings of the Workshop on Inter-
disciplinary Approaches to Speech Indexing and Retrieval at HLT-NAACL 2004. 33–40.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. 2007. OpenFst: A
general and efficient weighted finite-state transducer library. In Proceedings of International
Conference on Implementation and Application of Automata. Vol. 4783. 11–23.

Anguera, X. 2011. Telefonica system for the spoken web search task at MediaEval 2011. In
Proceedings of MediaEval’11. 3–4.

Anguera, X. 2013. Information retrieval-based dynamic time warping. In INTERSPEECH.
1–5.

Anguera, X., Macrae, R., and Oliver, N. 2010. Partial sequence matching using an
unbounded dynamic time warping algorithm. In Proceedings of ICASSP’10. 3582–3585.

Barnard, E., Davel, M., van Heerden, C., Kleynhans, N., and Bali, K. 2011. Phone
recognition for spoken web search. In Proceedings of MediaEval’11. 5–6.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The Annals
of Mathematical Statistics 41, 1, 164–171.

Burget, L., Černocký, J., Fapšo, M., Karafiát, M., Matějka, P., Schwarz, P., Smrž,
P., and Szöke, I. 2006. Indexing and search methods for spoken documents. In Proceedings
of the Ninth International Conference on Text, Speech and Dialogue, TSD 2006. Lecture Notes
in Computer Science 4188, 351–358.

Can, D. and Saraclar, M. 2011. Lattice indexing for spoken term detection. Audio, Speech,
and Language Processing, IEEE Transactions on 19, 8, 2338–2347.

Chan, C. and Lee, L. 2010. Unsupervised spoken-term detection with spoken queries using
segment-based dynamic time warping. In Proceedings of Interspeech’10. 693–696.

89

90 BIBLIOGRAPHY

Chan, C.-A. and Lee, L.-S. 2011. Unsupervised hidden markov modeling of spoken queries
for spoken term detection without speech recognition. In INTERSPEECH. 2141–2144.

Chen, Y.-W., Chen, K.-Y., Wang, H.-M., and Chen, B. 2013. Effective pseudo-relevance
feedback for spoken document retrieval. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 8535–8539.

Chia, T. K., Sim, K. C., Li, H., and Ng, H. T. 2010. Statistical lattice-based spoken
document retrieval. ACM Transactions on Information Systems (TOIS) 28, 1, 2.

Cuayahuitl, H. and Serridge, B. 2002. Out-of-vocabulary word modeling and rejection for
spanish keyword spotting systems. In Proceedings of Mexican International Conference on
Artificial Intelligence. 156–165.

Fiscus, J. G., Ajot, J., and Doddingtion, G. 2006. The spoken term detection (STD) 2006
evaluation plan. Tech. rep., National Institute of Standards and Technology (NIST) USA.

Fiscus, J. G., Ajot, J., Garofolo, J. S., and Doddington, G. 2007. Results of the 2006
spoken term detection evaluation. In Proceedings of Workshop on Searching Spontaneous
Conversational Speech (SIGIR-SSCS’07).

Grézl, F. and Fousek, P. 2008. Optimizing bottle-neck features for LVCSR. In Proceedings
of ICASSP’08. 4729–4732.

Grézl, F., Karafiát, M., and Burget, L. 2009. Investigation into bottle-neck features for
meeting speech recognition. In Proceedings of Interspeech’09. 2947–2950.

Grézl, F., Karafiát, M., Kontár, S., and Černocký, J. 2007. Probabilistic and bottle-
neck features for LVCSR of meetings. In Proceedings of ICASSP’07. 757–760.

Hakkani-Tür, D., Béchet, F., Riccardi, G., and Tur, G. 2006. Beyond ASR 1-best:
Using word confusion networks in spoken language understanding. Computer Speech & Lan-
guage 20, 4, 495–514.

Hazen, T. and Bazzi, I. 2001. A comparison and combination of methods for OOV word
detection and word confidence scoring. In Proceedings of ICASSP’01. 397–400.

Hazen, T. J., Shen, W., and White, C. M. 2009. Query-by-example spoken term detection
using phonetic posteriorgram templates. In Proceedings of ASRU’09. 421–426.

Helén, M. and Virtanen, T. 2007. Query by example of audio signals using euclidean distance
between gaussian mixture models. In Proceedings of ICASSP’07. 225–228.

Helén, M. and Virtanen, T. 2010. Audio query by example using similarity measures between
probability density functions of features. EURASIP, Journal on Audio, Speech and Music
Processing 2010, 2:1–2:12.

Iwami, K., Fujii, Y., Yamamoto, K., and Nakagawa, S. 2010. Out-of-vocabulary term
detection by n-gram array with distance from continuous syllable recognition results. In
Spoken Language Technology Workshop (SLT), 2010 IEEE. IEEE, 212–217.

BIBLIOGRAPHY 91

Jansen, A., Church, K., and Hermansky, H. 2010. Towards spoken term discovery at scale
with zero resources. In Proceedings of Interspeech’10. 1676–1679.

Kempton, T., Moore, R. K., and Hain, T. 2011. Cross-language phone recognition when
the target language is not known. In Proceedings of Interspeech’11. 3165–3168.

Kim, J., Jung, H., and Chung, H. 2004. A keyword spotting approach based on pseudo
n-gram language model. In Proceedings of the Conference on Speech and Computer. 156–159.

Knill, K. M., Gales, M. J., Ragni, A., and Rath, S. P. 2014. Language independent and
unsupervised acoustic models for speech recognition and keyword spotting. Proc Inter-Speech.

Lin, H., Stupakov, A., and Bilmes, J. 2008. Spoken keyword spotting via multi-lattice
alignment. In Proceedings of Interspeech’08. 2191–2194.

Lin, H., Stupakov, A., and Bilmes, J. 2009. Improving multi-lattice alignment based spoken
keyword spotting. In Proceedings of ICASSP’09. 4877–4880.

Mamou, J., Ramabhadran, B., and Siohan, O. 2007. Vocabulary independent spoken term
detection. In Proceedings of ACM-SIGIR’07. 615–622.

Mangu, L., Brill, E., and Stolcke, A. 2000. Finding consensus in speech recognition:
word error minimization and other applications of confusion networks. Computer Speech &
Language 14, 4, 373–400.

Mangu, L., Kingsbury, B., Soltau, H., Kuo, H.-K., and Picheny, M. 2014. Efficient
spoken term detection using confusion networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE, 7844–7848.

Manos, A. and Zue, V. 1997. A segment-based wordspotter using phonetic filler models. In
Proceedings of ICASSP’97. Vol. 2. 899–902.

Mantena, G. and Anguera, X. 2013. Speed improvements to information retrieval-based
dynamic time warping using hierarchical k-means clustering. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 8515–8519.

Mantena, G. V. and Prahallad, K. 2013. IIIT-H SWS 2013: Gaussian posteriorgrams of
bottle-neck features for query-by-example spoken term detection. In MediaEval.

Metze, F., Anguera, X., Barnard, E., Davel, M., and Gravier, G. 2014. Language in-
dependent search in MediaEval’s spoken web search task. Computer Speech & Language 28, 5,
1066–1082.

Mohri, M., Pereira, F., and Riley, M. 2008. Speech recognition with weighted finite-state
transducers. In Springer Handbook of Speech Processing. Springer, 559–584.

Muscariello, A. and Gravier, G. 2011. Irisa MediaEval 2011 spoken web search system.
In Proceedings of MediaEval’11. 9–10.

Muscariello, A., Gravier, G., and Bimbot, F. 2009. Audio keyword extraction by unsu-
pervised word discovery. In Proceedings of Interspeech’09. 2843–2846.

92 BIBLIOGRAPHY

Muscariello, A., Gravier, G., and Bimbot, F. 2011. Zero-resource audio-only spoken
term detection based on a combination of template matching techniques. In Proceedings of
Interspeech’11. 921–924.

NIST. 1991. ”The Road Rally Word-Spotting Corpora (RDRALLY1), NIST Speech Disc 6-1.1”.

Norouzian, A. and Rose, R. 2014. An approach for efficient open vocabulary spoken term
detection. Speech Communication 57, 50–62.

Ou, J., Chen, C., and Li, Z. 2001. Hybrid neural-network/HMM approach for out-of-
vocabulary words rejection in mandarin place name recognition. In Proceedings of the In-
ternational Conference On Neural Information Processing.

Parada, C., Sethy, A., and Ramabhadran, B. 2009. Query-by-example spoken term detec-
tion for OOV terms. 2009 IEEE Workshop on Automatic Speech Recognition & Understanding ,
404–409.

Parada, C., Sethy, A., and Ramabhadran, B. 2010. Balancing false alarms and hits in
spoken term detection. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE, 5286–5289.

Park, A. S. and Glass, J. R. 2008. Unsupervised pattern discovery in speech. IEEE Trans-
actions on Audio, Speech and Language Processing 16, 1, 186–197.

Pereira, F., Riley, M., and Sproat, R. 1994. Weighted rational transductions and their
application to human language processing. Proceedings of the workshop on Human Language
Technology - HLT ’94 2, 262.

Pinto, J., Szöke, I., Prasanna, S., and Heřmanský, H. 2008. Fast approximate spoken
term detection from sequence of phonemes. In Proceedings of the 31st Annual International
ACM SIGIR Conference. 28–33.

Salamon, J., Serra, J., and Gómez, E. 2013. Tonal representations for music retrieval: from
version identification to query-by-humming. International Journal of Multimedia Information
Retrieval 2, 1, 45–58.

Schmalenstroeer, J., Bartek, M., and Haeb-Umbach, R. 2011. Unsupervised learning
of acoustic events using dynamic time warping and hierarchical k-means++ clustering. In
INTERSPEECH. 305–308.

Schultz, T. and Waibel, A. 2001. Experiments on cross-language acoustic modeling. In
Proceedings of Interspeech’01. 2721–2724.

Schwarz, P. 2009. Phoneme recognition based on long temporal context. Ph.D. thesis, Brno
University of Technology, Brno, Czech Republic.

Shen, W., White, C. M., and Hazen, T. J. 2009. A comparison of query-by-example
methods for spoken term detection. In Proceedings of Interspeech’09. 2143–2146.

Srikanth, M. 2013. Speaker verification and keyword spotting systems for forensic applications.
Ph.D. thesis, Indian Institute of Technology Madras.

BIBLIOGRAPHY 93

Stoimenov, E. and Schultz, T. 2009. A multiplatform speech recognition decoder based on
weighted finite-state transducers. 2009 IEEE Workshop on Automatic Speech Recognition &
Understanding , 293–298.

Szöke, I. 2010. Hybrid word-subword spoken term detection. Ph.D. thesis, Brno University of
Technology, Brno, Czech Republic.

Szöke, I., Burget, L., Grézl, F., Černocký, J., and Ondel, L. 2014. Calibration and
fusion of query-by-example systems – BUT SWS 2013. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference on. IEEE, 7849–7853.

Szöke, I., Fapšo, M., Karafiát, M., Burget, L., Grézl, F., Schwarz, P., Glembek,

O., Matějka, P., Kopecký, J., et al. 2008. Spoken term detection system based on
combination of LVCSR and phonetic search. In Machine Learning for Multimodal Interaction.
Springer, 237–247.

Szöke, I., Fapšo, M., and Veselý, K. 2012. BUT2012 approaches for spoken web search-
MediaEval 2012. In MediaEval. Citeseer.

Szöke, I., Grézl, F., Černocký, J., and Fapšo, M. 2010. Acoustic keyword spotter -
optimization from end-user perspective. In Proceedings of the SLT’10. 177–181.

Szöke, I., Schwarz, P., Matějka, P., Burget, L., Karafiát, M., Fapšo, M., and

Černocký, J. 2005. Comparison of keyword spotting approaches for informal continuous
speech. In Proceedings of Interspeech’05. 633–636.

Szöke, I., Tejedor, J., Fapšo, M., and Colás, J. 2011. BUT-HCTLab approaches for
spoken web search - MediaEval 2011. In Proceedings of MediaEval’11. 11–12.

Tejedor, J. 2009. Contributions to keyword spotting and spoken term detection for information
retrieval in audio mining. Ph.D. thesis, Universidad Autónoma de Madrid, Madrid, Spain.

Tejedor, J., Fapšo, M., Szöke, I., Černocký, J. H., and Grézl, F. 2012. Comparison
of methods for language-dependent and language-independent query-by-example spoken term
detection. ACM Trans. Inf. Syst. 30, 3, 18:1–18:34.

Tejedor, J., Szöke, I., and Fapšo, M. 2010. Novel methods for query selection and query
combination in query-by-example spoken term detection. In Proceedings of the Searching
Spontaneous Conversational Speech (SSCS’10). 15–20.

Tsai, W.-H. and Wang, H.-M. 2004. A query-by-example framework to retrieve music doc-
uments by singer. In Proceedings of the IEEE International Conference on Multimedia and
Expo. 1863–1866.

Tzanetakis, G., Ermolinskyi, A., and Cook, P. 2002. Pitch histograms in audio and
symbolic music information retrieval. In Proceedings of the 3rd International Conference on
Music Information Retrieval: ISMIR. 31–38.

Velivelli, A., Zhai, C., and Huang, T. S. 2003. Audio segment retrieval using a synthesized
HMM. In Proceedings of the ACM SIGIR workshop on multimedia information retrieval,
Toronto, Canada.

94 BIBLIOGRAPHY

Walker, B. D., Lackey, B. C., Muller, J. S., and Schone, P. J. 2003. Language-
reconfigurable universal phone recognition. In Proceedings of Interspeech’03. 153–156.

Wallace, R., Vogt, R., and Sridharan, S. 2007. A phonetic search approach to the 2006
NIST spoken term detection evaluation. In Proceedings of Interspeech’07. 2385–2388.

Wegmann, S., Faria, A., Janin, A., Riedhammer, K., and Morgan, N. 2013. The
tao of ATWV: Probing the mysteries of keyword search performance. In Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE, 192–197.

Welling, L., Kanthak, S., and Ney, H. 1999. Improved methods for vocal tract normaliza-
tion. In Proceedings of ICASSP’99. 761–764.

Xin, L. and Wang, B. 2001. Utterance verification for spontaneous mandarin speech keyword
spotting. In Proceedings of International Conference on Info-tec and Info-net. Vol. 3. 397–401.

Young, S. J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland, P.

2006. The HTK Book Version 3.4. Cambridge University Press.

Zhang, T. and Kuo, C.-C. J. 1999. Hierarchical classification of audio data for archiving and
retrieving. In Proceedings of ICASSP’99. 3001–3004.

Zhang, Y. and Glass, J. R. 2009. Unsupervised spoken keyword spotting via segmental
DTW on gaussian posteriorgrams. In Proceedings of ASRU’09. 398–403.

Zhang, Y. and Glass, J. R. 2011. A piecewise aggregate approximation lower-bound estimate
for posteriorgram-based dynamic time warping. In INTERSPEECH. 1909–1912.

Appendices

95

A. IMPLEMENTATION AND TOOLS 97

A Implementation and Tools

All our tools and relevant scripts are freely available at https://michalfapso.github.io.

A.1 WFST QbE

For working with transducers, we use our own tools based on the OpenFst toolkit [Allauzen et al.,
2007]. For converting lattices to confusion networks, we use lattice-tool from the SRILM toolkit1.

A.2 Scoring and Evaluation

HTK (Hidden markov modelling toolkit2) with its HResults tool can be used for evaluating
the npFOM metric. Besides providing the overall npFOM value and the ROC curve,
HResults outputs FOM also for each query independently together with the number of
hits, false alarms and reference occurrences. These query-based statistics are very useful
for debugging STD systems. We only had to make a minor change to HResults to accept
the total duration of test data as a command line argument, because our reference MLF
files only contain occurrences of our selected queries, so HResults is not able to get the
correct total duration from the reference MLF. However, for further analysis and higher
flexibility, we decided to use our own scoring tool from the LSE toolkit.

LSE (Lattice search engine3) is a toolkit developed by the BUT Speech@FIT research group
which includes a tool kws scorer for scoring STD systems. Besides computing npFOM, it
can output the ROC curve and supports several methods for detecting hits:

• Middle of a reference overlaps with a detection

• Middle of a detection overlaps with a reference

• Both above (at least half of the longer one of the reference and detection overlap with
the shorter one)

• Detection overlaps with the reference enlarged by 0.5s to both directions

Its scoring output is similar to HResults, adding several new columns for each query:

• npFOMcontrib(Q)

• npFOMoracle

The tool can be also run in a mode simulating an ideal calibration across evaluation
utterances, for computing the unppFOM metric.

B Set of queries per language

Tables B.1 to B.5 show the word transcription of each query along with its number of phones,
the average time length per query (in hundredths of seconds), and the number of occurrences
in the evaluation data.

1The SRI Language Modeling Toolkit, http://www.speech.sri.com/projects/srilm/
2HTK is available at http://htk.eng.cam.ac.uk/download.shtml.
3LSE is freely available at https://bitbucket.org/michalfapso/lse

https://michalfapso.github.io
http://www.speech.sri.com/projects/srilm/
http://htk.eng.cam.ac.uk/download.shtml
https://bitbucket.org/michalfapso/lse

98

Word (#ph) (dur) #occ Word (#ph) (dur) #occ

akorát (6) (36.6) 18 budeme (6) (33.4) 7

budeš (5) (21.6) 13 budou (5) (32.4) 7

dneska (6) (35.2) 21 dobrý (5) (43.8) 60

dobře (5) (48.4) 51 hlavně (6) (48.4) 12

jasně (5) (71.4) 43 jasný (5) (68.0) 15

jedna (5) (29.0) 8 jedno (5) (33.2) 13

jenom (5) (29.8) 36 jestli (6) (29.6) 31

ještě (5) (24.8) 50 jinak (5) (35.4) 8

kolik (5) (38.0) 15 možná (5) (31.8) 9

muśım (5) (37.2) 26 myslim (6) (30.0) 6

nějakej (7) (41.6) 15 nějaký (6) (37.8) 12

někde (5) (37.6) 19 pátek (5) (52.2) 21

potom (5) (40.0) 25 potřebuju (9) (34.8) 5

právě (6) (28.0) 24 prosim (6) (32.6) 8

prostě (6) (40.4) 21 protože (7) (39.2) 57

sobotu (6) (56.2) 6 stejně (6) (26.2) 4

štyry (5) (30.4) 13 takhle (6) (78.8) 14

takle (5) (28.8) 9 takový (6) (50.6) 7

takže (5) (23.8) 64 teďka (5) (38.6) 16

teďko (5) (27.2) 11 tejden (6) (54.0) 9

třeba (5) (23.4) 19 úplně (5) (31.0) 11

určitě (6) (45.0) 9 uvid́ım (6) (55.8) 13

včera (5) (42.8) 9 večer (5) (51.2) 18

vlastně (7) (30.2) 14 všechno (6) (44.6) 15

v̊ubec (5) (31.4) 19 vypadá (6) (56.2) 7

vždycky (7) (33.4) 4 zatim (5) (40.8) 16

zavolám (7) (46.0) 17 zejtra (6) (35.6) 39

Table B.1: Czech Queries. The column “#ph” denotes the number of phones of a query according
to the pronunciation dictionary, “dur” is an average length of a query in tens of milliseconds,
“#occ” is the number of query occurrences in evaluation data.

B. SET OF QUERIES PER LANGUAGE 99

Word (#ph) (dur) #occ Word (#ph) (dur) #occ Word (#ph) (dur) #occ

really (5) (34.6) 181 because (5) (41.6) 0 pretty (5) (21.8) 40

always (5) (35.2) 37 before (5) (39.6) 31 married (5) (47.4) 23

getting (5) (28.6) 22 trying (5) (24.6) 20 talking (5) (37.8) 17

having (5) (32.4) 16 another (5) (37.0) 14 believe (5) (36.8) 16

making (5) (27.6) 11 months (5) (30.2) 11 outside (5) (44.2) 11

brother (5) (40.6) 15 changed (5) (51.6) 10 looking (5) (34.0) 10

often (5) (35.6) 0 taking (5) (30.2) 10 women (5) (35.8) 10

living (5) (31.2) 9 without (5) (42.8) 9 dollars (5) (37.4) 8

states (5) (36.4) 9 thousand (5) (42.0) 10 travel (5) (49.6) 13

working (5) (36.2) 8 afraid (5) (42.6) 7 during (5) (25.0) 7

kinds (5) (37.6) 7 cooking (5) (38.2) 6 feeling (5) (39.6) 7

marriage (5) (42.0) 7 nothing (5) (42.8) 6 wants (5) (20.6) 6

coming (5) (25.6) 6 doctor (5) (48.8) 5 drink (5) (33.4) 9

longer (5) (43.0) 0 scary (5) (44.6) 5 telling (5) (29.6) 5

trained (5) (43.0) 5 until (5) (44.4) 5 upset (5) (53.0) 5

watching (5) (38.4) 5 woman (5) (29.6) 5 calling (5) (31.2) 4

growing (5) (41.4) 4 scared (5) (37.0) 4 sister (5) (40.4) 8

somehow (5) (57.4) 4 sounds (5) (29.6) 4 stores (5) (39.8) 5

street (5) (36.4) 5 taken (5) (39.6) 4 topic (5) (50.4) 4

totally (5) (47.4) 4 unless (5) (34.2) 4 winter (5) (36.4) 5

something (6) (38.8) 90 anything (6) (42.8) 46 family (6) (58.6) 40

friends (6) (42.2) 39 business (6) (43.2) 23 whatever (6) (38.0) 20

thinking (6) (39.8) 18 airport (6) (42.6) 20 supposed (6) (30.2) 16

together (6) (47.4) 15 almost (6) (34.0) 12 happened (6) (47.2) 12

instead (6) (39.8) 12 someone (6) (37.4) 13 market (6) (39.0) 12

certainly (6) (36.4) 9 myself (6) (54.2) 9 second (6) (37.6) 0

between (6) (52.6) 8 minutes (6) (28.8) 8 nineteen (6) (40.0) 8

texas (6) (52.0) 7 places (6) (43.0) 7 survivor (6) (69.6) 10

whenever (6) (43.2) 7 already (6) (27.0) 6 anymore (6) (47.6) 6

english (6) (41.6) 6 except (6) (26.8) 6 israel (6) (47.8) 6

nobody (6) (37.8) 6 support (6) (45.2) 8 chicago (6) (63.0) 5

against (6) (35.4) 0 anywhere (6) (41.6) 4 extra (6) (31.0) 4

happens (6) (46.6) 4 changes (6) (45.0) 4 imagine (6) (50.2) 6

partner (6) (51.0) 5 system (6) (53.4) 7 terrible (6) (48.4) 4

wanted (6) (29.4) 4 actually (7) (44.0) 50 everything (7) (61.0) 28

parents (7) (39.2) 26 different (7) (38.6) 25 children (7) (48.2) 26

divorced (7) (55.8) 18 especially (7) (45.6) 17 remember (7) (34.2) 16

sometimes (7) (54.0) 15 started (7) (46.6) 14 affected (7) (58.6) 12

basically (7) (53.0) 12 christmas (7) (60.2) 12 situation (7) (67.4) 12

somebody (7) (38.6) 10 anybody (7) (37.0) 8 countries (7) (54.6) 8

holidays (7) (54.6) 8 husband (7) (48.2) 9 italian (7) (63.4) 8

question (7) (44.8) 8 reality (7) (63.0) 8 florida (7) (50.0) 7

involved (7) (49.8) 7 usually (7) (34.6) 7 personally (7) (62.8) 6

recently (7) (44.0) 6 terrorist (7) (50.6) 10 yourself (7) (50.4) 6

Table B.2: English Queries (1/2).

100

Word (#ph) (dur) #occ Word (#ph) (dur) #occ Word (#ph) (dur) #occ

depends (7) (41.6) 5 everyone (7) (48.2) 5 example (7) (57.0) 5

popular (7) (60.4) 5 united (7) (39.6) 5 control (7) (62.2) 6

difference (7) (50.4) 3 graduate (7) (45.6) 0 hundred (7) (27.8) 4

internet (7)(47.0) 4 religious (7) (56.8) 4 society (7) (49.2) 5

spending (7) (36.8) 4 subject (7) (45.2) 0 wonderful (7) (68.0) 4

probably (8) (36.8) 56 government (8) (44.6) 18 exactly (8) (69.8) 15

important (8) (45.8) 12 problems (8) (52.0) 11 american (8) (53.8) 8

september (8) (48.6) 5 successful (8) (67.6) 5 background (8) (56.2) 4

girlfriend (8) (49.0) 4 obviously (8) (61.4) 4 definitely (9) (53.2) 30

understand (9) (59.2) 14 security (9) (53.2) 12 computers (9) (64.6) 9

completely (9) (55.6) 8 expensive (9) (68.6) 6 relationship (9) (69.0) 8

interesting (10) (59.0) 15 california (10) (58.0) 9 necessarily (10) (64.6) 6

Table B.3: English Queries (2/2).

Word (#ph) (dur) #occ

lehet (5) (38.67) 97

azonban (7) (71.4) 43

mindig (6) (34.6) 36

volna (5) (37.2) 36

férfi (5) (46.6) 37

milyen (5) (28.2) 37

nagyon (5) (35.2) 23

talán (5) (39.0) 28

Table B.4: Hungarian Queries.

B. SET OF QUERIES PER LANGUAGE 101

Word (#ph) (dur) #occ Word (#ph) (dur) #occ

AlHmd (5) (31.8) 77 mEAky (5) (43.6) 28

AlHAl (5) (36.6) 30 mbArH (5) (33.8) 23

yslmk (5) (47.0) 22 mDbwT (5) (45.0) 21

Elyky (5) (41.4) 23 Erfty (5) (38.2) 20

AlwAHd (6) (32.8) 20 mrHbA (5) (54.0) 19

ElyhA (5) (26.4) 17 mEAhA (5) (31.8) 17

sAmEk (5) (42.0) 14 Almhm (5) (36.0) 13

AxbArk (6) (53.6) 13 bAqwl (5) (33.4) 13

bEdhA (5) (31.4) 14 btErfy (6) (42.2) 14

btHky (5) (39.4) 12 AlEZym (6) (55.2) 10

bAlbyt (6) (40.4) 10 LsmEy (5) (45.0) 10

UbdAF (5) (36.2) 10 EAlbyt (6) (39.0) 9

mmtAz (5) (44.0) 9 TbEAF (5) (36.6) 8

Uhlyn (5) (44.0) 8 wbEdyn (6) (37.8) 10

AyAhA (5) (34.2) 8 bAllyl (5) (41.4) 7

bnrwH (5) (30.2) 7 mbrwk (5) (48.2) 8

qAEdyn (6) (59.0) 7 byqTE (5) (49.2) 6

Endkm (5) (44.8) 7 mEAnA (5) (34.0) 6

msAfr (5) (45.8) 5 mvlAF (5) (38.2) 6

btlAqy (6) (33.6) 6 bUqwl (5) (36.6) 4

bykwn (5) (33.2) 4 AlUmwr (6) (43.4) 3

bAErfc (6) (35.6) 6 bncwf (5) (38.4) 3

dqAyq (5) (37.0) 3 ElynA (5) (34.8) 4

Hbyby (5) (41.6) 3 mEAhn (5) (29.6) 3

TAlEyn (6) (33.2) 3 tqrybAF (7) (47.0) 3

wEcryn (6) (29.6) 3 - -

Table B.5: Levantine Queries.

