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ABSTRACT
This bachelor thesis first deals with the elementary principles of function magnetic res-
onance and the sources of noise and artifacts in the data. Furthermore, the thesis
elaborates on the motion artifact phenomena and suggests two suitable methods for
locating and eliminating motion-affected scans in the BOLD fMRI data. The methods
are then implemented in the MATLAB environment and tested on suitable datasets pro-
vided by the Multimodal and Functional Imaging Laboratory of CEITEC MU. Finally,
the results are presented and evaluated along with a recommendation for a suitable way
of eliminating movement artifacts in the data.
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ABSTRAKT
Tato bakalářská práce ze zprvu zabývá elementárními principy magnetické rezonance
a zdrojů šumu a artefaktů v datech. Dále práce podrobněji pojednává o pohybovém
artefaktu a navrhuje dvě vhodné metody pro lokalizaci a odstranění pohybem postižených
skenů BOLD fMRI dat. Metody jsou poté implementovány v prostředí MATLAB a
otestovány na vhodných datasetech poskytnutých Laboratoří multimodálního a funkčního
zobrazování, CEITEC MU. Nakonec jsou prezentovány a vyhodnoceny výsledky zároveň
s doporučením pro vhodný způsob eliminace pohybového artefaktu v datech.
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INTRODUCTION
Today functional magnetic resonance imaging or functional MRI (fMRI) is one of
the leading methods in both neuroscience research and psychiatric practice. To
obtain sharp images that can be reliably used for further statistical analyzes, it is
crucial for the subject to restrain any movements and thus avoid devastating motion
artifacts. This can especially be a problem for children or people with Parkinson’s
disease. However, even healthy adults do move due to breathing or the nature of
the fMRI study itself.

To overcome this problem, most laboratories use head restraints of some form,
such as bite bars, masks, vacuum packs, padding, or taping. Unfortunately they do
not eliminate the motion artifact completely.

There are several ways how to cope with the motion artifact in the preprocessing
of the fMRI data: either use motion regressors (that do not remove the artifact com-
pletely), or perform motion scrubbing of the data, or construct special regressors
that would except motion-affected scans from further analyzes.

The comparison of such techniques is the objective of this thesis, along with their
implementation into a MATLAB-based application. The objective is particularly in-
teresting, since very few studies, if any, have produced such a wide and thorough
comparison using fMRI data acquired with different field strength intensities.

The theoretical part of the thesis first covers a comparison of fMRI with differ-
ent functional imaging techniques and then further elaborates on the basic physical
principals underlying fMRI, explains how an fMRI image is produced, what artifacts
deteriorate the image quality and what preprocessing steps need to be taken. At the
end of the theoretical part there is a basic explanation of the General Linear Model
and, most importantly, a description of detecting methods of motion-affected scans,
along with their removal and substitution techniques.

The applied part of the thesis suggests two suitable methods for locating and
eliminating motion-affected scans in the BOLD fMRI data. The methods are then
implemented in MATLAB environment and tested on suitable datasets provided by
the Multimodal and Functional Imaging Laboratory of CEITEC MU. In the end the
results are presented and evaluated along with a recommendation for suitable way
of eliminating movement artifacts in the data.
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1 FMRI IN RESPECT TO OTHER FUNCTIONAL
IMAGING TECHNIQUES

Functional magnetic resonance imaging (fMRI) is undoubtedly the leading method
in neuroscience with tens of thousands of experiments based on this imaging tech-
nique. FMRI along with PET, EEG and MEG comprise the four most used func-
tional neuroimaging methods in clinical practice. Such methods are employed to
acquire bioelectrical signals of neural activity. However, they differ not only in their
underlying physical principals and spatial and temporal resolutions, but also in the
nature of the image we want to acquire. Thus each method is suitable for different
types of tasks and has its pros and cons [7] [11].

The oldest of the above-mentioned methods is EEG (Electroencephalography).
The first application of EEG dates back to 1877 when Richard Caton acquired the
very first recording of electrical activity from exposed brains of rabbits and monkeys
using a mirror galvanometer. It was not until 1924 that Hans Berger successfully
measured electrical activity in the human brain and paved the way for the upcoming
golden era of the EEG that began in the 1960’s [4] [11] [13].

EEG records electrical activity of the brain through electrodes attached to the
scalp. Another similar technique is MEG (Magnetoencephalography) which was in-
troduced later in the mid 1980’s due to its arduous technological complexity. MEG
stems from the same physiological phenomena as EEG: it non-invasively measures
post-synaptic potentials between cortical neurons by the means of induced magnetic
signals. Note that the generation of the signal is often erroneously contributed to
ionic currents of propagating action potentials. Since in both methods the acquired
signal is a sum from a larger volume of cortex and is dulled by the skull and cere-
brospinal fluid. The resulting spatial resolution is relatively poor, identifying the
approximate location of activity to within about a centimeter. On the other hand,
the temporal resolution is very high, showing changes within milliseconds. While
MEG achieves better results than EEG in spatial resolution, this benefit must be
considered against the complexity and fragility of the MEG machine, along with its
costs [11] [13].

PET (Positron-emission tomography) emerged later, in the mid 1970’s. PET is
based on using radioactive tracers (radiopharmaceuticals) to observe and trace the
metabolic processes and paths in the body. The choice of radioactive tracers depends
upon the metabolic processes we want to follow. In the functional imaging of the
brain, the most used tracer is Fluorine-18 (F-18) Fluorodeoxyglucose (FDG), which
is essentially a radioactive isotope of glucose. This can be explained by the brain’s
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need for glucose, since it is the only source of energy that crosses the blood–brain
barrier [1] [11].

The underlying physical principal of PET lies in positron emission (also known
as 𝛽 + decay). As the radioactive tracer decays it emits a positron, which then
travels a distance up to one millimeter and collides with an electron. During this
collision the positron and the electron (antiparticles) are annihilated and give rise
to two photons that radiate in exactly opposite directions. Only thanks to this
phenomenon can we localize the source of the radiation: by putting a patient inside
a ring-shaped detector and detecting only those photons that were registered both
simultaneously and in approximately opposite directions [1] [11].

Fig. 1.1: Comparison of various functional imaging techniques [13]
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2 BASIC PRINCIPLES OF (F)MRI
In this chapter I am going to explain the basic principles of (f)MRI. In the text the
terms fMRI and MRI may be interchanged, since they both are based on the same
principles.

2.1 Nuclear Magnetism
MRI images are usually acquired using hydrogen nuclei that are abundant in the
human body. However, other isotopes such as 3He, 23Na or 31P are also possible
sources. All those isotopes share the same quantum mechanical feature: a non-
zero spin. In other words, the nuclei do not have the same number of protons and
neutrons and, therefore, can be utilized in the nuclear magnetic resonance process.
This magnetic imbalance of elements is referred to as the magnetic dipole moment
and denoted as 𝜇. To quantify the vector of the magnetic moment, imagine a
positively charged nucleus (e.g. hydrogen) rotating on its axis. This rotation (or
spinning) is caused by thermal energy. The magnetic dipole moment can then be
defined by the right-hand rule as following [7] [10]

𝜇 = 𝐼 * 𝐴 (2.1)

with I being a tiny current traveling around the edge of a cross sectional area
(A).

The next parameter of these nuclei that is worth noting is the gyromagnetic
ratio (𝛾). The gyromagnetic ratio is a ratio between the charge and the mass of a
spinning nucleus. Since only stable nuclei are used in MRI, the gyromagnetic ratio
represents a unique constant for each isotope.[7]

𝛾 = 𝑞

2𝑚
(2.2)

2.2 Spins within Magnetic Fields
When there are a number of spinning nuclei with magnetic dipole moment, they
orient themselves randomly and thus have no net magnetization. However, after
a strong external magnetic field B0 is applied, nuclei try to reach the equilibrium
state either by assuming parallel or antiparallel orientation with the vector of the
external magnetic field. The parallel state has lower energy and is more stable than
the antiparallel state and is, therefore, more frequent. This leads to the total net
magnetization Mz of the nuclei as shown in Figure 2.1 [7] [10].
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Fig. 2.1: Ilustration of applying an external magnetic field to randomly orientated
nuclei. Net magnetization vector Mz points in the same direction as the vector of
the external magnetic field B0 [7]

2.3 Precession and Larmour Frequency
Atomic nuclei in the low-energy state (parallel) can be tilted to the high-energy state
(antiparallel) by providing the nuclei with energy that is equal to the difference of
the energy between the two states. Conversely, nuclei in the high-energy state can
radiate this energy and assume the low-energy state. This shifting energy can be
supplied in the form of an electromagnetic pulse, whose frequency is described by
the Bohr relation [7] [10]

𝑓 = Δ𝐸

ℎ
(2.3)

where h is the Planck constant. The equation can be rewritten after substituting
energy E with equations describing the total supplied work as [7]

𝑓 = 𝛾

2𝜋
𝐵0 (2.4)

This frequency is referred to as the Larmor frequency. By looking at the
equation we can see that the frequency is defined only by the gyromagnetic ratio
(equation 2.2) and the applied external magnetic field B0 (usually 1.5T or 3.0T).
Since the gyromagnetic ratio is unique for every atomic nuclei, so must be the Lar-
mor frequency. Therefore, we can easily aim at different nuclei and change their
energy states [7] [10].
In Figure 2.1 we have seen how applying an external magnetic field to atoms makes
up a net magnetization. In reality, however, the nuclei are not perfectly aligned with
the axis of the magnetic field. Instead, in addition to their intrinsic spins, atoms
perform rotational movements about this axis. This rotational movement, depicted
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in Figure 2.2, is known as precession. Remarkably, the angular frequency of pre-
cession is the same as the Larmor frequency of a given nucleus. This correspondence
is crucial for the MR signal generation [7] [10].

Fig. 2.2: Illustration of precession and intrinsic rotation of a nucleus about Z axis
[7]

2.4 Application of a Radiofrequency Pulse
Application of an excitational radiofrequency pulse (RF pulse) of Larmor frequency
of a given nuclei to a sample from a lateral direction (XY plane) leads to two pro-
cesses: (1) half of the nuclei switches from the parallel to the antiparallel state and
(2) all spins synchronize to the same phase. As s consequence, the net magnetiza-
tion Mz begins to fade away to be increased in the XY plane as Mxy (see Figure
2.3). This phenomenon, where small applications of energy at a particular frequency
induce larger changes in the system, is referred to as resonance [7] [10].

Depending on the length we transmit the RF pulse, we can tilt the atoms to
various angles Θ:

Θ(𝑡) = 𝛾 *
∫︁ 𝑡

𝑡′=0
𝐵1(𝑡′)𝑑𝑡′ (2.5)

These angles are known as flipping angles, of which the most frequently used
are 90° and 180° angles. Note that by applying 90° RF pulse, the longitudinal
magnetization Mz diminishes to maximize the transverse magnetization Mxy and
thus amplify the whole signal (since we receive the MR signal in the transverse plane,
the growth of Mxy naturally leads to greater amplitude of the signal). Conversely,
after applying 180° RF pulse, vector Mxy diminishes to maximize Mz and there is
no detectable signal [7] [10].
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Fig. 2.3: Spiraling change (i.e. nutation) of a net magnetization after a 90° ra-
diofrequency pulse caused by diminishing Mz magnetization and growth of Mxy

magnetization [8]

2.5 Spin Relaxation
When the radiofrequency pulse is taken away, the system starts returning to its
equilibrium state by radiating energy. This process is referred to as spin relaxation,
which causes the loss of the MR signal. The relaxation can be longitudinal or
transverse [7] [10].

Longitudinal relaxation is characterized by the loss of energy we provided the
system by an RF pulse. The energy is radiated by spins going from the high-energy
(antiparallel) states to their original low-energy (parallel) states. This leads to re-
arising Mz magnetization, as there was before the RF pulse (Figure 2.3). The time at
which 63 % of atoms return to their original parallel state is referred to as T1 [7] [10].

Transverse relaxation starts much earlier, long before longitudinal relaxation is
finished. The so-far coherent spins begin to dephase and as a result the net trans-
verse magnetization Mxy begins to diminish. There are two causes of the dephasing
process: intrinsic and extrinsic.

Intrinsic dephasing stems from the interactions between two spins: one altering
the angular velocity of the other (known as T2 decay). T2 is then the time for the
transverse magnetization Mxy to fall to 37 % of its initial value.

Extrinsic dephasing, on the other hand, arises from inhomogenities in the exter-
nal magnetic field, changing the precessing frequency (see equation 2.2), which in
turn leads to dephasing. The combination of both types of dephasing is referred to
as T2* decay, which is essential for BOLD fMRI [7] [10].

T1 and T2 decay times are specific for each type of tissue and thus they enable us
to magnify the contrast of the tissue we are interested in with regard to surrounding
tissues. This process in known as T1 or T2 weighting, which is accomplished by

17



Tab. 2.1: Rough Values of T1 and T2 Times at a Field Strength of 1.5 T

Gray Matter White Matter Cerebrospinal Fluid
T1 900 ms 600 ms 4000 ms
T2 100 ms 80 ms 2000 ms

changing the time at which the RF pulse is repeated (repetition time (TR)) or the
time at which the image is acquired (echo time (TE)), respectively [7] [10].

2.6 Image Acquisition
As the net magnetization vector is rotating in the XY plane, it creates magnetic
waves which are then detected in receiving coils in the form of a magnetic flux.
Magnetic flux, governed by Faraday’s law of induction, then in return creates a
current and provides a readable signal (see Figure 2.4) [7].

Fig. 2.4: Illustration of T2 and T2* decay after applying a radiofrequency pulse, also
known as free induction decay(FID) [6]

2.7 Slice Selection
We now know how the signal from our object (e.g. brain) is obtained. However,
how can we focus on a specific slice and not on the whole object? We can infer
from the equation 2.2 that magnetic gradients, instead of a uniform magnetization
throughout the sample, could be a solution: each nucleus would then have the unique
properties of a Larmor frequency and a phase.
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To obtain a 2D image from a 3D sample, we need in total 3 gradients that will
govern coding in all directions X, Y and Z. Those 3 gradients are known as Gf,
G𝜑 and Gsl, respectively. The slice-selection encoding gradient Gsl enables us to
select a specific slice within the sample. After applying a radiofrequency pulse of a
frequency to the slice we want to select, only the nuclei in this slice would be excited
and, therefore, contribute to the image formation. This process breaks down the
problem to a 2D space.

Shortly after turning on the Gsl and a RF pulse, the phase-encoding gradient G𝜑

is applied. This gradient G𝜑 ensures that spins accumulate different phase offsets
over space.

At last the frequency-encoding gradient Gf is applied at the same time as we turn
on the receiving coils and detect the signal. Hence, the spin precession frequency
changes over space [7] [10].

Ultimately we are alternating the phase-encoding gradient G𝜑 and frequency-
encoding gradient Gf, scanning the slice of the object line by line from one side to
the other. In fMRI imaging this technique is referred to as gradient echo (gradient
echo (GRE)) imaging [7] [10].

2.8 K-space and Resolution of The Image
The signal we obtain is not of the final image itself, but it is a representation of
the image in a spatial frequency domain, known as K-space. Each line, after being
scanned, is added to the K-space; this is known as K-space filling. From the K-space
we can then easily convert the spatial spectrum to the final image using a Fourier
transform [7] [10].

In MRI, the resolution is defined by the size of the imaging voxels. Since voxels
are cubes, the resolution can vary in each dimension. The resolution depends on the
K-space size, field-of-view (FOV) and slice thickness. K-space size is the number of
frequency-encoding steps times phase-encoding steps, therefore, the more steps, the
higher the resolution. Field-of-view is the size of the object we are sampling; the
bigger it is, the smaller the resolution will the resulting image. Lastly, slice thickness
depends greatly on the strength of the Gsl and on the frequency bandwidth of the
RF pulse we apply.

Usually the slice thickness is the weakest factor, providing resolutions such as
1x1x3 mm. Since in fMRI imaging we want to detect time courses of brain activity,
high temporal resolution is favorable. Given that high sampling rate, and therefore,
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high resolution is time consuming, fMRI uses images of a smaller resolution, as
opposed to anatomical MRI images [7] [10].

2.9 Echoplanar Imaging
Echoplanar imaging (EPI) is an upgrade of GRE imaging, making it the fastest
acquisition method available. Essentially, the concept lies in the rapid changing
of the phase-encoding and the frequency-encoding gradients, resulting with filled
K-space within a few tens of milliseconds, as shown in figure 2.5 [7] [10].

Fig. 2.5: Illustration of an EPI pulse sequence (A) and its zig-zag trajectory in the
K-space (B) [7]
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3 BOLD FMRI SIGNAL
Blood oxygenation level dependent (BOLD) fMRI is a method that indirectly, by
the means of different magnetic properties and concentrations of oxyhemoglobin and
deoxyhemoglobin, measures metabolic activity in the brain [7] [10].

3.1 Consequences of Neural Activity
The processing of information in a neuron or resending the information further
along consumes a considerable amount of energy, which then needs to be returned.
ATP (adenosintriphosphate) molecules, that serve as small sources of energy, can
be formed after providing glucose and oxygen from the blood to the neuron. While
glucose molecules are freely transported by blood, oxygen molecules are bound to
hemoglobin. After the neuron is excited, it increases its incoming blood flow which
carries these sources for creating ATPs. Glucose and the oxygenated hemoglobin
(oxyhemoglobin) then enter the cell and the hemoglobin binds any waste carbon
dioxide. This oxygen-free hemoglobin is referred to as deoxyhemoglobin [7] [10].

3.2 Magnetic Susceptibility and the Origin of the
BOLD Signal

In our bodies there are a lot of molecules that have either diamagnetic or para-
magnetic properties that can locally change the field strength. This can lead to
geometric disturbances of the image and local signal losses. The extent to which ei-
ther diamagnetism or paramagnetism of a molecule is disturbing the signal is known
as magnetic susceptibility.

The detection of local changes in the concentration of oxyhemoglobin and deoxy-
hemoglobin in the BOLD fMRI is based on this phenomenon. While oxyhemoglobin
is only sligthly diamagnetic, deoxyhemoglobin is strongly paramagnetic, causing
dramatic perturbations in the local homogeneity of the magnetic field. As a result,
this leads to dephasing of the spins (rapid T2* decay) and, therefore, loss of the
signal [7] [10].

3.3 Hemodynamic Response Function
Contrary to what one might assume, the neuronal activity is not detected by the loss
of the MR signal, but instead by the resultant increase in the signal. There are many
theories accounting for this signal increase; the most widely accepted theory states
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that the oxyhemoglobin displaces the deoxyhemoglobin that had been suppresing
the signal intensity.

As we can see in figure 3.1A, the bloodflow changes very slowly, causing a delayed
increase in the BOLD signal of about 2 - 3 seconds after onset of the neuronal
activity. Furthermore, even after the activity of the neuron ceases, the oxygenated
blood keeps flowing to the region with active neurons. This superfluous perfusion
of the oxygenated blood accounts for a prolonged signal response of about 15 -
25 seconds. The resulting change in the signal strength between the active and
nonactive voxels is very small, only a few percent, making the detection of the brain
activity very difficult to distinguish (figure 3.1B) [7] [10].

Fig. 3.1: (A) Changes in the concentrations of oxyhemoglobin and deoxyhemoglobin
after neuronal activity and their impact on the BOLD signal (B) [7]

3.4 Experiment Setups
In BOLD fMRI experiments we measure either the resting state activity of the brain
or the response of the brain to presented stimuli. However, as stated in the previous
section, brain activity induces only very small changes of about a few percentage
points in the recorded signal and detection is thus very difficult. To overcome this
problem stimuli are presented repeatedly and their signal responses are aggregated
to enhance the difference between the active and non-active regions of the brain [7].

For the stimuli-induced experiments there are 3 main types of design: block,
event-related and mixed.
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In the block design, the stimulus is presented in a block lasting about 20 seconds,
during which the HRF (hemodynamic response function) reaches its peak in the
signal, and is followed with a null-block that lasts approximately the same amount
of time. Block designs offer good detection power, but poor estimation power (i.e.
weak ability to describe the time course of the HRF response).

In the event-related design the two sets of stimuli are usually presented in a
random fashion for a very short time. Contrary to the block design, the estimation
power is very good. The detection power depends on the number of stimuli we
present and aggregate [7].

Fig. 3.2: Schemes of a block design (A) and an event-related (B) design.
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4 NOISE AND ARTIFACTS
The signal we detect is comprised of not only the utilizable signal, but also of addi-
tional noise and artifacts that corrupt the quality of the signal and of the resulting
image. In this chapter a few of the most abundant sources of such signal distortion
are listed.

4.1 Chemical Shift Artifact
Chemical shift is caused by the different magnetic susceptibility of different tissues.
Magnetic susceptibility changes the precessing frequency of nuclei and, therefore,
they appear as if they were shifted in space (recall equation 2.2). In reality this
means we see shadows and brightness around the edges of tissues having distinctly
different magnetic susceptibility. In brain images the chemical shift is most signif-
icant at voxels near transitions between cerebrospinal fluid and white/gray matter
[7] [10].

Fig. 4.1: Chemical shift artifact: note the dark edges marked by the yellow arrows.

4.2 Thermal Noise
All functional and anatomical MRI data are to some extend affected by thermal
noise, which is caused by the heat-related motion of electrons. The acquired signal
travels in the form of an electric current through a series of conductors, amplifiers,
resistors and other components of the MRI scanner. In each of the components,
free electrons collide with atoms, thus exchanging energy. This collision leads to
the distortion of the electric current and the signal. The higher the temperature
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of the system is, the more frequent the collisions are, resulting in higher noise and
distortion of the data. For this reason, every MRI scanner is constantly cooled down
by liquid nitrogen to minimize the motion of the electrons [7] [10].

4.3 System Noise
System noise in the MRI scanner represents discrepancies in the functioning of the
hardware. Such discrepancies can be found in the inhomogeneity of the gradient
magnetic fields and the static magnetic field; the latter having a particularly negative
effect, known as scanner drift. Even though these discrepancies, or changes, in the
static magnetic field might be very small (tenths of a part per million per day), the
resulting impact on the resonant frequency is much greater, changing it on the scale
of a few hertz. This can lead to changes in the signal intensity over time. Similarly,
discrepancies in the gradient magnetic fields can lead to geometrical distortions in
the image and changes in the slice selections over time [7] [10].

4.4 Physiological Noise
Periodical cardiac pulsation and breathing also produce changes in the signal and
small motion artifacts. Respiration causes variability in the fMRI data: as the
lungs expand and the oxygenated blood rushes into the brain it causes a wave of
magnetic susceptibility and alternation in the homogeneity of the magnetic field.
Furthermore, both cardiac pulsation and respiration induce small movements of the
subject.

One might suppose that filtering out cardiac pulsation and breathing may be
easy due to their periodicity. This might be true for the breathing effects, as the
sampling rate of TRs is typically, with modern MR scanners, under 2500 ms. On
the other hand, however, the subject might also breath very fast, which might result
in an undersampling of the breathing effects. Moreover, for effective sampling of
cardiac pulsation the TRs would have to be even faster, shorter than 500 ms. Since
in practice such rapid sampling is not achieved, the data are corrupted by the aliasing
of the cardiac pulsation and breathing [7].

4.5 Motion Artifacts
The motion of the subject represents the most frequent and drastic distortions of
the data in two ways: it changes the locations of the voxels and alters the signal
properties. In addition to wholebrain analysis, voxel-by-voxel statistical analysis
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Fig. 4.2: Power spectrum of a voxel during an experiment. Cardiac pulsation and
breathing were sampled effectively due to the fast TR of 250 ms [7]

is often employed. Therefore the voxels have to correspond to the same locations
during the entire experiment. Only in this way can we analyze the time courses of
certain sets of neurons within a region of the brain. If the voxels do not correspond
to the same location over time, in an extreme case we might find ourselves running
statistical tests on voxels that are, for instance, alternating their locations between
white matter and cerebrospinal fluid. Such voxel shifts can as a consequence, lead
to false-positive and false-negative errors in statistical tests - voxels suddenly change
their intensity as if they were in the brain’s active region.

The higher the resolution is, the smaller the voxels are and, hence, the more
motion-susceptible the image is. In the best cases, small head motions can be
corrected during preprocessing. However, larger movements can make the correction
impossible, leading to the removal of a whole series of scans from the dataset.

As the subject moves, it not only changes the locations of the voxels in respect to
the brain region, but it also interferes with the magnetic gradients and slice selection
process. When a certain slice is excited and the subject moves his head, it might
happen that the next slice to be selected will include a section of the previous slice
and excite it again. However, since this section did not reach full T1 relaxation, the
signal from this section will be smaller and T1 weighted, accentuating contrast for
different tissues. This effect is referred to as spin-history artifact [7] [10] [15].

The next important implication of motion artifact is the rise of spurious vari-
ance that tends to be more similar in nearby voxels. This would not be a problem
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in task-evoked experiments, however, a considerable amount of fMRI experiments
focus on resting state fMRI, which uses corelation analyzes for the functional con-
nectivity mapping of the brain. In the past few years many research groups have
found out that the young and the elderly exhibit underconnectivity as opposed to
young adults. For instance, children and the elderly showed weak signal correlations
between distant regions of the brain and stronger ones between the nearby regions.
However, retrospectively, a lot of such observations were found to be invalid due to
motion artifact, which increases local correlations, and the fact that children and
the elderly are usually more susceptible to motion [17] [20].
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5 FMRI DATA PREPROCESSING
Before any statistical tests are performed, the raw data first has to be preprocessed.
Preprocessing ameliorates the data quality by diminishing artificial signal variability
and correcting it for motion.

Since preventing motion from occurring is much easier than subsequent analytical
corrections, the subject is instructed to stay still before the experiment begins.
However, this might be very difficult due to the length of the experiment, which
can stretch up to 20 minutes or longer. For this reason, the researches provide the
subjects with head restraints, such as masks, vacuum packs or bite bars, which are
the most effective, but least favorite and bearable. However, even when using such
restraints some motion is still present.

Usually the first preprocessing step represents realignment of the scans affected
by motion. Next is the coregistration of the anatomical and functional images to
obtain images which can better trace the anatomical sources of the brain activity.
The another step that usually follows is time correction, which tries to interpolate
the time courses of the BOLD responses within each of the slices, which were ac-
quired with certain time lags, and adjust them as if they were acquired at the exact
same moment. In case there is a desire to make comparisons between subjects, it
is necessary to first transform the images of each subject to the same template, so
that each brain more or less has the same anatomy. Spatial filtering and intensity
normalization are other steps that are almost always performed. Lastly, if the sam-
pling frequency is high enough, respiratory and cardiac pulsation artifacts can be
removed by temporal filtering the time courses of the BOLD signal [7] [12].

5.1 Head Motion Correction
To align (or coregister) the scans in a way that each voxel corresponds to the same
brain region over time, rigid body transformation is used. Rigid body transformation
is a spatial transformation, which supposes that the object (e.g. scans of the brain)
to be oriented does not change its shape over time. This condition is attained by
correcting the motion for one subject. The transformation then reorients the object
in three translations (i.e. moving the scan in x-,y-, and z-axes) and three rotations
(i.e. rotating the scan around x, y, and z axes; also known as pitch, roll and yaw).
The scans are coregistered with a reference image, which is usually the mean image
of the scans [7] [12].

The computer first calculates many sets of possible coregistrations, from which
only the right one has to be chosen. To do this the computer calculates a math-
ematical measure known as cost function for each coregistration. Ideally, the cost
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function would be zero if the image had the same voxel intensity and was aligned
perfectly. Therefore the right scan has the minimum cost function value [7].

At the end of the coregistration process a matrix with 3+3 columns of trans-
lational and rotational parameters by N rows, where N is the number of scans, is
obtained. The time courses of the translational and rotational parameters are known
as motion regressors [7] [12].

To describe coregistration mathematically the above-mentioned process can be
rephrased as following: assuming the image to be oriented Ω(x) and the reference
image 𝜏(x) do not change their shape over time, rigid body, six-parameter affine
spatial transformation q(x,𝛾) can be used. This transformation is a vector function
of position in space x, defined by the six parameters of a rigid body transformation
𝜏 = [𝜏1....𝜏6], where [5] [14]

𝛽 · 𝜏(𝑥) ≈ Ω(𝑞(𝑥, 𝛾)) (5.1)

and 𝛽 is a scaling constant. Assuming the images are smooth (or they can be
filtered with a lowpass filter), function q(x,𝛾) can be further expanded in terms of
six vector functions 𝛾𝑘𝜕𝑞(𝑥, 𝛾)/𝜕𝛾𝑘 of x, approximating the six parameters of a rigid
body transformation [5]

𝑞(𝑥, 𝛾) ≈ 𝑥 +
∑︁

𝑘

𝛾𝑘𝜕𝑞(𝑥, 𝛾)
𝜕𝛾𝑘

(5.2)

After substituting this derivation to equation 5.1 [5]

𝛽 · 𝜏(𝑥) ≈ Ω
(︂

𝑥 +
∑︁

𝑘

𝛾𝑘𝜕𝑞(𝑥, 𝛾)
𝜕𝛾𝑘

)︂
(5.3)

If Ω(x) is smooth the effects of the transformations 𝛾𝑘𝜕𝑞(𝑥, 𝛾)/𝜕𝛾𝑘 will not in-
teract significantly. Therefore, the right side of equation 5.3 can be expanded using
Taylor’s theorem, neglecting high order terms as [5]

𝛽 · 𝜏(𝑥) ≈ Ω(𝑥) +
∑︁

𝑘

𝛾𝑘∇𝑥Ω(𝑥) · 𝜕𝑞(𝑥, 𝛾)
𝜕𝛾𝑘

≈ Ω(𝑥) +
∑︁

𝑘

𝛾𝑘𝜕Ω(𝑞(𝑥, 𝛾))
𝜕𝛾𝑘

(5.4)

This equation states that the difference between a reference and an object image
can be expressed as the sum of the changes in the object image for each parameter
times the amount of that parameter. The equation can be further expressed in
matrix notation as [15]

Ω ≈ 𝐺 · [𝑏𝛾]𝑇 , where 𝐺 ≈ [𝜏 − 𝜕𝛾/𝜕𝛾] (5.5)
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𝛾 and Ω are column vectors with one element per voxel and b is an estimate
of 𝛽. In practice it is easy to calculate the six columns of 𝜏 − 𝜕𝛾/𝜕𝛾 by applying
small translations and rotations to the object image Ω and measuring the changes
in voxel values. The vector 𝛾 of the six parameters corresponds to the estimated
translations and rotations; it is estimated in a least square sense by [15]

[𝑏𝛾]𝑇 = 𝐺 · (𝐺𝑇 · 𝐺)−1 · 𝐺𝑇 · Ω (5.6)

After these six transformation parameters are obtained, the image is re-sampled
(spatially interpolated) onto the same grid of voxels as the reference image Ω.

The tranformation 𝑇𝑖 is an iterative process of a series of scans, where i de-
notes one individual volume Ω(x) and 𝑇𝑖 coregisters this volume to the reference
frame 𝜏(x). Each transform can then be expressed as a combination of rotation and
translation parameters as following [15]

𝑇𝑖 =
⎡⎣𝑅𝑖 𝑡𝑖

0 1

⎤⎦ (5.7)

Here 𝑅𝑖 is a 3 × 3 rotation matrix and 𝑡𝑖 is a 3 × 1 column vector of displacements.
𝑅𝑖 is divided into three elementary rotations: pitch, yawn and roll. Therefore,
𝑅𝑖 = 𝑅𝑖𝛼 · 𝑅𝑖𝛽 · 𝑅𝑖𝛾, where [15]

𝑅𝑖𝛼 =

⎡⎢⎢⎣
1 1 0
0 cos(𝛼𝑖) − sin(𝛼𝑖)
0 sin(𝛼𝑖) cos(𝛼𝑖)

⎤⎥⎥⎦ 𝑅𝑖𝛽 =

⎡⎢⎢⎣
cos(𝛽𝑖) 0 sin(𝛽𝑖)

0 1 0
− sin(𝛽𝑖) 0 cos(𝛽𝑖)

⎤⎥⎥⎦

𝑅𝑖𝛾 =

⎡⎢⎢⎣
cos(𝛾𝑖) − sin(𝛾𝑖) 0
sin(𝛾𝑖) cos(𝛾𝑖) 0

0 0 1

⎤⎥⎥⎦
(5.8)

Note that there are more types of interpolation varying in the computational
complexity and the quality of interpolating. The least computationally complex
interpolation is linear interpolation, which uses information of voxel values for only
the 4 immediate neighbours. However, this method is also relatively inaccurate
and achieves poor results. In contrast, other methods such as sinc interpolation
achieve superb results, however, they are ruled out (in our case) because of their
high computational complexity. The most frequently used method for re-sampling
the image is B-spline interpolation, which represents a compromise between the
quality of interpolation and computational complexity [7].
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5.2 Slice Acquisition Time Correction
FMRI analysis assumes that the scans were obtained at one exact moment. However,
in reality the scanning process begins, for instance, at the top slice of the brain and
iteratively descends to the bottom part of the brain. This causes time lags between
the slices, the most profound being between the first and the last slices. The delay
depends on the speed of the image acquisition, with EPI TR being about 2 seconds
long. As a result, reflecting the HRF, this delay may cause dramatic differences
between recorded signals of the individual scans [7] [12].

To correct these time discrepancies, the time courses of the HRFs are interpolated
and adjusted to have the same time offsets. Though this might seem like a perfect
solution, the longer the TRs are, the greater the interpolations are and, hence, the
greater the chance of errors in the interpolations [7] [12].

Fig. 5.1: The scans of the active region in the brain (A) are acquired with a standard
interleaved sequence (B). Because these slices are acquired at different times, the
hemodynamic response within the slices will have very different time courses. The
actual recorded signal from the different slices is shown in (C). When plotted for
each TR, there are different time courses for the slices acquired early in the TR and
the slices acquired later (D). [7]

31



5.3 Spatial Normalization
Since human brains vary remarkably in their anatomy, they have to first be trans-
formed into a uniform template (or space) before any statistical tests are executed.
This process is known as spatial normalization. In addition to rigid-body transfor-
mation, normalization also allows for possible stretching, squeezing and warping of
the images of each brain, transforming them into approximately the same anatom-
ical structure. Nowadays, the most frequently used reference template is Montreal
Neurological Institute (MNI) space, which was derived from an average of MRI
anatomical images from hundreds of individuals [7] [12].

5.4 Spatial Smoothing
Spatial Filtering is used to improve the signal to noise ratio. In addition, it also
attenuates the interindividual variability in the brain anatomy and eliminates in-
terpolation errors from the acquisition time correction process and small motion
artifacts. On the other hand, it lowers the effective spatial resolution and, in the
worst case, it can cause false negative errors in the ensuing statistical analyzes.

The smoothing is usually done with a Gaussian filter, whose value of full width
at half maximum (FWHM) can be from 6 to 10 mm [7] [12].

5.5 Temporal Filtering
Filtering the time courses of the BOLD signals for each individual voxel can sub-
stantially improve the SNR. A highpass filter is usually used to remove drifting of
the signal. Combining it with a lowpass filter, a respiration artifact (12 breaths per
minute ⇒ f = 0.2 Hz) can be removed: TR of EPI is about 2 seconds ⇒ Fsampling

= 0.5 Hz. Therefore the Nyquist–Shannon sampling criterion is met. However, it is
not possible to eliminate the cardiac pulsation artifact (60 beats per minute ⇒ f =
1 Hz) [7] [12].
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6 REGRESSION ANALYSIS OF BOLD FMRI
DATA

After the BOLD fMRI data are preprocessed, they are statistically tested to provide
the answer as to whether our tested hypothesis is valid or not. One of the most
frequently used statistical methods for such tests is multiple regression analysis. The
core idea of multiple regression analysis is that the response of the brain activity
to presented stimuli during an experiment is predictable. The predicted model
is then composed of several regressors, which are essentially the predictions (i.e.
independent variables) we made about the time courses of the brain activation.
Ideally, the sum of all the regressors should fully explain the real brain activity we
measured in the experiment [7].

𝑦 = 𝛽0 + 𝛽1 * 𝑥1 + 𝛽2 * 𝑥2 + ... + 𝛽𝑛 * 𝑥𝑛 + 𝜀 (6.1)

The regression models as shown in equation 6.1 have only one known quantity:
the experimental data (y). The regressors (xi) might or might not contribute to the
data, depending on the parameter weights (𝛽i), which reflect the scale of contribu-
tions of individual regressors. 𝛽0 is a constant, which corresponds to the baseline
signal intensity. The last parameter, (𝜀) is residual error; a part of data that could
not be explained by any regressor. An example of the matrix of regressors, known
as design matrix, is shown below in figure 6.1 [7].

Fig. 6.1: A design matrix for General Linear Model (see below). Three regressors
are constructed for mixed block/event-related design. The first column represents a
blocked effect, while the other two represents the event-related effects to two different
presented stimuli. Note that the white bar on the right represents the constant value
in the data, removing the mean signal intensity. [7]
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6.1 General Linear Model
The most frequently used class of statistical tests of the multiple regression analysis
is the general linear model (GLM). This method is employed either in 1st level
analysis, which evaluates the data of a single subject, or in 2nd level analysis, which
evaluates the data across a tested group of subjects. In order to perform the 2nd level
analysis images need to be, in addition to preprocessing, also spatially normalized
to a common space, such as MNI.

In practice, the equation 6.1 above is replaced with a set of matrices as shown
in figure 6.2. The fMRI data are represented as a matrix consisting of n time points
(rows) by V voxels (columns). Note that the spatial structure of the fMRI data is
not considered, the statistics focus only on the time courses of voxels. The design
matrix is comprised of M regressors (columns) by n time points (rows). This design
matrix is multiplied by a parameter matrix, which contains M parameter weights
(columns) by V voxels (rows). Finally, the error matrix, which contains V voxels
(columns) by n time points (rows), accounts for the unexplained error of each voxel
[7].

Fig. 6.2: General linear model tries to explain the original data (Y ) by calculating
parameter matrix 𝛽, which would provide the best fit for the design matrix (G) by
minimizing the unexplained error 𝜀 [7]

From a statistical point of view all the efforts of sustaining the homogeneity
of the magnetic field, avoiding all sorts of artifacts and preprocessing the data are
ways of how to minimize the residual errors 𝜀 in the error matrix. In addition, the
design of the experiment plays an equally important role as to a simplification the
construction of regressors .

As mentioned earlier, each voxel value can be represented as

𝑦 =
𝑘∑︁

𝑖=1
𝑥𝑖 + 𝛽𝑖 + 𝜀𝑖 (6.2)

34



where y is the signal intensity and k is the number of regressors in the design
matrix. Subsequently, based on the time courses of the signal intensity y and corre-
lated regressors, 𝛽 values of the parameter matrix can be calculated in a least square
sense by [14]

𝛽 = (𝑥𝑇 𝑥)−1𝑥𝑇 𝑦 (6.3)

A t-statistic, from which statistical parametric maps of brain activity are con-
structed, can then be performed by dividing the contrast of the estimated parameters
𝑐𝑇 𝛽 by the standard error of this estimate. The standard error is based on the vari-
ance of residuals (variance unexplained by the model) and the specific portion of
the covarinace matrix. [14]

𝑇 = 𝑐𝑇 𝛽√
𝛿2𝑐𝑇 𝑥−1𝑣𝑥−𝑇 𝑐

(6.4)

6.2 Regressors
Regressors can be divided into regressors of interest (see 6.1), which predict the
researcher’s expectations about the brain activity, and nuissance regressors, which,
on the other hand, account for certain errors in the data. Nuissance regressors are
mostly used for motion correction, explaining data distortions for translation and
rotation motions. Moreover, if the motion is extreme and drastically corrupts the
data of certain scans, the scans are to be excluded from the statistics by constructing
single timepoint nuisance regressors (also known as scan nulling or spike regressors).
These regressors omit such motion-affected scans from analyzes by assigning them
non-zero values, which accounts for all the variability of that volume. The downside
of constructing a wide range of regressors, and thus modeling a great portion of
the signal, is the reduction of the degrees of freedom. As a result, the statistical
reliability of the tested hypotheses is reduced. Therefore, the number of nuissance
regressors used is limited [7] [9] [18] .

Assuming the HRF is treated as a filter, task regressors can be constructed as
a convolution of Delta functions with the HRF. This approach is identical to the
Finite Impulse Response (FIR) model used in signal processing. An example of such
a model is shown in figure 6.3 [19].
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Fig. 6.3: Modeling a task regressor using an approach identical to modeling a FIR
filter: convoluting HRF with Impulse Stimulus Train [19]
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7 DETECTION OF MOTION-DISTURBED DATA
Subject movement is often measured with summary statistics, yielding data quality
indices. Such statistics can be based on the motion parameters described above or
on the change of intensity between the time courses across voxels (DVARS). An-
other possibility is tracking the movement of a subject with a camera. However, the
equipment has to be MR-compatible, and, therefore, this method is very expensive
and rarely employed. In practice, the most frequently used method is the combi-
nation of two indices, FD and DVARS. These can be used to flag scans of suspect
quality to be ignored when performing calculations upon the data and thus creating
temporal masks of the data. An important point to consider is the detection limits
of these indices, as different datasets can be best fitted using different thresholds.
This results in the disunity in the quantification of such thresholds across studies.

As the motion artifacts cannot be fully regressed out in GLM due to the spin-
history artifact, summary statistics is often used to describe the extent of subject
motion and to decide whether to discard a scan showing excessive motion or not.
Furthermore, if a subject exhibits constant movement throughout scanning, it is
worth considering whether it would not be better to discard the entire data of that
subject [15] [16] [7] [9].

7.1 Motion Regressors
The six motion parameters obtained from rigid body transformation can be used
for evaluating the extent of subject motion. In addition to those six parameters,
other derivative parameters can be calculated. For instance, the difference between
values of translational (𝑑𝑥𝑖) and rotational (Θ𝑟𝑖) parameters of successive voxels is
calculated as [15]

Δ𝑑𝑥𝑖 = 𝑑𝑥(𝑖−1) − 𝑑𝑥(𝑖), ΔΘ𝑟𝑖 = Θ𝑟(𝑖−1) − Θ𝑟(𝑖) (7.1)

or sometimes this contrast of motion parameters is further enhanced by calculating
the square of the difference [2]

Δ𝑑2
𝑥𝑖 = (𝑑𝑥(𝑖−1) − 𝑑𝑥(𝑖))2, ΔΘ2

𝑟𝑖 = (Θ𝑟(𝑖−1) − Θ𝑟(𝑖))2 (7.2)

Those motion regressors, 36 in total, can be included into the GLM as nuissance
regressors. However, as mentioned in the previous chapter, this can lead to the
decrease of the statistical reliability.
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Fig. 7.1: Motion parameters obtained from rigid body transformation

7.2 FD
For summarizing the extent of a movement, the motion regressors per se are a bit of
an awkward measure. Instead, instantaneous head motion is expressed by a single
scalar quantity, known as framewise displacement (FD). Although there are more
approaches as to calculate FD, the most frequently used formula, derived by PhD.
J. D. Power, is as follows [15]:

𝐹𝐷𝑖 = |Δ𝑑𝑖𝑥| + |Δ𝑑𝑖𝑦| + |Δ𝑑𝑖𝑧| + |Δ𝑑𝛼𝑖| + |Δ𝑑𝛽𝑖𝑧| + |Δ𝑑𝛾𝑖| (7.3)

where Δ𝑑𝑖𝑥 = 𝑑(𝑖−1)𝑥 − 𝑑𝑖𝑥 and similarly for the rest of rigid body parameters
[𝑑𝑖𝑥 𝑑𝑖𝑦 𝑑𝑖𝑧 𝑑𝛼𝑖 𝑑𝛽𝑖𝑧 𝑑𝛾𝑖]. The rotational parameters were converted from
degrees to millimeters by calculating displacement on the surface of a sphere with a
radius of 50 mm, which is approximately the mean distance from the cerebral cortex
(where the activity is measured) to the center of the head (i.e. the axis of rotation).
The formula for this conversion is [15]

𝑑𝛼𝑖 = (50 * 𝜋

180)𝛼𝑖 (7.4)
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7.3 DVARS
DVARS stands for derivative (D) of timecourses, root mean squared variance over
voxels (VARS). In other words, DVARS measures the change of a BOLD signal
intensity from one volume to the next by calculating backward differences within
a spatial mask at every timepoint. Although this change of intensity between two
timepoints of a voxel is not a direct measure of motion, DVARS is a very accurate
motion indicator; the formula for DVARS whole-brain mask is [15]:

𝐷𝑉 𝐴𝑅𝑆(Δ𝐼)𝑖 =
√︁

⟨[Δ𝐼𝑖(−→𝑥 )]2⟩ =
√︁

⟨[𝐼𝑖(−→𝑥 ) − 𝐼𝑖−1(−→𝑥 )]2⟩, (7.5)

where I is the intensity between two timepoints (or scans) i.

Fig. 7.2: Comparison of motion parameters, FD and DVARS
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8 REMOVAL AND SUBSTITUTION OF MOTION-
DISTURBED DATA

As previous studies have shown, motion artifact is not easily removable due to its
nonspecific spectrum, affecting the signal on every frequency component (see figure
8.1). On the other hand, the effect can be attenuated by applying a narrow band
pass filter (0.01 – 0.1 Hz instead of 0.008 – 0.1 Hz) and by including a high number
of nuisance regressors; the greatest variance of the data was shown to be explained
by the 36-parameter confound regression. Further analyses also showed that the
parameters accounted only for the artifact, not for the actual HRF signals [18].

However, such prepocessing improvements only attenuates the motion artifact
and does not remove it completely. To do so, the affected scans have to be omitted
from further statistical analysis. In this thesis I will focus on the motion scrubbing
method, introduced by Power et al. (2012), and spike regression [15] [18].

Note that there are several important approaches for motion artifact removal
that I will not cover in this thesis, namely Independent Components Analysis (ICA)
and Component Based Noise Correction Method (CompCor) [18].

8.1 Motion Scrubbing
As mentioned above, this method was introduced by Power et al. in 2012. The
core idea of motion scrubbing lies in deleting scans displaying excessive motion by
data quality indices (FD, DVARS). It is also advisable to remove one prior and two
past scans, since the motion artifact is associated with a variety of transient signal
changes. In his study, Power further argues that such removal has not been found to
have any deleterious effects upon functional connectivity and on task fMRI. However,
an alternative way that his team later adopted was to replace the affected scans with
interpolations based on adjacent ‘good’ timepoints. As a previous study had argued
(Carp, 2013), frequency filtering (basic preprocessing step) might spread the artifact
into such adjacent ‘good’ timepoints and as a consequence motion scrubbing is done
prior to the frequency filtering. Note that the motion scrubbing process can be
done, along with re-calculating data quality checks, iteratively, possibly removing
even more scans [16] [15] [3].

An especially intriguing question for which there is no resolute answer is the
extent of data removal that is still acceptable for further analysis. The threshold
adopted by most studies is 5 minutes of a ’good’, uncensored signal. If a subject
exhibits movements throughout scanning, his or her data are usually completely
discarded [16] [15].
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Fig. 8.1: A: analysis of the magnitude spectra of the matched low and high motion
groups indicate that signal change introduced by in-scanner motion is relatively
nonspecific in terms of its spectral characteristics. B: improved outcomes of signal
preprocessing when applying a high number of regressors [18]

8.2 Spike Regression
Another way to remove (or neglect) motion-affected volumes is to construct so called
spike regressors. These regressors, also known as nulling regressors, have null values
throughout the time series except to the timepoints that are motion-affected; there
the regressors have a value of one. As a result, they account for the variability of
that motion-affected scan and thus discard it from further analysis. There is di-
vided opinion among scholars as to the number of spike regressors that should be
used; some studies claim that only one spike regressor should be used to discard the
motion-affected volume; others argue that one should discard also one preceeding
and the two following scans, as is done in the motion scrubbing method. However,
overusing spike regressors could inevitably lead to reducing degrees of freedom and
as a result reduce the reliability of that analysis. On the other hand, the advantage
of spike regression to the motion scrubbing method lies in preserving temporal conti-
nuity and avoiding potential errors introduced by scan removal followed by temporal
interpolation [9].
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9 IMPLEMENTATION OF THE DETECTION
AND MOTION-REMOVAL METHODS

The script is programmed in the MATLAB R2016a environment and uses SPM12
toolbox, version 6906. It works with 4D data in NIfTI format. The frame of the
algorithm was was previously developed by my supervisor, Ing. Michal Mikl, Ph.D.
He was kind enough to provide it to me. The frame consists of several blocks that
preprocess given data. I implemented my extensions comprised of new lines and
functions.

9.1 Chosen Indicators of Movement
For the actual script we chose FD and DVARS as metrics of movement; FD for its
wide use in studies and DVARS as a complement that is also used very often. A
comparison of FD and DVARS motion indicators is shown in the figure 9.1.

Fig. 9.1: Each metric yields a bit different output. Although in this particular case
FD flagged more scans than DVARS, the distribution was random across the sessions
(see supplementary materials chapter B).
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As one can see, there is some overlap between the scans flagged by FD and
DVARS. However, mostly there is a mismatch in both the positions of the flagged
scans and their total number. Therefore, we decided to also use a fused combination
of FD with DVARS.

9.2 Motion Regressor Matrices
For Spike regression, we came up with two designs of regressor matrices. With the
first design regressing only the affected scan (0S-1S-0S), and with the second adding
one preceding with and following scans to the affected scan (1S-1S-2S). The second
design follows a study by Carp, 2013 [3].

Fig. 9.2: At the top you can see the 0S-1S-0S design and at the bottom the 1S-1S-2S
design. The affected scan here is scan number 2 (yellow). The 1S-1S-2S design also
includes one previous and two following adjacent scans (marked in gray).

9.3 Motion Scrubbing
Unlike Spike regression, Motion scrubbing physically deletes the affected scans and
replaces them with interpolation estimates. We decided to implement both linear
and B-spline interpolations. This process takes quite a lot of computation time as
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is shown in C.1.
Linear interpolation requires at least two good timepoints. The most difficult part of
the implementation is to cover all possible cases: from extrapolating affected scans
that are either right at the beginning or right at the end of the session to interpolating
separately affected scans and scans whose adjacent scans are also affected.

As to the implementation, B-spline interpolation is similar to linear interpolation.
It differs only in that it requires a minimum of four good timepoints.
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10 DATA ANALYSIS
Both structural and functional data were acquired with the 3T Siemens Prisma MR
scanner. The acquisition parameters of the functional data are shown in table 10.1.
Anatomical T1-weighted images were acquired using a 3D sequence (240 sagittal
slices, resolution 224 × 224, slice thickness = 1.0 mm, TR = 2300 ms, TE = 2.34
ms, FOV = 224 mm, flip angle = 8∘).

In this work we used datasets FCNI1, FCNI3 and FCNI5; each accquired with
different multi-band (MB) factors: MB factor = 1 (without MB acceleration), 4 and
8, respectively. All datasets comes from a block desing (recall 3.2) experiment with
visual checkerboard stimulation during active period (A) and black screen during
passive period (P) was used in all three runs. Each period lasted for 24 seconds and
the periods were alternating as follows: PAPAPAPAPAPAP.

Tab. 10.1: Acquisition Parameteres of BOLD Data

FCNI1 FCNI3 FCNI5
TR [s] 2.720 0.814 0.417
TE [s] 0.0300 0.0356 0.0356
Flip angle [°] 81 55 41
In-plane resolution 64x64 64x64 64x64
FOV [mm] 194x194 194x194 194x194
Number of axial slices 40 40 40
Thickness of axial slices [mm] 3 3 3
Number of scans 110 380 720
Multiband factor 1 4 8

10.1 Preprocessing of the Data
The following preprocessing was applied to each subject’s time series of fMRI scans:
a 6 parameter rigid-body realignment and unwarp of functional scans in order to
correct for head movement; normalization to fit into a standard anatomical space
(MNI), according to the anatomical image; and spatial smoothing using a Gaussian
filter with a FWHM of 6 mm. The voxel size generated from these acquisition
parameters was oversampled to 3 × 3 × 3 mm.

The overall design of the script is illustrated in a flowchart in figure 10.1.
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Fig. 10.1: First the raw data enters the preprocessing block from there the 6 motion
parameters are obtained that are the basis for the upcoming FD computation. After
the data finishes preprocessing, the DVARS indicator is computed, and the data
enters interpolation computations, which follows FD, or a combination of FD with
DVARS. The desired statistical models are then created and enter analysis.

10.2 Overview of Motion Prevalence in the Data
Motion prevalence in the data is summarized in table 10.2, along with an example
of translational and rotational motion characteristics and derived FD and DVARS
timecourses for subject 186A, session FCNI3, in figure 10.2.
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Tab. 10.2: Overview of Motion Prevalence in The Data

Subject Session FD [%] DVARS [%]

186A
FCNI1 - -
FCNI3 - ∼0
FCNI5 - -

190A
FCNI1 44 44
FCNI3 20 7
FCNI5 3 1

211A
FCNI1 2 10
FCNI3 2 3
FCNI5 2 1

219 A
FCNI1 1 3
FCNI3 7 3
FCNI5 5 1

Fig. 10.2: Example of motion prevalence in 186A FCNI1
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10.3 Overview of Analyzed Models
For each dataset presented in table 10.2, we constructed 9 analysis models, summa-
rized in table 10.3. The first model having no motion-reducing features whatsoever,
the second having the same parametres (i.e. 6 motion regressors) that are widely
used in concurrent studies and the following models representing various combina-
tions of the motion-reducing methods proposed formerly in this thesis.

Tab. 10.3: Nine Created Models for Subsequent Analyzes

Model Motion Reg. Spike Reg. Motion Scrubbing Motion metric
Nono - - - -
6mr 6 - - -
6FdSPIKE 6 0S-1S-0S - FD
6Fd3SPIKE 6 1S-1S-2S - FD
6FDvrSPIKE 6 0S-1S-0S - FD+DVARS
6LinFd 6 - linear FD
6LinFDvr 6 - spline FD
6SplFd 6 - linear FD+DVARS
6SplFDvr 6 - spline FD+DVARS

Table 10.4 illustrates the extent of motion in active periods for every chosen
metric in this thesis.

Tab. 10.4: Motion Prevalence in Active Periods

Session Metric 186A [%] 190A [%] 211A [%] 219A [%]

FCNI1
FD 0 34.0 1.9 0.1
FD3 0 77.4 5.7 3.8
FDvars 0 56.6 7.5 5.7

FCNI3
FD 0 21.2 2.8 3.4
FD3 0 55.3 8.4 9.0
FDvars 0 24.0 3.9 3.4

FCNI5
FD 0 1.7 1.4 0.6
FD3 0 5.8 5.2 1.4
FDvars 0 1.7 2 0.6
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11 RESULTS
Figure 11.1 presents the mean T-statistics for session FCNI1 for all subjects. As
one might expect, for the model totally free of motion (186A), the statistics did not
change over the analyzed models; same as for 219A. There again, all the models
yielded worse results than the untreated data (NoNo).

More interesting results came with subject 190A, which exhibited quite drastic
motion prevalence (for some indicators almost 40 %, see 10.4). Model 6FD3Spike
clearly reached the highest mean T-statistics, followed by the conventional 6-motion-
parameters (6mr) method. Surprisingly, the lowest mean T-statistics were found in
both models that use spline interpolations, 6SplFd and 6SplFDVr. 211A displays
the same outcome, yet with smaller differences. This is quite logical, 211A had
much less motion, therefore, the differences between the models does not stand out
so much (again, check the motion prevalence in 10.4).

Fig. 11.1: Mean T-statistics for session FCNI1 across all subjects

The activation brain map of T-statistics for the conventional motion-treating
model 6mr is depicted in figure 11.2. One can see how the number and intensity
of expectantly active voxels in the occipital lobe (recall that the task was visual) is
diminishing with the level of motion: from strong activations in 186A to relatively
weak activations in 190A.
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Fig. 11.2: Activation brain map for the model 6mr

Figure 11.3 shows the residual mean squared error (Res MS). In other words,
the unexplained signal from GLM. The sheer negative effect of spline interpolations
in 190A is obvious upon a brief look. This is also quite logical, there are simply not
enough good adjacent timepoints that the interpolation could satisfyingly grasp.

Fig. 11.3: Residual MS in FCNI1
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The brain map of Res MS, depicted in 11.4, explores the effect even more.
Whereas in the motion-untreated model, the highest value of Res MS is about 140
and the map has almost uniform values; maps of 6SplFD and 6SplFDVr are full
of extremes, often going beyond the color scale. After a closer inspection of the
data it turned out that the maximal values are around 5500 and 1500, respectively.
Extremes like these consequently push up the overall average of Res MS to high
values. On the other hand, however, in certain parts of the brain, for instance in
some parts of the occipital lobe in model 6SplFD, Res MS was effectively reduced.

Fig. 11.4: Comparison of Res MS brain maps

Mean T-statistics and the residual mean squared error focus on the whole brain.
Yet our goal is to look more deeply into the voxels whose activity correlated with
the task, i.e. voxels with high T-statistics, the ’active’ voxels. For this reason we
constructed two new metrics: mean of 50 highest T-statistics (Mean T50) and the
corresponding Res MS of those voxels (Res MS50).
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Fig. 11.5: Mean T50 for FCNI1 (T-statistics for 50 strongest voxels)

The outcomes of Mean T50 are more or less the replications of the outcomes
of the regular mean T-statistics over the whole brain, with the difference that the
effects of the individual modules are more emphasized here. Interestingly, all the
motion-treating models had negative effects for the subject 219A. This could suggest
that the motion artifacts were not localized in the voxels of the highest T-statistics.

Fig. 11.6: Res MS50 for FCNI1
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The residual mean squared error of the 50-T-strongest voxels in figure 11.6 al-
lows one to change his or her perspective on the sheer negative effects of the spline
interpolations. This new outlook suggests the splines did quite a good job for those
highly active voxels: in terms of the residual mean squared error, both spline in-
terpolations yielded better results than the motion-untreating model 6mr. It seems
as if the splines could not satisfyingly interpolate the regular stochastic processes
of inactive voxels. The causes of such unstable behavior of spline interpolations are
elaborated on more fully in the Discussion section.
Again, one can see how well model 6Fd3SPIKE handled the reduction of motion by
the little unexplained signal it left.

6Fd3SPIKE performs very well, however, the vast number of regressors comes
with the cost of a decrease of the degree of freedom, which raises the analysis thresh-
old, shown in figure 11.7.

Fig. 11.7: T-statistics thresholds for FCNI1

The question is whether this high threshold would not eliminate all voxels. Upon
looking at figure 11.8, one can see there are still some remaining. However, the
impact of such drastic motion disturbance is embodied in the very few resulting
voxels. In fact, for model 6SplFd there are no voxels that would pass the threshold
at all.
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Fig. 11.8: Number of voxels that passed T-statistic thresholds

The activation brain map in figure 11.9 reveals that significant parts of the active
voxels of model 6Fd3SPIKE are localized outside of the occipital lobe, suggesting
that those activated voxels are actually falsely positive. According to this brain
map, models 6mr and 6FdSPIKE provided much better results than one might have
predicted from the previous charts.
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Fig. 11.9: Activation brain maps of all the models for 190A FCNI1
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Our finding that model 6Fd3SPIKE does not perform as well as we once thought
is only augmented after a closer inspection of the mean T-statistics for sessions
FCNI3 (figure 11.10) and FCNI5 (figure 11.11). Moreover, according to figure 11.11,
6Fd3SPIKE yields one of the poorest results for both subjects 190A and 219A. The
rest of the models seem to produce comparable outcomes with minor differences. In
FCNI5 there are no radical deviations in the results across the models due to the
small amount of motion that occurs in this session. The mean T50 charts, available
in the supplementary materials, of both sessions provide almost similar outcomes.

Interestingly, the highest variability is caused by the interindividual variations
of the subjects: note how much the T-statistics vary across subjects.

Fig. 11.10: Mean T-statistics for session FCNI3 across all subjects

The comparison of activation brain maps in figure D.3 reveals the discrepancy in
the outcomes of 6Fd3SPIKE between session FCNI1 and session FCNI3. While in
FCNI1 the model generated a variety of falsely positive voxels, in FCNI3 it produced
plenty of falsely negative voxels.
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Fig. 11.11: Mean T-statistics for session FCNI5 across all subjects

Fig. 11.12: Comparison of activation brain maps between session FCNI1 and FCNI3
for subject 190A
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12 DISCUSSION
Of the models using the spike regression method, the model 6Fd3SPIKE, which first
seemed like the ultimate model for reducing motion artifact, turned out to behave
very unstably. In one case the model produced a great many of falsely positive
results, in the other a great many of falsely negative results. It is hard to state
whether this behavior could be attributed to the nature of the model or to the fact
that either of the datasets is an outlier. We simply do not have enough data. The
model 6FdSpike, that did not convincingly prove its strength in any of the statistics
charts, however, seems to yield much better results than 6Fd3SPIKE when judged
from the activation brain map in figure D.3. According to this figure, 6FdSpike did
not produce any falsely positive nor falsely negative results. A similar model, 6FD-
vrSPIKE, that uses a fused combination of motion indicators of FD with DVARS
did not yield any improved outcomes compared to 6FdSpike.

Linear interpolations models, 6LinFD and 6LinFDvr, exhibited stable behavior
across all datasets; however, none of their results turned out to be better than the
conventional 6mr method. The same cannot be said about spline interpolation mod-
els. On the one hand, some of the results they produced were better than the results
of the 6mr model; however, they behaved very unstably and unpredictably in every
outcome of the analysis. It is conceivable that they could be used for data with
a small amount of motion. Nonetheless, when the motion prevalence is high, they
tend to produce unrealistic timecourses that are full of extreme values (see figure
11.3). This might be attributed to the great number of bad timepoints that are hard
to fit when there are only a few good timepoints, the more when there is a cluster
of bad timepoints. The interpolation then has to reach out for distant timepoints.
Another reason why spline interpolations yielded such poor results might be that
bad timepoints from active periods were interpolated, using good timepoints from
passive periods and vice versa. As a result, it produced even worse signal time-
courses than the original untreated data had.

From those results it is very difficult to suggest one ultimate method that would
be best for reducing motion artifact. The study would have to have much more data
to mitigate any interindividual variations of the subjects’ brain connectivity. Thus,
in conclusion, this thesis suggests to still use the conventional 6-motion-parameters
method and recommends to do a much more robust study with the same models
involved.
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13 CONCLUSION
This bachelor thesis deals with the reduction of movement artifacts in BOLD fMRI
data using rejection of motion-corrupted scans. In total nine different models de-
signed for elimination of such scans were implemented in the MATLAB environment
and evaluated on datasets provided by the Multimodal and Functional Imaging Lab-
oratory of CEITEC MU.

The thesis is divided into 11 sections. The first section places fMRI in respect to
other functional imaging techniques and briefly touches on the principles of PET,
EEG and MEG. The second section explains the underlying phenomena of (f)MRI
and image acquisition. The third section deals with generation of the BOLD fMRI
signal and its properties. The fourth section describes several common artifacts and
noises in the data. The fifth section outlines the preprocessing steps of BOLD fMRI
data. The sixth section explains how the General Linear Model works and what role
regressors play. The seventh section looks more deeply into the methods for locating
motion-affected scans, while the eighth section explains methods for removing such
scans. The ninth section introduces those methods more thoroughly and illustrates
their outputs. The tenth section specifies chosen data and statistical models and
illustrates the processing procedure in greater detail. The eleventh section presents
the results and compares statistical models with each other. The twelfth section
discusses the results and suggests suitable methods for removing motion artifact
from BOLD fMRI data.

The supplementary materials contain figures specifying motion prevalence for
each subject and session and detailed outcomes of statistical analyzes that were not
presented in the text.

The results are ambiguous regarding indicating one best method that would
conclusively stand out. For this reason, the thesis suggests to using conventional 6
motion parameters method until any more robust study concludes otherwise.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
MR Magnetic resonance
RF pulse radiofrequency pulse
EEG Electroencephalography
fMRI Functional magnetic resonance imaging
MEG Magnetoencephalography
PET Positron-emission tomography
F-18 Fluorine-18
EPI echoplanar imaging
GRE gradient echo
FDG Fluorodeoxyglucose
TR repetition time
TE echo time
HRF hemodynamic response function
MNI Montreal Neurological Institute
FWHM full width at half maximum
GMS grand mean scaling
GLM general linear model
FD framewise displacement
DVARS framewise displacement
ICA Independent Components Analysis
CompCor Component Based Noise Correction Method
tfMRI task-fMRI
ResMS Residual mean squared error
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A EXAMPLES OF SOURCE CODES

A.1 FD
One of the reasons why FD is so widely used is its easy implementation and com-
putation. The code can be shrunk into a few lines:

Listing A.1: Code for FD Computation in the MATLAB Environment
1 B= importdata ([path ,’\’,jmeno.name ]); % parameters from RBt
2 B(: ,4)=B(: ,4).*(50* pi /180); %rot. conversion
3 B(: ,5)=B(: ,5).*(50* pi /180);
4 B(: ,6)=B(: ,6).*(50* pi /180);
5 FD=sum(abs(diff(B)) ,2) ’;
6 for i= 1: length (FD)
7 if(FD(i) >0.5)
8 indexes =[ indexes i]; %O.5 mm thresh .
9 end

10 end

A.2 DVARS
Unlike FD, DVARS uses data of the individual scans, not from a single matrix. The
importation of the data is done via SPM12 functions. This makes the computation
a bit longer.
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Listing A.2: Code for DVARS Computation in the MATLAB Environment
1 filenames = spm_select (’FPList ’,datadir ,’^swu .*\. nii ’);
2 volumes = spm_vol ( filenames ); % import data
3 [Y] = spm_read_vols ( volumes );
4 indexes =[];
5 %% Compute
6 for i=1:( size(volumes ,1) -1)
7 dvars_sum (i)= sum(sum(sum(Y(:,:,:,i))));
8 dvars_dif (i)= sum(sum(sum(Y(:,:,:,i+1)-Y(:,:,:,(i)))));
9 end

10 DVARS = 1000* sqrt (( dvars_dif ./ dvars_sum ).^2);
11 for i= 1: length (DVARS)
12 if(DVARS(i)>5) %5 % threshold
13 indexes =[ indexes i];
14 end
15 end
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B OVERVIEW OF MOTION PREVALENCE IN
THE DATA

Fig. B.1: Motion prevalence in 186A FCNI3
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Fig. B.2: Motion prevalence in 186A FCNI5

Fig. B.3: Motion prevalence in 190A FCNI1
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Fig. B.4: Motion prevalence in 190A FCNI3

Fig. B.5: Motion prevalence in 190A FCNI5
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Fig. B.6: Motion prevalence in 211A FCNI1

Fig. B.7: Motion prevalence in 211A FCNI3
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Fig. B.8: Motion prevalence in 211A FCNI5

Fig. B.9: Motion prevalence in 219A FCNI1

71



Fig. B.10: Motion prevalence in 219A FCNI3

Fig. B.11: Motion prevalence in 219A FCNI5
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C COMPUTATION TIMES OF LINEARLY IN-
TERPOLATED SCANS

Fig. C.1: Computation times of linearly interpolated scans. Note that some scans
were interpolated simply via MATLAB’s direct matrix-wise operations, which took
a minimum amount of time, others were interpolated timepoint by timepoint using
interp1 function.
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D ADDITIONAL CHARTS AND BRAIN MAPS

Fig. D.1: Mean T50 for FCNI3

Fig. D.2: Mean T50 for FCNI5
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Fig. D.3: Activation brain maps of all models for 190A FCNI1
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E CONTENTS OF THE ATTACHED CD
The attached CD contains the thesis, figures of the brain maps and statistical charts
along with scripts, programmed in the MATLAB R2016a environment.
.3 SPM12_prep.m. . . . . . . . . . . . . . . . The preprocessing of data, main body of the script. .3
SPM12_stat.m. . . . . . . . A script that creates the statistical models, statistical evaluation.

/................................................Directory tree of the attached CD
Thesis.pdf
Results

Brain maps................................Activation brain maps, RES MS
190AFCNI1pos.png
190AFCNI3pos.png
FCNI1xFCNI3.png
P1NEWFCNI1map6mr.png
P1NEWFCNI3map6mr.png
P1NEWFCNI5map6mr.png
PNEWFCNI3map6mr.png
SplResMSNoNo.png

Charts...................................................Statistical charts
meanT1pos.png
meanT3pos.png
meanT5pos.png
meanT501.png
meanT503.png
meanT505.png
numvox_corrected1.png
numvox_corrected3.png
numvox_corrected5.png
numvox_uncorrected1.png
numvox_uncorrected2.png
numvox_uncorrected3.png
ResMS1.png
ResMS3.png
ResMS5.png
ResMS501.png
ResMS503.png
ResMS505.png
thr_corrected1.png
thr_corrected3.png
thr_corrected5.png

Motion prevalences..........Motion prevalences, shown in the Appendix B
186AFCNI1.png
186AFCNI3.png
186AFCNI5.png
190AFCNI1.png
190AFCNI3.png
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190AFCNI5.png
211AFCNI1.png
211AFCNI3.png
211AFCNI5.png
219AFCNI1.png
219AFCNI3.png
219AFCNI5.png

Flowchart.png........................A flowchart of the data preprocessing
Scripts

AK_extract_ROIs.m. ................ A script that extracts statistical results
AK_results_.mat..............................The actual statistical results
dvars.m..............................................DVARS computation
FD_exe.m.................................................FD computation
FindFirstGood.m..A function that finds a first good timepoint for the interp.
FindLastGood.m...A function that finds a last good timepoint for the interp.
Linear.m.............................A function for the linear interpolation
MakeCharts.m...................................A script for drawing charts
Spline.m.............................A function for the spline interpolation
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