
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

REMOTE MANAGEMENT OF EMBEDDED SYSTEMS
VZDÁLENÁ SPRÁVA VESTAVĚNÝCH SYSTÉMŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PETER MALINA
AUTOR PRÁCE

SUPERVISOR Ing. JAN VIKTORIN,
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
Possibilities of today’s embedded devices are growing rapidly. Their performance allows
them to run more complex applications in Internet of Things (IoT) environments. Complex
applications tend to be error-prone and require continual updates. A system that is capable
of updating a multitude of remote embedded devices was designed and implemented. This
system was created based on the study of existing solutions and requirements of the project
BeeeOn, which concerns itself with smart homes.

Abstrakt
Možnosti dnešních vestavěných zařízení rapidně rostou. Jejich výkon dovoluje běh složitějších
aplikací v prostředích Internetu věcí (IoT). Složité aplikace bývají náchylné na chyby a
vyžadují průběžnou aktualizaci. Systém, který umožňuje aktualizace většího množství
vzdálených vestavěných zařízení, byl navrhnut a implementován. Systém byl implemen-
tován na základě studie existujících řešení a podmínek projektu BeeeOn, který se zabývá
chytrou domácností.

Keywords
Internet of Things, Embedded system, Software update, Smart home

Klíčová slova
Internet věcí, Vestavěné systémy, Aktualizace software. Smart home

Reference
MALINA, Peter. Remote Management of Embedded Systems. Brno, 2016. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Viktorin Jan.

Remote Management of Embedded Systems

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Jan Viktorin The supplementary information was provided
by Ing. Tomáš Novotný All the relevant information sources, which were used during
preparation of this thesis, are properly cited and included in the list of references.

. .
Peter Malina
May 17, 2016

Acknowledgements
I would like to thank to Ing. Jan Viktorin for his willingness, support and advices during
the writing of this thesis. I would also like to thank to Ing. Tomáš Novotný for his guidance
and help during the implementation phase.

c○ Peter Malina, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Principles 4
2.1 Embedded System . 4
2.2 CPU, memory and peripherals in embedded systems 4
2.3 Principles of update . 5
2.4 Factory state . 6

3 Goals 7
3.1 Introduction to BeeeOn . 7
3.2 Requirements for the system . 7
3.3 A10-OLinuXino-LIME . 8

4 Existing solutions 10
4.1 Manual management . 10
4.2 Start-up scripts . 10
4.3 Bootloaders . 11

4.3.1 GRUB 2 . 11
4.3.2 Syslinux . 11
4.3.3 Das U-Boot . 11
4.3.4 LILO . 11
4.3.5 RedBoot . 11

4.4 Package Management systems . 12
4.4.1 rpm . 12
4.4.2 dpkg . 12
4.4.3 opkg . 13
4.4.4 Guix . 13

4.5 SWUpdate . 13
4.6 Turris . 13
4.7 Docker . 14
4.8 Continuous Integration systems . 15
4.9 SystemD . 15
4.10 Conclusion on existing solutions . 15

5 System of a smart home 16
5.1 Components . 16

5.1.1 Cloud . 16
5.1.2 Gateway . 17

1

5.1.3 Sensors . 18
5.1.4 Secondary Gateway management channels 18

6 Design and implementation of the Gateway Manager system 19
6.1 The version control . 19

6.1.1 The branching model . 20
6.2 Languages and libraries . 21

6.2.1 Poco project . 21
6.2.2 Protocol Buffers . 22
6.2.3 Soci . 23

6.3 Gateway Factory server . 23
6.4 Factory script . 24

6.4.1 Gateway Manager core . 25
6.5 Gateway Manager server . 27
6.6 Gateway Manager client . 28

6.6.1 Configuration and logging . 29
6.6.2 Execution and update . 30

7 Applicability of the Gateway Manager system 31
7.1 Configuration reading . 31
7.2 Simple update script execution . 32
7.3 Possible extensions of the Gateway Manager system 33
7.4 Conclusion on the system applicability . 33

8 Conclusion 34

Bibliography 35

A Content of the CD 37

2

Chapter 1

Introduction

A market of IoT (Internet of Things) devices is growing rapidly every year. We are now
talking about billions of devices connected to the Internet [18]. Most of these devices can
also be called embedded devices. An embedded device usually lives with the same software
its whole life. However, the development process speeds up rapidly and possibilities of
modern embedded devices are growing. This situation opens up a way to update a software
of an embedded device instead of its full replacement.

There are at least two major challenges for the development teams regarding device
updates. The first challenge is to ensure that a device is updated correctly. This means
that a device and its updated software continues to work properly. The second challenge
is possible installation and runtime errors. Most software issues are often visible and fixed
during the testing phase of an application development. However, many issues become
apparent after an application is already deployed. Security issues may be discovered after
months of a successful production use and globally misused in a matter of hours.

This thesis describes basic principles of embedded systems, principles of software up-
date and an embedded device initialization after it is produced. It introduces the A10-
OLinuXino-LIME embedded device used during the system implementation. Next, it
presents existing solutions and their possibilities.

The work covers a basic information about the BeeeOn system of a smart home. The
BeeeOn system is the target environment for software implemented in this work. The thesis
then describes the implementation of a system that can be used to rapidly and reliably
distribute new software to embedded devices. It describes a process of a continuous device
monitoring that is helpful ragarding the issue discovering. The last part describes an
applicability of the implemented system and possibilities for its extension.

3

Chapter 2

Principles

This chapter gives to the reader a basic understanding of embedded systems, their compo-
nents and how the processes of updating and monitoring are handled. It describes embed-
ded systems in general, i.e. their memory, CPU and peripherals. It also explains why is a
process of a plain device setup important.

2.1 Embedded System
An embedded system is a device that is a combination of a software and hardware, spe-
cialized to do a particular function. They are commonly used in industry, automobiles,
airplanes and more [14]. Embedded systems are commonly used as parts of other systems,
while their internal behavior is usually hidden from the user.

2.2 CPU, memory and peripherals in embedded systems
Each embedded system consists at least of:

∙ a CPU

∙ a memory

∙ a set of peripherals

These components are giving an embedded system a capability to compute, store data
and communicate with an environment.

Embedded systems are frequently designed to have a very low latency. This enables
them to quickly react to external events. An external event is usually captured by a sensor
as an analog signal. The embedded device therefore converts the incoming analog signal
to a digital representation. Reactions to external events are usually done by actuators.
An actuator generally expects an analog input. Thus, the embedded device converts an
output digital signal to analog once it is processed as shown in figure 2.1 [11, 9.3.2 Signal
Conditioning].

Embedded systems are mostly built with a performance in mind. Field-programmable
gate array(FPGA) or Application Specific Integrated Circuit(ASIC) is often inseparable
part of them. However, utilization of these parts makes remote updates complicated. ASICs
provide minimal capability for a configuration and FPGAs need quite a big configuration
image (depends on a chip size).

4

Figure 2.1: Architecture of an embedded system

2.3 Principles of update
A software update belongs to a release stage of the software development life cycle 2.2.
It is solving the major problem of replacing an old software version with the new one. A
software update is commonly used to patch errors and add new features.

Figure 2.2: A software update consists of more stages. Each stage is essential to for a
quality of a product.

Source: http://kobridgeconsulting.com/default-item/software-development-life-cycle-training/

5

http://kobridgeconsulting.com/default-item/software-development-life-cycle-training/

There are usually more versions of the same software, moreover, there may be more
versions and types of hardware. This opens up a new problem of compatibility, where not
every device is able to run all the written software. Thus, the update software process needs
to be able to distinguish the systems and their possibilities.

A process of software update should always satisfy a previously specified criteria. These
criteria must be based on the critical parts of the software, type of the software distribution,
a device that should run the software and other specific conditions. One of the biggest
challenges is an ability to update a software immediately after a stable version was released.
This situation gets even more critical if an old software contains security issues.

2.4 Factory state
Devices that come from the manufacture are in the so called factory state. These devices
are provided with a data storage that holds a system image they should execute. However,
this is not the required state of a device. A device must be uniquely distinguishable to
operate correctly with a remote services. An initialization of a device is therefore needed.

A factory script may be used to retrieve this data and register device to a remote
database of devices. Once the device has an authentication data, it is able to work correctly
with remote services.

The factory script is often responsible for an initial network security setup of a device.
It may load certificate by which a device can be uniquely distinguished and connected to a
private network. However if this fails without a notice and the certificate or authentication
information is stolen, it may lead to an unauthorized access to the data that are provided
to the device.

A device also needs to be correctly configured before it is ready for the production use.
Configuration files are therefor also loaded into the device with the initial setup. Wrong
configuration of the device may lead to a inability of a device to run correctly, e.g. in case
of a host and port configurations for a remote services.

6

Chapter 3

Goals

This section describes the goals of the work and provides a basic information about the
device that is used during the development and experiments.

3.1 Introduction to BeeeOn
BeeeOn is a project focused on smart homes with a goal to provide smart home components
into houses without need of any reconstruction. This includes sensoric devices that can read
environmental data like temperature, air pressure, humidity, gas concentration or motion
[2]. A system that is described in this work should run on devices mainly responsible for a
data gathering from sensors and controlling of other connected devices.

There are many devices that are used in the whole project, from which this work focuses
mainly on a device that is responsible for the management of a so-called Adapter device,
which is responsible for the communication between the smart house and servers which
store and process a collected data.

The main goal of the described system is its ability to automatically update and monitor
a high number of adapters, as the project intends to spread to a wide range of homes, where
improper maintaining may lead to an extensive time loss.

3.2 Requirements for the system
A software update process should always satisfy defined criteria depending on the tar-
get production environment. The target environment consists of a device itself and other
aspects that affect that device. These criteria include hardware limitations, security, avail-
ability and user experience. There are many critical criteria, that should always be satisfied
in a production environment.

One of the main criteria for the system to be usable on an embedded device is its size
and performance. Thus the system must be lightweight to be able to run in the performance
and memory limited environment.

Security of the system is also one of the main challenges and criteria for the system. As
the system operates with a private data of a device such as MAC address or device ID, it is
necessary to be able to distinguish if the data is sent to the correct destination. The data
that are sent through the network should be at least in a human unreadable form, so they
are unlikely to be easily decoded.

7

A system should be modular to be able to effectively replace modules based on the
target environment device. Different devices may provide the data differently based on
their hardware and configuration. Use cases of devices may greatly vary based on the
requirements for their usage, thus the system should be composed from more smaller parts
which can be enabled or disabled depending on the needs.

Figure 3.1: Layers of a general system. A de-
vice running the system for update and mon-
itoring should run on the Application layer of
the general system.

Source: https://en.wikipedia.org/wiki/
Operating_system

A system that is responsible for an up-
dates and error reporting must be suffi-
ciently reliable due to its potential to break
the system or leave it unconsciously in a
non-consistent state, alternatively report-
ing errors that are not present on a device.

Next requirement of the system is the
ability to run on an application layer 3.1
of an Linux operating system. The sys-
tem should be able to easily manage appli-
cations that are running on a device, read
and update their configurations and retrieve
their current state in a case it should be re-
ported or checked.

Last requirement comes from the fact,
that devices mostly run more applications
at the same time. A system should be in-
tegrable into an existing system and envi-
ronment. Modularity of the system should
assure, that missing modules can be can be
simply integrated.

The range of criteria is pretty wide and
the basic specification only assumes com-
mon environment conditions. This does
not include any extreme conditions such as
memory and network corruptions or high
amount of radiation.

3.3 A10-OLinuXino-LIME
A10-OLinuXino-LIME (also shown on figures 3.2a and 3.2b) is an embedded system that
was selected as a core component of the smart house ecosystem. This device comes with
the A10 Cortex-A8 processor, 512 MB of DDR3 RAM memory, USB, HDMI and SATA
connectors and supports 100M(MegaBit) ethernet connector. There are many more avail-
able features like power and battery charge leds, available buttons or EEPROM. It has 5Ṽ
input power supply [13]. A MicroSD card connector enables to store a larger amount of
data on the device. This also provides a capability to instantly replace the system that
should be executed.

A size of the device is 84x60 mm which makes it portable and easily positionable within
a smart house. However, the device requires an available power supply and Internet con-
nection. This limits the placement of a device to the positions where sockets of a house are

8

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system

installed.
An ideal position of the device is intended to be next to the Internet router, where it

can be simply connected to the Internet.

(a) A10-OLinuXino-LIME top view [13] (b) A10-OLinuXino-LIME bottom view [13]

9

Chapter 4

Existing solutions

This chapter provides a basic information about an existing solutions that provide the
capabilities for update, remote execution, automatic repair or monitoring.

4.1 Manual management
Manual management of remote devices is not the most common way to handle an update
process or monitoring. While sometimes manual repair or troubleshooting is necessary, it
often consumes a lot of time and needs a proper amount of information about the system
running on the device. Manual management of high amount of remote devices might be
error-prone and insecure, as manipulating different devices requires proper inspection and
knowledge of the system.

A device that should be manually managed may be either a local one, thus we have direct
access to it, or remote one. A device should provide an interface for the communication in
case it is remote. SSH (Secure Shell) is one of the most common ways to access a remote
devices 1. Manual management of a local device is more straight forward. It does not
involve many network security risks and includes possibility to directly affect the device,
e.g. by changing an external memory storage, such as SD card. This approach is commonly
used on the development or debug devices.

4.2 Start-up scripts
Devices running an operating system (OS) often use some kind of start-up scripts to start
additional applications. They can also be used, to execute one-shot scripts, which may
report status of the device and check for possible updates.

Linux systems are executing start-up scripts contained in the /etc/init.d/ folder. These
scripts are commonly written in the Bash2 shell. A shell is both a programming language
and an interpreter. Shell is a macro processor that executes commands. A Macro is a
command expanded to a larger expression [7].

Usage of start-up scripts may solve the problem of software updates if we have access
to the device and are able to restart it after each software release. However, scripts are
usually weakly typed with a dynamic type-checking. This makes them harder to read, test
and debug.

1Telnet service was used previously, but it is not considered for this text, as it is insecure and obsolete.
2https://www.gnu.org/software/bash/

10

https://www.gnu.org/software/bash/

4.3 Bootloaders
A bootloader is started by the Basic Input Output System (BIOS)3 and is responsible
to load the operating system kernel and prepare the execution environment before an OS
execution starts. Bootloaders often include a scripting language that makes it possible to
use a certain booting recipe such as:

∙ booting in a defined order from a storage connected to a device

∙ booting from network

However, the level of accessing a booting image is pretty low. The network access is
usually limited to UDP/IP (e.g. Trivial File Transfer Protocol (TFTP)) and only certain
parts of a file system are accessible.

4.3.1 GRUB 2

GRUB2 is a bootloader that is used by the major Linux distributions such as Ubuntu,
Fedora or CentOS. GRUB2 is a successor to the original GRUB bootloader. It supports a
wide range of processor architectures. It also supports a large amount of the file systems
such as: ext, File Allocation Table (FAT) or New Technology File System (NTFS). It
extends the original GRUB by the features like rescue mode, dynamic module loading,
scripting support and live ISO image OS loading [3].

4.3.2 Syslinux

Syslinux is a collection of a lightweight bootloaders. It runs on the FAT file system. It
had an aim to simplify the first-time installation of the Linux systems and special pur-
poses as creating rescue or boot disks [1]. Syslinux is also scriptable via Lua. Lua is a
lightweight easily embeddable scripting language[15]. Syslinux also supports the TFTP
transfer protocol.

4.3.3 Das U-Boot

Das U-Boot is a scriptable bootloader with support for wide range of operating systems as
Linux, OpenBSD or Solaris. It also supports a range of file systems as FAT, ext2, ext3 and
ext4. It also supports Network File System (NFS) and TFTP at the network level.

4.3.4 LILO

LILO is a bootloader that can boot the operating system from any file system. It can
only access the hard disk via BIOS drivers. It is not scriptable, but supports bzip2 and
gzip decompression. LILO was recently discontinued in December 2015, due to the lack of
developers.

4.3.5 RedBoot

Redboot is a bootloader written specifically for use in embedded systems. It is lightweight,
configurable and portable. It supports both, development and production environments.

3ARM systems use System on a Chip (SoC) instead of BIOS.

11

It also supports booting via TFTP. It can be used to debug applications with GDB via
a serial or Ethernet cable. It provides an interactive command-line interface to simplify
configuration editing or image downloads. It supports a booting scripts that can be loaded
on the start, allowing a device to load an image via TFTP or from the Flash memory [16].

4.4 Package Management systems
A package management system is nowadays bundled with every major Linux distribution.
It is used to install, update or remove a software on an underlying OS. There are severl
such systems, the most important are:

∙ rpm

∙ dnf

∙ dpkg

∙ opkg

∙ Guix

Package Management systems are very powerful in resolving dependencies or possible
conflicts in the package versions. While they often do not provide atomic updates, there are
some which do, for example Guix. Package management systems can be used together with
start-up scripts, Cron or more to check for updates once in a while. A fallback mechanism
has to be added to provide a fail-safe self-updating system.r

4.4.1 rpm

The rpm4 was created to be used in the Red Hat Linux but can be nowadays found in many
other Linux distributions. It allows cryptographic verification of packages with Message-
Digest algorithm (MD50 and the GNU Privacy Guard (GPG). It also includes original
source archives, which makes it easier to verify a package by comparing hashes of an original
and downloaded package. RPM is able to create patch files to allow configuration patching.
The rpm resolves defined dependencies of a package during the package build time. This
leads to a faster package resolving when a package is being installed.

4.4.2 dpkg

Debian based operating systems are bundled with the dpkg package manager. The major
difference from the other package managers is it can not automatically download packages
or their dependencies. That is why it often comes with the Advanced Package Tool (APT)5.
The APT is a collection of tools created to handle .deb (Debian) packages. It nowadays
supports also rpm packages. One of APT tools is apt-get. The apt-get handles the instal-
lation and modification of Debian packages. APT is using repositories to look up packages.
A repository is a collection of packages. Repositories are commonly used to store packages
for different operating systems. APT supports so called pinning. Pinning allows a user to
specify which version and repository should be used to install the package. This would not
allow a package to be updated if such update may lead to conflicts.

4http://www.rpm.org/
5https://wiki.debian.org/Apt

12

http://www.rpm.org/
https://wiki.debian.org/Apt

4.4.3 opkg

The opkg package manager6 is intended to be used in embedded Linux devices. As all
other package managers, it is also able to install, update, upgrade or remove packages.
It handles OpenWrt7 packages. The opkg was forked from the Itsy Package Management
System (ipkg)8. These packages use the .ipk extension.

4.4.4 Guix

Guix is a functional package management tool that supports atomic updates. An atomic
update is either entire complete or fails and all changes are rolled back. Guix also supports
rollbacks and has an ability to remove unused packages that are no longer referenced. It
isolates a build processes into containers. This gives the build only access to directories
and files that are in the current build. After the package is built, it is placed into a store.
A store is used to save correctly built packages. Every package is installed to their own
directory in the store.

Guix supports profiles, which enable users to use only the packages they want. A profile
is stored in the $HOME/.guix-profile file. A profile points to all packages that are used by
a user.

4.5 SWUpdate
SWUpdate is a Linux update agent. It is able to update an embedded system’s software.
This system also provides pre- and post-install Lua scripts. Developers that are already
familiar with the Lua programming language can easily write scripts, that may establish
or repair the environment and check, if the installation was completed correctly. This also
opens a way to provide the built-in functionality in the SWUpdate to Lua scripts. This
solution handles more hardware memory configurations. This makes it easier to deploy to
a wide range of devices.

An update package is described by the SWUpdate configuration file written in Ex-
tensible Markup Language (XML)9. This configuration file should provide all necessary
information to perform the update process. Configuration files provide information for
each device that should be supported, making the package available for more devices.

4.6 Turris
Turris is an auto-updating router from the CZ.NIC company. It is able to protect a home
network by analyzing its data streams. It has a built-in reporting mechanisms. The Turris
developers can get information about the dangers in the network, fix them and automatically
roll the updates to all of the Turris devices [4].

Turris devices have a capability to analyze data that flow to and from its network, which
gives them an ability to assume cyber-attacks.

6https://wiki.openwrt.org/doc/techref/opkg
7https://openwrt.org/
8https://en.wikipedia.org/wiki/Ipkg
9https://www.w3.org/XML/

13

https://wiki.openwrt.org/doc/techref/opkg
https://openwrt.org/
https://en.wikipedia.org/wiki/Ipkg
https://www.w3.org/XML/

Figure 4.1: An architecture of a system running Docker

Source: https://www.upguard.com/articles/docker-vs.-vmware-how-do-they-stack-up

However, the original Turris devices are no longer distributed and new Turris Omnia10

devices are nearly ten times more expensive then previously discussed A10-OLinuXino-
LIME.

4.7 Docker
Containerization is today experiencing a huge boom. It provides an isolated environment
for the applications to run with the only requirement of the Linux kernel. This enables
developers to create a development environment that is much closer to the production
environment. It also enables applications to run in a consistent container, which is not
affected by the changes of the outside system. A container is also not affecting the outside
system.

Docker is a lightweight, open and secure11 platform for application delivering. It is using
the container technology to isolate applications from each other as shown on the figure 4.1.
Docker is growing in a popularity and can often replace a virtual machine. While Docker is
a great choice for applications that run on a server, the memory, CPU and disk requirements
are hard to meet in embedded systems.

Docker containers provide isolated environment for applications to run. Two docker
containers with the same dependencies on different versions would not collide. Containers
also provide a root file system. A separate file system makes an illusion of an autonomous
system. Applications that depend on each other on a network level can be linked together
via Focker networking system. The Docker networking system is isolated from an outer
network (i.e. Internet). Any port exposure must be therefore explicitly made.

While docker can not be used as an ordinary package management tool, it resembles it
10https://omnia.turris.cz/en/
11https://www.docker.com/docker-security

14

https://www.upguard.com/articles/docker-vs.-vmware-how-do-they-stack-up
https://omnia.turris.cz/en/
https://www.docker.com/docker-security

by its behavior. Docker has a pull and push functions, which allow user to pull the container
image from the repository (install) or push a new version of the image into the repository
(publish). All docker images must be built from a source via docker build command.

4.8 Continuous Integration systems
Continuous Integration System (CI) is a system, that is used to automate process of an
application building and testing, often providing a way to deploy built software straight
to the device or push it to the repository. Repositories can then be used to distribute the
application.

CI can run the build and tests in the isolated container, that is able to emulate the
behavior of a device. This allows developers to test applications even before they are run
on the specific embedded device.

4.9 SystemD
SystemD is a Linux init system which has been adopted to the many Linux distributions
by far. It consists of a number of tools, that provide application managing, logs or network
interface configurations. SystemD is using the Unit files to store configurations of specific
daemons. This system allows on-device unit management and monitoring.

4.10 Conclusion on existing solutions
There are many solutions for a software distribution and tracking of logs. Moreover, they
are widely used and many of them are developed by a company or a team of professionals.
Package management systems usually provide a fallback mechanism in case of installation
failure and are great at resolving dependencies. There are solutions like Docker that took
it even further, isolating applications from each other, thus evading dependency collisions.
At last, continuous integration systems are able to deploy a new software just after it was
successfully built.

However, most of the solutions are designed to operate only locally. A direct access to a
device is therefore necessary. An auto deployment via a CI system is hardly utilizable due
to a potential of high amount of devices. A high amount of devices would unnecessarily lock
the system until all devices were updated. The proposed solution is to utilize the power of
already existing tools like package managers or SystemD by an automated remote interface.

15

Chapter 5

System of a smart home

BeeeOn system of a smart home is an Internet of Things (IoT) system by design. It consists
of a couple of components, which are communicating together, to simplify processes in a
house. There may be many use cases from the utilization to the automation of the house.
While sensors are able to read values from an environment such as temperature, pressure
or light, other devices can receive the values and trigger a specific events based on it.

5.1 Components
This section will cover major components of the intelligent housing system. There are 3
core components of the system:

∙ cloud

∙ gateway

∙ sensors

The most distant component from the user is the cloud, which is used to store and distribute
data across the network of the devices. Gateway, on the other hand, is used to collect the
data from the sensors and distribute them to the cloud and in the private network of the
sensors. After all, sensors are used to get the actual values from the environment.

5.1.1 Cloud

The cloud is used to store and distribute data around the network of the devices that are
connected to it as shown on the figure 5.1. Cloud is a server, that accepts connections from
the gateways to receive the data and send them commands that need to be executed on
the gateway. It also accepts connections from the other devices, like mobile phones, smart
watches running application or PCs running web applications. While the data transfer may
feel like a main purpose of the cloud, it must also store the data. Cloud persists the data
that are being processed to ensure a wide range of devices is able to access them. They are
also commonly used to track what is happening in the system.

System therefore consists of persistent database, respectively PostgreSQL1. Database
allows Cloud to persist data for the future use like post processing, analysis or statistics.

1http://www.postgresql.org/

16

http://www.postgresql.org/

Figure 5.1: An architecture overview of the smart house project

Cloud consists of applications, that are handling specific parts of the system communi-
cation. The main applications are UIServer and AdaServer. While the UIServer is there to
handle the communication with an android devices, the AdaServer communicates directly
with gateways. Both applications are communicating together via their own protocol. There
are also other applications running. Web is used to handle the traffic coming from the web
application users. Web server is directly connected only to the database, which allows it
to fetch newest data. At last, Manager server application is running on the Cloud to allow
Gateways to connect to it and perform updates or maintenance.

5.1.2 Gateway

Gateway is a main collector, distributor and manager of the specific intelligent house system.
Gateway collects the data from the sensors and sends commands to other connected devices.
The main role is to distribute the data collected from the sensors to the Cloud, where
they are processed. Gateway runs the client version of AdaServer called AdaApp 2, which
connects directly to the Cloud’s AdaServer. The channel that is created between these two
applications is able to transfer all collected data and control commands.

While all the data is distributed to the Cloud, it is also cached on the Gateway. This
allows other applications on the Gateway to access them. They are distributed in real-time
using MQ Telemetry Transport (MQTT). The data are also stored in a cache for some time
after sending to the server in case Gateway unexpectedly disconnected from the Cloud.

Applications that are executed on the gateway device must be managed. The device
2https://beeeon.org/index.php?title=Gateway#Firmware

17

https://beeeon.org/index.php?title=Gateway#Firmware

Figure 5.2: Placement of two main applications on the Cloud and gateway device

should be monitored in case of errors or unexpected behavior. This is where the remote
manager belongs. The Gateway Manager must run with root permissions to have the correct
access rights. The manager is also connecting to the Cloud and its server counterpart. This
allows developers and support to update or maintain the device manually or automatically.
Placement of AdaApp and Gateway Manager can be seeon on the figure 5.2.

The transferred sensoric and command data must be correctly secured. Gateway thus
uses a VPN to accomplish this. Proper usage of SSL (Secure Sockets Layer) certificates
should remove most of the dangers in the open network.

5.1.3 Sensors

Sensors are used to collect data from an environment they are in. They are directly connect-
ing to the Gateway to send the data. Unlike other devices in the smart home system stack,
sensors are under a power only once in a while. Their purpose is to get an environmental
data and send them as fast as possible to the gateway. They are mostly not connected to
a power supply. The power consumption is one of big challenges. This challenge is solved
by the batteries that can be replaced.

There is a couple of specific sensors, that are used to measure temperature, air pres-
sure or humidity. Every sensor has its specific hardware which reflects on the battery
consumption.

5.1.4 Secondary Gateway management channels

As mentioned before, Gateway has a primary manager application, which allows the Cloud
or to maintain gateway devices. Since the manager is in the development, there are oper-
ations which require manual execution. In this case, the gateway supports a direct SSH
connection. This is limited due to the fact, that Gateway must have a public IP address
or a connection to the private or local network. A direct access to the device is common in
the development environment. However, most of devices does not have a public IP when
deployed.

18

Chapter 6

Design and implementation of the
Gateway Manager system

The Gateway Manager is a software integrated into the BeeeOn smart house system. It
provides a communication channel between gateways and the cloud. Both parts, the server
and the client are written in the C++1 programming language with supporting libraries
Poco2, Google Protocol Buffers3 and Soci4.

The Gateway management system also consists of a factory script5 that allows to initial-
ize the device for the deployment. This factory script is written in the Python6 language.
The factory script is directly communicating with a factory server written in Golang7.
Libraries used within the factory server will be covered independently.

6.1 The version control
A version control is an important part of the project development flow. It is needed because
of it’s ability to track all work in iterations, explore the history of changes, review the work
that was done. However, the main reason to use a version control lies in a possibility to
have multiple code branches, which enables to modify specific scenarios without constantly
breaking an existing code.

Git8 has been chosen because of it’s features and simple usage. Git is a distributed
version control system able to handle all sizes of projects with a great speed [5].

The Gateway Manager project was divided into 5 Git repositories: gateway-manager-
core, gateway-manager-server, gateway-manager-client and adapter-factory. The last Git
repository was created for the toolbelt that is being used on a devices that diverged from
the adapter-factory repository.

The Gateway Manager project adopted the git-flow9 Git extension set for the Git op-
erations to be less error-prone and more effective. The git-flow extension set allows to

1http://www.cplusplus.com/info/description/
2http://pocoproject.org/
3https://developers.google.com/protocol-buffers/
4http://soci.sourceforge.net/
5https://github.com/BeeeOn/adapter-tools/blob/master/factory-script/
6https://www.python.org/
7https://golang.org/
8https://git-scm.com/
9http://danielkummer.github.io/git-flow-cheatsheet/

19

http://www.cplusplus.com/info/description/
http://pocoproject.org/
https://developers.google.com/protocol-buffers/
http://soci.sourceforge.net/
https://github.com/BeeeOn/adapter-tools/blob/master/factory-script/
https://www.python.org/
https://golang.org/
https://git-scm.com/
http://danielkummer.github.io/git-flow-cheatsheet/

effectively use the Vincent Driesen’s branching model.

6.1.1 The branching model

Figure 6.1: Vincent Driesen’s branching model that is used during the project implemen-
tation

Source: http://nvie.com/posts/a-successful-git-branching-model/

The model shown on the figure 6.1 consists of more branches with different purposes.
Starting from the right, the master branch is the main branch for releases. Master branch
should be updated only in a case new stable version of the system is released.

The hotfixes branch serves in a special situations, where the system is already released
but a critical errors are recognized. This branch is where the fixing happens. Once the fix
is tested, it is pushed into the master and develop branches.

Most of the development usually occurs in the develop branch. However, if an imple-
mentation is bigger and may cause instability of the develop branch, a feature branch is

20

http://nvie.com/posts/a-successful-git-branching-model/

created. Once a feature is tested against the develop branch, it is merged into it.
After an iteration of development is done, the release branch is used. This is usually the

last step before a release. Only fixing is allowed in this branch and all fixes are continuously
merged into the develop branch. If all tests pass, the version is released and tagged in the
master branch. From this moment, everything starts again in the develop branch.

6.2 Languages and libraries
Standard C++11 is a powerful language to write a software. It helps to maintain an
object oriented architecture and provides a basic set of features like collections, strings and
exceptions. However, SSL encryption, file compression, data serialization and connection
to a database can be solved by libraries built exactly for that purpose.

Three main libraries have been chosen to enhance the base feature set of the C++11:

∙ Poco as a general purpose library with a large set of networking, data manipulation
and utility components

∙ Protocol Buffers for the purpose of data serialization and deserialization

∙ Soci as a PostgreSQL connector

6.2.1 Poco project

The Poco project is a set of libraries which provides a general use capabilities by its wide
range of modules (also shown on figure 6.2), such as logging, networking, compression,
cryptography or multithreading [6]. It’s documentation mainly consists of presentations
and generated documentation from inline code comments.

The logging capability of the Poco library is widely used in the implementation of the
gateway software. This is due to the easy configuration management, eight logging levels
from the trace to the fatal priority. These configurations can be reconfigured during the
runtime.

The networking library of the Poco project provides a high level components such as:

∙ reactors that eliminate a need of socket polling, replacing the polling mechanism with
observers10

∙ Hypertext Transfer Protocol (HTTP), FTP or email handling modules

∙ Transmission Control Protocol (TCP) server and client modules

Socket implementation of the Poco Net library enhances the socket implementation of
an underlying OS, by simplifying the use of non-blocking actions. The Poco networking
library also supports I/O operations on a socket for collections like vector or queue.

The Zip library of the Poco project provides an ability to compress and decompress files
or byte streams. The zip library is needed in the gateway manager software, due to packing
and unpacking of the data blobs when transferring a large files like updates or assets.

10https://sourcemaking.com/design_patterns/observer

21

https://sourcemaking.com/design_patterns/observer

Figure 6.2: Poco project libraries infrastructure

Source: http://pocoproject.org/features.html

6.2.2 Protocol Buffers

Protocol Buffers is a library that allows a fast, automated and simple serialization and
deserialization of data structures [8]. It is using a byte encoding unreadable by a human
eye, which makes it more efficient than other serialization mechanisms like JSON or XML
in a terms of a transfer speed and total byte size.

Each message can be different, thus needs a different way to be serialized or deserialized.
Protocol Buffers generates message definition files for this purpose. These files can be
generated in languages like C++, C#, Go or Java, which helps developers to utilize a
power of the given language, such as static type checking. This also speeds up serialization
process, as the serialization algorithm is determined during the time of code generation,
rather than application runtime.

Protocol Buffers comes with it’s own neutral language, which provides a way to de-
fine messages. This provides a capability to write an application infrastructure in more
programming languages while maintaining the same message encoding.

Listing 6.1: Protocol Buffers definition file that defines a Ping message
syntax = " proto3 " ;

package p ro to co l ;

message Ping {
uint32 id = 1 ;
s t r i n g message = 2 ;

22

http://pocoproject.org/features.html

}
Listing 6.1 shows a Protocol Buffers definition file, that defines a Ping message. Pro-

tocol Buffers library supports more versions of its syntax. That is why we need to define
which version should be used on the first line. An optional package definition allows us to
encapsulate defined messages. This behavior is specific for the language we want generate,
e.g. C++ will encapsulate all messages in a namespace with the given name [10]

Any message definition within the Protocol Buffers definition file starts with the keyword
message, continuing with a name of the message. Listing 6.1 shows a message definition
with two fields. Each field in a definition is uniquely numbered and has a name and a value
type [9].

6.2.3 Soci

Soci is a C++ Database Access Library. It simplifies a writing of Structured Query Lan-
guage (SQL) queries in C++. It currently has a support for DB2, Firebird, MySQL, ODBC,
Oracle, PostgreSQL and SQLite databases [12].

Soci provides a simple interface for the communication with the database and error
handling. It uses the basic SQL syntax with the custom syntax extensions that allow a
developer to use application variables in queries and get values from results back to an
application as shown in listing 6.2.

Listing 6.2: An exmaple of Soci query from the official Soci website [12]
i n t id = . . . ;
s t r i n g name ;
i n t s a l a r y ;

s q l << " s e l e c t name , s a l a r y from persons where id = " << id ,
i n to (name) , i n to (s a l a r y) ;

Soci is licensed under the Boost license which allows it to be used in a non-commercial
or commercial products, while maintaining the copyrights.

6.3 Gateway Factory server
The Gateway Factory server involves implementation of an interface that can be used to
retrieve and save data about the adapters. This server is intended to be used in a private
network due to sharing of private information like SSL certificates.

Golang programming language was selected for the purpose of implementation of this
server. Golang is a simple language with a strong standard and a high amount of supporting
libraries. Golang brings a capability to built concurrent applications easily, compared to
other languages like C, C++ or Python. Two main libraries are used to implement the
factory server. Gorm11 is an ORM library, that is able to execute SQL queries based
on calls to the entities defined in the application. This greatly helps as it abstracts and
automates work with databases. Gorm is also used during development to migrate the
schema if it was recenty changed. Echo12 is the second library, which is built on top of
the standard golang http package13. It has a support for building (Representational state

11https://github.com/jinzhu/gorm
12https://github.com/labstack/echo
13https://golang.org/pkg/net/http/

23

https://github.com/jinzhu/gorm
https://github.com/labstack/echo
https://golang.org/pkg/net/http/

transfer) REST APIs. Echo supports so-called middlewares. A middleware is a function
called on every request in the specified group. A middleware is commonly used for the
request logging or authorization.

Gateway Factory server handles a creation of new devices by the HTTP request, which
should be called by a factory script. It updates a database with the given information from
a device and creates a new certificate. Every new device needs to have a unique ID with
the length of 16 digits. The first digit is always left 1 to indicate a gateway device. Next 14
digits are randomly generated and the last digit is calculated by the Damm table lookup
algorithm14. If the generated number does not already exist in a database, it is registered,
certificate for the device is issued and the id with the issued certificate is sent back to the
device in an HTTP response.

The Damm algorithm showed on a figure 6.3 was chosen because of its simple imple-
mentation and a low performance requirements.

Figure 6.3: Example usage of the Damm lookup algorithm. The algorithm iterates over a
given number, looking up the next step in the table. After the lookup is done, one number
is chosen as a check number.

Source: https://en.wikipedia.org/wiki/Damm_algorithm

Listing 6.3: A result of iteration of Damm algorithm is given by this formula. Table is a 2D
array of values from 0 to 9 as shown on figure 6.3. The value of digit is the current digit of
an iterated number (green on figure 6.3 and interim is a current value of the result (violet
on figure 6.3). The value of interim is usually initialized to 0.
in te r im = Table [in t e r im] [d i g i t]

6.4 Factory script
The factory script is executed on a device before a device that should run the gateway
software is used for the first time. Factory script prepares an environment of the gateway
device to be able to correctly run the gateway software.

The factory script is written in the Python language for the simplicity. It retrieves
a MAC address as well as a security ID from a processor of a device. These two values
uniquely identify the device. Every device needs to have a unique ID as well. A unique ID

14https://en.wikiversity.org/wiki/Damm_algorithm

24

https://en.wikipedia.org/wiki/Damm_algorithm
https://en.wikiversity.org/wiki/Damm_algorithm

is generated by the Gateway Factory server. A MAC address of a device and security ID
is sent to the server and the server replies with a unique ID. After the ID is returned, it is
written to the device’s persistent EEPROM memory.

A device must be able to connect to the private network after it has been initialized,
thus the factory script saves an SSL certificate which was retrieved from the Gateway
Factory server to the device file system (FS). This stage of a device preparation takes place
in a private network, to prevent a misuse of data like MAC address, security ID or SSL
certificate.

Figure 6.4: HTTP Communication between the factory script and the factory server nec-
essary for the device id and certificate retrieval.

6.4.1 Gateway Manager core

The Gateway Manager core15 is a library written in the C++ language. It consists of
common modules for the Gateway Manager server and the Gateway Manager client. The
library provides an implementation of the protocol specific behavior like serialization and
event handling, which is the same in both, client16 and server17 implementations.

The library implements message handlers for each part of the communication protocol.
The communication protocol is divided into 3 smaller protocols: standard, authentication
and update (shown in the figure 6.5). A protocol buffers file exists for each protocol, defining
the messages that can be send and received by the protocol. When the library is compiled,
the protocol buffers files are compiled by the protocol buffers compiler and generate C++
sources, which are afterwards compiled by the standard C++ compiler.

15https://github.com/BeeeOn/gateway-man-core
16https://github.com/BeeeOn/gateway-man-client
17https://github.com/BeeeOn/gateway-man-server

25

https://github.com/BeeeOn/gateway-man-core
https://github.com/BeeeOn/gateway-man-client
https://github.com/BeeeOn/gateway-man-server

Figure 6.5: Layers of the Gateway Manager core architecture

Standard protocol defines a basic set of informational and command messages. Ping
message is one of the well known messages. The Ping message stores the text that should
be sent back by the opposite device. This message is mostly sent to keep alive the commu-
nication when a timeout occurs on a device. Protocol timeouts may occur when one or the
other side is not responding for a given time(usually 250ms). The Report message is an
informational message which carries a priority of the message (also known as level) and a
message itself. This message should be mostly used when an unexpected event occurs on
one of devices. Two protocol control messages are used when errors occur within the proto-
col: Reset and Restart. The Reset requests a soft-restart by only cleaning buffers and cache
of the protocol, the Restart message is sent when the connection should be broken and the
devices should reconnect. Two configuration messages are also present in the protocol for
getting and setting of the configuration key-value pairs known to an opposite side.

Authentication protocol uses only two messages. The Authentication Request message
and the Authentication Response. Authentication Request also has an optional integer
value for the wait danger. This value can be set by a server to inform the opposite side
it could wait for a certain time in a queue and may be disconnected during the wait. An
opposite device should reconnect in a time set by the wait danger if disconnected. The
wait danger field is an experimental field that may be set during the performance peaks,
possible cyber-attacks or other unexpected events. The authentication response message
carries the usual authentication data: id and password.

Update protocol defines two messages: Execute and Execute response. The execute
message holds a description of what should be executed and a content(script) that should
be executed by the system. The content field may be a Python script, Bash script or
anything that is executable by an opposite device. When a device executes the script, the
Execute Response message is sent back. It carries the return code of the executed content,
a standard output and a standard err output.

Implementation of the gateway manager core library heavily depends on the C++ tem-
plate system ducktyping. It implements factory methods and message dispatchers for all
three sub-protocols. Message dispatcher is given an object that implements the handlers for
the protocol that is currently being dispatched. This calls the factory method first, which
may decode a message. However if the message could not be decoded, the dispatcher re-
turns and control is given to an other dispatcher. If none of the dispatchers could recognize

26

the message, it is thrown away.
The underlying implementation on a socket layer is using the length prefix method

shown on the figure 6.6 to distinguish between the contents of the packets that are being
received. This method prefixes each message by an integer value that is set to the total
message length.

Figure 6.6: A message using the length prefix method with a content of 32 bytes, that is
prefixed by the 4 bytes with the value of the message length.

6.5 Gateway Manager server
The Gateway Manager server is built on top of the Gateway Manager core library. Its
main purpose is to handle Gateway Manager clients when they connect to it. It needs a
PostgreSQL database instance to properly work, as it stores all information in the database.

A database schema was created for the purpose of storing the data of the Gateway
Manager server. The schema 6.7 involves five entities. The main entity of the schema is
adapter. This entity describes a single device and stores the main information such as id,
security id or MAC address. It also has an informational owner field that describes who
owns the device18. This entity also stores data about the components of the device, but
they are not directly affecting the Gateway Manager server. The next important entity
is adapter_state. This entity stores data about the device’s current state. The state of a
device may change frequently. It has information about the last connection, current and
last stable version of a system on a device and its OpenVPN IP address. This entity is
weak and only exists it there is an adapter entity present.

The last three entities are used for the purpose of remote execution. The package entity
saves data about a single file (usually zip), that can be sent to a device for the purpose
of remote execution. This entity stores necessary information about the script such as
purpose, level of priority (in a case more packages are tagged for execution) or a version
that the package supports. The version can be written with the wildcards, e.g. 1.x means
the package can be executed on any device with a version of 1 and any subversion. The
adapter_package is a temporary store for the packages that should be executed on a given
device. Once the package is executed, the record is removed from the database and the
result is moved into the package_result table. The adapter package entity thus defines a
package that should be executed on a device, the purpose of execution and the force flag.
The force flag tells the server if it should execute the package even if there are issues present
on a device. The package_result entity holds data about a package execution, its return
code and logs.

A Data Access Object (DAO) pattern is used to access the underlying database. This
pattern is widely used to separate the low level data access logic from the business logic
[17]. DAOs were created for the purpose of operating with the database entities. Every

18The owner field of a device is mainly used during the development to distinguish devices.

27

Figure 6.7: ER diagram for the database schema used by the server side of Gateway Manager

DAO is created as a singleton class. This is due to the fact that only a single data access
point is needed for every given entity.

The Gateway Manager server accepts TCP connections from devices running the Gate-
way Manager client. Every device must authenticate right after it connects. The server
then updates the state of the device in the database and checks for the packages that should
be sent. If no packages are present in the database, the server closes a connection with the
device by the Exit packet. The Exit packet tells the device when it should reconnect again.
In a case where there are packages to be executed, they are sequentially sent to a device
for execution and the results are saved into the database.

6.6 Gateway Manager client
The Gateway Manager client is built on top of the Gateway Manager core library. Its
implementation takes advantage mainly of the standard C++ language, the Poco library
and the Gateway Manager core library.

The client connects to the Gateway Manager server periodically. This allows the server
to check for updates and update the status of a device. The implementation of communi-
cation consists of protocol handlers. Each handler method processes one message from the
protocol. The client is only responding to requests from the server most of the time. The
only message that can be sent without a previous request is the Report. This guarantees
that the process is controlled by the server.

The client implements a configuration map that allows an application to register con-
figuration getters. A configuration getter is a function that returns a configuration value

28

when called. This allows an application to dynamically register the wanted configuration
based on a previous configuration, device type or an environment. The configuration getter
primarily takes care of:

∙ loading from different types of configuration storage like EEPROM, file system or
memory

∙ production and debug environment configurations

The Gateway Manager client is managed by a SystemD service. A SystemD unit file is
configured to always restart the client after 10 seconds if an issue is detected. This unit file
is distributed directly with the client.

6.6.1 Configuration and logging

An external INI19 configuration file allows to configure the client if necessary. The file
shown on the listing 6.4 defines the host and port that should be used as a target Gateway
Manager server. It also defines a log level. There are 8 different log levels defined by the
Poco library:

∙ fatal - usually followed by an application tear down

∙ critical - application is usually able to recover from an event

∙ error - often used to inform about failure of an important process

∙ warning - used to warn about possible failures

∙ notice - may be used when an unexpected event occurs

∙ informational

∙ debug

∙ trace

Poco allows to use so called channels. A channel is responsible for delivering messages
(shown in the figure 6.8). A channel has an attached destination. A destination can be a
file, a TCP connection or a console.

Figure 6.8: A message travels through the logger and defined channel. A channel is attached
to a destination. This is where the message is written.

The log levels below notice level are only informational and may contain a lot of infor-
mation. They need to be properly set up as log size may increase rapidly. A log level is
usually set to trace or debug while in development. The warning or error levels are used
when in a production environment.

19https://msdn.microsoft.com/en-us/library/windows/desktop/ms717987(v=vs.85).aspx

29

https://msdn.microsoft.com/en-us/library/windows/desktop/ms717987(v=vs.85).aspx

Listing 6.4: An example configuration file for the Gateway Manager client
[connect ion]
host=l o c a l h o s t
port =8877

[l og]
l e v e l=t ra c e

The requirement of the configurable log level is based on a previous production experi-
ence. Production log level defaults to warning level. The client may run in a production
environment for days or weeks without an issue. However if an issue occurs, it is necessary
to have the device start monitoring with a lower log level, e.g. debug.

6.6.2 Execution and update

A process of package execution and update is handled by the Update protocol message
handlers. This process is initiated by receiving the Execute message from the server. The
message describes what should be changed and carries the script that will be executed.

Figure 6.9: Only two messages are exchanged during the communication that handles
execution. The incoming message includes the description and content of the script. The
outgoing message contains the results.

The process is shown in the figure 6.9. The Execute request message is sent by the
server. The client executes a given content and responds back with the Execute Result
message. The Execute Result message contains logs from the run and a return code. The
opkg package manager is often used to easily update existing packages or install new ones.

30

Chapter 7

Applicability of the Gateway
Manager system

This section covers usage possibilities of the Gateway Manager system. There are two main
scenarios for the system to be applied in. The first scenario is configuration reading. This
allows a server to read desired configuration from a device. The second scenario is script
execution. The script execution on a device allows the system to primarily:

∙ access a file system

∙ access already installed applications and an underlying OS

∙ change configurations, repair an environment

∙ install or update new applications

7.1 Configuration reading
The Gateway Manager client allows to define a configuration map that can be dynamically
adjustable. This means, new configuration mappings can be added during the runtime if
needed.

A simple experiment of a configuration retrieval is shown by the log 7.1. The client is
running in the OpenVPN network on IP 10.1.0.103. The system running on a device has
version 0.6. There are three main parts that are shown in the log 7.1. The first one is the
report saying the device successfully authenticated to the server. The second part consists
of GetConfigRequests, where a dynamic map is used to retrieve the configuration values
from the device. The last part is a Restart message. Once the server finishes the work on
the device, it sends the Restart message. The application shuts down and will be restarted
by the SystemD service in a configured amount of time.

Listing 7.1: A log that shows the process of configuration retrieval on one of debug devices
[Ping] Dispatched , query [Hello]
[Report] Dispatched
Authentication : Successfully authenticated
[GetConfigRequest] Dispatched
[GetConfigRequest] Value for [openvpn_ip] was requested .
[GetConfigRequest] Found [openvpn_ip :10.1.0.103]
[GetConfigRequest] Value for [beeestro_version] was requested .

31

[GetConfigRequest] Found [beeestro_version :0.6]
[Restart] Dispatched

The server handles ale responses sent by the connected client as shown in the listing
7.2. It receives the configuration sent by the client and shuts down the communication.

Listing 7.2: A log that shows the process of configuration retrieval on the server side
[unk ->Ping] Dispatched , query: [Hello]
[Auth] Handling for the adapter : 1737240720266367
[State@1737240720266367] Updating last connection status
[1737240720266367 - > HandleGetConfigResponse] Dispatched
[1737240720266367 - > HandleGetConfigResponse
Received configuration openvpn_ip :10.1.0.103
[1737240720266367 - > HandleGetConfigResponse]
Received configuration beeestro_version :0.6
[Shutdown@1737240720266367]

7.2 Simple update script execution
A device can be updated using the Execute message from the update protocol. This example
of logs 7.3 and 7.4 shows what is happening during the execution of a simple opkg update
script.

The log 7.3 shows a successful authentication of the client. The execution of the script
happens next and the results are sent back to the server.

Listing 7.3: A log that shows the script execution log on a device
[Ping] Dispatched , query [Hello]
[Report] Dispatched
Authentication : Successfully authenticated
[Execute] Dispatched , Description : Package update via opkg package manager
[Execute] Temp file created on the location : /tmp/ tmp24105aaaaaa
[Execute] Done , sending results
[Restart] Dispatched

The server log 7.4 shows the process of execution handled by the server. First, the
device is authenticated. The Execute message is sent next and the ExecuteResult message
is received once the script has been executed on the device. The standard output and
standard error logs are returned back to the server.

Listing 7.4: A log that shows the process of a script execution on a device from the per-
spective of server
[unk ->Ping] Dispatched , query: [Hello]
[Auth] Handling for the adapter : 1737240720266367
[State@1737240720266367] Updating last connection status
[1737240720266367 - > ExecuteResult] Dispatched
[1737240720266367 - > ExecuteResult] return code: 0
[1737240720266367 - > ExecuteResult] std_out :
Downloading http :// cloud. beeeon .com/ feed_jethro // all/ Packages .gz.
Updated source ’remote -beestro -all ’.
Downloading http :// cloud. beeeon .com/ feed_jethro // armv7a -vfp -neon/ Packages .gz
Updated source ’remote -beestro -armv7a -vfp -neon ’.
Downloading http :// cloud. beeeon .com/ feed_jethro // olinuxino_a10lime / Packages .

gz
Updated source ’remote -beestro - olinuxino_a10lime ’.

32

[1737240720266367 - > ExecuteResult] std_err :
[Shutdown@1737240720266367]

7.3 Possible extensions of the Gateway Manager system
There are two main methods that can be used to manipulate a device. The first is a
configuration mapping. The second is a script execution. The configuration mapping
system works with already defined functions compiled in the client’s binary. However, the
script execution system is able to execute scripts that are defined by the user. This allows
the server to execute scripts e.g. to:

∙ repair an environment of a device

∙ gather data provided by a device

∙ change configurations that are not controller by the mapping

Considering the user experience, there is a possibility to create a web interface. This
interface should be able to communicate with a server that would access the system’s
database. It should allow a user of the system to execute necessary scripts on selected
devices.

7.4 Conclusion on the system applicability
Two scenarios of the Gateway Manager system were introducted in the sections 7.1 Con-
figuration reading and 7.2 Simple update script execution. However a number of scenarios
may greatly vary based on requirements and a deployment environment. There are many
possibilities for the configuration mapping system. It can be used in specific situations like
status tracking for the subsystems. Some of the possible extensions were then introduced.
These extensions are focused mainly on the options of script execution and user experience.

The testing scenarios were executed on the debug server and device used within the
BeeeOn system. The system testing started on May 5. 2016 and the scenarios were executed
on May 16. 2016. No issues regarding the system were detected during the test run.

33

Chapter 8

Conclusion

The goal of this work was to implement, test and discuss a solution that is able to track
and update embedded devices remotely. There are many existing solutions that can do
so locally. The implementation of the system focused on their usage and distribution of
information they provide. There are two implemented methods to manipulate a client
running on a device. The first method is able to retrieve a configuration of a device. The
second method allows to execute scripts and get back their results. Both of these methods
are automatically used by the implemented server when necessary. The A10-OLinuXino-
LIME embedded device was used during the 10 day testing. No fatal issues were detected
during the test run. Minor adjustments to the configuration mapping were made.

A core library that unifies the common behavior of the server and the client was imple-
mented. The library implements the protocol between the server and the client. Specific
message handlers were then implemented for the server and client separately.

There are many possible extensions to the system. They include automatic issue detec-
tion and repairing or a web interface. A web interface would allow more users to easily use
the system without deep background knowledge.

The system is meant to be used on the BeeeOn project within the smart home ecosystem.
It allows an automatic update and monitoring of deployed devices. An update of the devices
was originally done manually. This system allows to execute the update scripts en masse
and remotely even on devices without a public IP address.

34

Bibliography

[1] Clearkimura (askubuntu user). Syslinux vs grub. http://askubuntu.com/
questions/651902/what-is-the-difference-between-grub-and-syslinux, 2015.
[Online; visited 9.5. 2016].

[2] BeeeOn. Beeeon: About.
https://beeeon.org/domains/beeeon.org//index.php?title=Main_Page, 2016.
[Online; visited 16.5.2016].

[3] Alex Da Costa. Grub2. https://help.ubuntu.com/community/Grub2, 2016.
[Online; visited 9.5. 2016].

[4] CZ.NIC. Project turris. https://www.turris.cz/en/, 2016. [Online; visited 9.5.
2016].

[5] Git. Git. https://git-scm.com/, 2016. [Online; visited 16.5. 2016].

[6] Applied Informatics Software Engineering GmbH. Poco.
http://pocoproject.org/features.html, 2006-2016. [Online; visited 9.5. 2016].

[7] GNU. Bash reference manual.
https://www.gnu.org/software/bash/manual/bash.html#What-is-Bash_003f,
2014. [Online; visited 9.5. 2016].

[8] Google. Protocol buffers. https://developers.google.com/protocol-buffers,
2016. [Online; visited 9.5. 2016].

[9] Google. Protocol buffers developer guide - how do they work? https://
developers.google.com/protocol-buffers/docs/overview#how-do-they-work,
2016. [Online; visited 10.5.2016].

[10] Google. Protocol buffers language guide (proto3) - packages.
https://developers.google.com/protocol-buffers/docs/proto3#packages,
2016. [Online; visited 10.5.2016].

[11] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org, 2011. Available online at
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf.

[12] Maciej Sobczak Mateusz Loskot, Vadim Zeitlin and Stephen Hutton. Soci - the c++
database access library. http://soci.sourceforge.net/doc/3.2/rationale.html,
2013. [Online; visited 9.5. 2016].

35

http://askubuntu.com/questions/651902/what-is-the-difference-between-grub-and-syslinux
http://askubuntu.com/questions/651902/what-is-the-difference-between-grub-and-syslinux
https://beeeon.org/domains/beeeon.org//index.php?title=Main_Page
https://help.ubuntu.com/community/Grub2
https://www.turris.cz/en/
https://git-scm.com/
http://pocoproject.org/features.html
https://www.gnu.org/software/bash/manual/bash.html#What-is-Bash_003f
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/overview#how-do-they-work
https://developers.google.com/protocol-buffers/docs/overview#how-do-they-work
https://developers.google.com/protocol-buffers/docs/proto3#packages
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://soci.sourceforge.net/doc/3.2/rationale.html

[13] Olimex. A10-olinuxino-lime specification. https://www.olimex.com/Products/
OLinuXino/A10/A10-OLinuXino-LIME/open-source-hardware, 2016. [Online;
visited 9.5. 2016].

[14] Margaret Rouse. Embedded system. http:
//internetofthingsagenda.techtarget.com/definition/embedded-system, May
2009. [Online; visited 9.5. 2016].

[15] The Lua team. Lua: Getting started. https://www.lua.org/start.html, 2016.
[Online; visited 9.5. 2016].

[16] The RedBoot team. Lua: Getting started. https://sourceware.org/redboot/,
2016. [Online; visited 8.5. 2016].

[17] Tutorialspoint. Data access object pattern. http:
//www.tutorialspoint.com/design_pattern/data_access_object_pattern.htm.
[Online; visited 11.5. 2016].

[18] Rob van der Meulen. What is the difference between fpga and asic?
http://www.gartner.com/newsroom/id/3165317, 2007. [Online; visited 14.5.2016].

A Content of the CD 37

36

https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME/open-source-hardware
http://internetofthingsagenda.techtarget.com/definition/embedded-system
http://internetofthingsagenda.techtarget.com/definition/embedded-system
https://www.lua.org/start.html
https://sourceware.org/redboot/
http://www.tutorialspoint.com/design_pattern/data_access_object_pattern.htm
http://www.tutorialspoint.com/design_pattern/data_access_object_pattern.htm
http://www.gartner.com/newsroom/id/3165317

Appendix A

Content of the CD

∙ /BP.pdf - Bachelor’s thesis text

∙ /BP/src - directory that contains the source text of bachelor’s thesis

∙ /gateway-manager - directory that contains source files for the Gateway Manager
project

37

	Introduction
	Principles
	Embedded System
	CPU, memory and peripherals in embedded systems
	Principles of update
	Factory state

	Goals
	Introduction to BeeeOn
	Requirements for the system
	A10-OLinuXino-LIME

	Existing solutions
	Manual management
	Start-up scripts
	Bootloaders
	GRUB 2
	Syslinux
	Das U-Boot
	LILO
	RedBoot

	Package Management systems
	rpm
	dpkg
	opkg
	Guix

	SWUpdate
	Turris
	Docker
	Continuous Integration systems
	SystemD
	Conclusion on existing solutions

	System of a smart home
	Components
	Cloud
	Gateway
	Sensors
	Secondary Gateway management channels

	Design and implementation of the Gateway Manager system
	The version control
	The branching model

	Languages and libraries
	Poco project
	Protocol Buffers
	Soci

	Gateway Factory server
	Factory script
	Gateway Manager core

	Gateway Manager server
	Gateway Manager client
	Configuration and logging
	Execution and update

	Applicability of the Gateway Manager system
	Configuration reading
	Simple update script execution
	Possible extensions of the Gateway Manager system
	Conclusion on the system applicability

	Conclusion
	Bibliography
	Content of the CD

