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ABSTRACT IP addresses of end hosts change when they are re-assigned. We apply survival analysis,
which is commonly used in healthcare, on IP addresses to predict their assignment duration (their lifetime).
We propose a survival parametric model based on a history of 6 years of address assignments on a worldwide
scale. Our model outperforms alternative models both from short-term and long-term views. The custom
modelling is also discussed as address assignment varies across Internet service providers (ISPs) and
autonomous systems (ASs). A predictable address assignment duration has many applications, including
source reputation, topology mapping, and geolocation.We describe a use-case in fraud prevention, where the
proposedmodel is used as a trigger for two-factor authentication. The created dataset of addresses assignment
durations is made publicly available.
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I. INTRODUCTION
Information about the IP address assignment duration is a
key prerequisite for IP-to-host association, which is used in
many applications, including geolocation, source reputation,
topology mapping, and security. These applications work
with the assumption that the association is valid for some time
after the direct IP address observation, such as when a host
accesses a service. However, addresses of end hosts change
as being re-assigned, and the assignment duration is limited.
A predictable duration of address assignments is therefore
important for proper application implementations and future
improvements.

In this work, we apply the survival analysis on IP addresses
assignment duration (their lifetime). Such an approach, to the
best of the authors’ knowledge, has not been previously used.
Survival analysis is typically used in healthcare to calculate
the life expectancy of patients under specific observations
(indicated disease, administered drug, underwent surgery,
etc.). In our concept, the survival birth event is when a new
IP address is assigned to a host and the death event when the
address is changed, or the host becomes unavailable (based
on a condition described later in Section IV).
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Based on the analysis, we predict the IP address lifetime by
a parametric piecewise survival model. Ourmotivation for the
model was that the best-alternative models used in healthcare
or other areas did not accurately describe the lifetime of
IP addresses. This is particularly shown by their accuracy
comparison against a non-parametric survival estimator. The
best-alternative models exhibit inaccurate address lifetime
predictions, which our model aims to solve.

We define the piecewise model based on analysis of
address assignments over 6 years on a worldwide scale,
which we made publicly available at [1]. The model param-
eters are derived from the observed patterns in the survival
hazard rate, which shows changes at specific days of address
lifetime. We used these days for setting the piecewise model
breakpoints. For these delimited pieces, we found the optimal
value of the exponential survival. The model outperforms the
best-alternative models.

We further discuss the custom modelling for local predic-
tions as some ISPs or ASs use specific configurations for
address assignments. This modelling may take advantage of
the survival approach as the local datasets may not cover
enough history of address assignments. Not enough historical
records mean a more significant portion of addresses without
the death event observed (i.e. they did not change until the end
of observation). Excluding these right-censored addresses
would lead to underestimation of the address life expectation.
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Inclusion of their partial assignment durations would also
produce wrong results.

Finally, as an application demonstration of the survival
analysis, we elaborate a use-case in fraud prevention, where
the model is used as a trigger for two-factor authentication.

The dataset used in this work is described in Sec. III. The
IP address lifetime evaluated by the best-alternative paramet-
ric models is described in Sec. IV. The general piecewise
exponential model is introduced and validated in Sec. VI.
The custommodelling is covered in Sec. VII. The application
use-case is given in Sec. VIII.

II. RELATED WORK
Paper [2] dealt with changes of IP addresses with a focus on
the related events (reasons behind changes). The work was
based on the RIPE Atlas [3]; specifically, the probe connec-
tion logs were analysed. The number of usable probes in the
time of the paper (2015) was 3038, located in 156 countries.
The time period investigated was 12months. The relevant
finding was that some ISPs re-assigned IP addresses peri-
odically with large differences from 24 hours to weeks.
IPv6 addresses were omitted from this work for two rea-
sons. First, there was a low number of sole IPv6 hosts (237)
and, second, the dual-stack hosts could not be used, as the
method was based on analysing probe connections to the
central controller. The two types of addresses often alternated
at the dual-stack hosts and therefore the information about
the duration of the same IPv4 address per probe was not
obtainable (consecutive connections with IPv4 address were
rare). Investigation of IPv6 address changes and comparison
to IPv4 was left as future work.

Work [4] dealt with the relation of IP addresses and hosts
with a focus on how ISPs organise their address space. Active
measurements (interpolation of the timestamps of acknowl-
edgement messages) were carried out to estimate how long
the hosts kept the same IP address. The result was that
the majority of addresses had the DHCP session duration
in the range of 0–30 hours (approx.). The data were taken
from the Shatel ISP with about 750,000 DHCP session logs.
The mean number of addresses per user within 24 hours was
around 5. The median address session duration was found
for four additional ISPs – AT&T 40 hours, British Telecom
9 hours, Deutsche Telecom 8 hours, and Orange 7 hours.
The authors mentioned a possibility of address classification
according to their usage in order to obtain more precise
results. The address categories mentioned were mobile, wire-
less, home, small and large businesses. TheWHOIS database
was suggested as a source of data for the address classifica-
tion. This database was used for finding addresses associated
with retail/business, content distribution network, and infras-
tructure by specific IP address domains (e.g. t-ipconnect.de).

Paper [5] studied the possibility of user tracking by their
device IP addresses. For this purpose, the authors evaluated
the stability of the addresses assigned to the end devices
(or NAT device). The addresses were collected via two web
browser extensions, which reported the device address every

four hours. The address duration was defined as the time
from the first to the last same address occurrence (actually,
the device may have used other addresses between the first
and last same address). The authors called this duration as the
retention period. The true reason for the address change was
not known as the change could have happened in the same
network or the device may have moved to a new network.
Around 2,000 users reported approx 35,000 unique addresses
that were evaluated. The evaluation period was 111 days. The
result was that 87% of users retained at least one address for
more than one month. The mean address retention period was
approx. 9 days and 11% of them had the period longer than a
month. The authors also evaluated a hypothesis that addresses
may be used for user identification. The Jaccard similarity
was calculated between the user address sets. The result was
reported as 93% of the users had a unique address set.

Paper [6] dealt with spam reduction by identifying the
common properties of spam bots. The authors’ finding was
that addresses (IP address blocks with a given prefix) of
spamming hosts frequently changed as only 42% of them
had a usage duration longer than 14 hours. On the other hand,
70% of the non-spamming host address prefixes had a dura-
tion longer than 14 hours. For a duration longer than 28 hours,
the percentages of the same address prefixes decreased to
22% for spamming hosts and 44% for non-spamming hosts.
The uptime value was defined as the median of seconds of
all periods when an address was active. The maximum was
226 hours, which was the time span of the evaluation. It was
concluded that the use of IP blacklists might cause problems
by blocking legitimate hosts with an address that was pre-
viously used by a spamming host (previously identified as a
spammer).

Work [7] focused on spam botnets and blacklists. Spam
bots were tracked by their IP addresses. The authors’ obser-
vation was consequently applied to mail delivery logs to
identify other hosts that have similar behaviour to spam
bots. Several botnets were used in the evaluation, including
Rustock and MegaID. The analysed time span was from
September 2010 to February 2011. The found fraction of
static to dynamic addresses was 15% for Rustock and 4%
for MegaID. An address was considered as dynamic if it was
spotted only once during the evaluation period. If the same
address was observed multiple times, it was considered as
static. It may be indirectly concluded that about 4-15% of
spam bots addresses per host were unchanged over a period
of 6months.

Paper [8] dealt with a prediction of the next assigned
address. The prediction was processed from the attacker
viewpoint. The addresses studied came from two major
cloud service providers – Amazon Web Services (AWS)
and Google Cloud Platform (GCP). Different strategies
were used to collect the addresses, such as working with
geographical regions. Around 314,000 addresses were col-
lected from AWS, of which 89,000 were unique. Around
29,000 addresses were collected from GCP, of which 42 were
unique. The collection period varied per platform and per area
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TABLE 1. Overview of related work in terms of outcome type, application, and novel idea.

from 42 to 109 days. The authors evaluated the time in days
an attacker would need to collect the address prefixes (first
three bytes) for a reasonable prediction of the next assigned
address. The result was 54 days (max) for AWS and 39 days
for GCP. For the prediction feasibility evaluation, 70% of
the collected datasets were used as the machine training
data, the remainder were used as the test data. The address
prediction (three bytes) was successful at least at 90% with
one exception. The results suggested that an attacker may
be able to correctly predict the next allocated addresses to
perform DoS (Denial of service) attack.

IP address-to-host association has many other applica-
tions. As an example of novel use, work [9] deals with
the identification of web pages that a host accessed just by
observing the destination addresses from the communica-
tion. When accessing a web page, many objects are loaded
from subresources at different servers (e.g. images). All these
servers are visible by their address. This set of addresses
forms a page-load addresses fingerprint. Such fingerprint
may identify a page accessed even if the same address is
shared by different sites. The dataset used in [9] consisted of
one million sites. The authors’ finding was that more than
95% websites had a unique page-load destination address
fingerprint. This allows page identification, provided that a
database of address fingerprints is available. The question of
address changes over time was not elaborated.

Some commercial organisations, especially dealingwith IP
targeted marketing, claim that addresses change very rarely,
such as [10] and [11], state that addresses were kept for
the same households for seven/nine months. On the other
way, there are initiatives to change IP addresses frequently
for improved privacy [12]. There are also methods to detect
IP changes at intermediate devices – paper [13] describes a
method to detect a change of WiFi AP addresses. It is based
on authenticated web requests from the AP clients. The first
request of the procedure, which is authenticated by a cookie,
is from the address of the AP. If the consequent request within
a short time is from a different address, the change is detected.
Other related papers [14] and [15] dealt with optimal DHCP
configuration. Other papers [16] and [17] dealt with lists
of addresses that are persistent over time, for example, to
facilitate long-term global measurements.

Finally, a summarised overview of the most significant
related work is given in Table 1. The table compares the
related work in terms of the address version studied, whether
the addresses in focus were assigned to servers or end nodes,
the main outcome type, the intended application or use-case,
and the novel idea presented. The related information about
this work is shown in the last row.

III. DATASET OF IP ADDRESS ASSIGNMENTS
The dataset of IP address assignment durations was processed
from the RIPE Atlas data [18]. The Atlas is a set of mea-
surement probes [3] installed by users in their networks. The
probe IP address along with other information is archived
and publicly available. The probes can be either dedicated
hardware boxes or software application. The hardware probes
are distributed by RIPE NCC upon a request. The aim is
to distribute the probes evenly across autonomous systems
and geographical regions. The users may also run the probe
software on their devices. In this case, the probe installation is
not restricted. The software is freely downloadable as source
code [19] or as a platform-specific build, including versions
for CentOS, Debian, and Docker. The probe owners provide
a description of the environment where the probe is installed,
such as ‘Fibre’, ‘Academic’, ‘No NAT’, and ‘dual-stack’.
They are also responsible for their maintenance, thoughmany
probes alternate between operational and non-operational
states and some of them are permanently abandoned.

The IP address is assigned to a probe the same way
as to other devices in the network (i.e. desktop, laptops,
etc.). We worked only with the probes installed behind NAT
(probe installation environment was described as ‘NAT’),
thus representing the end hosts. The probe address along
with its operational status is provided by the Atlas in daily
archive snapshots. We processed these archive snapshots for
the addresses of the operational probes only; addresses of
non-functional probes were excluded. The processing cov-
ered parsing each daily snapshot and merging the obtained
addresses for a particular probe. The created dataset, suit-
able for address survival analysis, starts on 13/3/2014 and
ends by 26/6/2020, covering 2,288 days (one day snapshot
21/02/2018 was corrupted). The geographical distribution of
the active addresses from the latest daily snapshot is shown
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FIGURE 1. Geographical distribution of active IPv4 addresses from the
latest daily snapshot; most addresses come from Europe and the USA.

in Figure 1; the majority of addresses came from Europe and
the USA. The total number of address records was approx.
626,000 for IPv4 and 195,000 for IPv6. The created dataset
is made publicly available at [1] for further exploration.

IV. IP ADDRESS LIFE EXPECTANCY
In this section, we analyse the IP address assignment dura-
tions. In terms of the survival analysis, the birth event is
defined as the day when a new address started to be used by
a host, the death event as the day of its change. If the death
event was not observed (the address was assigned to a host
in the most current day of the dataset), the death-observation
tag was set as ‘False’; otherwise as ‘True’. The IP addresses
with this tag set were right-censored in the survival analysis.
Further, the address death event was also triggered if the
host became unavailable. This was when the probe status
changed to non-operational. If the probe later returned to the
operational state, the used IP address was born and included
in the analysis. An example is shown in Figure 2. The listing
shows the survival data for two Atlas probes with these
fields: probe ID, active address, duration – number of days
of address assignment, and death tag. The address changes
were observed in day resolution. For example, a change
between the 1st and 2nd day is indicated by an assignment
duration of 1.5 days. In the example, three addresses were
assigned to the first probe. The first two addresses were
changed, the death event was observed, and the tag was set as
‘True’. The third address of the first probe was still assigned
at the end of the observation, and the death event was not
observed and the tag was set as ‘False’. The second probe
used two addresses. Both addresses were changed during the
observation. At the end of the observation, the probe was not
operational, and therefore there was no address with the death
tag set as ‘False’.

FIGURE 2. Sample of IP address assignment observations; full data at [1].

The address death observation is also graphically demon-
strated in Figure 3. A sample of IPv6 addresses is shown

FIGURE 3. Example of right-censoring in address lifetime analysis
(sample). Red lines – death event was observed (address changed).
Blue lines – death was not observed (address was not changed up
to the last day of observation).

for demonstration clarity. The blue lines show the address
assignment durations in days that did not end (death tag is set
as ‘False’). The red lines shows address durations that ended –
their change was observed (death tag set as ‘True’).

The survival function of address lifetime S(t) = P(T > t)
gives the probability of address surviving past t . T is the
random lifetime and t is the time for which the death event
was not observed. The function for the dataset was obtained
by the Kaplan-Meier non-parametric estimator, which is

Ŝ(t) =
∏
ti≤t

ni − di
ni

, (1)

where ti is the time when at least one address per host was
changed (death was observed), di is the number of addresses
that changed at ti, and ni is the number of addresses that
were assigned (alive/at risk of death, also censored) up to the
time ti.
The use of the Kaplan-Meier estimator is based on ful-

filling three assumptions about the input data [20]. i) ‘‘At
any time patients who are censored have the same survival
prospects as those who continue to be followed.’’, ii) ‘‘The
survival probabilities are the same for subjects recruited early
and late in the study’’ and iii) ‘‘The event happens at the time
specified’’. For our data, the first assumption is met as there
is no difference in censored and non-censored addresses in
terms of their survival, i.e. censoring is independent of the
likelihood of address change. The second assumption is met
as there is no difference in terms of survival of addresses that
appeared early or late in the evaluation time span (we assume
that at the global scale, the address assignment duration is
homogeneous in time during six years). The third assumption
is met as the address changes are observed daily, i.e. in a
day resolution, which is a short interval relative to the whole
evaluation time span (this assumption may otherwise cause
problems in healthcare when the exact date of the event is not
known as only evaluated when patients are examined, which
may be in long and irregular intervals.).

The survival probability was evaluated for the address
version. The resulting survival curves are plotted in Figure 4.

The survival curves have a long tail of low-probability
values up to approx. 2000 days.We attempted to fit the curves
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FIGURE 4. Probability of IP address survival. Long lifetime values to
approx. 2000 days are omitted for clarity.

FIGURE 5. Survival curves fitting for (a) v4 and (b) v6 addresses by the
common models. None of the models shows a good match.

by the common survival parametric models. The result for
both v4 and v6 addresses is shown in Figure 5. The curves
show that there was not a good approximation by any of
the best-alternativemodels, whichwereWeibull, LogNormal,
and LogLogistic.

To accurately assess the goodness of fit of the models,
we used two techniques: i) calculation of survival probability
difference at specific days and ii) survival curve similarity
over a period of days. The first assessment is used for the
short-term comparison, as these are the biggest discrepancies
in the survival functions. According to the observed errors
in Figure 5, we set these days as {2, 5, 10}. The second
assessment compares survival curves up to a number of days
by the restricted mean survival time (RMST), which is

RMST(t) =
∫ t

0
S(u)du. (2)

RMST calculates the area under the survival curve up to the
time t . For a good fit, the difference in RMST (i.e. the area
between the survival curves) should be minimal. This assess-
ment compares the survival curves from the long-term view,
and we set the restrictions t as {30, 60, 365} days. Sample
difference in RMST with a time restriction t = 30 is shown
in Figure 6. It shows the graphically-compared best model for
the 5th day, which is LogNormal. The difference in RMST
(the delimited area between the curves) was approx. 1.02.
The figure also shows that the short and long-term results are

FIGURE 6. Long-term comparison of goodness of fit of (a) the LogNormal
parametric model (µ = 0.26 σ = 1.59) against (b) the Kaplan-Meier
non-parametric estimator. Compared is (c) the restricted mean survival
time (RMST) with a time restriction t = 30.

not consistent and therefore support the short and long term
separate evaluation.

Table 2 gives the comparison results for the best-alternative
models by difference to the Kaplan-Meier non-parametric
estimator. The model best-fit parameters are listed in brack-
ets.

TABLE 2. Goodness of fit of the parametric models for v4 and
v6 addresses lifetime. Compared is the survival probability
difference at days and restricted mean survival time (RMST)
up to days. Model best-fit parameters are in brackets.

V. SURVIVAL FUNCTION ANALYSIS
In order to obtain a better fit, we analysed the survival func-
tion properties. The function can also be expressed by its
hazard h(t), which gives the rate of address changes (deaths)
during a time interval (t, t + dt] provided that the changes
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have not occurred up to the time t

h(t) = lim
dt→0

P(t < T ≤ t + dt|T > t)
dt

. (3)

The integral of the hazard function gives the cumulative
hazard

H (t) =
∫ t

0
h(z)dz. (4)

The cumulative hazard was obtained by the Nelson-Aalen
non-parametric estimator, which is

Ĥ (t) =
∑
ti≤t

di
ni
, (5)

where ti is the time when at least one address per host was
changed (died), di is the number of addresses changed at ti,
and ni is the number of addresses assigned (survived/being at
risk of death) up to time ti.
The hazard rate d

dtH (t) for v4 and v6 addresses is shown
in Figure 7. The hazard first significantly increases as many
addresses do not survive the first day, then it has a decreasing
trend with some exceptions.

FIGURE 7. Hazard rate for v4 and v6 addresses survival. Hazard is limited
to 0.25 for clarity.

VI. PIECEWISE PARAMETRIC MODEL
The observed hazard rate in Figure 7 suggests the appli-
cation of the piecewise exponential model. This model is
a set of exponential models between M breakpoints T =
{τ0, . . . , τM−1}. The cumulative distribution function F(t) of
the single exponential model is

F(t) = 1− e−λt , (6)

with its survival function

S(t) = 1− F(t) = 1− (1− e−λt ) = e−λt . (7)

The hazard function is h(t) = λ and the cumulative hazard
is H (t) = tλ. The hazard rate h(t) for the intervals of the
constant λ between M breakpoints T is

h(t) =


λ0, t ≤ τ0
λ1, t ∈ (τ0, τ1]
. . .

λM , τM−1 < t,

t ∈ (0,∞). (8)

For the setting of λ values, we consider the input dataset
properties. Its time span of 6 years is far beyond the scope
of the target applications. Also, the probability of address
survival beyond one year is low – S(365) .= 0.005 for v4 and
S(365) .

= 0.006 for v6. We, therefore, restrict the survival
function S(t) for R = {t ∈ N|t ≤ 365} as S

∣∣
R(t) (defined for

all t in R). The observed hazard changes in Figure 7 suggest
settings of the breakpoints at the 1st and 7th day. We set
another point on the 30th day to cope with the long-tail values
of the survival function. Additional breakpointsmay be set for
a better fit. We set the three points for clarity of presentation
of the modelling process. By assuming the breakpoints T =
{1, 7, 30} and the survival domain R, the cumulative hazard
H (t) =

∑t
i=1 h(i) is

H (t) =


λ0, t = 1
(t − 1)λ1 + H (1), t ∈ [2, 6]
(t − 6)λ2 + H (6), t ∈ [7, 29]
(t − 29)λ3 + H (29), t ≥ 30,

and t ∈ R,

(9)

where the λ values are set for v4 and v6 addresses according
to Table 3. The values were rounded for the clarity of calcu-
lation except for λ0, which is important for the cumulative
hazard offset.

TABLE 3. Value of λ between breakpoints T.

Finally, the restricted survival function of the model is

S
∣∣
R(t) = e−H (t), (10)

where H (t) is the cumulative hazard defined in Eq. 9 with λ
values provided in Table 3. Themodel fit is graphically shown
in Figure 8 and the comparison numbers are shown in Table 4.
The values are presented using the same techniques as
in Table 2. The piecewise model shows the lowest differ-
ence values for both v4 and v6 addresses when compared to
the best-alternative model, which is LogNormal. The largest
improvement in survival prediction in the short-term range
was at the 2nd day for v6 addresses. For this day, the proba-
bility difference of the best-alternative LogNormal model to
the non-parametric Kaplan-Meier estimator was 14%. The
Piecewise exponential model had a difference in survival
probability only of 2%. In the case of the long-term eval-
uation, the largest improvement was on the 365th day again
for v6 addresses. The alternative LogNormal model had an
area-under-curve difference to the Kaplan-Meier estimator
of 7.6, whereas the Piecewise exponential model had an area
difference only approx. 1. We note that adding more pieces
to the Exponential model would result in an even better
fit and thus providing larger improvements in the survival
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FIGURE 8. Piecewise exponential model goodness of fit with breakpoints
(change in λ) T = {1,7,30} days. The model shows a good match for both
(a) v4 and (b) v6 addresses.

TABLE 4. Goodness of fit of the piecewise exponential model derived
from hazard rate analysis. Error (difference) values compared to the
best-alternative models.

probability modelling. We used the three pieces for clarity
of presentation.

VII. CUSTOM MODELLING
The proposed general model was derived from the dataset
with a long history of worldwide address assignment dura-
tions. However, assignment durations vary across ISPs
(Internet service provider) and ASs (autonomous system).
These differences are given by the custom configuration of
the address leasing devices and, also, by various environmen-
tal/administrative factors, such as planned periodic changes,
networking outages, device reconfigurations, and power sta-
bility. Specifically, work [2] studied the correlation of address
changes to outages. The finding was that the likelihood of
address change caused by outages varies across ASs. The
other relevant finding was that the outage length affects the
number of changed addresses.

For these reasons, we discuss the process of custom mod-
elling for specific ISPs and ASs. A prerequisite for a custom

model is the availability of a dataset of prior address assign-
ments. Such custom dataset may not cover a long assignation
history, as our dataset used for the general model. A shorter
history means a larger proportion of addresses for which the
change (death event) has not been observed yet.

The survival analysis copes with these unfinished observa-
tions, as demonstrated in Table 5 for our dataset. It shows that
the censoring numbers are low compared to the total number
of observed changes at each time interval, thus having a
relatively small effect on the result. However, we deliberately
used the survival analysis concept as the censoring allows
extensions for custom modelling.

TABLE 5. Head of the life table for the dataset with a long history. The
censoring is important for custom modelling based on limited datasets.

For the custom models, the intervals of constant λ will
vary. Their setting is based on observation of the hazard
rate h(t), which is a derivation of the cumulative hazardH (t).
H (t) is directly obtained for a dataset by Eq. 5 (Nelson-Aalen
non-parametric estimator). We suggest the breakpoints place-
ment at the points of hazard rate where the curve goes oppo-
site to its general trend, as used in the general model. This
process may be automated by software for batch modelling.
However, care should be taken when obtaining h(t) by deriva-
tion ofH (t). Some derivation software use by default a kernel
smoother with bandwidth to smooth the resulting curve.
Improper smoothing may produce hazard with the changes
exaggerated or lost. For example, the Lifelines software [21]
uses the Epanechnikov kernel

D(t) =


3
4
(1− t2), |t|< 1

0, otherwise.
(11)

Other way is to perform simple numerical derivation
H (t+1t)−H (t)

1t with the address assignment observation period
1t equal to a day. A suitable derivation ofH (t) for the break-
points settings is shown in Figure 9. The linear approximation
of the hazard between the breakpoints determines the λ values
to be used in Eq. 9.

VIII. SECURITY USE-CASE
We give an example of use in security, particularly fraud pre-
vention. Assume a user has been logging to an on-line service
from the same device’s IP address in the period of 10 days
(up to now). What is the probability that the user will login
after two days (during the 3rd day) from the same device using
this IP address? (i.e. also from the same NAT network). The
example is calculated for IPv4. We employ the conditional

VOLUME 8, 2020 162513



D. Komosny, S. U. Rehman: Survival Analysis and Prediction Model of IP Address Assignment Duration

FIGURE 9. Derivation of hazard rate from cumulative hazard. Improper
smoothing bandwidth may result in wrong breakpoints settings.

survival function

S(t|T > D), (12)

where D is the number of days when the address was used
by a host. Considering t > D (T > t ⊂ T > D) and by
S(t) = P(T > t) we obtain

S(t|T > D) =
P(T > t ∩ T > D)

P(T > D)

=
P(T > t)
P(T > D)

=
S(t)
S(D)

=
e−H (t)

e−H (D) . (13)

By substituting the hazard rates λ given in Table 3 to
Eq. 9 we specify the cumulative hazards H (t) and H (D). The
restricted survival function (Eq. 10), S

∣∣
R(D) for D = 10 is

S
∣∣
R(10) = exp(−H (10)) = exp

(
−

10∑
i=1

h(i)
)

= exp
(
−
(27
25
+ 5×

1
8
+ 4×

1
24

)) .
= 0.154.

We now have the restricted conditional survival function
S
∣∣
R
(t)

0.154 . Solving the restricted function for t = 12 results in

S
∣∣
R(12) = exp(−H (12)) = exp

(
−

12∑
i=1

h(i)
)

= exp
(
−
(27
25
+ 5×

1
8
+ 6×

1
24

)) .
= 0.142,

which finally gives
S
∣∣
R
(12)

S
∣∣
R
(10)

.
= 0.92.

Application in fraud prevention – a high-probability (92%)
of login in two days from the same device’s IP address after a
ten-day use of the same IP address, may enforce a two-factor
authentication if the actual login address is different.

IX. CONCLUSION
We presented an approach to predict the IP address assign-
ment duration. The novelty is in the application of survival
analysis, which is commonly used in healthcare. This concept
allows censorship, which is useful when the datasets of prior
address assignments do not cover a long period. Based on

the created dataset of worldwide assignments over 6 years,
we specified a general model of address lifetime expectancy.
We further discussed the custommodelling for the caseswhen
address survival prediction is made locally, i.e. when the
hosts come from specific ISPs and ASs. As an example of
use, we described a use-case in security, specifically in fraud
prevention, where the prediction model is used as a trigger for
two-factor authentication. The created dataset of addresses
assignments is made publicly available at [1].
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