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1  INTRODUCTION 
Functional magnetic resonance imaging (fMRI) utilizing the blood oxygenation 

level dependent (BOLD) effect as an indicator of local activity is a very useful 
technique to identify brain regions that are active during perception, cognition, 
action, but also during rest. The present research interest that dominates in fMRI 
neuroimaging community can be summarized by quoting Karl Friston [1]: "A great 

deal of brain mapping is focused on functional segregation and the localization of 

function. Functional localization implies that a function can be localized in a 

cortical area, whereas segregation suggests that a cortical area is specialized with 

some aspects of perceptual or motor processing, and that this specialization is 

anatomically segregated within the cortex. The cortical infrastructure supporting a 

single function may involve many specialized areas whose union is mediated by the 

functional integration among them. In this view, functional segregation is only 

meaningful in the context of functional integration and vice versa.". Since it is 
generally believed that human cognitive functions emerge from dynamic 
interactions of brain networks [2], it is not surprising that in the last decade there has 
been an increasing  interest in identifying relationships among brain regions in order 
to better understand functional integration. This has lead to the formulation of 
connectivity analysis methods that attempt to identify associated brain regions and 
their interactions [3-5].  

There are two distinct concepts of investigating brain network connectivity 
(integration) in fMRI data. First, there is a functional connectivity, which refers to 
correlated structures (or any other information theoretic measure) in the data such 
that brain areas can be grouped into interacting networks. This is usually accessed 
either by a pair-wise correlation (or a coherence in frequency domain) between a 

 

Figure 1.1  The functional and effective connectivity. The conceptual illustration of 

functional connectivity (left) and effective connectivity (right) with corresponding 

connectivity matrix representation.   
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region of interest (ROI) and the rest of the brain [6] or by a multivariate approach 
such as independent component analysis (ICA) [7, 8]. Second, there is effective 

connectivity, which refers to the influence that one neural system exerts over 
another, either at the synaptic or population level [9]. In other words, effective 
connectivity moves beyond statistical dependency of functional connectivity,  onto 
measures of directed (causal) influence. This is accessed through models of 
interactions, which try to explain observed dependences (functional connectivity). In 
addition, there is a principal difference between these two concepts regarding the 
questions they are able to address. Critically, effective connectivity enables to 
distinguish between a correlation and a causation. Just because two events correlate 
does not mean that one has caused the other.  

Evaluation of effective connectivity often requires the definition of a structural 
model, i.e. an assembly of brain regions (nodes) among which the causal influence is 
assessed. In this work, the main interest rests upon the effective connectivity 
framework, where an overview of the most common methods is provided in the 
introduction to Chapter 3.  

Following the above mentioned definition of effective connectivity, it is desirable 
to detect causal influences among different brain regions at the neuronal (synaptic) 
level. This desire automatically raises an important question: Considering that the 
BOLD signal offers only a very indirect measure of neuronal activation, is it 
possible to evaluate effective connectivity at the neuronal level from fMRI data? In 
fMRI we measure hemodynamic responses, which reflect changes in blood flow and 
blood oxygenation that follow neuronal activation. Crucially, the form of this 
hemodynamic response can vary across subjects and different brain regions [10, 11]. 
These facts seriously complicate the identification of effective connectivity from 
fMRI [12]. However, one can reasonably justify that if it is possible to remove the 
effect of this hemodynamic blurring and variation, we could still achieve the aim of 
identifying effective connectivity from fMRI data.  

 

Figure 1.2  The diagram of physiological process underlying BOLD signal.  
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In general, the relationship between initial neuronal activation and our fMRI 
observations rests on a complex biophysiological dynamic process (see Figure 1.2). 
If this process is known and well described, it can be approximated by mathematical 
modeling. Fortunately, the physiological mechanisms mediating the relationship 
between neuronal activation and vascular/metabolic systems have been studied 
extensively [13-15] and models of hemodynamic responses have been described at 
macroscopic level. This hemodynamic model is nonlinear in nature [16-18]. The 
model flowchart is summarized in Figure 1.3. Here, the neural activity �(�) causes 
an increase in vasodilatory signal ��(�) which is subject to auto-regulatory 
feedback. This flow-inducing signal is artificially designed to subsume many 
neurogenic and diffusive signal subcomponents. Blood flow ��(�) responds in 
proportion to this signal and causes changes in blood volume ��(t) and 
deoxyhemoglobin content, �	(�). The dynamics of these four hemodynamic states 
are modeled by a set of differential equations. Finally, the observed BOLD signal 
� 	at discrete times is obtained as a nonlinear combination of blood volume and 
deoxyhemoglobin content. 

Considering this model, there are several ways to perform mapping from 
observed data to estimated neuronal signals that interact among each other, where 
this is partly defined by the experimental design conducting the acquisition of the 
data. For example, in the case of an experiment with specific task (task data), we 
have prior knowledge of the stimulation paradigm (i.e. any kind of stimulus 
presented to the subject during a scanning session), which can be used as the 
definition of a driving exogenous input into the model. It is then possible to model 
the relationship between neuronal signals and observed responses by considering a 
deterministic model [3], and simply infer the model parameters to fit the data. This 
formulation is often unsatisfactory since unexpected contributions in the "real 
world", which deviate from the model, disturb the considered dynamic phenomena 
so that the deterministic models have a little explanatory power concerning the 
dynamics [19]. Therefore, it is usually preferable to consider some additive 
randomness to the modeled process, which then represents stochastic modeling [20, 
21]. This approach is more general and is expected to have much more explanatory 
power than the deterministic one [22]. In a related context, there are many fMRI 

 

Figure 1.3 The flowchart of nonlinear hemodynamic model.  
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studies, where the data are collected when the subject is at rest (resting-state data). 
In this case, there is no stimulation paradigm and therefore no exogenous input that 
can be used for modeling. It means that the neuronal signal, which generates 
observed hemodynamics, has purely endogenous character. Until very recently, this 
fact did not allow estimation of effective connectivity in resting-state fMRI data. It 
is specifically the form of stochastic modeling, which enables the estimation of 
neuronal signals and their interactions without any prior knowledge of exogenous 
input that allows evaluation of effective connectivity even in resting-state data [22-
25]. Critically, the inversion of such a stochastic model leads to a blind 
deconvolution1 problem, which is described as estimating the unknown input to a 
dynamic system, given output data, when the model of the system contains unknown 
parameters [26]. 

 
1.1 SCOPE AND CONTRIBUTION OF THE THESIS 

In the introduction we have emphasized the general problem of estimating the 
effective connectivity among different brain regions from fMRI data. This problem 
stems from the fact that the BOLD signal is an indirect measure of the neuronal 
signal, and the shape of hemodynamic response function varies across different 
brain regions and also across subjects. In order to enable the identification of 
effective connectivity from fMRI data that is in the agreement with the true effective 
connectivity at the neuronal level, one has to solve the inverse ("deconvolution") 
problem. Moreover, we have also highlighted the methodological enrichment in 
considering stochastic representation of dynamic modeling as opposed to the limited 
deterministic one. Finally, we have mentioned the motivation to the inverse 
problem, where we do not have a prior knowledge of exogenous input, as it can be 
applied also to the resting-state data. 

Although some attempts were already made in this direction as discussed above, 
there is still considerable room for improvement. Here, the main aim is to build a 
more accurate but less restrictive estimation approach that can be broadly applied to 
any fMRI data.   

The successful solution to this inverse problem, i.e. successful estimation of the 
neuronal signal, requires the following:   

1) An estimation framework that is able to handle the nonlinear characteristics of 
a hemodynamic model that couples neuronal activity to BOLD signal. 

2) Fully stochastic modeling, since no model is completely able to catch the real 
world dynamics and that at any modeled physiological level, the likely 
contribution of the noise has to be taken into account. Moreover, the 
endogenous neuronal signal can be recovered only by considering a stochastic 
modeling. 

                                           
1 A note on terminology is needed here: although convolution is usually defined as a linear operation, the term 

deconvolution is generally used in reference to the inversion of nonlinear (generalized) convolution models (i.e. 
restoration); we adhere to this convention. 
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3) A robust approach to stochastic continuous-discrete modeling, because the 
causal chain of hemodynamic model is described in continuous time and, as 
required above, should also account for randomness.  

4) An efficient framework for the estimation of model parameters in order to 
achieve a good fit of the model to the data and allow for diversity of 
hemodynamic responses across the brain. Additionally, this framework should 
preferably enable sequential modeling of conditional dependencies between 
parameters and modeled states.  

These points define the topics that are addressed in this thesis (in the first half of 
the thesis in particular). When considering a suitable estimation framework that 
could possibly meet all the above requirements, the preference was to use and 
further develop new methods from the field of engineering, in the hope that their 
introduction to the society of computational neuroscience could raise the interest. 
Another important factor was to consider reasonable computational demands of the 
employed methods. A great deal of effort has been devoted to the introduction, 
description and motivation of using these methods. Specifically, we took an 
advantage and highlighted a recent development of new nonlinear cubature Kalman 
filter [27]. In this context, special attention is devoted to the joint state-parameter 
estimation problem. Another relevant part of the thesis describes an accurate 
discretization of continuous model based on local linearization scheme [28] and 
online Bayesian learning of measurement noise statistics. 

In the latter part of the thesis, we generalize the inverse problem into the 
multivariate case, where multiple brain regions are involved and where the model of 
causal interactions at the neuronal level is considered. Critically, this introduces a 
new concept in evaluation of effective connectivity through stochastic dynamic 
causal modeling. This is accompanied by a description of the second level inference 
that is known as model selection. In particular, we discuss a Bayesian approaches to 
model selection based on different approximations of the marginal likelihood. 
Consequently, we introduce a simple algorithm for detection of irrelevant 
parameters in neuronal interaction model based on network pruning.     

Finally, in the last part we validate the proposed method from different 
perspectives, and try to address questions, which presently dominate in the 
neuroscience community, regarding possible application of methods for analysis of 
effective connectivity. 

This thesis proposes the following: 
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Contribution to computational neuroscience: 

• A novel approach to the nonlinear modeling of hemodynamic signal, where the 
underlying neuronal signal is estimated from the measured BOLD time series. 
This approach performs a blind (nonlinear) deconvolution, where the model 
parameters, physiological states and mainly the endogenous input into the model 
(neuronal signal) are estimated from measured data.    

• A new approach for the evaluation of effective connectivity based on stochastic 
dynamic causal modeling. This enables inversion of full connectivity models 
without knowing the driving input or having a hypothesis about the connectivity 
structure. This means that the a priori unknown model of neuronal interactions is 
learned from the data.  

Contribution to engineering methodology: 

• Formulation of combined use of cubature Kalman filtering and Rauch-Tung-
Striebel smoothing in system identification for joint estimation of the hidden 
states, model parameters, and endogenous model input. The convergence is 
supported by an  iterative scheme that automatically maximizes the log-
likelihood. 

• A new algorithm for estimation of continuous-discrete state-space models based 
on combination of the (square-root) cubature Kalman filter and local linearization 
scheme, which provides an accurate and stable discretization of a continuous 
model represented by stochastic differential equations.  

• A new nonlinear adaptive Kalman filter for joint estimation problem, where the 
measurement noise covariance is effectively learned through a variational 
Bayesian approach, and parameter and state noise covariance are estimated by the 
Robbins-Monro stochastic approximation scheme. 
 
 
Note that this short version of dissertation thesis contains only a very limited 

mathematical description and validation of the developed approach. Any potential 

reader is strongly encouraged to see the complete version, which can be 

downloaded at: https://sites.google.com/site/havlicekmartin . 
 

 



2  ESTIMATION OF NEURONAL SIGNAL FROM FMRI 
DATA 

The nonlinear hemodynamic model naturally forms the state-space model, where 
the measured data are related to the subset of state-space variables (physiological 
states) by an observation equation. In this continuous-discrete time dynamic system, 
which represents a generative model of the BOLD signal, both state and observation 
equations are nonlinear and polluted by physiological and instrumental noise, 
respectively. In general, the estimation of the state of a continuous system from 
noisy discrete observations can be performed using the nonlinear filter theory, which 
is an extension of the original framework (Kalman filter theory) formulated to 
provide a sequential and computationally efficient solution to the linear filtering and 
prediction problems [29]. Finding the optimal nonlinear system identification 
method (i.e. the estimation of the model parameters and the trajectories of 
unobservable states) is an active research area.  

In this chapter we introduce a new approach to this identification problem. In 
particular, we will first provide a short introduction to the probabilistic inference 
based on optimal recursive Bayesian solution. Since this solution is tractable only 
for linear systems, we will focus on very recent developments in nonlinear Kalman 
filtering based on efficient cubature integration rules [27]. This numerical tool called 
cubature Kalman filtering will serve as the cornerstone for further extensions and 
developments. Specifically, we will describe the cubature Rauch-Tung-Striebel 
smoother to obtain more accurate estimates of the state, including efficient square-
root implementation. Next, we propose the joint estimation framework to 
simultaneously infer the hidden states and model parameters. We will also introduce 
a new filtering approach for hybrid continuous-discrete systems based on an 
accurate discretization scheme of stochastic differential equations called local 
linearization combined with the above mentioned cubature integration rules. 
Consequently, in order to make the algorithm easily adaptable to the real data, we 
will discuss the extension to adaptive filtering through Bayesian estimation of the 
measurement noise covariance [27], and Robbins-Monro approximation of the 
parameter and state noise covariance matrices [30].  

Finally, all these extensions and developments will be combined into one single 
algorithm, which will represent a new approach to estimation of neuronal signal 
from BOLD responses; i.e. the blind (nonlinear) deconvolution approach where all 
the hemodynamic states, the model parameters and mainly the input (neuronal 
signal) are estimated from observed BOLD responses.  
 

2.1 PROBABILISTIC INFERENCE 

The problem of estimating the hidden states (causing data), parameters 
(influencing the dynamics of hidden states) and any non-controlled endogenous 
input to the system, in a situation when only observations are given, requires 
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probabilistic inference. If we interpret our data through a dynamic state-space model 
(DSSM), then we are facing the sequential (recursive) probabilistic inference 
problem.  

Assuming the first-order Markov process, a discrete dynamic state-space system 
is described by a pair of equations: 

 

� = �(
���, ����; �) + ���� �� = �(
� , ��; �) + �� , (2.1) 

(2.2) 

where the first equation represents the system (state) model, describing the 
evaluation of the states 
� as a function of time. Here, ���� is the process (state) 
noise that drives the dynamic system through an arbitrary (possibly nonlinear and 
time-varying) transition function �, and �� is the exogenous input to the system that 
is usually assumed known (though later in this thesis �� will be considered 
unknown). The second equation represents the measurement (observation) model, 
where the measurement noise �� corrupting the observation of the (hidden) states 
through arbitrary observation function �. Both � and � can be parameterized using a 
set of parameters �. In a Markovian setting, the current state 
� depends only on the 
immediate past state 
��� through the state-transition distribution �(
�|
���); i.e. 
conditional probability density. The observations �� are conditionally independent, 
given the state, and are generated according to the observation likelihood �(��|
�) 
[31]. Therefore, the dynamic state-space model, together with the known statistics of 
the noise (and the prior distribution of the system states), defines a probabilistic 
generative model of how system evolves over time and how we (partially or 
inaccurately) observe this hidden state.  

The optimal solution to the above inference problem is given by the recursive 
Bayesian estimation algorithm, which recursively updates the posterior density of 
the system state �(
�|��)	as new observations arrive. Generally in Bayesian 
framework, the posterior density 	of the states �(
�|��:�)	given all the observations ��:�, embodies the complete solution to the probabilistic inference problem. In other 
words, �(
�|��:�) contains all information necessary to calculate an optimal estimate 

 

Figure 2.1 Schematic diagrams of probabilistic inference. (a) Given noisy observation y, 

what can we infer about system state, parameters or input. (b) Graphical model of a 

probabilistic dynamic state-space model. This representation is also known as a directed 

acyclic graph (DAG) in the graph theory field. 
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of the state, such as the conditional mean: 

 
��|� = ��
�|��:� = ! 
�ℝ#$ �(
�|��:�)%
� , (2.3) 

and the covariance matrix, as a measure of accuracy of the estimate 
��|�: 

  

&�|� = �'(
� − 
��|�*(
� − 
��|�*+, 
= ! (
� − 
��|�*(
� − 
��|�*+�(
�|��:�)%
�ℝ#$ . (2.4) 

For linear and Gaussian dynamic systems, where � and � are linear functions and 
additive noise and state prior distributions are Gaussian, the solution to the filtering 
recursion is obtained by well known Kalman filter [32]. The Kalman filter provides 
the posterior filtering distribution of the state 
� at time �	given the history of the 
measurement up to the time step �, �(
�|��:�). However, it is also possible to obtain 
the smoothing distribution �(
�|��:+), where the posterior of the state is computed at 
the time step � after receiving the measurements up to time step ., where . > �. 
Typically, a smoother is statistically more accurate than filter, as it use more 
observations. The solution to the forward-backward smoothing is then obtained via 
Rauch-Tung-Striebel smoother (RTS) [33]; i.e. fixed interval Kalman smoother. 

Unfortunately, in more realistic environment, which is nonlinear and possibly 
non-Gaussian,  the optimal Bayesian recursion is intractable and an approximate 
solution must be used. Numerous approximation solutions to the recursive Bayesian 
estimation problem have been proposed over the last couple of decades. Here we 
mention only the basic categories:  Gaussian approximate methods [34]; direct 
numerical integration methods [35]; sequential Monte Carlo methods [36]; 
variational Bayesian methods [37]. More detailed overview can be found in the full 
version of the thesis. 

The selection of suitable sub-optimal approximate solutions to the recursive 
Bayesian estimation problem represents a trade-off between global optimality on 
one hand and computational tractability (and robustness) on the other hand. In our 
case, the best criterion for sub-optimality is formulated as: “Do as best as you can, 
and not more”. Under this criterion, the natural choice is to apply the cubature 
Kalman filter [27]. The CKF is the closest known direct approximation to the 
Bayesian filter, which outperforms all other nonlinear filters in any Gaussian setting, 
including particle filters [27, 38, 39]. The CKF is numerically accurate, can capture 
true nonlinearity even in highly nonlinear systems, and it is easily extendable to high 
dimensional problems (the number of sample points grows linearly with the 
dimension of the state vector). The CKF belongs to the group of so-called Gaussian 
assumed density filters, which are considered as local approximation methods. 
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2.1.1 Cubature Kalman filter and smoother 

Cubature Kalman filter 

The cubature Kalman filter [27] is a recursive, nonlinear and derivative free 
filtering algorithm, which computes the first two moments (i.e. mean and 
covariance) of all conditional densities by using the third-degree cubature 
integration rules to approximate n-dimensional Gaussian weighted integrals; i.e. 
integrals of the form 010230456	7809�310	 × ;58<<350	%40<3�
. Critically, this 
cubature rule defines a way how to deterministically select a set of cubature points, 
and their corresponding weights, so that they completely capture the true mean and 
covariance of the prior random variable 
~>(
?, &):  

 ! �(
)>(
; 
?, &)%
	 ≈		ℝ#$ ABC�(DC),�E
CF�  (2.5) 

where the weights are simply BC = ��E, with 0 equals the state dimension, and 

 DC = 
? + GC√&,							3 = 1,… , 20. (2.6) 

This involves factorization of error covariance matrix & = √&√&+
 and the 

elementary cubature points are: 

 GC = L √0MC , 3 = 1, 2, … , 0−√0MC , 3 = 0 + 1, 0 + 2,… , 20.N (2.7) 

Here MC represents the i-th column vector, whose i-th entry is a unit and all other 
entries are zero.  From this definition, it can be seen that the cubature points are 
distributed uniformly on a sphere centered at the origin, and their number increases 
linearly with the state dimension. Unlike the most common nonlinear filter called 
the extended Kalman filter, CKF effectively approximates both the Jacobian and 
Hessian accurately (in statistically average sense) through its cubature point 
propagation, without the need to perform any analytic differentiation. 

 

Figure 2.2 Illustration of cubature points propagation during time update of CKF. The 

cubature points in the two-dimensional state-space are propagated between time steps. The 

circles represent cubature points; the new cubature point set at time � + 1	is computed by 

simply propagating the old cubature point set at time � through the process equation.  
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In order to evaluate the dynamic state-space model described by (2.1)-(2.2), the 
CKF includes two standard Kalman filter steps: a) a time update, after which the 
predicted density �(
�|��∶���) = >(
��|���, &�|���) is computed; and b) a 
measurement update, after which the posterior density �(
�|��∶�) = >(
��|� , &�|�) is 
computed.  

 

Cubature Rauch-Tung-Striebel smoother 

The same approximation principles that were used in cubature Kalman filter can 
be applied also during the backward pass of the Rauch-Tung-Striebel (RTS) 
smoother, yielding the cubature RTS smoother. The backward pass is used for 
computing suitable corrections to the forward filtering results to obtain the 
smoothing solution �(
� , ��:+) = >(
��|+|
��|+P , &�|+P *. Because the filtering and 
smoothing estimates of the last time step . are the same, we make 
�+|+P = 
�+|+, &+|+P = &+|+. This means the recursion can be used for computing the smoothing 
estimates of all time steps by starting from the last step � = . and proceeding 
backward to the initial step � = 0. To accomplish this, all estimates of 
�R:+ 	and &R:+ 
from the forward pass have to be stored to be later reused during the backward pass. 
Note that we will use an abbreviation CKS to refer to the forward run of cubature 
Kalman filter followed by the backward run of the cubature RTS smoother. 

A detail description of CKF and CKS algorithms including their efficient square-
root implementations are provided in the full version of the thesis.  

 
2.1.2 Sequential join state-parameter estimation 

It is very often the case that both hidden states of dynamic process and model 
parameters are unknown and have to be inferred from the measured data.  Moreover, 
there might be even a situation, where one wants to estimate also the unknown input 
into the system. This special case of system identification can be consider as a blind 
(nonlinear) deconvolution problem, which is described as estimating the unknown 
input to a dynamic system, given output data, when the model of the system contains 
unknown parameters. The nonlinear cubature Kalman framework is a well suited 
approach to robust parameter estimation. What we should add now is the fact that 
because of so-called natural condition of control [27], it is possible to generate the 
input S� using the state prediction 
��|���. In our case it means that if we augment the 
state vector by the process representing the input with input noise T�~>(0, U�) and 
by the process for parameters (Gaussian random walk model) with process noise V���~>(0,W���), we can estimate the system input and parameters together 
(jointly) with the states. By saying this, we are trying to solve a dual estimation 
problem, where under consideration of a nonlinear dynamic system, the system 
states 
�, the parameters �� and the input S�, are estimated simultaneously from the 
observed noisy signal ��.  
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It should be noted that by the input S� we mean an endogenous input (or signal), 
which might be different from the exogenous input ��. In the context of fMRI, the 
input �� is presented to the subject, whereas S� reflects the actual neuronal response, 
which might (or might not) reflect the exogenous stimulus. In other words, there is 
always some endogenous activity present in brain even in the absence of any 
external stimuli, i.e. at rest. 

A general theoretical and algorithmic framework for dual Kalman filter based 
estimation was presented in [40], [31]. This framework encompasses two main 
approaches, namely joint estimation and dual estimation. In the dual filtering 
approach, two Kalman filters are run simultaneously (in an iterative fashion) for a 
state and a parameter estimation. At every time step, the current estimate of the 
parameters �� is used in the state filter as a given (known) input and likewise, the 
current estimate of the state 
�� is used in the parameter filter. This results in a step-
wise optimization within the joint state-parameter space. On the other hand, in the 
joint filtering approach, the unknown system state and parameters are concatenated 
into a single higher-dimensional joint state vector, X� = �
�+ , S�+, ��+ +. This results in 
a smoothed convergence in the joint state-parameter space (see Figure 2.3).  There is 
a prevalent opinion that the performance of joint estimation scheme is superior to 
dual estimation scheme [31, 40, 41]. Therefore, the joint estimation framework 
based on cubature Kalman filtering and smoothing is considered in this work.   

The state-space model for joint estimation scheme is then formulated as: 

 X� = Y
�S���Z = Y�(
���, ����, S���)S�������
Z + Y�[�\T���V���Z 

�� = �(X�) + �� . 
(2.8) 

 (2.9) 

Since the joint filter concatenates the state and parameter variables into a single 
state vector, it effectively models the cross-covariances between the state, input and 
parameters estimates: 

 

Figure 2.3 Illustration of joint filtering scheme. (a) Both model states and parameters are 

estimated simultaneously in the augmented form of the state vector. (b) Joint state-

parameter optimization space.  
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 &� = ] &^,� &^_,� &^`,�&_^,� &_,� &_`,�&`^,� &`_,� &`,�
a. (2.10) 

This full covariance structure allows the joint estimation framework not only to 
deal with uncertainty about parameter and state estimates (through the cubature-
point approach), but also to model the interaction (conditional dependences) 
between the states and parameters, which generally provides better estimates [31, 
40]. Note that since the parameters are estimated simultaneously with the states, the 
convergence of parameter estimates depends also on the length of the time series. 
Therefore, we propose a joint estimation scheme, where iterating cubature Kalman 
filter and smoother steps automatically maximizes the log-likelihood and provides a 
fast convergence of model parameters and accurate estimates of hidden states 
including the endogenous input. 

 
2.1.3 Continuous-discrete cubature Kalman filter 

In previous sections, we have considered the state-space model to be described in 
a discrete time, however, in case of hemodynamic model, the process equations of 
state-space model are derived from underlying physics of a continuous dynamic 
system, and are expressed in the form of a set of differential equations. But still, the 
measurements �� are acquired by digital devices; i.e. they are available at discrete 
time points (� = 1,2,… , .). Therefore, we have a model with a continuous process 
equation and a discrete measurement equation. The stochastic representation of this 
state-space model, with additive noise, can be formulated as: 

 
%
(�) = �(
(�), �)%� + bc%d(�) 

�� = �(
� , �) + �� , 
(2.11) 

(2.12) 

where 
(�) is the state of the system at time �; �(. ) is a known nonlinear drift 
function; d(�) denotes standard Brownian motion that is independent of 
(�); and c 
is a known diffusion matrix. The process equation is the simplest form of Itô's 
stochastic differential equation [42]. The system is observed through the noisy 
measurements in discrete time intervals (discrete times are denoted as subscripts).    

The recursive Bayesian solution to the above continuous-discrete model is very 
similar to the standard Kalman filter. The only difference appears during the time 
update step of Kalman filter, where the old posterior density is propagated trough 
the process equation (2.11). In this case, the probability density of the state at time � 
obeys the Fokker-Plank equation (FPE), which describes the evolution of 
probability density between the measurement time instants. The exact solution to 
FPE is available only for linear Gaussian system represented by the time update of 
Kalman-Bucy filter [43]. In other cases, the FPE has to be approximated. Here we 
consider methods, which compute a finite number of summary statistics in terms of 
conditional moments after discretizing the continuous time process equation. 
However, the aim will not be to develop an approximate nonlinear filter by 
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approximating continuous time filter equations (as it is often the case), but rather to 
use the standard discrete time filtering equations for an approximate discrete time 
model of the original continuous time dynamical system [28]. This automatically 
puts high demand on accuracy of the method that discretizes the model represented 
by stochastic differential equations. In this sense we are seeking a good discrete time 
approximation of the continuous stochastic dynamical model for nonlinear and 
Gaussian multivariate process 
(�) that is consistent and stable. 

We introduce a new approach to continuous-discrete filtering that combines 
statistical linearization using cubature rules with local linearization (LL) scheme for 
accurate and stable discretization of continuous model.  The LL scheme intuitively 
assumes the nonlinear function �(. ) to be locally linear with respect to the process 
(�), where its Jacobian e^	is constant: 

 
�fg = 
� + e�̂��exp(e^k) − l �(
�). (2.13) 

This local linearization equation corresponding to the first order linear 
approximation [28]. Additionally, it is possible to apply the LL scheme also to the 
random term of the state equation in (2.11) that follows multivariate normal 
distribution with zero mean vector and covariance matrix [19]: 

 c�fg = ! exp(e^k)bc�bc�+ exp(e^k)+ %� .

�fg
�  (2.14) 

The combination of cubature Kalman filter with local linearization provides a very 
accurate estimates of hidden states even in case when a larger integration step k is 
applied. Moreover, this scheme is well suited to the joint estimation framework that 
was discussed earlier. More detailed derivation of this approach is provided in the 
full version of the thesis.   
   

2.1.4 Adaptive estimation of noise statistics 

The Kalman formulation of filtering problem assumes complete a priori 
knowledge of the process and measurement noise statistics. In most practical 
situations, these noise statistics are unknown or not known perfectly. When incorrect 
prior statistics are used to implement sequential filtering algorithm, it might result in 
suboptimal performance and possibly in filter divergence. Therefore, in the lack of 
system statistics knowledge, it is desirable to adaptively estimate the process noise 
and measurement noise statistics simultaneously with the system state. Since we 
already have the preference to perform joint estimation of the states and parameters, 
it is a logical choice to adaptively estimate the noise statistics as well.  

In standard Kalman filtering framework, all noise statistics are described by the 
first two statistic moments, i.e. by the mean and the covariance, where the mean is 
usually assumed to be zero. Therefore, the goal of adaptive filtering is to estimate 
the covariances of process noise and measurement noise.  
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In the case of parameter estimation, the amount of oscillations in the model 
prediction clearly depends on the value of the (parameter) process noise covariance. 
As a result, this covariance can be used as a regularization mechanism to control the 
smoothness of the prediction.  

Relatively robust approach to recursive estimation of noise covariance is the 
Robbins-Monro (RM) stochastic approximation [44]: 

 W� = m`W��� + (m�̀� − 1*n�o�� − p(
�; �q�*ro�� − p(
�; �q�*r+n�+ (2.15) 

The method assumes that the covariance of the Kalman update model should be 
consistent with the actual update model. Here, m` ∈ N(0,1N  is called the forgetting 
factor, which allows to put exponentially decaying weigh on past data, and n� is the 
Kalman gain. It is known that an RM approximation provides a very fast 
convergence and a low final MMSE [31].  

The RM helps to escape poor local minima of the error surface. We made a 
choice to apply the RM approximation to the recursive estimation of parameter noise 
covariance W� and also to approximate the process noise covariance matrix c�, since 
it proved to have better convergence properties [31]. We should also note that we do 
not expect to estimate the exact process noise covariance of the dynamic model with 
RM approach. The aim here is to maintain some artificial level of randomness, 
which supports the convergence of the algorithm, and prevents the filter from 
becoming overconfident with the estimate (i.e. it avoids overfitting). By saying this, 
we consider the noise covariance of the input to be fixed. In this case, any attempt to 
adaptively estimate the input noise covariance led to the quick divergence of the 
filter.  

The most important part in adaptive filtering is accurate estimation of 
measurement noise statistics. For this particular task, we consider a recently 
introduced variational Bayesian (VB) approach [45] to recursive estimation of 
measurement noise covariance, which is suitable also to nonlinear filtering and is 
able to take the advantage of assumed Gaussian density filter such as CKF.  

If the measurement noise covariance t� is unknown then the goal of Bayesian 
filtering is to compute the joint posterior distribution �(
� , t�|��:�) of the state 
� 
and of the covariance t�. The posterior is given by a product of observation 
likelihood and predictive distribution, which now takes a form: 

 �(
� , t�|��:�) ≈ �(��|
� , t�)�(
� , t�|��:���). (2.16) 

At this point, in order to make the computation of posterior (2.16) tractable, it is 
possible to apply the VB approach. The VB usually applies the mean field 
approximation [37] that factorizes the posterior distribution as follows: 

 �(
� , t�|��:�) ≈ u^(
�)uv(t�), (2.17) 
where u^(
�) and uv(t�) are in our case the approximations of normal and inverse-
Gamma densities, respectively. It is further assumed that the measurement noise 
covariance has a form of diagonal matrix t� = diag({�,� , … , {|,�). The inverse-
Gamma distribution is chosen because it represents the conjugate prior distribution 
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for variance of Gaussian distribution. The VB approximation can now be formed by 
minimizing the Kullback-Leibler (KL) divergence between the separable 
approximations and the true posterior distribution [45], where the solution can be 
obtained iteratively along with the measurement update of Kalman filter.  

We have extended this approach also to the nonlinear models, where we use a 
cubature integration rules to approximate the coefficients of inverse-Gamma 
distribution, which then provide the estimate of measurement noise covariance 
matrix. The complete description is provided in the full version of the thesis. 

 
2.2 ALGORITHM FOR ESTIMATION OF NEURONAL SIGNAL 

 Based on the developments and extensions described in the previous sections, we 
are able to build the complete algorithm for estimation of neuronal signal from fMRI 
data. In this sense, we are introducing a novel algorithm that is able to solve a triple 
estimation problem, i.e. we jointly estimate not only the model states (including the 
endogenous input), the model parameters, but also hyperparameters that represent 
noise statistics. 

In particular, we have proposed an approach based on nonlinaer cubature Kalman 
filtering [27] to the joint estimation problem where the hidden states and parameters 
are concatenated into a single joint state vector and estimated simultaneously, 
yielding joint maximum a posteriori estimates. This form allows us not to only 
accurately treat the dual uncertainty of the parameter and state estimates (by using 
cubature point approach), but also to accurately model the interaction (conditional 
dependence) between the states and parameters. To obtain more accurate estimates 
of hemodynamic states and mainly of neuronal signal, we have employed forward-
backward smoothing, encompassing also the cubature points formulation of Rauch-
Tung-Striebel smoother. The overall estimator performance is further enhanced by 
considering a square-root formulation that ensures a numerical stability during the 
recursion.   

Next, because the states of hemodynamic model are represented by ordinary 
differential equations, we have introduced a novel continuous-discrete time 
representation of CKF that combines a statistical linearization with the local 
linearization approach for accurate and stable discretization of the process model. 
This new algorithm is also suitable for joint estimation, where the states are 
propagated through the continuous model and the parameters are propagated through 
the discrete model. 

The estimation framework would not be complete if we were restricted to the 
informed model inversion, where one assumes the noise statistic to be known, which 
is typically not the case. Therefore, we have proposed an adaptive estimation of state 
and parameter noise covariance matrix based on Robbins-Monro stochastic 
approximation scheme, and further adopted the recently introduced variational 
Bayesian approach for estimation of measurement noise variance [45] to the 
cubature point Kalman filter. 
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All these developments and extensions were combined to create an iterative 
optimization method, which maximizes the log-likelihood with each iteration and 
achieves a fast convergence. As a result, we have obtained a novel advanced 
approach  to the estimation of the neuronal signal from the observed BOLD signal 
superior to what has been so far introduced in the field of neuroscience (comparison 
is provided in [26]). Additional demonstration of the algorithm can be found in the 
full version of the thesis, specifically in the Chapter 4 and in the Appendix A. 

 

 
3  MODELING BRAIN NETWORK CONNECTIVITY 
In this chapter, we focus on modeling coupling among different brain regions 

(nodes) in terms of effective connectivity. In particular, we will introduce a direct 
generalization of the estimation framework described in the previous chapter to a 
multivariate case, where the main goal will be to infer the directional influence 
among different brain regions at the neuronal level. Before we do so, it will be 
useful to provide a short overview and motivation on methods that attempt to assess 
effective connectivity.  

In effective connectivity, the neuronal states describe the activity of set of nodes 
that comprise a graph. The aim of analysis is to identify the directional (causal) 
influence of activated links in the graph. Importantly, these nodes are in fMRI 
defined as neural populations at macroscopic level, i.e. whole brain areas, whose 
activity is summarized by a time varying state vector. 

In general, there are two streams of statistical causal modeling: one based on 
Bayesian dependency graphs or graphical models called structural causal modeling 
and the other based on causal influence over time [1]. Structural causal modeling is 
related to structural equation modeling (SEM) [46, 47] and uses graphical models in 
which direct causal links are encoded by directed edges. However, this approach has 
two limitations. First, it is restricted to discovering conditional independencies in 
directed acyclic graphs (DAG), i.e. it cannot deal with (cyclic) feedback loops. This 
is a serious drawback because the brain works as a directed cyclic graph, where 
every brain region is connected reciprocally (at least polysynaptically) [22]. Second, 
the estimation is completely based on the sample covariance matrix, i.e. it ignores 
time dynamics. Fortunately, the DAG restriction can be finessed by considering 
dynamics and temporal precedence within structural causal modeling. This is 
because the arrow of time can be used to convert a directed acyclic graph into a 
cyclic graph when the nodes are deployed over successive time points. This leads to 
SEM with time-lagged data described by autoregressive (AR) models, which are the 
ground for Granger causality modeling (GCM). The GCM approach is based on 
temporal precedence, i.e. } causes ~ if one reduces uncertainty about the future of ~ 
given the past of }. It is formulated in discrete time analysis framework, where the 
directionality is usually inferred directly from measured signals. Although GCM has 
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become quite popular in the neuroimaging community during the last several years, 
there is an ongoing discussion to determine if the concept of temporal precedence is 
suitable for application to fMRI time series analysis. Main concerns are that GCM 
does not account for variability in hemodynamic response function across different 
brain regions [12, 48]; the measurement noise can reverse the estimation of causality 
direction [49]; and  the coupling strengths are parameterized in terms of regression 
coefficients, which are not the true coupling parameters of effective connectivity. 
Additionally, the reliability of GCM degrades with the increase of sampling interval 
[5], which is important for fMRI because the sampling interval is quite large with 
respect to the time scale of neuronal events.  

As a result of these recent discussions [50-53], it is now clear that discovering 
effective connectivity should be based on state-space models of controllable (causal 
in the control theory sense) biophysical processes that have hidden neuronal states 
and possibly exogenous input [54]. Further, the optimal statistical procedure is to 
invert the complete generative model described by a set of state equations that 
quantify how the observed data are affected by the presence of causal links [55]. 
This possibly allows to accommodate the conditional dependencies between 
parameters of the state equations, which are mapped to the observations [22]. If we 
now recall the definition of the effective connectivity as stated in Chapter 1, i.e. that 
effective connectivity refers to the influence that one neural system exerts over 
another, either at synaptic or population level, one realizes that the procedure 
mentioned above is a sensible choice and, at the moment, probably also the only 
choice suitable for application to fMRI data. 

This reasoning has led to the development of dynamic causal modeling (DCM), 
which employs biophysically motivated generative model that relates the observed 
BOLD data to neuronal signal [3]. Here, the causal influence is defined as a physical 
influence, where changing influences causes changes in their consequences [55], and 
it is modeled by a continuous time dynamic state-space system. The original 
formulation of DCM requires knowledge of known exogenous input, assigned to 
some of the network nodes, which drives the dynamics of the system. In this case, 
all hidden states are treated deterministically and the random term is considered only 
at the level of observation equation. The coupling and hemodynamic parameters are 
inferred through variational Bayesian formulation of EM algorithm, which 
maximizes the model evidence [3]. In this scenario, DCM is seen as a hypothesis-
based approach to understanding distributed neuronal architectures underlying 
observed brain responses. Then, different hypotheses (model candidates) represented 
by different networks (or graphs) are compared based on the model fit reflected in 
evidence, via Bayesian model selection (BMS) [56]. However, as we emphasized in 
Chapter 1, one can do better if the model accounts for randomness at all levels, 
including hidden states, i.e. it is formulated as a fully stochastic system.  

Since we have introduced a fully stochastic scheme in the previous chapter for 
simultaneous estimation of neuronal signal (i.e. endogenous input) and model 
parameters for single time course, it is reasonable to think that the same scheme can 
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be extended to multivariate case, which includes the modeling of neuronal 
interactions among different brain regions. In other words, we do not utilize any 
prior knowledge about the experimental causes of observed responses as required by 
deterministic DCM and introduce a stochastic DCM, which can be completely data-
driven. This enables network discovery using both observed and unobserved 
responses during both activation based studies and (task-free) studies of autonomous 
or endogenous activity during the resting state [22]. In addition, because we jointly 
estimate both model parameters and neuronal signals in temporally sequential sense, 
i.e. we estimate the hidden states generating observed data, while properly 
accommodating endogenous inputs and model parameters, we implicitly assume that 
the uncertainty about the parameter estimates depends on uncertainty of hidden 
states (including endogenous inputs). This is more proper assumption compared to 
the deterministic DCM, which assumes that the uncertainty about parameters (after 
seeing data) does not depend on uncertainty about the states [22]. 

 
3.1 STOCHASTIC DYNAMIC CAUSAL MODELING 

In this section we propose method for evaluation of stochastic DCM (sDCM). 
This method represents a straightforward extension to the deterministic DCM 
(dDCM), when it has the following properties: (i) it releases the need of known 
exogenous input; (ii) accounts for random process at hidden states level; (iii) and 
provides conditionally dependent estimates of the states and parameters. 

Similarly to dDCM, sDCM is formulated as a multiple-input multiple-output  
(MIMO) system that comprises m inputs and l outputs with one output per region. 
Unlike in dDCM, where inputs must correspond to causes, �� (i.e. designed 
exogenous inputs), in sDCM the inputs can be treated as endogenous S��, i.e. they 
can be generated by the fMRI data, which makes sDCM data-driven approach. 
However, it does not mean that sDCM is limited only to this scenario. Importantly, 
as we will see in the following section, one can still define any exogenous input as 
in the case of dDCM and use the sDCM for testing different hypotheses that 
motivated the experimental design but with the fully stochastic treatment of the 
model. Also, the stochastic formulation of DCM can be always easily converted to 
deterministic one, by setting the process noise variances of hidden states to zero (or 
to very small values). In either case, DCM rests on a choice of neuronal model �E(. ) 
of interacting cortical regions, which is defined in continuous time. This neuronal 
model is further supplemented with a forward hemodynamic model (summarized by ��(. ) and �(. )), which describes how neuronal or synaptic activity is transformed 
into a measured response ��. This complete generative model allows to estimate the 
neuronal model parameters ��E (i.e. effective connectivity) from observed data, 
where the parameters represent couplings among unobserved brain states (i.e. 
neuronal activity in different brain regions), but it also accounts for parameterization 
of the hemodynamic response, ���. Then, the state-space model can have the 
following joint form: 
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 X� = ] S��
����E,�a = ]�
E(S����, ����E , ����)��(
����, ����� , S����*����E,� a + ]�����E������

V���E,� a 

�� = �(X�) + �� , 
(3.1) 

 (3.2) 

where for simplicity we skipped the notation for multiple l regions; e.g. S� =�	S��, … , S�� +, 
� = �	
��, … , 
� � +, �� = o	��� , … , ���r+, etc. Further, we mark the 
variables that are obtained by discretization of the continuous process, using a local 
linearization approach, with tilde.  

In summary, each of the l regions is described by one neuronal state S�, four 
hemodynamic states 
� = �<̃, 7�, ��, �� , and by a set of hemodynamic parameters ��. 
Crucially, all regions are coupled together (with mutual influence) through the 
neuronal model, where the strength of couplings is encoded by parameters �E. The 
neuronal model represents a bottom of the generative model, where the neuronal 
activities from different regions talk to each other. It is supposed that there is no 
influence or interaction between hemodynamic states of different regions; i.e. at the 
higher level of the generative model. Schematic representation of this model is 
depicted in Figure 3.1. 

 

Figure 3.1 Schematic illustration of stochastic DCM. From measured BOLD signals 

associated with different brain regions we perform model inversion assuming hemodynamic 

model and neuronal model of interactions.  
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3.1.1 Neuronal interaction model 

For fMRI data it is reasonable to define the model of neuronal interactions at 
macroscopic level, where one can study the whole brain dynamics and interactions 
between large-scale neuronal systems such as cortical regions. In this sense, it is 
common to consider a simple model of neuronal responses distributed over l nodes, 
where under the mean field assumption (see [57, 58]) the dynamics of one node are 
determined by the average activity of another. This is like assuming that each neuron 
in one node can see a sufficiently large number of neurons in another node to render 
the effective influence that is the same as the average over all neurons in the source 
node. As a result, only the slow dynamics are communicated among nodes, which 
means we can model distributed activity with a small number of macroscopic 
variables (e.g. one per node), whose time constants are greater than underlying fast 
fluctuations that are specific to each node. These fluctuations are continuous and can 
be represented by system noise. Therefore, the neuronal model can be described 
through simple linear stochastic differential equation:  

 

%S(�) = �(S(�), �E(�))%� + bcE%d(�) 
= �S(�)%� + bcE%d(�), 

(3.3) 

where 

 � =
��(S, �E)

�S
, (3.4) 

is the connectivity matrix (the Jacobian), also called adjacency matrix, which 
represents the first-order connectivity among nodes [59]. The elements of this 
connectivity matrix are function of endogenous neuronal states and represent the 
unknown parameters which we want to estimate, �E = �. One can also understand 
these coupling parameters of effective connectivity as a rate constants (with units 
<��) of neuronal population responses that have exponential nature (the solution of 
differential equation (3.3) is exponential function). Additionally, since the 
parameters �E are estimated sequentially with the proposed model inversion scheme, 
it means that we are able to obtain time-varying parameters of effective connectivity, 
where the uncertainty about the parameters might change with time as well. 
Crucially, this continuous model allows estimating the cyclic directed graphs, i.e. it 
enables distinction between forward and backward (feedback) connections.  

In the full version of the thesis we also define structure priors on coupling 
parameters of connectivity matrix, which are necessary for successful inversion of 
the model. 

 
3.2 MODEL SELECTION 

Until now, we have always considered only the first level of inference, where we 
fit the model �C to the data �. Our model includes free parameters � and by fitting 
the model to the data we are inferring what values those parameters should probably 
take, given the data. As a result of this inference we have obtained the most probable 
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posterior parameter estimates and the uncertainties on these estimates described by 
posterior error variances. Using Bayes' rule, we define the first level inference 
(model fitting) in the probabilistic sense as:  

 �(�|�,�C) = �(�|�,�C)�(�|�C)�(�|�C) . (3.5) 

The denominator on the right hand side of (3.5) represents normalizing constant 
known as evidence or marginal likelihood. The normalizing constant �(�|�C) is 
ignored during the first level of inference. In our case, we obtain posterior estimates �(�|�,�C) of model parameters by using square-root CKS (SCKS) estimation 
scheme, where the estimates are optimal in both maximum likelihood and maximum 
a posteriori sense.  

However, in the task where one wants to identify the connectivity couplings 
between nodes, which possibly involves many free parameters (depending on the 
size of network), we cannot be sure that the model �C we have inverted is the best 
one. In other words, there are many possible models �C ∈ �, where each model is 
defined by its unique structure (or adjacency matrix) of allowed connections 
between nodes. Therefore, after model fitting it is common to perform the second 
level of inference, represented by model comparison. At this level we wish to infer 
which model is the most plausible, given the data. This is the reason, why one 
usually considers a set of alternative model candidates, and for each of the model 
inversion is performed. In this case, the posterior probability of each model is given 
by: 

 �(�C|�) ∝ �(�|�C)�(�C), (3.6) 

where the data-dependent term on the right side of (3.6) is the marginal likelihood 
(evidence) that appeared already in (3.5), but was ignored. Assuming that there is no 
a priori belief that one model should be better than others, we usually assign equal 
priors �(�C) for all model candidates. This means that the models can be uniquely 
ranked by evaluating the marginal likelihood [60]. 

Unfortunately, the marginal likelihood is not straightforward to compute, since 
this computation involves integrating out the dependence on model parameters: 

 �(�|�C) = !�(�|�,�C) �(�|�C)%�. (3.7) 

Therefore, the approximation to marginal likelihood (evidence) is generally 
considered. Critically, this approximation should represent a balance between the 
model fit and model complexity: ��3%4094(�C) = ~4<�	73�	23�423ℎ11%(�C) × �1��24�3�
(�C), (3.8) 
where the complexity term is usually known as Occam's factor (which is always less 
or equal to one), which scales with respect to the number of parameters (if number 
of parameters increases, Occam's factor decreases). Thus, the models with more 
parameters are automatically penalized. Note that this is very simplified 
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interpretation of Occam's factor, which fits to our framework. In general, Occam's 
factor can represent much more than that (see [60]). 
 

3.2.1 Bayes factor 

By following the Bayes' rule, models can be compared in Bayesian sense as a 
ratio of posterior model probabilities (i.e. posterior odds ratio). If we have no prior 
preference for either model, the prior odds ratio will be equal to 1. Then the 
posterior odds ratio reduces to the ratio of marginal likelihood, which is called 
Bayes factor (B): 

 ~C� = �(�|�C)�(�|��*. (3.9) 

Now we know how to compare models between each other, but what we do not 
know yet is how to approximate the marginal likelihood. Fortunately, asymptotic 
approximation to the logarithm of marginal likelihood can be provided by Bayesian 
information criterion (BIC): 

 ~��C = −2ℒC + 0`,C log., (3.10) 

where ℒC is the log-likelihood obtained during model inversion. The second term on 
the right side of (3.10) represents the approximation to the model complexity, where 0`,C is the number of free parameters considered in the model, and . is the number 
of observation samples. 

Although we can apply BIC as a measure for model comparison, it is limited only 
to very small networks (upto 4 nodes) because it requires individual model inversion 
for each possible model candidate, i.e. model restricted to specific structure of 
allowed coupling parameters. Moreover, it starts to be a very common practice to 

 

Figure 3.2 Illustration of optimal model fit. Relationship between goodness of fit (blue line) 

and generalizability (red line) as a function of model complexity. The y-axis represents any 

measure of goodness of fit (e.g. log-likelihood), where a larger value represents a better fit. 

The goal of model selection is to choose the model that generalizes the best across all model 

candidates.  
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search over a larger number of competing models. Therefore, we are interested in 
model selection strategies, which can compare a large number of models, but do not 
require to invert each model candidate separately. 

To address a problem of selecting the best model among large number of model 
candidates, in [61] they introduced a Bayesian model selection procedure for post 

hoc inferences about reduced (nested) versions of a full model. This method enables 
to calculate the marginal likelihood for any reduced model that is nested within a 
larger (full) model as a function of the posterior density of the full model. Critically, 
this procedure requires only a single inversion of the full model, where all 
connections are allowed. 

In particular, any reduced model can be created from the full model by collapsing 
the prior density over one or more parameters; i.e. by setting the corresponding 
elements of the prior mean �C 	and precision �C̀  to zero. Then the free-energy of 
reduced model �C, which represents the approximation of marginal likelihood, can 
be expressed as a simple analytic function of the means and precisions2 of the prior 
and posterior of the full model [61]:  

 ℱC = 12 ln ��C̀ ����̀ ���C̀ ����̀� − 12 (��+��̀ �� + �C+�C̀ �C − ��+��̀�� − �C+�C̀ �C*, (3.11) 

where the reduced posterior precision �C̀  is the posterior precision of the full model ��̀  plus the difference between the reduced and full prior precisions �C̀  and ��̀ , 
respectively. Similarly, the reduced posterior mean �C is a mixture of precision-
weighted means: 

 �C̀ = ��̀ + �C̀ − ��̀  �C = &C̀ (��̀ �� + �C̀ �C − ��̀��*. (3.12) 

 (3.13) 
The post-hoc estimate of the free-energy based approximation of log marginal 
likelihood can now be used to compute the Bayes factor, comparing the reduced 
model �C with reduced model ��, as: 

 ~C� = exp(ℱC − ℱ�*. (3.14) 

This model selection approach is suitable also for larger networks. However, for 
networks consisting of more than six nodes, one has to apply this approach within a 
greedy search procedure. Detail description of the model selection approaches is 
provided in the full version of the thesis.  

 
3.2.2 Network pruning 

Although the post hoc model selection does a great deal of work for us, it is still 
the first level of inference (model inversion) which must provide a confident 
estimates of coupling parameters, given the data. However, since there are always 
some random correlations between time courses (which correspond to particular 

                                           
2 Precision is the inverse of variance. 
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nodes in the network), the inversion scheme does not set automatically the irrelevant 
coupling parameters to zero. Thus these spurious couplings (with non-zero variance) 
spoil the performance of model inversion. Therefore, we seek a procedure, which 
can automatically infer the relevant connections and suppress the irrelevant ones.   

In principle, there are two ways how to achieve this. The first one supplements a 
penalty term to the objective function, which causes that the irrelevant couplings 
tend to zero value. This approach is known as automatic relevance determination 
(ARD) [60, 62]. The second way involves an estimation of sensitivity of the error 
function to removal of a coupling parameter (when set to zero), where the 
connections with the least effect on the error function are subsequently removed. 
This clearly requires a threshold that has to be specified a priori. This approach is 
mostly known as network pruning.  

The estimation framework that is considered in this work does not allow to 
optimize the priors (required for ARD approach) and include them directly into 
Kalman filter. Therefore, we will proceed with the parameter relevance 
determination based on network pruning. The pruning method considered in this 
work is based on computation of importance function of individual coupling 
parameters (or subset of them) by determining sensitivity on their removal; i.e. by 
setting �C = 0. Here both the importance function and the sensitivity are derived 
from a scaled (expected) Fisher information matrix (inverse of parameter error 
covariance): 

 � = �+�`�, (3.15) 

where precision �` is in this case a diagonal matrix (off-diagonal elements are 
ignored, i.e. effectively set to zero). The complete algorithm for pruning of coupling 
parameters is described in the full version the thesis.  

 

Figure 3.3 Illustration of the pruning procedure. The upper part shows the estimate of 

adjacency matrix obtained after	3-th iteration (e.g. 	3 = 5) before pruning procedure was 

applied (left) and after pruning (right). Here the coupling parameters scored with 

importance measure that is lower than a priori selected threshold (lower plot, y-axis is 

displayed in log scale to enable visualization of the threshold) are set to zero (black cross). 
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This pruning procedure enables us to remove at least some of irrelevant 
parameters already during the optimization process of SCKS, while it also 
contributes to the reduction of model space that we have to search after the model 
inversion. Finally, the effect of pruning becomes especially significant when larger 
networks are estimated. 

 
 
4  VALIDATION AND APPLICATION OF THE METHOD 
The first three chapters described the theoretical background and introduced the 

new method for the estimation of neuronal signal and evaluation of effective 
connectivity from fMRI data. Until this point, we have not shown or discussed any 
results that can be obtained by applying these algorithms. Therefore, it will be the 
focus of this chapter to provide a demonstration and validation of the proposed 
method. However, the validation is too extensive to be covered in the short version 
of the thesis. The reader is referred to the full version of the thesis, where detailed 
description and complete results are provided. The full version is possible to 
download at https://sites.google.com/site/havlicekmartin. The short version provides 
only a small fraction of the results compared to the full version.  

 
4.1 SINGLE TIME COURSE MODEL INVERSION 

In this section we provide a simple demonstration of neuronal signal estimation 
from single fMRI time course, where we also focus on the identification problem of 
hemodynamic model parameters. Note that all details regarding data simulation and 
model inversion are described in the full version of the thesis.  

We considered simulated data having the character of resting-state fMRI time 
courses of the length 256 time points with temporal resolution 2 s and signal to noise 
ratio (SNR) equals 2. After obtaining the data, we performed model inversion by the 
SCKS algorithm, where we allowed maximum of 20 iterations, and considered the 
discretization of continuous model by using local linearization scheme with the time 
step 1 s. It means we linearly interpolated the observation sequence by factor 2.  

In Figure 4.1 we can see a prediction of BOLD responses compared to the noisy 
and to the clean BOLD signal. Due to employed estimation of measurement noisy 
we are not overfitting and the prediction corresponds well to the clean signal. In this 
case we have reached the convergence with 11 iterations, as it can be seen from the 
plots of log-likelihood and convergence rate. In Figure 4.2 we display the estimates 
of hemodynamic states as they are delivered by forward run of the filter and 
backward run of the smoother, respectively. Clearly, by performing the smoothing, 
the estimates are more correct and confident (narrow confidence interval around the 
posterior means). More importantly, when looking at the results of estimated of 
neuronal signal, we can see that only forward run is unable to recover the true 
neuronal signal correctly. Therefore, it is now obvious why one has to employ also 
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backward run. By applying it we receive a correct estimate with much narrower 
confidence intervals.  

 
 

 

Figure 4.1 Results of single fMRI time course model inversion (part 1.). The upper plot 

shows the predicted BOLD responses by SCKS algorithm and provides the comparison with 

the noisy observed responses and the original noiseless signal. The lower plots show the 

increase of log-likelihood and the decrease of convergence rate, which indicate that 

algorithm converged after 11 iteration.  
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Figure 4.2 Results of single fMRI time course model inversion (part 2.). The upper plot 

shows the estimates of hidden hemodynamic states as they are provided by forward run of 

SCKS algorithm. The shaded area represents the 95 % posterior confidence intervals. The 

lower plot displays the estimated provided by the backward run (smoother). Note that in the 

later case the confidence intervals are already much smaller. 

 

Figure 4.3 Results of single fMRI time course model inversion (part 3.). The upper plot 

shows the estimates of neuronal signal provided by forward run of SCKS algorithm. In this 

case there is significant difference between the true signal and the estimated signal. The 

estimated signal has much lower amplitude is also delayed. The lower plot shows the 

estimate of neuronal signal provided by the backward run of SCKS, which well much the 

true neuronal signal. 
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4.2 INVERSION OF STOCHASTIC DCM 

Primary method validation was carried out for the multivariate case using Monte 
Carlo simulations, where we tested the performance of SCKS accompanied by a 
post hoc Bayesian model selection as an approach to stochastic DCM. Details can be 
found in the full version of the thesis. 

In particular, we focused on the estimation of coupling parameters in neuronal 
interaction model, where besides the general validation of model inversion and 
model selection we tried to address the main concerns that are very often associated 
with the methods designed for evaluation of effective connectivity or connectivity 
analysis in general. These questions and the main results can be summarized as 
follows: 

• Effect of noisy data: The method seems to be robust enough in situations of 
very noisy data with relatively large sampling period. The accuracy of coupling 
parameters estimates increases with higher SNR. Also the adaptive estimation 
of measurement noise variance has very positive influence on the obtained 
estimates, providing more confident estimates (compared to fixed measurement 
noise variance). 

• Effect of sampling period: The method is not sensitive to sampling period. 
Even in case of very poor temporal resolution (5 s), the method is still able to 
provide a correct estimates of the connectivity structure. Results also suggest 
that the accuracy of coupling estimates can be improved by increasing data 
SNR and temporal resolution. 

• Variability of hemodynamic response function among different brain regions: 
The method is able to account for hemodynamic response variability across 
different brain regions. In other words, our method is not sensitive to this sort 
of variability, providing correct estimates. This feature makes our approach 
superior to other approaches which do not consider the generative model. 

• Possible confusion of causality by an influence of the third (missing) region: 

The results obtained by testing for the robustness against the missing region 
problem are slightly less promising. In this case we observed a decrease in 
posterior model probability estimates and an increase of false positive 
identifications. Although generally these results are still satisfactory, in future 
work we expect to enhance regularization techniques for parameter estimation 
that could improve the performance in this particular case. 

• Application to the larger networks: The results suggest that it should be 
possible to apply the method to the networks consisting of larger number of 
nodes. Although it is still not possible to think about the application to the 
whole data consisting of thousands of voxels, one might imagine its application 
to the brain activity summarized by spatially distributed modes (often around 
20), such as those obtained from the independent component analysis. 
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4.3 APPLICATION TO EMPIRICAL DATA 

We also attempted to apply the SCKS algorithm to empirical data. Although, we 
mostly emphasized on application of stochastic DCM to resting-state data, there is 
no reason why this approach should not work also with a task data. Further, since 
there is very little known about effective connectivity in resting state data, we 
choose to demonstrate the algorithm performance on task data, but under the 
assumption that we do not know the exogenous (experimental) input. In particular, 
we apply SCKS to empirical data-set of visual attention study, which has been used 
previously to describe developments in causal modeling and related analysis [3, 22, 
23, 46, 63, 64]. Detailed description of this data-set and selected region can be found 
in the full version of the thesis. 

We have selected 6 relevant regions and performed model inversion by SCKS 
algorithm. Results were obtained after 24 iterations of SCKS algorithm (using 
standard initialization), when it reached the convergence criteria. Then the best 
model was selected among 32,768 possible models using post hoc BMS with 
posterior model probability about 80 %. The result after model selection are 
depicted in Figure 4.4. We can see that the final result has relatively sparse structure 
of connectivity matrix with four bidirectional connections switched off. The 
architecture of this identified network is then shown also in an anatomical space, 
where the color of the arrow reports the source of the strongest bidirectional 
connection and the width represents its absolute (positive or negative) strength. This 
visualization refers to undirected graphs, although our scheme provides separate 
estimates for both directions of reciprocal connections. As maybe expected, there are 
stronger forward connections coming from the visual cortex, which can be 
considered as a bottom of functional hierarchy, to posterior parietal cortex and 
prefrontal cortex. Interestingly, there are also many backward connections that are 
stronger than the forward ones. For example from frontal eye fields, which could be 
considered as the top of the functional hierarchy, to the visual cortex, prefrontal 
cortex and to superior temporal sulcus. This is quite sensible given the greater 
amount of backward connections (neuronal pathways) anatomically, both within the 
cortical hierarchy and from cortex to subcortical structures [22, 65]. Finally, most of 
identified connections (but not quite all) are in agreement with a previous results 
obtained by analyzing effective connectivity using the same data-set [22, 46].  

Besides identification of effective connectivity we can be also interested in 
estimated time courses of neuronal signals (bottom of Figure 4.5). Specifically, 
because we know the experimental paradigm of visual stimulation (grey filled areas 
- high for attention and low for no attention), we can compare it to our estimates. In  
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particular, looking at the estimate of neuronal signal associated with the visual 
cortex (highlighted in blue) we can clearly see that the activation and deactivation 
phase of this region match exactly to the start and end phase of the stimulus. This 
confirms that model inversion has effectively estimated neuronal activity from 
observed BOLD signal and that this estimate is veridical in relation to the 
experimental manipulation. For comparison to neuronal estimates we also show the 
original observed BOLD signals and our predictions (bottom of Figure 4.25), where 

 

Figure 4.4 Results of empirical data analysis (part 1.). The upper row shows the results of 

connectivity structures obtained by model inversion using SCKS algorithm after post hoc 

model selection (left), where this model was selected with 80 % evidence as it can be seen 

from the plot of posterior model probability (right).  Visualization of identified connectivity 

structure in anatomical space is depicted in the lower row. The color of the lines reports the 

source of the strongest bidirectional connection and the width represents its absolute 

(positive or negative) strength. 
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there is a delay of several seconds (about 6 s) between the start of stimulation and 
actual increase in BOLD signal.  

Before closing we should again emphasize that the model inversion was not 
informed by a known stimulation function but can still recover the evoked 
responses.  

 
 

 

 

 

 

 

Figure 4.5 Results of empirical data analysis (part 2.). The upper plot displays the estimated 

neuronal signals, where we highlight the neuronal responds of the visual cortex. The shaded 

represents the paradigm of the visual stimulation. Similarly, the lower plot displays 

predicted BOLD responses. 



5  CONCLUSIONS  
In order to evaluate effective connectivity among different brain regions we need 

to model interactions at the neuronal level. In the case of fMRI data this is 
complicated by the fact that the measured BOLD signal is only an indirect 
representation of neuronal activations. The chain of physiological processes that 
connect the neuronal activation to the BOLD signal can be described by a 
continuous nonlinear hemodynamic model. Clearly, no model is perfect, which 
means that it is very important to allow for random fluctuations in unobserved 
(hidden) neuronal and physiological states by assuming a stochastic representation. 
Moreover, if we are not restricted to a deterministic model, we are able to account 
also for (endogenous) autonomous dynamics that cannot be explained by known 
(exogenous) experimental inputs. We can even throw away the prior knowledge 
about experimental causes of observed responses and make the evaluation of 
effective connectivity completely data-driven. Crucially, this enables us to assess 
causal influence at the neuronal level even from the resting-state fMRI data.  

To allow evaluation of this stochastic model we consider the brain as a learning 
machine that infers information about states and parameters from the observed data. 
This inference requires representation of uncertainty. Probability theory provides a 
language for representing the uncertainty beliefs and a framework for maintaining 
these beliefs in consistent manner. Utilizing probability theory and the general 
descriptive power of dynamic state-space models, recursive Bayesian estimation 
provides a theoretically well founded and mathematically robust framework to 
facilitate sequential probabilistic inference in systems where reasoning under 
uncertainty is essential. However, because the hemodynamic model we employ is 
nonlinear, the optimal Bayesian solution to the probabilistic inference problem 
under consideration is intractable. Therefore, we have to consider only an 
approximate solution. 

In this thesis, we have focused on an approximate solution provided by the 
Gaussian integration method based on cubature integration rules which was recently 
introduced to nonlinear Kalman filtering [27]. Specifically, we have proposed a new 
approach based on cubature Kalman filtering and Rauch-Tung-Striebel smoothing to 
a joint estimation problem, where both model states and parameters are estimated 
sequentially, which also models the interaction (conditional dependences) between 
them. This framework was further extended to meet all requirements given by the 
model and the fMRI data we work with. First, we have introduced an extension of 
this approach to the continuous-discrete time systems, where the accurate and stable 
discretization of the process model was achieved by a local-linearization scheme 
[28]. Second, to allow the model inversion in a situation, where we a priori do not 
know the noise statistics of the observed BOLD signal, we have adopted an iterative 
variational Bayesian approach [66] to sequential estimation of measurement noise 
variance. Third, to improve the convergence of joint state and parameter estimation, 
we have proposed an adaptive scheme for the estimation of the parameters and state 
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process noise covariance by efficient Robbins-Monro stochastic approximation 
scheme. Fourth, since we deal with observed data of a limited length, the forward 
cubature Kalman filter pass and the backward cubature RTS smoother pass, were 
wrapped into a simple iterative scheme that maximizes the log-likelihood with each 
iteration and provides fast convergence. Finally, to further improve the numerical 
stability of the filter the entire scheme was considered in its square-root form.     

All these developments and extensions had one common aim: to enable the 
estimation of the neuronal signal from a noisy BOLD signal, while considering a 
realistic nonlinear generation model of the observed signal which also includes 
stochastic fluctuations contributing to the hidden hemodynamic and neuronal states. 
In addition, the proposed approach to inversion of the model has a character of 
(generalized nonlinear) blind deconvolution, because the unknown endogenous 
neuronal signal (input) to hemodynamic model, which contains unknown parameters 
is estimated (only) from observed BOLD signal.  

Although a very advanced and efficient method was proposed in Chapter 2, it 
fulfils only a first part of the goal that was described in this thesis. The second 
(main) goal was to enable evaluation of effective connectivity at the level of 
neuronal signals given the observed hemodynamic responses. Clearly, the 
methodological framework described in Chapter 2 solves the more difficult part, i.e. 
provides estimates of (endogenous) neuronal activity.  

In Chapter 3 we have extended this framework to multivariate case, where the 
main interest is estimation of (effective) coupling parameters that inform the 
neuronal interaction model. In this case we have considered a neuronal interaction 
model in a form of linear stochastic differential equations, which define interactions 
as the communication of slow dynamics among macroscopic variables; i.e. brain 
regions (nodes). By connecting this neuronal model to region-specific hemodynamic 
models that link the neuronal activation to observations, we enabled full model 
inversion, which provides conditional estimates of coupling parameters, region-
specific neuronal signals, hemodynamic states, and associated hemodynamic model 
parameters. All that is possible by applying the approach (iterated square-root 
cubature RTS smoother) developed in Chapter 2. Importantly, this neuronal 
interaction model allows one to estimate bidirectional connectivity (causal 
influence) between different nodes. Further, as an extension to the estimation 
framework, we have introduced an automatic detection of irrelevant coupling 
parameters using a network pruning algorithm based on calculation of scaled Fisher 
information matrix. This addition was necessary to improve the performance of 
estimating coupling (connectivity) parameters, especially in cases when the spurious 
correlations between observed signals are present. A complete form of this model 
inversion represents a stochastic treatment of dynamic causal modeling that makes it 
possible to estimate effective connectivity even in case of unknown model input; i.e. 
in case of resting-state data, where the neuronal signals causing the hemodynamic 
responses have purely endogenous character. This is an important departure from the 
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original dynamic causal modeling [3], which was limited to a discrete model of 
hemodynamic states and assumed a priori knowledge of the model input. 

This novel approach represents the first level of inference where we are especially 
interested in conditional estimates of coupling parameters and in the associated error 
covariance matrix. However, it is still necessary to perform the second level of 
inference, where we identify (select) the most likely model candidate, which in the 
case of effective connectivity corresponds to the most likely connectivity matrix. In 
Chapter 3 we considered model comparison based on calculation of Bayes factor 
(defined as a ratio of marginal likelihoods of restricted models) and discussed two 
different approximations to marginal likelihood through common Bayesian 
information criteria and through recently introduced concept of reduced free energy 
[61]. We have emphasized the convenience of the later approximation, because it 
requires only a single inversion of the full model, where all connections all between 
nodes are allowed. Moreover, this approach is also well suited for model selection in 
larger networks. 

In Chapter 4, we demonstrated the performance of the proposed approach, first 
focusing on estimation of the neuronal signal from a single fMRI time course. We 
also addressed the principal questions one might have regarding the performance of 
the introduced method to correctly infer the coupling parameters of neuronal 
interaction model. In this case we were able to show that the method is robust even 
when applied to data with lower SNR and larger sampling period. Also it is not 
sensitive to variability of hemodynamic response function across different brain 
regions. These are important properties, which make the approach superior to other 
approaches for the evaluation of effective connectivity that are not based on 
generative models and are not formulated in continuous time. We also showed that 
there is a good perspective for this approach to be applied to larger networks, where 
possibly all relevant brain regions are included. As a relative weakness we found 
that the method is only partly immune to the strong spurious correlations caused by 
exclusion of relevant region (node) from the analysis.  
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ABSTRACT 
Functional magnetic resonance imaging (fMRI) utilizing the blood-oxygen-level-

dependent (BOLD) effect as an indicator of local activity is a very useful technique 
to identify brain regions that are active during perception, cognition, action, and also 
during rest. Currently, there is a growing interest to study connectivity between 
different brain regions, particularly in the resting-state. 

This thesis introduces a new and original approach to problem of indirect 
relationship between observed hemodynamic response and its cause represented by 
neuronal signal, as this indirect relationship complicates the estimation of effective 
connectivity (causal influence) between different brain regions from fMRI data. The 
novelty of this approach is in (generalized nonlinear) blind-deconvolution technique 
that allows estimation of the endogenous neuronal signals (system inputs) from 
measured hemodynamic responses (system outputs). Thus, it enables a fully data-
driven evaluation of effective connectivity on neuronal level, even though only 
fMRI hemodynamic responses are observed. The solution to this difficult 
deconvolution (model inversion) problem is obtained through a nonlinear recursive 
Bayesian estimation framework for joint estimation of hidden model states and 
parameters.  

This thesis is divided into three main parts. The first part proposes a method to 
solve the above mentioned inversion problem. The method uses a square-root form 
of a nonlinear cubature Kalman filtering and cubature Rauch-Tung-Striebel 
smoothing extended to a joint estimation problem defined as a simultaneous 
estimation of states and parameters in a sequential manner. The method is designed 
particularly for continuous-discrete systems and obtains an accurate and stable 
solution to model discretization by combining nonlinear (cubature) filtering with 
local linearization. Moreover, the inversion method is equipped with the adaptive 
estimation of measurement, state, and parameter noise statistics. The first part of the 
thesis is focused only on the single time course model inversion; i.e. estimation of 
neuronal signal from fMRI signal. 

The second part generalizes the proposed approach and applies it to multiple 
fMRI time courses in order to enable the estimation of coupling parameters of a 
neuronal interaction model; i.e. estimation of effective connectivity. This method 
represents a novel stochastic treatment of dynamic causal modeling, which makes it 
distinct from any previously introduced approach. The second part also deals with 
methods for Bayesian model selection and proposes a technique for detection of 
irrelevant connectivity parameters to achieve improved performance of parameter 
estimation.  

Finally, the third part provides a validation of the proposed approach by using 
both simulated and empirical fMRI data, and demonstrates robust and very good 
performance. 

 
 


