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ON STABILITY OF DELAYED DIFFERENTIAL SYSTEMS OF
ARBITRARY NON-INTEGER ORDER

TOMÁŠ KISELA

Abstract. This paper summarizes and extends known results on qualitative behavior
of solutions of autonomous fractional differential systems with a time delay. It
utilizes two most common definitions of fractional derivative, Riemann–Liouville
and Caputo one, for which optimal stability conditions are formulated via position
of eigenvalues in the complex plane. Our approach covers differential systems of
any non-integer orders of the derivative. The differences in stability and asymptotic
properties of solutions induced by the type of derivative are pointed out as well.

1. Introduction

In many areas of science and technology we often meet problems which are well
described by differential systems with a time delay. Examples of such situations
might be reaction time of technical and chemical systems or heredity in population
dynamics. Qualitative theory for these equations is summarized in, e.g. [2,5]. The
study of delayed systems involving viscoelasticity, anomalous diffusion or control
theory naturally suggests to enrich our models with derivatives of non-integer order
which proved to be very effective in these areas (see, e.g. [4, 8]).

This is the main motivation for our study of two delayed systems which can be
written as

Dα
0 y(t) = Ay(t− τ) , t ∈ (0,∞), α ∈ R+ \ Z, (1.1)

y(t) = φ(t) , t ∈ [−τ, 0], (1.2)

Dα−k
0 y(t)

∣∣
t=0 = yα−k , k = 1, . . . , dαe (1.3)

and
CDα

0 y(t) = Ay(t− τ) , t ∈ (0,∞), α ∈ R+ \ Z, (1.4)
y(t) = φ(t) , t ∈ [−τ, 0], (1.5)

y(dαe−k)(0) = ydαe−k , k = 1, . . . , dαe , (1.6)

where Dα
0 and CDα

0 denote the so-called Riemann–Liouville and Caputo differential
operators of order α, respectively. Further, A ∈ Rd×d is a constant d× d matrix,
y· ∈ Rd are constant vectors and τ > 0 is a constant delay. As usual for delayed
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equations, the initial condition is given by φ ∈ L1[−τ, 0] (componentwise) and
the use of fractional derivatives allows us to prescribe also initial values for t = 0
separately. We intentionally leave out the integer-order values of α since they
coincide with the known classical cases.

A serious qualitative analysis of such equations is being performed less than
two decades. It spans across scalar and vector cases, various methods like D-
decomposition or Laplace transform are used. For more details we refer to [1,3,6,9]
which are the main sources for this paper.

The paper is organized as follows. In Section 2 we outline some basic preliminary
results useful in our further considerations. Section 3 is devoted to the discussion of
solution representations and their comparison. The main results are concentrated
in Section 4 where we summarize known facts as well as derive some original ones.
Section 5 concludes the paper with a few final remarks.

2. Preliminaries

Let f be a real function. We use the standard definition of fractional integral of
order γ > 0

Iγ0f(t) =
∫ t

0

(t− ξ)γ−1

Γ(γ) f(ξ)dξ, t ≥ 0 .

We employ both the wide used definitions of fractional derivative of order α > 0
called the Riemann-Liouville and Caputo derivative introduced as

Dα
0 f(t) = ddαe

dtdαe
(

Idαe−α0 f(t)
)
, t ≥ 0 ,

CDα

0 f(t) = Idαe−α0

(
ddαe

dtdαe
f(t)

)
, t ≥ 0 ,

respectively. Additionally, we put CD0
0f(t) = D0

0f(t) = f(t) (for more information
on fractional operators we refer, e.g. to [4, 8]).

The key tool, utilized throughout this paper, is the Laplace transform which is,
for f , introduced as

L(f(t))(s) =
∫ ∞

0
exp{−st}f(t)dt, s ∈ C

provided the integral converges. To perform the transform of (1.1) and (1.4),
we need a clear view on Laplace transform of a function with shifted (delayed)
argument which is given by

L(f(t− τ)h(t− τ))(s) = exp{−τs}L(f(t))(s), τ > 0,

L(f(t− τ))(s) = exp{−τs}L(f(t))(s) + exp{−τs}
∫ 0

−τ
exp{−st}f(t)dt, τ > 0 .

(2.1)
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Also, using the formulae for Laplace transform of convolution and power function

L
(∫ t

0
f(t− ξ)g(ξ)dξ

)
(s) = L(f(t))(s) · L(g(t))(s),

L
(

tη

Γ(η + 1)

)
(s) = s−η−1, η > −1,

we can see the origin of Laplace transforms of fractional operators

L(Iγ0f(t))(s) = s−γL(f(t))(s), γ > 0,

L(Dα
0 f(t))(s) = sαL(f(t))(s)−

dαe∑
k=1

sk−1Dα−k
0 f(t)

∣∣
t=0, α > 0, (2.2)

L(CDα

0 f(t))(s) = sαL(f(t))(s)−
dαe∑
k=1

sα−kf (k−1)(0), α > 0. (2.3)

The symbol h denotes the Heaviside step function defined as h(ξ) = 1 for ξ ≥ 0
and h(ξ) = 0 for ξ < 0. When applied on a vector function, the Laplace transform
is considered componentwise.

We note that the system matrix A of (1.1) and (1.4) can be rewritten with
the use of a matrix Λ in a Jordan canonical form with the Jordan blocks on its
diagonal as A = TΛT−1, where T is a regular real d× d matrix,

Λ =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jq

 , Jk =



λi 1 0 · · · 0

0 λi 1
. . .

...
...

. . . . . . . . . 0
0 · · · λi 1
0 · · · 0 λi

 , k = 1, . . . , q,

and λi (i = 1, . . . , n) are distinct eigenvalues of A. The number of Jordan blocks
corresponding to λi is called geometric multiplicity of λi. The sum of the sizes of
all Jordan blocks corresponding to λi is called algebraic multiplicity of λi.

Before we proceed to the next section, we recall the stability notions related to
our linear fractional differential systems with a delay. The zero solution is said to
be stable (asymptotically stable) if the solution of the system is bounded (tends
to zero as t→∞) for any initial function φ ∈ L1([−τ, 0]).

3. Solution representations for (1.1) and (1.4)

As in the integer-order case (see, e.g. [2,5]), an essential role is played by analogue
of the fundamental matrix solution also for (1.1) and (1.4) (see, e.g. [1]). In order
to simplify the notation dealing with the orders α greater than one, we introduce
its generalization in form of the following functions

RA,τα,β (t) = L−1 ((sαI −A exp{−sτ})−1sα−β
)

(t) , α ∈ R+ \ Z, β ∈ R+

where A ∈ Rd×d and I is the identity d× d matrix. Employing these R-functions,
we arrive at the following solution representations.
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Theorem 3.1. The solution yRL of (1.1)–(1.3) is given by

yRL(t) =
dαe∑
k=1

RA,τα,α−k+1(t)yα−k +
∫ 0

−τ
RA,τα,α(t− τ − u)Aφ(u)du.

Proof. Applying (2.1), (2.2) on (1.1)–(1.3), we get

L(y(t))(s)

= (sαI −A exp{−sτ})−1

dαe∑
k=1

sk−1yα−k +
∫ 0

−τ
exp{−s(t+ τ)}Aφ(t)dt


=
dαe∑
k=1
L(RA,τα,α−k+1(t))(s)yα−k +

∫ 0

−τ
exp{−s(t+ τ)}L(RA,τα,α(t))(s)Aφ(t)dt

which yields the assertion. �

Theorem 3.2. The solution yC of (1.4)–(1.6) is given by

yC(t) =
dαe∑
k=1

RA,τα,k (t)yk−1 +
∫ 0

−τ
RA,τα,α(t− τ − u)Aφ(u)du.

Proof. Analogously as above, applying (2.1), (2.3) on (1.4)–(1.6), we obtain

L(y(t))(s)

= (sαI −A exp{−sτ})−1

dαe∑
k=1

sα−kyk−1 +
∫ 0

−τ
exp{−s(t+ τ)}Aφ(t)dt


=
dαe∑
k=1
L(RA,τα,k (t))(s)yk−1 +

∫ 0

−τ
exp{−s(t+ τ)}L(RA,τα,α(t))(s)Aφ(t)dt

which again concludes the proof. �

Remark 3.3. We can see that the integral terms involving the initial function φ
are for yRL and yC identical. The difference occurs in the terms involving the local
initial conditions. Although the Caputo case is more studied in the literature, in
particular of order α ∈ (0, 1] (see, e.g. [1,3,6]), the Riemann-Liouville one actually
appears to be structurally closer to the classical case. Indeed, RA,τα,α seems to be
playing practically the same role as the fundamental matrix solution in integer-
order delay differential equations.

It might look like Theorems 3.1 and 3.2 are not that much explicit since the
R-functions are defined via the inverse Laplace transform. Now we show that these
functions can be actually evaluated pretty straighforwardly.

Applying the Jordan canonical form theory, we can write

L(RA,τα,β (t))(s) = (sαI −A exp{−sτ})−1sα−β = T (sαI − Λ exp{−sτ})−1sα−βT−1 .
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Clearly, the matrix (sαI − Λ exp{−sτ})−1sα−β is block diagonal with the blocks
given by upper triangular strip matrices of the form

(sαI − Jke−sτ )−1sα−β =


sα−β

sα−λie−sτ
e−sτsα−β

(sα−λie−sτ )2 · · · e−(r−1)sτsα−β

(sα−λie−sτ )rk

0 sα−β

sα−λie−sτ
. . . e−(r−2)sτsα−β

(sα−λie−sτ )rk−1

...
...

. . .
...

0 0 · · · sα−β

sα−λie−sτ

 ,

(3.1)
where Jk (k = 1, . . . , q) is the k-th block of Λ and rk is its size. It was proven in
[1] that the elements of this matrix can be expressed as

exp{−msτ}sα−β

(sα − λ exp{−sτ})m+1 = L(Gλ,τ,mα,β (t))(s)

where

Gλ,τ,mα,β (t) =
dt/τ−m−1e∑

j=0

(
m+ j

j

)
λj(t− (m+ j)τ)α(m+j)+β−1

Γ(α(m+ j) + β) , t > 0 .

To summarize the previous considerations, we can write the following assertion.

Lemma 3.4. Let A ∈ Rd×d, λi (i = 1, . . . , n) be distinct eigenvalues of A and
let pi be the largest size of the Jordan block corresponding to the eigenvalue λi.
Then the non-zero elements of matrix function RA,τα,β are linear combinations of
scalar functions

Gλi,τ,mα,β (t), m = 0, . . . , pi − 1, i = 1, . . . , n .

4. Main results

It is well known from the basic theory of the Laplace transform method that if
all poles of the Laplace image of solutions (roots of the so-called characteristic
equation) have negative real parts, then the zero solution of the studied equation
is asymptotically stable (and their non-zero solutions tend to zero in an expo-
nential rate). On the other hand, if there exists a pole with a positive real part,
the corresponding zero solution is not stable (its absolute value tends to infinity
exponentially). In the fractional case, it usually occurs a more complex situation,
involving also singular points and poles with the zero real parts, which require
a deeper analysis.

For our fractional problems (1.1) and (1.4), as it can be seen from the proof of
Theorems 3.1 and 3.2, the characteristic equation takes the form

det(sαI −A exp{−sτ}) = 0 or
n∏
i=1

(sα − λi exp{−sτ})wi = 0 , (4.1)

where λi (i = 1, . . . , n) are distinct eigenvalues of A and wi are the corresponding
algebraic multiplicities. As we can see from (4.1) and (3.1), for further eigenvalues
considerations it is sufficient to investigate the roots of the equation

p(s;λ) ≡ sα − λ exp{−sτ} = 0 (4.2)
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where λ is a complex parameter. Now, we perform a direct root analysis of (4.2).
In particular, we formulate the optimal conditions on λ ensuring that (4.2) does
not have any root with positive real part.

Lemma 4.1. Let α ∈ R+ \ Z, τ > 0 and λ ∈ C. Then all the roots of (4.2)
have negative real parts if and only if

α ∈ (0, 2) , |Arg (λ)| > απ

2 and |λ| <
(
|Arg (λ)| − απ/2

τ

)α
(4.3)

where Arg (λ) ∈ (−π, π] is the principal argument of λ.

Proof. The case λ = 0 is trivial since then (4.2) has only the zero solution which
does not satisfy (4.3). Let λ 6= 0 and put

s = r exp{iϕ} , λ = % exp{iψ}

where r = |s|, % = |λ| and ϕ,ψ ∈ (−π, π] are principal arguments of s, λ, respec-
tively. Then we can write (4.2) for real and imaginary parts as a system of two
equations in the form

rα cos(αϕ)− % exp{−rτ cos(ϕ)} cos(ψ − rτ sin(ϕ)) = 0, (4.4)
rα sin(αϕ)− % exp{−rτ cos(ϕ)} sin(ψ − rτ sin(ϕ)) = 0. (4.5)

Now, let us assume that (4.2) has a root with a non-negative real part, i.e.
|ϕ| ≤ π/2.

For ϕ = 0, we have ψ = 0 (i.e. λ = %) from (4.5). Further, (4.4) implies, for r
and %, the relation rα = % exp{−rτ} which always allows to find an appropriate r
to a given %. Hence, (4.2) has a non-negative real root if and only if λ is a non-
negative real.

Let |ϕ| ∈ (0, π/2] \ {π/α}. Since |ϕ| 6= π/α, we have ψ − rτ sin(ϕ) 6= kπ for
any k ∈ Z and, by dividing and rearranging (4.4) and (4.5), we arrive at a new
reformulation of (4.4), (4.5) in the form

αϕ = ψ − rτ sin(ϕ) + 2kπ, (4.6)
rα = % exp{−rτ cos(ϕ)} (4.7)

for a suitable k ∈ Z (the replacement of kπ by 2kπ is implied by positivity of r
and %). Further, by eliminating r from (4.6), (4.7), we get the equation for ϕ as(

ψ − αϕ+ 2kπ
τ sin(ϕ)

)α
= % exp{(αϕ− ψ − 2kπ) cot(ϕ)} .

As proven in [1] for α ∈ (0, 1), the left-hand side is decreasing with respect to ϕ
on (0, π/2] with the lowest value at ϕ = π/2 for any k. The right-hand side is
increasing with respect to ϕ on (0, π/2] with the largest value at ϕ = π/2 for any
k. It can be easily checked that the situation for α ≥ 1 is the same provided we
put the left-hand side equal to zero for ϕ such that ψ−αϕ+ 2kπ < 0. Obviously,
the existence of a root ϕ ∈ (0, π/2] for at least one k is ensured if and only if

|ψ| ≤ απ

2 or % ≥
(
|ψ| − απ/2

τ

)α
. (4.8)
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We can see that (4.8)1 is automatically satisfied for α ≥ 2, hence for α ≥ 2 there is
always a root of (4.2) with a non-negative real part. We can see that, for α ∈ (0, 2),
(4.8) is a complement of (4.3).

So far, we have not investigated the situation |ϕ| = π/α ≤ π/2. However, it
can occur only for α ≥ 2 and in that case we already know that there is always
a root of (4.2) with a non-negative real part.

Summarizing the previous arguments, we can conclude the proof. �

Lemma 3.4 shows that functions of the type Gλ,τ,mα,β play, for (1.1) and (1.4),
an analogous role as exponential functions for integer-order systems. Hence, it
is crucial to have a good uderstanding of asymptotic behavior of Gλ,τ,mα,β and its
relation to (4.2) which is provided by the following assertion which slightly extends
the result presented in [1].

Lemma 4.2. Let λ ∈ C, α, β, τ ∈ R+ and m ∈ Z be such that α ∈ R+ \ Z,
m ≥ 0. Further, let si (i = 1, 2, . . . ) be the roots of (4.2) with ordering <(si) ≥
<(si+1) (in particular, s1 is the zero with the largest real part).

(i) If λ = 0, then

G0,τ,m
α,β (t) = (t−mτ)mα+β−1

Γ(mα+ β) h(t−mτ).

(ii) If λ is such that s1 has negative real part, then

Gλ,τ,mα,β (t) = (−1)m+1

λm+1Γ(β − α) (t+ τ)β−α−1

+ (−1)m+1(m+ 1)
λm+2Γ(β − 2α) (t+ 2τ)β−2α−1 +O(tβ−3α−1) as t→∞.

(iii) If λ is such that s1 is purely imaginary or it has positive real part, then

Gλ,τ,mα,β (t) =
m∑
j=0

(t−mτ)j(aj exp{s1(t−mτ)}

+ bj exp{s2(t−mτ)}) +
{
O(tm exp{<(s3)t}), if <(s3) ≥ 0,
O(tβ−α−1), if <(s3) < 0

as t→∞

where aj , bj are suitable nonzero complex constants (j = 0, . . . ,m).

Proof. The assertion was proved in [1] for the case α ∈ (0, 1). The generalization
for α > 1 is a tedious but direct analogue. �

Now we are in a position to formulate the main results of this paper. For the
sake of lucidity, we introduce the following subset of complex numbers motivated
by (4.3) as

Sα,τ =
{
λ ∈ C : |λ| <

(
|Arg (λ)| − απ/2

τ

)α
, |Arg (λ)| > απ

2

}
,

which we call the stability region of (1.1) and (1.4).
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Theorem 4.3. Let A ∈ Rd×d, α ∈ R+ \ Z and τ > 0. Further, let p0 ∈ Z
be the largest size of the Jordan block corresponding to the zero eigenvalue of A,
where we put p0 = 0 if A has only non-zero eigenvalues.

(i) The zero solution of (1.1) is asymptotically stable if and only if α ∈ (0, 2),
all non-zero eigenvalues of A belong to Sα,τ and p0 < 1/α.

(ii) The zero solution of (1.1) is stable if and only if α ∈ (0, 2), all eigenvalues
of A belong to cl (Sα,τ ), all non-zero eigenvalues of A lying on ∂Sα,τ have
the same algebraic and geometric multiplicities and p0 ≤ 1/α.

Proof. Theorem 3.1 and Lemma 3.4 imply that the solution components of (1.1)
are formed as linear combinations of functions

Gλi,τ,mα,α−k+1(t) and
∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φj(u)du , (4.9)

where k = 1, . . . , dαe, λi (i = 1, . . . , n) are eigenvalues of A, m is a non-negative
integer as specified in Lemma 3.4 and φj (j = 1, . . . , d) are components of the
initial function.

Lemma 4.1 implies that all roots of (4.1) have negative real part if and only if
α ∈ (0, 2) and all eigenvalues belong to Sα,τ . Moreover, (4.1) has at least one root
with zero real part and other roots with a negative real part if and only if at least
one eigenvalue lies on the boundary of Sα,τ .

Thus, the asymptotic behavior of the solution can be derived from Lemma 4.2.
The functions (4.9)1 are described directly, we just point out that for λi ∈ Sα,τ
the first term in the expansion cancels out due to the negative integer argument
in the Gamma function, so that we obtain

Gλi,τ,mα,α−k+1(t) = (−1)m+1(m+ 1)
λm+2
i Γ(−α− k + 1)

(t+ 2τ)−α−k +O(t−2α−k) as t→∞.

Now, we investigate (4.9)2. Employing the assuption φ ∈ L1[−τ, 0] and Lemma
4.2, we can distinguish several cases:

Let α ∈ (0, 2) and λi ∈ Sα,τ . The second mean value theorem implies∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φ(u)du = Gλi,τ,mα,α (t)

∫ ξ

−τ
φ(u)du

= K1(t+ 2τ)−α−1 +O(t−2α−1) as t→∞ ,

where K1 ∈ R is non-zero and ξ ∈ (−τ, 0].
Now, let λi = 0. By the same approach we arrive at∫ 0

−τ
G0,τ,m
α,α (t− τ − u)φ(u)du = K2(t−mτ)(m+1)α−1 ,

where K2 ∈ R is non-zero. This expression vanishes for t → ∞, if and only if
m+ 1 = p0 < 1/α.

The cases for λi ∈ ∂Sα,τ \ {0} and λi /∈ cl (Sα,τ ) can be handled similarly.
We arrive at the conclusion that (4.9)2 is bounded, when the non-zero eigenvalue
lying on the boundary of stability region has the same algebraic and geometric
multiplicity. Otherwise the absolute value of (4.9)2 increases polynomially (when
the eigenvalue lies on the boundary) or exponentially. �
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Theorem 4.4. Let A ∈ Rd×d, α ∈ R+ \ Z and τ > 0. Further, let p0 ∈ Z
be the largest size of the Jordan block corresponding to the zero eigenvalue of A,
where we put p0 = 0 if A has only non-zero eigenvalues.

(i) The zero solution of (1.4) is asymptotically stable if and only if α ∈ (0, 2)
and all eigenvalues of A belong to Sα,τ .

(ii) The zero solution of (1.4) is stable if and only if α ∈ (0, 2], all eigenvalues
of A belong to cl (Sα,τ ), all non-zero eigenvalues of A lying on ∂Sα,τ have
the same algebraic and geometric multiplicities and p0 ≤ 2− dαe.

Proof. The idea of the proof is equivalent to that one of Theorem 4.3. In
particular, the solution components of (1.4) are given by linear combinations of

Gλi,τ,mα,k (t) and
∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φj(u)du , (4.10)

where k = 1, . . . , dαe, λi (i = 1, . . . , n) are eigenvalues of A, m is a non-negative
integer as specified in Lemma 3.4 and φj (j = 1, . . . , d) is a component of the initial
function. Thus, we see that (4.10)2 is the same as (4.9)2 while (4.10)1 differs with
respect to (4.9)1 due to the change of index. This causes only a different decay
rate for λi ∈ cl (Sα,τ ).

Overall, there is only one difference in stability behavior which occurs for λi = 0
when we have

G0,τ,m
α,k (t) = (t−mτ)mα+k−1

Γ(mα+ k) .

We can see that this function never tends to zero with t → ∞ and it is bounded
if and only if mα + k − 1 = 0 which means dαe = 1 (i.e. k = 1) and p0 = 1 (i.e.
m = 0). �

Remark 4.5. (i) Theorems 4.3 and 4.4 show that Sα,τ is the stability region for
delayed fractional differential systems for Riemann-Liouville and Caputo deriva-
tive, i.e. for (1.1) and (1.4), respectively. Figure 1 represents the situation for
α ∈ (0, 1) when the stability region includes also points with positive real part.
We can see in Figure 2 how the region is transformed for α ∈ (1, 2), and it is ap-
parent how the stability region vanishes for α→ 2. Also, for τ → 0, Sα,τ tends to
the stability region known from theory of fractional differential equations without
delay (see, e.g. [7, 9]).

(ii) From the stability viewpoint, the only difference between (1.1) and (1.4)
occurs if there is a zero eigenvalue and the order of derivatives is less than 1. In
this case, the zero solution to (1.1) can be asymptotically stable, stable or unstable,
depending on the particular value of α and multiplicities of the zero eigenvalue.
The zero solution of (1.4) is stable if algebraic and geometric multiplicities of the
zero eigenvalue are equal, otherwise it is unstable (i.e. it does not depend on the
particular value of α).

The proof technique used for Theorems 4.3 and 4.4 actually reveals more than
the stability properties. Due to its constructive nature we can actually derive also
the asymptotic behavior of the solutions to (1.1) and (1.4). We summarize the
comparisons of the two cases in the following assertions dealing with the asymptotic
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ℜ(𝜆)

ℑ(𝜆)

)
𝛼

)𝜋 − 𝛼𝜋/2𝜏
𝑆𝛼 ,𝜏

𝛼𝜋

2

𝛼𝜋

2

Figure 2. The stability region Sα,τ for the values α = 1.1 and τ = 1.
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equivalence (denoted by the symbol ∼) relationships for norms of solutions (we
use the symbol ‖ · ‖ for Euclidean norm in Rd).

Theorem 4.6. Let A ∈ Rd×d, α ∈ (0, 2), τ > 0 and let all the eigenvalues of
A belong to Sα,τ . Further, we denote by yRL and yC the solutions of (1.1)–(1.3)
and (1.4)–(1.6), respectively. Then it holds

‖yRL(t)‖ ∼ t−α−1 and ‖yC(t)‖ ∼ tdαe−α−1 as t→∞ (4.11)
for almost all choices of initial conditions. If yRL and yC do not follow (4.11),
then their norms tend to zero with a faster decay rate.

Proof. Theorems 3.1 and 3.2 indicate some particular choices of initial condi-
tions, e.g. y0 = 0, which can remove the dominating terms from yRL and yC
and therefore affect the decay rate. The particular asymptotic properties are then
implied by Lemma 4.2. �

Theorem 4.7. Let A ∈ Rd×d, α ∈ (0, 2) and τ > 0. Let A has the zero
eigenvalue and denote p0 the size of the largest Jordan block corresponding to
this zero eigenvalue. Let all non-zero eigenvalues of A belong to Sα,τ . Further,
we denote yRL and yC the solutions of (1.1)–(1.3) and (1.4)–(1.6), respectively.
Then it holds

‖yRL(t)‖ ∼ tp0α−1 and ‖yC(t)‖ ∼ t(p0−1)α+dαe−1 as t→∞ (4.12)
for almost all choices of initial conditions. If yRL and yC do not follow (4.12),
then their norms are even smaller for t large enough.

Proof. The idea of the proof is analogous to the previous case. �

Remark 4.8. (i) We can observe an interesting distinction between the way
how the asymptotic behavior of yRL and yC depends on α. While in the Riemann–
Liouville case we see the algebraic decay rate depending directly on α, in the
Caputo case the decay rate is driven by the decimal part of α, i.e. by the differ-
ence dαe − α. Indeed, if we consider for example α1 = 0.4 and α2 = 1.4, then
the solutions of (1.4) follow essentially the same asymptotic relations, while the
Riemann–Liouville ones do not.

(ii) We can employ a similar analysis also in the cases that are not covered by
Theorems 4.6 and 4.7, i.e. when there is a non-zero eigenvalue on the boundary
or outside the closure of the stability region. We note that if there is a non-zero
eigenvalue lying outside the closure of the stability region, the norms of non-zero
solutions increase exponentially for both (1.1) and (1.4).

(iii) We point out that the asymptotic results obtained for the delayed fractional
differential systems actually mirror the well-known results for fractional differential
systems without a delay.

5. Conclusions

We have summarized and extended the results on qualitative behavior of solutions
of delayed fractional differential systems (1.1) and (1.4) of arbitrary order.

We have shown that the stability of the zero solution occurs only if the order
of derivatives is less than 2. Further, we have derived the precise description of
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the stability region which is for both (1.1) and (1.4) identical. The only difference
regarding the stability occurs when the system matrix A has a zero eigenvalue.
Then we observe the asymptotic stability property for (1.1) only if α < 1 and
the maximum size of the Jordan block corresponding to the zero eigenvalue being
less than 1/α. In the Caputo case (1.4), the asymptotic stability does not appear
and the zero solution is stable (but not asymptotically stable) only if α < 1 and
algebraic multiplicity of the zero eigenvalue being equal to the geometric one.

The asymptotic behavior displays more diversity. If the system matrix A has
all eigenvalues lying in the stability region, i.e. the zero solutions of both (1.1) and
(1.4) are asymptotically stable, we can generally say that the solutions of (1.1) go
to zero as t → ∞ faster that solutions of (1.4). Moreover, unlike the Riemann-
Liouville case, the decay rate of solutions to (1.4) does not depend on the value α
itself, but on its decimal part only.

The area of qualitative analysis of fractional differential equations with a time
delay, especially with higher-order derivative, provides a lot of open problems. Our
research may serve as one of the prerequisites to studies of more complex systems,
such as Dα

0 y(t) = ay(t) + by(t− τ) or its vector analogues.
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