
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

SECURE DEPLOYMENT AND TESTING OF OVIRT PLATFORM
NÁSTROJ PRO OVĚŘENÍ BEZPEČNÉHO NASAZENÍ PLATFORMY OVIRT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Vojtěch Vágner

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Petr Dzurenda, Ph.D.

BRNO 2022

Termín zadání: 7.2.2022 Termín odevzdání: 31.5.2022

Vedoucí práce: Ing. Petr Dzurenda, Ph.D.
Konzultant: Jiří Macku

doc. Ing. Jan Hajný, Ph.D.

předseda rady studijního programu

Bakalářská práce
bakalářský studijní program Informační bezpečnost

Ústav telekomunikací
Student: Vojtěch Vágner ID: 216975
Ročník: 3 Akademický rok: 2021/22

NÁZEV TÉMATU:

Nástroj pro ověření bezpečného nasazení platformy oVirt

POKYNY PRO VYPRACOVÁNÍ:

Nastudujte problematiku zabezpečení cloudové platformy oVirt pomocí bezpečnostních standardů s ní spojených
(FIPS, DISA STIG, Common Criteria). Analyzujte aktuální standardy a možné zlepšení zabezpečení platformy
oVirt. Navrhněte proces ověření kompatibility cloudové platformy oVirt s posuzovanými standardy a kroky
k případnému dalšímu zlepšení zabezpečení. Navrhnuté řešení implementujte a otestujte na nasazených
cloudových platformách kompatibilních s bezpečnostními standardy se zaměřením na nedostatky nasazených
platforem k dosažení daných standardů. Zhodnoťte výsledky a diskutujte možná rozšíření.

DOPORUČENÁ LITERATURA:

[1] Product Documentation for Red Hat Virtualization 4.4. Red Hat Customer Portal [online]. Raleigh: Red Hat,
2021 [cit. 2021-9-7]. Dostupné z: https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4

[2] OVirt User Documentation. OVirt [online]. World: oVirt Community, 2021 [cit. 2021-9-7]. Dostupné z:
https://ovirt.org/documentation/

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRACT
The oVirt virtualization platform offers a wide range of different configurations. All of
those configurations are by no means inherently secure when deployed out of the blue.
The secure configurations are defined by security standards which the configurations
claim conformance to. Since oVirt is a community project, it is hard to get such a
software certified in the field of security standards. Certifications in the field of security
standards are expensive. Luckily, oVirt shares common ground with Red Hat Virtu-
alization to which certain security standards are applicable (FIPS 140-2, DISA STIG,
Common Criteria). The link between Red Hat Virtualization and oVirt enables secure
configurations also for oVirt. The focus of this thesis is then to determine which con-
figurations are supported by the standards, therefore secure, and how to verify that the
secure configurations are present. This is done through the use of a script in the form
of an Ansible Playbook incorporating Ansible Roles that manage compliance evaluation
for each of the presented security standards.

KEYWORDS
oVirt, Red Hat Virtualization, FIPS, DISA STIG, Common Criteria, bezpečné nasazení,
bezpečná konfigurace, Ansible, bezpečnostní standard

ABSTRAKT
Virtualizační platforma oVirt nabízí široké spektrum možných konfigurací. Avšak žádná
z těchto konfigurací není bezpečnou bez předchozího zásahu v kontextu slepého nasazení
platformy. Bezpečné konfigurace jsou definovány bezpečnostními standardy, se kterými
je daná konfigurace v souladu. Jelikož oVirt je komunitní projekt, není lehké tento typ
softwaru certifikovat v oblasti bezpečnostních standardů. Certifikace v oblasti bezpeč-
nostních standardů je drahou záležitostí. Naštěstí, oVirt sdílí stejný základ s produktem
Red Hat Virtualization, vůči kterému jsou určité bezpečnostní standardy aplikovatelné
(FIPS 140-2, DISA STIG, Common Criteria). Most mezi Red Hat Virtualization a oVirt
dává možnost bezpečných konfigurací i pro oVirt. Záměr této práce je následně určit,
které konfigurace jsou podporovány danými standardy, tedy bezpečné, a jak ověřit, že
jsou přítomné v dané nasazené platformě. To je realizováno pomocí skriptu ve formě An-
sible Playbook, který zahrnuje Ansible Role. Každá role v rámci skriptu obhospodařuje
evaluaci shody pro daný bezpečnostní standard.

KLÍČOVÁ SLOVA
oVirt, Red Hat Virtualization, FIPS, DISA STIG, Common Criteria, secure deployment,
secure configuration, Ansible, security standard

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT

Úvod

Každý software typu virtualizační platformy oVirt poskytuje obrovské množství
různých konfigurací. Avšak ne všechny konfigurace takového software jsou vhodné
pro produkční nasazení z hlediska kybernetické bezpečnosti. Za předpokladu, že
dojde k slepému nasazení virtualizační platformy oVirt, nemusí být konfigurace
takto nasazené platformy automaticky bezpečná. Aby bylo možné zajistit, že dané
nasazení platformy je bezpečné, je nejprve nutné zvolit správnou konfiguraci. Pro
tuto situaci je vhodné využít relevantních bezpečnostních standardů. Bezpečnostní
standardy deklarují, které konfigurace daného software jsou bezpečné, a to za před-
pokladu shody s bezpečnostními požadavky daných bezpečnostních standardů. Toto
je primární zaměření této práce, a to určit které konfigurace virtualizační platformy
oVirt jsou bezpečné a zdali jsou ve shodě s bezpečnostními požadavky vybraných
standardů. Dalším cílem práce je vytvořit nástroj pro automatizované ověření této
shody.

Vybrané bezpečnostní standardy jsou analyzovány v průběhu této práce a jejich
architektura a definice jsou uvedeny. Týká se to bezpečnostních standardů FIPS
140-2 (Federal Information Processing Standard 140-2), DISA STIG (Defense In-
formation Systems Agency Security Technical Implementation Guide) a Common
Criteria. Vysvětlení implementace daných bezpečnostních standardů platformou
oVirt je následně podáno v kapitole o architektuře platformy oVirt. V této kapitole
je zprvu vysvětlen koncept technologie virtualizace a následně implementace daných
standardů platformou oVirt je také vysvětlena.

V kontextu implementace daných standardů platformou oVirt se vyskytuje prob-
lém absolutní shody se zejména procedurálními aspekty bezpečnostních požadavků
těchto standardů. Jelikož platforma oVirt je open-source komunitní projekt, ne-
existuje schůdný způsob, jak takový software formálně certifikovat. Nelze jej však
vyloučit. Toto se na první pohled zdá jako neřešitelný problém. Pokud daná konfi
-gurace striktně využívá platformy oVirt a nikoliv platformy Red Hat Virtualiza-
tion, danou konfiguraci nelze považovat v souladu s danými bezpečnostními stan-
dardy. V tomto kontextu lze však hovořit o kompatibilitě s danými standardy, niko-
liv o shodě. Termínem kompatibility je autorem označena takzvaná měkká shoda se
standardem. Jednoduše řečeno, platformy oVirt a Red Hat Virtualization sdílí stej-
ný implementační základ. Pokud je konfigurace platformy Red Hat Virtualization
považována za souladnou s danými standardy, lze říci, že stejnou konfiguraci akorát
pro platformu oVirt lze považovat za kompatibilní s těmito standardy v kontextu
téměř shodných funkcionalit a implementačního aspektu obou platforem. V kon-

textu virtualizační platformy Red Hat Virtualization se taktéž nejedná o triviální
problém. Základ pro souladnou konfiguraci s danými standary lze nalézt ve vrstvené
architektuře platformy Red Hat Virtualization. Jedná se o komplexní problém a tato
práce si klade za cíl jej nastínit a pokusit se o jeho alespoň částečné řešení.

V kontextu vytvoření mechanismu kontrolních seznamů pro ověření souladné kon-
figurace virtualizačních platforem oVirt a Red Hat Virtualization je možné využít
systémově nativních prostředků a nástrojů poskytovaných samotnými platformami.
Nicméně pro bezpečnostní standard Common Criteria žádný systémově nativní
prostředek či nástroj pro ověření souladné konfigurace neexistuje. Tento naský-
tající se problém je řešen v kapitole vysvětlující implementaci modulu pro ověření
shodné konfigurace s tímto standardem.

Technický počin této práce je implementace nástroje určeného pro ověření shody
konfigurací virtualizačních platforem oVirt a Red Hat Virtualization s bezpečnost-
ními kritérii sledovaných standardů. Architektura tohoto nástroje je též vrstvená
a modulární. Pro každý sledovaný bezpečnostní standard je vytvořen separátní
modul obhospodařující funkcionalitu ověření shody.

Popis řešení a shrnutí

V rámci řešení práce bylo nejprve nutné nastudovat problematiku jednotlivých stan-
dardů a pochopit jejich obecné fungování. Následně bylo potřeba vůbec porozumět
technologii úplné virtualizace, která je implementována virtualizační platformou
oVirt. Na základě tohoto pochopení bylo možné rozebrat jednotlivé funkcionali-
ty platformy oVirt a zaměřit se na jejich bezpečnostní aspekty. Z dokumentace pro
platformu bylo čitelné, ve kterých částech lze uplatnit sledované bezpečnostní stan-
dardy, avšak kontext odkud vychází aspekt souladnosti s danými standardy musel
být vydedukován. Tento kontext mohl být vydedukován na základě korektního
pochopení fungování jednotlivých aspektů.

V další fázi bylo nutné stanovit proces ověření kompatibility platformy oVirt
s jednotlivými standardy. Stanovení tohoto procesu vycházelo jak z obecného fun-
gování sledovaných standardů, ale i z implementačního hlediska v rámci platformy.
Zde bylo využito vrstvené architektury platformy oVirt založené na operačním sys-
tému RHEL (Red Hat Enterprise Linux).

V poslední fázi byla vytvořena architektura pro nástroj ověřující souladnost kon-
figurací platformy se sledovanými standardy. Tato architektura byla založena na
současném stavu techniky v oblasti vývoje software. Pro následnou implementaci
architektury byla zvolena technologie Ansible, a to zejména z důvodu toho, že je
tato technologie primárně určena pro automatizované nasazování počítačů s předem
určenými systémovými konfiguracemi.[68].

Zhodnocení výsledků

Tato práce vytvořila teoretický přehled o sledovaných standardech a usilovala
o uvádění pouze důležitých a relevantních informací pro celkové pochopení presen-
tované problematiky. Došlo k vysvětlení architektury a fungování série standardů
FIPS 140, zejména tedy standardu FIPS 140-2. Vysvětlila fungování standardu
DISA STIG a jeho navázání na SRG (Security Requirements Guide). Následně byl
prezentován obecný pohled na fungování standardu Common Criteria.

Práce pokračovala s deklarováním definice technologie úplné virtualizace a její
zasazení do kontextu virtualizační platformy oVirt a její downstream odnože Red
Hat Virtualization. Zde se naskytlo několik problémů týkající se problematiky strikt-
ního souladu a pouhé kompatibility se standardem, pro což byla uvedena dostaču-
jící definice. Pro každý sledovaný standard došlo k uvedení jejich implementace
platformou oVirt. Práce konstatovala důležité napojení mezi platformami oVirt
a Red Hat Virtualization a operačním systémem RHEL. Toto nalezené propojení
umožnilo otevřít možnost určení souladných konfigurací pro platformu Red Hat Vir-
tualization.

Také došlo k prezentování kontrolních seznamů pro ověření souladné konfigurace
pro sledované bezpečnostní standardy. V kontextu standardu FIPS 140-2 se jed-
nalo o využití systémových kryptografických politik implementovaných na straně
operačního systému RHEL a kritérií vycházejících z relevantních dokumentů typu
security policy pro konkrétní kryptografický modul. Pro standard DISA STIG byl
využit systémově nativní nástroj pro ověřování bezpečnosti systémových konfigu-
rací vycházející z projektu OpenSCAP. Pro bezpečnostní standard Common Criteria
došlo k využití souboru funkčních testů poskytnutého společností Red Hat jakožto
kontrolního seznamu pro ověření souladné konfigurace.

V rámci této práce došlo k navrhnutí zlepšení určitých aspektů nákládání se
sledovanými bezpečnostními standardy platformou Red Hat Virtualization. V kon-
textu standardu FIPS 140-2 se jednalo o návrh k začlenění podporovaných kryp-
tografických modulů do certifikačního procesu nově vzniklého pokračování série stan-
dardů FIPS 140, a to konkrétně FIPS 140-3. Co se týče standardu DISA STIG,
zde došlo k návrhu spolupráce s institucí DISA na vytvoření oficiálního STIG pro
platformu Red Hat Virtualization. V poslední řadě autor práce doporučil frekvento-
vanější zapojení do procesu certifikace pro standard Common Critieria, a to z důvodu
novějších funkcionalit nabízených novějšími verzemi platformy.

V části technické implementace práce byl vysvětlen důvod pro automatizované
nasazování a testování platforem oVirt a Red Hat Virtualization. Automatizované
nasazování a testování bylo zajištěno formou CI/CD. Všechny funkční prvky auto-
matizace byly vysvětleny a popsány. Následně práce ukázala přehled a architekturu

skriptu pro ověření souladné konfigurace. Došlo také k vysvětlení modulárního a-
spektu daného skriptu. Pro každý standard byl vytvořen jednotlivý modul obhospo-
dařující funkcionalitu ověření shody. Jakožto správnou technologií pro implementaci
skriptu byla zvolena technologie Ansible. Skript využívá aspektů playbooku a role
vycházející z technologie Ansible pro jeho implementaci. Implementované moduly
využívají architektury takzvaných Ansible rolí.

V kontextu implementace jednotlivých modulů jakožto Ansible rolí je využíváno
vytvořených kontrolních seznamů pro ověření souladné konfigurace. Tyto kontrolní
seznamy byly formalizovány takovým způsobem, aby byla zajištěna strojová čitel-
nost pro ověřovací skript implementovaný v rámci této práce. Byly vytvořeny dva
typy rolí, a to role, které obhospodařují funkci ověřování shody, a role, které dodá-
vají podpůrné funkcionality předchozím rolím. Tyto podpůrné funkcionality jsou
například řešení závislostí na ostatním software nebo počáteční získávání informací
o nasazených platformách oVirt a Red Hat Virtualization.

Na základě této práce došlo tedy k úspěšnému naimplementování a otestování
nástroje s funkcí ověření souladné konfigurace nasazených platforem oVirt a Red Hat
Virtualization se sledovanými standardy. V poslední části práce je vyobrazen testo-
vací scénář pro tento nástroj.

Autor deklaruje, že úspěšně splnil zadání bakalářské práce.

VÁGNER, Vojtěch. Secure deployment and testing of oVirt platform. Brno: Brno
University of Technology, Faculty of Electrical Engineering and Communication, De-
partment of Telecommunications, 2021, 92 p. Bachelor’s Thesis. Advised by Ing. Petr
Dzurenda, Ph.D.

Author’s Declaration

Author: Vojtěch Vágner

Author’s ID: 216975

Paper type: Bachelor’s Thesis

Academic year: 2021/22

Topic: Secure deployment and testing of oVirt
platform

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the supervisor of the bachelor’s thesis Ing. Petr Dzurenda, Ph.D.
for his guidance, consultations, tolerance and constructive proposals for the thesis.
Without proper technical supervisory of Ing. Jiří Macků and also without proper the-
oretical supervisory in terms of security standards of Ing. Jaroslav Řezník I would not
be able to successfully finish this thesis. That is why I thank them very much for their
professional supervisory.
Lastly I would like to thank other people from the company Red Hat and from the
Government CERT of the Czech Republic that supported me in finishing the text of the
bachelor’s thesis.

Contents

Introduction 14

1 Security standards 16
1.1 FIPS . 16
1.2 DISA STIGs . 20
1.3 Common Criteria . 21

2 The oVirt virtualization platform 25
2.1 oVirt Full Virtualization Architecture 25
2.2 Implementations of security standards in oVirt 27

3 Practical implementation 41
3.1 Automated oVirt deployment . 41
3.2 Architecture of the compliance verification script 42
3.3 Implementation of the compliance verification script 53
3.4 Testing scenario for the compliance verification script 73

Goals of the thesis 80

Conclusion 81

Bibliography 83

A Content of electronic attachment 91

Listings
2.1 Enabling FIPS policy via fips-mode-setup 32
2.2 Checking whether FIPS policy had been enabled 32
2.3 Checking binary’s version of the validated cryptographic modules . . 32
2.4 OpenSCAP installation . 35
2.5 OpenSCAP RHEL STIG . 36
2.6 OpenSCAP compliance evaluation against the RHEL STIG 36
2.7 OpenSCAP RHEL STIG evaluation results 37
2.8 OpenSCAP remediation process . 38
3.1 Example list of tasks . 48
3.2 An example of variables . 50
3.3 An example of a report template . 51
3.4 An example of a generated report from a template 52
3.5 Product type rule in the compliance checklist 54
3.6 OS type rule in the compliance checklist 55
3.7 Recommended method of FIPS mode installation 56
3.8 FIPS mode enforcement rule in the compliance check 56
3.9 FIPS cryptographic policy enforcement rules in the compliance check 57
3.10 Kernel parameter enforcement rule in the compliance check 57
3.11 Active cryptographic module versions enforcement rule in the com-

pliance checklist . 58
3.12 Example of a STIG rule . 60
3.13 Product type enforcement rule . 61
3.14 Operating system type enforcement rule 62
3.15 Succesfull oscap scan enforcement rule 62
3.16 Product type enforcement rule . 64
3.17 Product version enforcement rule . 64
3.18 Operating system type enforcement rule 65
3.19 Operating system version enforcement rule 65
3.20 Successful test run enforcement rule 65
3.21 Start of the play reserved for the base info role 69
3.22 End of the play reserved for the base info role 70
3.23 Start of the play reserved for the FIPS 140-2 role 71
3.24 End of the play reserved for the FIPS 140-2 role 71
3.25 Makefile as the user interface layer 72
3.26 Example of executing the script with the test-fips command 73
3.27 Commands to install Ansible on RHEL-based systems 74
3.28 Command to install git on RHEL-based systems 74

3.29 Command to clone the specific repository 74
3.30 Command to change to the specific directory 74
3.31 Configuring variables needed to run the script 75
3.32 Command to install Development Tools 75
3.33 Command to run all tests for compliance verification 75
3.34 Execution of the base info role . 76
3.35 Execution of the FIPS 140-2 role . 77

Introduction
Every software, like the oVirt platform, bares a wide range of possible configura-
tions. Not all configurations of the particular software are plausible for a production
environment in terms of cybersecurity. When the oVirt virtualization platform is
deployed without proper consideration, it might not be secure by default. To en-
sure that a given deployment is secure, the right configuration needs to be chosen
first. That is where security standards are of help. Security standards declare that
a given software configuration is secure1 under the condition that it complies with
the security requirements defined by the standards. This is the primary focus of
this thesis, to determine which configurations of the oVirt platform are secure and
to whether they comply with the particular security standards and to provide a tool
to verify them.

The particular security standards shall be analyzed through the course of this
thesis and their architecture and definition shall be provided. The provided general
explanation of the standards shall then be specified in the chapter about the oVirt
architecture. There first the overall concept of the full virtualization technology
shall be laid out and then the implementation of the respective standards shall be
shown.

In the context of the sole implementations of the standards, a problem of com-
pliance and compatibility occurs. Since oVirt is an open-source community project,
there is a very low probability of it undergoing a certification process for the above
mentioned standards. Now this comes off as a very hard problem to solve. If a
configuration strictly uses oVirt and not Red Hat Virtualization, the configuration
can not be compliant with the standards. In this case compatibility applies. Simply
put, Red Hat Virtualization and oVirt share common grounds. If a configuration of
Red Hat Virtualization is compliant with a standard, then the same configuration
of oVirt is therefore compatible with the standard in the pure functional context.
Neither it is a trivial problem in the case of Red Hat Virtualization. The grounds
for compliance with the standards actually lie in many cases in the architecture of
a layered product that Red Hat Virtualization employs. It is a complex issue and
this thesis tries to unravel it.

In terms of creating a checklist mechanism for evaluating compliance of a de-
ployed configuration, native tools provided by the product itself exist. In the case
of Common Criteria, no native tools are provided and therefore such an issue shall
be resolved in the implementation part of this thesis.

The thesis then shows the implementation of a scanning tool that is capable
of evaluating compliance of oVirt/RHV configurations to the particular standards.

1in the context of the standard

14

The scanning tool is divided into modular pieces and each of the piece implements
the functionality of assessing compliance for the given standard it is intended for.

15

1 Security standards
The trend in security, and in cyber security in particular, is to standardize the
processes of implementing security measures. It is useful for a set of similar products
to have the same or close to the same level of security which is the goal of many
security standards. For a security standard a way of certification is also crucial
for the correct employment of the standard. The process of certification is usually
delegated to an independent laboratory that tests the compliance of the evaluation
target with the standard. These laboratories are strictly selected by the respective
authorities[25].

The predominant doctrine in the architecture of security standards today is
a threat model. The threat model tries to balance the risk of potential threats
on assets by implementing countermeasures that ought to mitigate the risk of the
threats. Threats to the assets occur in three possible domains - integrity, availability
and confidentiality. This classification is known as the CIA triad[25].

The standards that this thesis focuses on are linked to the oVirt platform, or to
be more precise to the Red Hat Virtualization platform. Federal Information Pro-
cessing Standard (FIPS), Defense Information Systems Agency Security Technical
Implementation Guide (DISA STIG) and Common Criteria shall be introduced and
their architecture explained in their respective sections.

1.1 FIPS
FIPS is an abbreviation for Federal Information Processing Standards. FIPS, hence
the name, is a set of security standards and guidelines for computer systems[35]
in the field of cybersecurity.[5] These standards and guidelines were produced in
accordance with the Federal Information Security Management Act (FISMA) and
issued by the National Institute of Standards and Technology (NIST). The approval
process goes to the Secretary of Commerce.[35]

The FIPS security standards are primarily mandatory for government organiza-
tions of the US but can be of help for non-government institutions that seek out
reference for their policies regarding cybersecurity.[35] This might change a bit in
the case of the FIPS 140 standards, since the FIPS 140-3 aligns with the ISO/IEC
19790:2012(E)[10]. This makes it more applicable towards worldwide use.

As stated previously, FIPS is a set of security standards. The one that this
thesis shall focus on more deeply is the FIPS 140-2 which the core cryptographic
components from the RHEL operating system are certified for[1]. The FIPS 140-2
defines "security requirements for cryptographic modules" as it states in the name
of the standard.[8] Other FIPS standards include[2]:

16

• FIPS 180-4 Secure Hash Standard
• FIPS 186-4 Digital Signature Standard
• FIPS 197 Advanced Encryption Standard
• FIPS 198-1 The Keyed-Hash Message Authentication Code
• FIPS 199 Standards for Security Categorization of Federal Information and In-

formation Systems
• FIPS 200 Minimum Security Requirements for Federal Information and Infor-

mation Systems
• FIPS 201-2 Personal Identity Verification (PIV) of Federal Employees and Con-

tractors
• FIPS 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-

tions
• FIPS 140-3 Security Requirements for Cryptographic Modules

FIPS 140-2

The FIPS 140-2 security standard falls under the Cryptographic Module Valida-
tion Program (CMVP)[11] which is a joint effort between NIST and the Cana-
dian Centre for Cyber Security[7]. The CMVP program strives for the use of vali-
dated cryptographic modules and tries to help federal agencies in choosing the secure
implementations of cryptographic modules.[7]

This is achieved through the FIPS 140 certification process. The certification
process under the CMVP is done by Cryptographic and Security Testing (CST)
Laboratories1. These laboratories do the actual testing of the cryptographic mod-
ules. The testing procedure involves validating whether the cryptographic module
meets the requirements defined in the standard. The other two important docu-
ments are the Derived Test Requirements (DTR) and the Implementation Guide.
The DTR works as a reference point for the validation requirements of the crypto-
graphic modules that are to be used by the testing laboratories or the vendor.[11] The
Implementation Guide, as stated on the CMVP page on FIPS 140-2, "is intended
to provide clarifications of CMVP programmatic guidance, FIPS 140-2, FIPS 140-2
Derived Test Requirements, testing guidance, and guidance related to the imple-
mentation of Approved or non-Approved security function"[11].

The certification process alone involves the accredited laboratory to rate the
cryptographic module on a Security Level scale of one to four in eleven domains
defined by the standard. These separate ratings are then used for an overall rating
of the cryptographic module[11].

1Accredited by NIST through the National Voluntary Laboratory Accreditation Program
(NVLAP)[4]

17

When it comes to the continuity of FIPS 140 standards, FIPS 140-2 superseded
FIPS 140-1 and now has been superseded by FIPS 140-3[3]. The transition to the
newer version of the standard is still an ongoing effort, so the FIPS 140-2 certifica-
tions are still considered as valid[6].

In essence, FIPS 140 standards are applicable anywhere where cryptographical
protection of information or data is needed[7]. FIPS 140-2 itself defines security re-
quirements for cryptographic modules that were developed and intended to protect
unclassified sensitive information in computer and telecommunication systems, voice
systems not excluded.[8] A cryptographic module is defined as "the set of hardware,
software, and/or firmware that implements approved security functions and is con-
tained within the cryptographic boundary"[8]. A cryptographic boundary is then
the physical layer of a cryptographic module.[8]

An important addition to the FIPS 140-2 standard is that it sets a requirement
on documenting the implementation process of the cryptographic module with the
security requirements provided in the standard. The documentation then can be
found in the Security Policy which describes how a particular cryptographic mod-
ule meets the requirements specified in the standard and documents the Approved
mode2 of operation[12].

As stated previously, the standard defines requirements in eleven different do-
mains for four different Security Levels. The higher the Security Level, the more
demanding requirements3. The eleven domains are as follows[8]:

• cryptographic module specification;
• cryptographic module ports and interfaces;
• roles, services and authentication;
• finite state model;
• physical security;
• operational environment;
• cryptographic key management;
• electromagnetic interference/electromagnetic compatibility (EMI/EMC);
• self-tests;
• design assurance;
• mitigation of other attacks

2e.g. a mode of the cryptographic module that employs only NIST-approved security
functions[8]

3This is to be demonstrated by the explanation of the Security Levels later in the text.

18

The standard also lays out functional security objectives which shall be achieved
by means of implementing security requirements of the presented domains in a cryp-
tographic module. The general picture of the functional security objectives is to have
a cryptographic module that uses NIST-approved cryptography in a proper way for
data protection and prevents unauthorized disclosure or modification of crypto-
graphic keys and CSPs (Critical Security Parameters). Other objectives touch on
the subject of being able to detect operational errors and for a cryptographic module
to indicate operational state[8].

Important requirements in the context of this thesis are the one residing in the
operational environment domain, since FIPS 140-2 specifies certain conformance
claims of the particular Target of Evaluation (here being the operational environ-
ment that the cryptographic module operates in). For Security Level 2 and above
the standard specifies Common Criteria Protection Profiles (PPs) and Evaluated As-
surance Levels (EALs) to which the Target of Evaluation must claim conformance
to[8]. This goes to show that FIPS 140-2 and Common Criteria have an overlap.
This overlap though is there in the case of the Target of Evaluation being a general
purpose operating system[8].

In terms of FIPS 140-2 security levels, Level 1 is the lowest one with the least
number of requirements. Security Level 1 mandates that a NIST-approved algo-
rithm or security function has to be implemented in a cryptographic module. The
requirement then states that at least one of those has to be used. No other secu-
rity precautions such as physical security has to be implemented. This can be of
use for software-implemented cryptographic modules that do not have to implement
requirements regarding physical security[8].

Security Level 2 adds on top of the Level 1 the requirement for an opaque
tamper-evident or pick-resitant locks to be added to the physical layer of the crypto-
graphic module for enhanced physical security and protection against unauthorized
access to plaintext cryptographic keys and CSPs. Level 2 also requires implemen-
tation of a role-based authentication. This means that the cryptographic module
should be able to authorize an operator, grant the operator a role with a respec-
tive set of services defined for that role. The operational environment needs to
be compliant with NIAP4 Approved GPOSPP (Protection Profile for General Pur-
pose Operating Systems)[9] or NIAP Approved Protection Profile for Mobile De-
vice Fundamentals[9] and EAL2[8].

Level 3 enhances the introduced tamper-evident to use a circuitry that sets all
plaintext critical security parameters to zeros if the physical layer of a cryptographic
module is intruded. Regarding the way of handling plaintext critical security pa-

4National Information Assurance Partnership

19

rameters, the Level 3 also states that obtaining or putting plaintext critical secu-
rity parameters has to be executed through physically or logically isolated ports or
interfaces sent through a trusted path. In the case of handling encrypted critical
security parameters, these can be sent through an intervening system. Also the role-
based authentication required in Level 2 has to be upgraded to an identity-based
authentication. The operational environment must meet the requirements listed in
Level 2 with additional requirements of compliance to EAL3 with FTP_TRP.15 and
ADV_SPM.16extensions[8].

Level 4 in terms of physical security of the physical layer of the cryptographic
module‘s intrusion detection states that potential intrusions should be detected in
all cases with a very high probability. This detection mechanism then would result
in setting the plaintext critical security parameters to zero. This mode of operation
is very suitable for physically unprotected environments. Level 4 also requires a
cryptographic module to implement a protection against fluctuations of normal op-
erating ranges for voltage and temperature either by detecting such fluctuations and
shutting down the cryptographic module in order to prevent further manipulation
or immediately setting critical security parameters to zero or by verifying through
a use of tests that the cryptographic module is resistant to such fluctuations. These
modes of detecting fluctuations and responding to them or implementing a way of
testing resistance to such fluctuations are called environmental failure protection
(EFP) and Environmental failure testing (EFT) and both modes of operation are
a valid implementation for a cryptographic module at Level 4. For optimal EFP
and EFT implementation the normal operating ranges have to be specified. The
operational environment needs to be compliant with requirements from Level 3 and
also be compliant with EAL4[8].

1.2 DISA STIGs
The so called Security Technical Implementation Guides (STIGs) are security guides
provided by the Defense Information Systems Agency (DISA) under the U.S. Depart-
ment of Defense (DoD)[19]. These STIGs are based on Security Requirements Guides
(SRGs), which are a general implementation of applied security measures for mitigat-
ing sources of security risks posed on different parts of IT systems and applications[42].

5"... requires that a trusted path between the TSF and a user be provided for a set of events
defined by a PP/ST author. The user and/or the TSF may have the ability to initiate the trusted
path"[26]

6e.g. Formal (having a specification language and a theorem prover) TOE security policy
model[28]

20

SRGs provide general security requirements for various technologies and organi-
sations, the STIGs on the other hand provide detailed implementation of product-
specific measures to be taken in order for the product to be SRG compliant in the
specific product’s technological branch. The main use of SRGs is security control
implementation in specific systems or technology types such as general purpose op-
erating systems or network switches[42].

SRGs are based on a myriad of security-oriented principles but the baseline is
constructed from established security standards and since DoD is a federal agency,
there are certain security standards the DoD has to implement. The security base-
line of SRGs include DoD Instructions such as DoD 8500.01 implementing cyber-
security measures, DoD Directives, NIST special publications (NISP SP 800-53,
NIST SP 800-37), NIST FIPS standard, NIST Cybersecurity Framework, DoD Risk
Management Framework and other DoD cybersecurity policies[42].

SRGs and STIGs are published in a form of eXtensible Markup Language (XML)
files in the Extensible Configuration Checklist Description Format (XCCDF)[42]
and are intented to be viewed via a Security Content Automation Protocol (SCAP)
validated tool while evaluating the compliance of a system[21].

The security requirements in a STIG contain a description of the need to imple-
ment the specific requirement, severity (how severe is implementing or not imple-
menting the specific requirement), a check box providing a text description of what
one has to check for compliance with this requirement and a fix text providing a
text description of what one has to do in order to remediate the particular system’s
defect in the context of STIG compliance[20].

1.3 Common Criteria
The Common Criteria for Information Technology Security Evaluation, Common Cri-
teria or CC in short, is a set of requirements for security conformity of IT products.
The Common Criteria is a joint effort within an international agreement called the
Common Criteria Recognition Arrangement. IT products are to be evaluated by
licensed laboratories to a certain assurance level. For the specific segments of IT
products supporting documents are made which define the process of application
of evaluation methods. A certificate confirming a Common Criteria compliance is
issued by an authorized certificate issuer and these certificates are recognized by the
signatories of the agreement[29].

21

The architecture of Common Criteria

The Common Criteria standard builds up on the protection of assets known as the
CIA triad. The components included in the protection of assets are confidentiality,
integrity and availability. Thereof the CC standard focuses primarily on the secu-
rity of an IT product in its full operational environment, be it software, firmware
and/or hardware. On the other hand the CC standard does not address security
requirements on the implementation of cryptographic modules, thus does not pose
any requirements whatsoever on the qualities of cryptographic algorithms used in
the IT product, though if such a security requirement is raised, it has to be assessed
as well[25]. In such case a combination of Common Criteria and FIPS 140-2 makes
sense and is suitable. The Common Criteria consists of three main parts[25].

• Part 1, Introduction and general model;
• Part 2, Security functional components;
• Part 3, Security assurance components

Key concepts of Common Criteria

The entity that is being evaluated is called the Target of Evaluation (TOE), which
in the words of the standard is "a set of software, firmware and/or hardware possibly
accompanied by guidance"[25]. The entity that the standard marks as a TOE can
refer to "an IT product, a part of an IT product, a set of IT products, a unique
technology that may never be made into a product, or a combination of these"[25].
The list of examples of a TOE provided in the standard is rather demonstrative.
The TOE can then represent an operating system, a software application (isolated
and/or in combination with an OS and/or a workstation) and others. A software
TOE can be represented as "a list of files in a configuration management system"[25]
but also as "an installed and operational version"[25]. The context of the TOE is
always important in order to determine its representation.

However, an IT product can support many different configurations, in the context
of a TOE rather strict constrains can be set on the configuration to meet certain
security requirements, because of this a dichotomy between all the configurations
supported by the IT product and only one or a few configurations supported by the
TOE can exist[25].

Another important terminology connected to the TOE is the Security Target
(ST). The ST provides a definition of the given security problem and countermea-
sures to potential threats imposable on an asset in the context of the defined security
problem and demonstrates the sufficiency of these countermeasures in the form of
Security Objectives (SOs)[25]. The SOs then split based on the object of interest
and whether the objective shall be evaluated into the security objectives of[25]:

22

• the TOE, which shall be evaluated;
• the Operational Environment, which shall not be evaluated
This division is made because TOE is focused solely on the IT related counter-

measures and although an operational environment can include an IT related entity
(such as an operation system), it can also encompass non-IT related security coun-
termeasures (physical security for example). The IT-related countermeasures of the
TOE that are to be evaluated are then formulated into Security Functional Require-
ments (SFRs). The Security Target of the TOE must meet Security Assurance Re-
quirements (SARs) that if met provide assurance for the TOE to not contain po-
tentially exploitable vulnerabilities that would get intentionally or unintentionally
(through an error) integrated into the TOE in the process of development[25].

SARs provide a set of activities which then "determine correctness of the TOE"[25].
These activities comprehend "testing the TOE, examining various design represen-
tations of the TOE[25] and "examining the physical security of the development
environment of the TOE"[25].

The CC standard presumes fully secure operational environment, since it is not
covered in the evaluation process. The evaluation process takes into account whether
STs of the TOE are sufficient and whether SARs imposed by the STs are met[25].
The STs can be constructed through defined operations by the standard, which are:

• iteration: "allows a component to be used more than once with varying operations"[25];
• assignment: "allows the specification of parameters"[25];
• selection: "allows the specification of one or more items from a list"[25];
• refinement: "allows the addition of details"[25]

In other words, the Common Standard uses a formal language for describing its
respective units. All Common Criteria requirements follow this structure - class,
family, component, element; where element is the most isolable unit of structure,
since a greater division would not bear any meaning[26].

STs can also have dependencies on each other. Because STs are more of a single
isolable unit, although they can have dependencies as said previously, they can be
grouped into hypernyms. In the context of the CC standard, these hypernyms
are referred to as Packages and Protection Profiles (PPs)[25]. As defined in the
standard, a package "is a named set of security requirements"[25] and is either "a
functional package, containing only SFRs"[25] or "an assurance package, containing
only SARs"[25]. Here "or" has to be understood as exclusive disjunction.

However, a PP, as stated in the standard, "PP is intended to describe a TOE
type"[25]. So a logical interpretation of this statement might be that a PP accom-
panies more general security requirements than a package which is composed out of
more specific STs tailored to the particular TOE. So for the purpose of this thesis,
one could understand that a PP is incorporated by a "government or large corpora-

23

tion specifying its requirements as part of its acquisition process"[25] (US government
PP) and a package by the developer of the specific TOE (Red Hat creating a set of
STs incorporating the US government PP for the company’s product)[25].

As for the conformity of the the PPs and packages, the standard "allows PPs to
conform to other PPs, allowing chains of PPs to be constructed"[25]. The PPs and
STs have to provide a conformance claim, which can either be conformant (claiming
conformance to the respective CC parts or other PPs) or extended (claiming con-
formance to respective CC parts or other PPs with extended features)[26]. PPs can
also be subdivided into Base-PPs and PP-Modules. The PP-Module use already
certified Base-PPs and either builds up on them or tailors the specific requirements.
A PP-Configuration is the result of the combination of a PP-Module with the Base-
PPs[25].

One could point out the importance of a specific type of already pre-defined
packages, which are the Evaluation Assurance Levels (EALs). EALs consist of seven
evaluation levels hierarchically ordered, where each greater EAL provides greater
assurance of security[28]. EALs are used for instance in the FIPS 140-2 standard.

24

2 The oVirt virtualization platform

2.1 oVirt Full Virtualization Architecture
Full Virtualization

Before addressing the actual architecture of the oVirt platform, a few words on the
full virtualization technology, which the oVirt platform builds upon, should be laid
out. Virtualization is a type of technology that can take a hold of the bare metal
resources one has and distribute it across different users or environments. One
could define virtualization as a simulation of software and/or hardware upon which
other software runs. The term virtual machine (VM) is connected to virtualization
and widely used to virtualize operating systems. Virtualization is being used in
three major domains. These domains include application virtualization, operating
system virtualization and full virtualization. The architecture of the oVirt platform
incorporates the full virtualization technology[43].

Full virtualization is based on virtual hardware. Virtual hardware includes phys-
ical and virtual resources. This virtual hardware is then used to run virtual machines
which usually take the form of virtualized operating systems. Virtualized operating
systems in full virtualization are called guest operating systems. These guest op-
erating systems are managed by a hypervisor. Hypervisor acts as an intermediary
between physical resources such as CPU, memory, etc and the guest operating sys-
tems. Hypervisor can be run either on top of the bare metal - this means installed
directly on hardware - or on top of a host operating system - this means that the
hypervisor is installed on an operating system such as Windows, Linux or MacOS.
In the context of the operating system the hypervisor is just another software that
is running its own processes[43].

Hardware’s physical platform provides interfaces that are needed for a non-
virtualized operating system to run. These physical interfaces are being also used in
virtualized environments. Main use of the virtualization of hardware is in network-
ing and storage. In the context of networking, the hypervisor can provide network
interfaces to the guest operating systems which can be virtual, physical or both and
can also provide them with different forms of network access (bridging, NAT, host
only). Hypervisors are able to implement virtual network devices such as switches.
These virtual network components can then be assembled into a virtual network that
can also be used for general networking purposes of the guest operating systems.
Generally speaking the guest operating systems communicate within the virtual net-
work created by the hypervisor but they can be provided with a physical network
interface and communicate outside of the virtual network. Hypervisors also have to

25

virtualize disk storage. This is accomplished through the use of a disk image. Full
virtualization also has two major use-cases - server and desktop virtualization[43].

The full virtualization architecture of the oVirt platform

The oVirt virtualization platform (oVirt in short) is an open-source community
project that implements full virtualization technology[22]. The difference between
Red Hat Virtualization (RHV) and oVirt is that RHV is a stable release and oVirt
is the upstream. In other words when oVirt gets updated or any change occurs,
this change also propagates to the corresponding downstream product, in this case
RHV[18]. This is because RHV is an open-source project, that means that the
source code of the product is freely available and the product as well, but with no
support from the company that develops it (Red Hat in this case)[39].

Furthermore the Red Hat Virtualization builds on Red Hat Enterprise Linux
(RHEL)[15]. Here another important clarification needs to be done. The oVirt
platform supports deployment with either CentOS, oVirt node or RHEL hosts[17].
The CentOS operating system used to be a downstream product of the RHEL op-
erating system. Nowadays before RHEL gets a feature pushed into production, this
feature is implemented in the CentOS Stream project. Either way, because Cen-
tOS is an operating system based on RHEL, and the same can be said about the
oVirt node too, in the context of this thesis both shall be declared as RHEL based
systems. The term RHEL based system is an umbrella term describing operating
systems that build up on top of the RHEL project or are an upstream project[24].

The oVirt platform’s architecture comprises of four main components, which in
a demonstrative manner are[23]:

• virtualization manager; which according to the documentation is a "service
that provides a graphical user interface and a REST API to manage the re-
sources in the environment"[23] and in the case of the thesis is installed on a
physical or virtual machine running CentOS Stream;

• hosts; CentOS stream and oVirt node hosts are the supported types of host and
as specified in the documentation: "hosts use Kernel-based Virtual Machine
(KVM) technology and provide resources used to run virtual machines"[23];

• shared storage; which as specified in the documentation is "used to store the
data associated with virtual machines"[23];

• data warehouse; which as specified in the documentation is "a service that
collects configuration information and statistical data from the Manager"[23]

In the context of the full virtualization technology, which was presented in the
previous section, an oVirt host is nothing more than a hypervisor that manages the
resources of the physical hardware and hosts guest virtual machines from those re-

26

sources. The oVirt hosts are usually put into a cluster, so in other words the whole
cluster behaves as a hypervisor. The individual hosts or the cluster itself are man-
aged by the Manager[23]. The Manager can run in slightly different environments
depending on the type of deployment of the oVirt platform[16].

The oVirt platform maintains two types of deployments; as a self-hosted engine
or as a standalone Manager. In the case of the self-hosted engine deployment, the
Manager as according to the documentation "runs as a virtual machine on self-hosted
engine nodes in the same environment it manages"[15].

There are a few conditions on the minimal setup of a self-hosted engine deploy-
ment - a Manager hosted as a virtual machine on the self-hosted engine nodes, a
cluster of at least two self-hosted engine nodes (hosts) and a storage server. In the
case of the standalone Manager deployment, the Manager runs on baremetal or a
virtual machine in a completely different environment[15].

A few conditions are also accompanied with this type of deployment - a Manager
that is deployed as stated previously and also there is a need for the Manager to
run on RHEL 8 (CentOS Stream 8 in the case of this thesis), at least two hosts and
a storage device[15].

If one desired to understand the oVirt technology more deeply, one can consult
the Technical Reference of the Documentation to learn all the different parts running
inside the host, the layered structure of the host, virtual networking in oVirt and
such. For the purpose of this thesis the main focus shall not be the whole architecture
of the host but the baseline of the host’s layered architecture, which is the RHEL
operating system.

2.2 Implementations of security standards in oVirt
As stated in the previous paragraphs, oVirt is an upstream product of the Red Hat
Virtualization. In the context of security standardization, the standards that RHV is
certified to be compliant with are only applicable to the product itself. According to
this fact a very distinctive statement has to be made - just because RHV is certified
to be compliant with certain security standards, it by no means guarantees that the
oVirt platform is also certified to be compliant with these specific standards. For
the purpose of this thesis, two terms for security standard compliance shall be used
- strict compliance and soft compliance.

In the terms of the strict compliance if an entity is ought to implement a full vir-
tualization technology platform on their infrastructure and is ought to be compliant
with a certain security standard that the full virtualization platform is compatible
with therefore certified with, the entity has to use the same operational environment
as stated in the security documentation in order to be strictly compliant.

27

In the terms of the soft compliance if an entity is ought to implement a full vir-
tualization technology platform on their infrastructure and is ought to be compliant
with a certain security standard that the full virtualization platform is compatible
with therefore certified with, if the entity chooses to use an upstream product of the
particular product that guarantees the needed compliance, then the entity’s config-
uration can be evaluated only as soft compliance, since the product shares the same
security countermeasures as the downstream product, but because it is not the same
operational environment, thus it is not strictly compliant.

If the above definitions were to be used with the Red Hat Virtualization, then
if the product is certified to be compliant with certain security standards, then the
particular product with the particular operational environment (Red Hat Enter-
prise Linux) has to be used in order to achieve full compliance. In other words
deploying oVirt with CentOS Stream 8 hosts means that this configuration is not
strictly compliant, albeit the configuration shares the same source code and is of the
same implementation, but because an independent laboratory did not certify this
configuration, it can only be evaluated as soft compliance.

One also has to distinguish between compliance and compatibility with a security
standard. And in the context of compliance there are two different possible states
that the product and the security standard can be in. First being that the prod-
uct was certified, meaning that the whole process of certification had undergone.
In this case the whole product claims compliance. This is different to the second
state, where only a certain configuration of a product had undergone certification,
meaning only a specific configuration of a product claims compliance. And this is
only the case of compliance. Compatibility with a security standard means that
the product is compatible with the standard, meaning the product implements the
security requirements defined in the standard, but is not officially certified. Com-
patibility can also be measured, since there is no need in strict compliance, one can
claim that a product is n% (n is a positive integer on the scale of 0-100) compatible
with a specific standard. The two terms are sometimes used interchangeably and in
specific cases compatibility and compliance with a certain security standard might
mean the same. This is the case of self-assessed conformance to a security standard
by a vendor. When it comes to self-assessed conformance, this claim by the vendor
will not be verified by an independent laboratory.

The oVirt platform shall be analyzed in the context of the three mentioned
standards - FIPS 140-2, DISA STIG and Common Criteria. The focus here shall be
on the compliance and compatibility of the platform with these standards. Since a
very important link between RHV and RHEL exists, the compliance/compatibility
problematic shall address this link as well. In some cases it acts as a ground for
compliance/compatibility with the particular standard.

28

FIPS 140-2 and oVirt

Red Hat, as a vendor, has submitted five cryptographic modules to the CMVP
validation program for the FIPS 140-2 certification. These cryptographic modules
include GnuTLS, NSS, Kernel Crypto API, libgcrypt and OpenSSL[34]. All of these
cryptographic modules are certified to be compliant with the security level 1[40]. All
of the modules were validated with this following configuration:

Operational Environment[41]
Manufacturer Model Processor Operating System

Dell PowerEdge R430 Intel(R) Xeon(R) E5 RHEL 8
One could argue that since these cryptographic modules were validated on the

RHEL 8 operating system and not the Red Hat Virtualization platform, then the
Red Hat Virtualization platform is inherently not compliant with the standard be-
cause of this fact. And this is not true. Although the cryptographic modules were
validated on the RHEL 8 operating system and not the RHV platform, the RHV
platform is still compliant with the FIPS 140-2 standard[41]. This is because the
RHV platform is a layered product built on the RHEL operating system. In other
words the RHV platform and the RHEL operating system share the same binaries of
the validated cryptographic modules. The compliance with the standard is therefore
preserved. This is defined in all security policies of the validated cryptographic mod-
ules, specifically in the section on operational environment and applicability, where
it states that "The Red Hat Enterprise Linux operating system is used as the basis
of other products which include but are not limited to ..."[41] and then it continues
with the list of the specific products where RHV is one of the listed products. The
preservation of the compliance is then supported by declaring that "compliance is
maintained for these products whenever the binary is found unchanged"[41].

It is also important to explain that the security policies exist for the specific
versions of the binaries of the cryptographic modules[41]. Therefore if one would
run different versions of the binaries on their RHEL 8 system, then one would find
themselves not being compliant with the standard. The entities that need to be
compliant with the FIPS 140-2 standard and ought to use the RHEL operating
system or any other operating system in this case, need to take this issue into
account and perform a risk analysis on this issue.

Now here comes the problem of the difference between compliance and com-
patibility with a security standard. As stated previously, since the cryptographic
modules that RHEL 8 uses were validated through the CMVP program, thus are
FIPS 140-2 compliant, and since the same binaries of the validated cryptographic
modules are used in the RHV platform as well, the RHV platform is also compli-
ant with FIPS 140-2. Now this can not be extrapolated to the oVirt platform. The

29

oVirt platform is an open-source community product and despite the fact that oVirt
and RHV share basically the same source code, the compliance with the FIPS 140-2
standard is only limited to the cryptographic modules deployed in the RHEL oper-
ating system and the products that build their architecture on RHEL as explained
earlier on. So the conclusion here is that the oVirt platform is not compliant with
the FIPS 140-2 standard.

Notwithstanding the fact that the oVirt platform is not FIPS 140-2 compliant,
it does not mean that both the oVirt and RHV do not share the same binaries
of the same validated cryptographic modules. In fact, they do share the same
binaries. And since the configuration of the oVirt platform used in this thesis is
oVirt deployed on CentOS Stream 8 hosts, the CentOS Stream operating system
shares the same binaries of the validated cryptographic modules with the RHEL
operating system. This means that the oVirt platform and CentOS operating system
are both compatible with FIPS 140-2 standard. Compatible in the sense that they
should provide similar security in terms of the cryptographic modules.

Coming back to the fact that the configuration of the system is compliant only
if the configuration contains exactly the same version of the binaries as declared
in the respective security policies, the configuration that would include the oVirt
platform with CentOS hosts and exactly the same version of the binaries as declared
in the security policies, such a configuration is not FIPS 140-2 compliant, but can be
evaluated as being compatible with the FIPS 140-2 standard, thus providing similar
level of security in the context of the cryptographic modules used in the system. So
if an entity has to be compliant with the standard, then the entity should not employ
such a configuration. Though if an entity does not in fact have to be compliant with
the standard, the entity can be provided with a similar level of security through
employing a configuration containing oVirt and CentOS.

Since use of the validated cryptographic modules in the configuration of this
thesis relies on the bridge between oVirt and CentOS, which then relies on the bridge
between RHV and RHEL, the following section shall focus on the implementation
and use of the validated cryptographic modules in the RHEL operating system.

FIPS 140-2 and Red Hat Enterprise Linux 8

The RHEL operating system provides a special interface for the management of the
validated cryptographic modules. The documentation refers to this special interface
as the system-wide cryptographic policies. The validated cryptographic modules
are a part of a particular component of the RHEL operating system called the core
cryptographic components which is a component responsible for everything concern-
ing cryptography. The core cryptographic components also contain non-validated

30

cryptographic modules. These core cryptographic components, which the validated
cryptographic modules are a part of, can be manipulated with by the Crypto Of-
ficer through the use of system-wide cryptographic modules. If not specified, the
RHEL’s core cryptographic components do not operate in a mode that would satisfy
the FIPS 140-2 requirements in terms of the usage of non-NIST-approved crypto-
graphic algorithms[36].

To get the system to set the validated cryptographic modules to use the NIST-
approved cryptographic algorithms, the Crypto Officer has to change the system-
wide cryptographic policy. The system-wide cryptographic policies include four
modes of operation - LEGACY, NORMAL, FUTURE and FIPS. The LEGACY
mode is used for backwards compatibility with the older versions of the RHEL op-
erating system. The NORMAL mode is designed to respond to the threats that
are possible today, meaning the mode is using cryptography setting that is resistant
to current threats. The FUTURE mode sets the mode of operation of the crypto-
graphic modules to be resistant to possible threats in the future. This for example
includes setting the length of the RSA keys to 4096 bits. Lastly the FIPS mode
provides the employment of the security requirements on the use of NIST-approved
cryptographic algorithms in the validated cryptographic modules[36]. The particular
changes in the cipher suites and protocols that the FIPS system-wide cryptographic
policy employs are described in the following table:

RHEL FIPS system-wide cryptographic policy[36]
cipher suite or protocol usage

IKEv1 no
3DES no
RC4 no
DH min. 2048-bit
RSA min. 2048-bit
DSA no

TLS v1.0 no
TLS v1.1 no

SHA-1 in digital signatures no
CBC mode ciphers yes

Symmetric ciphers with keys < 256 bits yes
SHA-1 and SHA-224 signatures in certificates yes

In addition to the table, the FIPS policy also disables the use of RSA key exchange,
the use of X25519, X448, Ed25519 and Ed448 eliptic curves and the Chacha20-
Poly1305 algorithm[40].

31

In order to allow the FIPS policy, the designated user has two possible ways of
executing such task. That is either by installing RHEL 8 with FIPS policy already
enabled or enabling FIPS policy post-installation. The first one is achieved by
changing the value of the fips kernel parameter to 1. The seconds is achieved via a
comman-line tool called fips-mode-setup. The fips-mode-setup cli tool simply sets
the system-wide cryptographic policy to the desired FIPS policy[36]. This is done
through the use of the enable parameter like so:

Listing 2.1: Enabling FIPS policy via fips-mode-setup
1# fips -mode -setup --enable
2Setting system policy to FIPS
3FIPS mode will be enabled .
4Please reboot the system for the setting to take effect .

As can be seen from the output of the designated cli tool, the system needs to
be rebooted in order for the change to take effect. Whether the FIPS policy had
been set can be checked via the check or is-enabled parameter like so.

Listing 2.2: Checking whether FIPS policy had been enabled
1# fips -mode -setup --check
2FIPS mode is enabled .
3# fips -mode -setup --is - enabled
41

The is-enabled parameter ouputs 0 if FIPS policy has not been set or 1 for the
enabled state.

For the strict compliance’s purpose, versions of the particular binaries of the
validated cryptographic modules can be checked by the use of the rpm cli tool.

Listing 2.3: Checking binary’s version of the validated cryptographic modules
1# rpm -qa gnutls
2gnutls -3.6.16 -4. el8. x86_64

Proposal for FIPS policy enhancements

The FIPS 140-2 standard has been superseded by the FIPS 140-3[3]. That does
not mean that the superseded version of the standard is now deprecated. The
cryptographic modules that had been certified for the FIPS 140-2 standard shall, as
stated by NIST, "remain active for 5 years after validation or until September 21,
2026"[6]. As of the mentioned date, all the validated cryptographic modules shall
be moved to the historical list[6]. NIST then states that "even on the historical list,
CMVP supports the purchase and use of these modules for existing systems"[6].

32

The main proposal for the improvement of the RHEL FIPS system-wide cryp-
tographic policy is therefore for the RHEL core cryptogprahic components to im-
plement the FIPS 140-3 standard in order to tackle new security threats to crypto-
graphic modules.

Evaluation criteria for FIPS 140-2 compliant/compatible configuration

The evaluation criteria might take many forms depending on the goal such evaluation
strives to achieve. A possible way of assessing compliance is to take the steps
laid out in the DTR and follow them. Although this is a very rigorous way of
executing such assessment, it has already been done by the NVLAP accredited
laboratory that tested the cryptographic modules, used in the RHEL operating
system, against those criteria. In other words the goal of assessing whether an oVirt
or RHV configuration is FIPS 140-2 compliant, is not to re-test or re-validate the
cryptographic modules but rather to verify that they are used by the system in a
manner supported by the documentation and so supported by the security policy.
This approach then results into these criteria for determining whether an oVirt
environment is FIPS 140-2 compliant:

1. the platform installed is RHV
2. hosts run RHEL
3. FIPS mode is enabled on the hosts
4. FIPS system-wide cryptographic policy is enabled on the hosts
5. FIPS system-wide cryptographic policy is applied on the hosts
6. kernel parameter fips_enabled is set to 1 on the hosts
7. versions of the cryptographic modules’ binaries are equal to the ones used in

their security policies
The first and second items correspond to the operational environment that cryp-

tographic modules were certified in. In order to claim strict compliance, these two
conditions must be true. If the configuration runs oVirt on CentOS Stream hosts,
the configuration shall not be strictly compliant but can be assessed further for
compatibility or soft compliance.

The third item indicates that the cryptographic modules are in the FIPS mode
which means that they are using NIST-approved cryptographic algorithms, use cryp-
tographic keys of length defined in the standard and so on.

The fourth and the fifth item ensures that the system-wide cryptographic policy
is also set to the FIPS mode and is applied, meaning it is in operation.

The sixth item is there to assess whether the cryptographic modules are running
power-on self-tests as defined in the standard.

33

The last item on the list is to verify that the versions of the cryptographic
modules’ binaries are the ones which were FIPS 140-2 certified, therefore compliant.

DISA STIG and oVirt

The implementation of the DISA STIG in the oVirt platform is quite problematic,
since there is no official DISA STIG for oVirt or RHV[1]. The whole concept of
DISA STIG-inspired security hardening of the RHV platform is based on the pos-
sibility of deploying the platform with RHEL hosts. This is because an official
DISA STIG exists for the RHEL operating system[1]. Since RHV can also be de-
ployed standalone with RHEL hosts which "serve as an ordinary host in a Red Hat
Virtualization cluster"[23], the official RHEL STIG can be applied to the hosts. This
combination is a supported hardening method for Red Hat Virtualization[38].

The RHEL STIG is integrated into the NIST National Checklist for Red Hat En-
terprise Linux 8.x. When it comes to enforcing the official RHEL STIG on the RHV
hosts, the strict compliance of the host to the STIG can be evaluated and is therefore
preserved. The documentation for security hardening of Red Hat Virtualization also
specifies a possible way of hardening its hosts with a custom security profile called
[DRAFT] DISA STIG for Red Hat Virtualization Host (RHVH)[38]. If this profile
is chosen for the RHV hosts, then the deployed infrastructure cannot be considered
as compliant with the RHEL STIG. The DISA STIG for RHVH is tailored to the
specific flavor of the RHEL operating system called RHVH. The RHVH is a minimal
operating system developed solely for the purpose of running on virtualization hosts
for RHV[23]. Since there is no official RHVH STIG published on the DISA’s website,
no claim for compliance can be made. In view of this fact, only the combination
of RHEL hosts deployed in the RHV infrastructure can be considered as compliant
with the RHEL STIG.

Strict compliance can not be evaluated for the oVirt with CentOS Stream hosts
configuration. The NIST RHEL Checklist states in the Target Audience section that
the "content is applicable for Red Hat Enterprise Linux 8.x"[44] and that the "content
has not been tested, approved, or supported, on derivative operating systems such
as CentOS"[44]. Here only a compatibility with the standard can be determined
since CentOS Stream shares the same source code, packages, binaries and so on
with RHEL.

To verify that the RHEL hosts in a RHV deployment are compatible with the
RHEL STIG security profile, auditing tools from the OpenSCAP project provided by
Red Hat should be used. OpenSCAP shall be introduced in the coming subsection.

34

OpenSCAP workflow for RHEL STIG

The OpenSCAP project consists of system security configuration settings auditing
and vulnerability assessment tools and SCAP profiles[45]. Most importantly Open-
SCAP has been validated through NIST SCAP Validation Program and is therefore
a SCAP validated tool[38]. OpenSCAP consists of four main components[37].

• SCAP Workbench; a graphical utility for performing configuration and vul-
nerability scans capable of generating reports,

• OpenSCAP library; a command-line utility also providing a way of executing
configuration and vulnerability scans capable of conducting reports and guides
pointing out steps which can be taken in order to be compliant with a certain
security requirement,

• SCAP Security Guide (SSG); a package containing latest security policies as a
SCAP content designated to Linux machines implemented in accordance with
Payment Card Industry Data Security Standard (PCI DSS), STIG and United
States Government Configuration Baseline (USGCB),

• Script Check Engine; a tool capable of of transforming SCAP content into
scripting languages like Python or Bash

In order to check compliance of a system with certain security requirements the
scanning tool provided by OpenSCAP library shall be used together with the SSG
which provides the actual SCAP content that is a necessary component to be used
for the compliance check[37]. Both of these components have to be installed in the
first step.

Listing 2.4: OpenSCAP installation
1# yum install -y openscap - scanner scap -security -guide

After installation of the SSG, the SCAP content is to be found in a dedicated
directory1 in the form of SCAP source data stream. The data streams contain
the actual checklists (security profiles) that are to be used in the evaluation. The
OpenSCAP audit tool can be found under oscap and is installed into the user’s
binaries. For compliance evaluation against a chosen security profile, the respective
data stream needs to be provided as input to the oscap tool together with the
particular security profile specified via the profile parameter in the oscap tool[45].

The RHEL STIG is to be found in the ssg-rhel*-ds.xml2data streams. The official
STIG is of course integrated into the profile in this data stream. Besides this data
stream, the RHEL STIG can be accessed from a xccdf file also stored in the same
directory and other formats supported by the SCAP protocol.

1/usr/share/xml/scap/ssg/content
2The * character here symbolizes an asterisk sign.

35

Listing 2.5: OpenSCAP RHEL STIG
1# cd /usr/share/xml/scap/ssg/ content
2# oscap info ssg -rhel8 -ds.xml
3Document type: Source Data Stream
4...
5Status : draft
6...
7Profiles :
8...
9Title: [DRAFT] DISA STIG for Red Hat Enterprise Linux 8
10Id: xccdf_org . ssgproject . content_profile_stig
11...

For a RHEL host to be scanned for compliance, other necessary subcommands
and parameters must be provided. The oscap tools provides eight subcommands -
ds, oval, xccdf, cvss, cpe, cve, cvrf and info. For this moment, the xccdf and oval
subcommands are important for the actual execution of the compliance scan. The
xccdf subcommand specifies that a checklist in xccdf format shall be provided. The
eval subcommand indicates that a system configuration shall be evaluated against
the provided security profile. As mentioned previously the profile parameter is
used for security profile specification. There can also be other optional arguments
provided to the oscap tool such as the results parameter which specifies the path
of where the results from the compliance scan should be saved. Finally, the data
stream is to be provided as input to the oscap tool[45]. The final command for
compliance scanning against the RHVH-DRAFT STIG could look like this:

Listing 2.6: OpenSCAP compliance evaluation against the RHEL STIG
1# oscap xccdf eval \
2--profile xccdf_org . ssgproject . content_profile_stig \
3ssg -rhel8 -ds.xml

The above listed command executes an evaluation against an XCCDF bench-
mark. The results of the evaluation scan are "printed to standard output stream"[45]
for "each XCCDF rule within an XCCDF checklist[45].

36

Possible results for a single XCCDF rule are[45]:
• pass,
• fail,
• error,
• unknown,
• notapplicable,
• notchecked,
• notselected,
• informational,
• fixed
The result of an evaluation scan against the RHEL STIG would then look like

this:

Listing 2.7: OpenSCAP RHEL STIG evaluation results
1...
2Title Disable the secure_mode SELinux Boolean
3Rule xccdf_org . ssgproject . content_rule_sebool_secure_mode
4Result pass
5
6Title Enable the fips_mode SELinux Boolean
7Rule xccdf_org . ssgproject . content_rule_sebool_fips_mode
8Result pass
9
10Title Set SSH Client Alive Max Count
11Rule xccdf_org . ssgproject . content_rule_sshd_set_keepalive
12Result fail
13...

When addressing the issue of system’s compliance with certain security require-
ments, the remediation process of the potential defects that are to be found in a
compliance check can be of use. The OpenSCAP project provides an options to
generate remediation scripts of the found defects (fails) in the form of a Bash script
or a Ansible playbook provided by the SSG.

The remediation scripts can be generated automatically and tailored to the spe-
cific security requirements that are not implemented on the system. To achieve this
the oscap tool shall be used together with the generate and fix subcommands[37].
Lastly the fix type parameter should be specified, depending on whether one wants
to use Ansible or Bash as the means of remediation.

37

Listing 2.8: OpenSCAP remediation process
1oscap xccdf generate fix --fix -type ansible \
2--profile stig --output stig - remediations .yml \
3stig - results .xml

Proposal for STIG related enhancements

A relevant proposal for enhancement would be for Red Hat to collaborate with
DISA on the creation of an official STIG that could then be listed on the DISA’s
website just like the RHEL STIG. This STIG would apply to the whole virtualization
platform and could be called RHV STIG. This would make more sense since similar
STIGs relevant to virtualization platforms have already been made[19].

Evaluation criteria for STIG compliant/compatible configuration

Since an official checklist for STIG compliance is provided RHEL in the OpenSCAP
project, this checklist shall be used for assessing compliance/compatibility for the
given oVirt/RHV configuration. The configuration of standalone RHV engine with
RHEL hosts is equivalent to standalone oVirt engine with CentOS Stream hosts.
This configuration shall be tested against the RHEL STIG. This approach then
results into these criteria for determining whether an oVirt/RHV environment is
STIG compliant:

1. the platform installed is RHV
2. hosts run RHEL depending on the deployment type
3. the oscap system configuration scan with the respective profile is successful
The first and the second items correspond to the requirements given by the Tar-

get Audience of the NIST National Checklists of the given profile from the SSG[44].
In other words if the configuration is found to be running oVirt on CentOS stream
hosts, the configuration shall not claim compliance, but can be assessed further for
compatibility with the given profiles if the third item turns out to be successful.

Common Criteria and oVirt

At present, the oVirt platform has not been issued a Common Criteria certifi-
cate. Since oVirt is a community project, it will most probably never get certified
for Common Criteria. Though there is a certain assurance of soft conformance
to the standard because RHV is Common Criteria certified. The RHV under-
went the Common Criteria certification process in Europe under OCSI (Organ-
ismo di Certificazione della Sicurezza Informatica) as one of the Certificate Autho-
rizing Schemes[30]. In order to proceed with the certification process, a Security

38

Target has to be made. The Security Target for Red Hat Virtualization is also
available on the website of OCSI.

The RHV ST claims conformance to, as specified in the ST itself, "CC Part 2
extended and CC Part 3 conformant, with a claimed Evaluation Assurance Level
of EAL2, augmented by ALC_FLR.3"[27]. The conformance claim specifies that
the ST conforms to to EAL2 and does not make any conformance claims to any
Protection Profile[27]. The EALs (Evaluation Assurance Levels) are intended to
provide assurance that certain procedural security measures were or are being taken
when developing the TOE. This as opposed to the PPs (Protection Profiles) cannot
be evaluated by the means of a simple checklist. The EALs are controlled and
verified by the accredited laboratories or related entities that inspect the procedural
security of the company developing the specific piece of software. The PPs on the
other hand are more of a checklist that can be easily automated[26]. The procedural
approach is rather demanded in the European Union, whereas the so called checklist
approach is rather demanded in the US where NIAP is the regulatory body[13].

The RHV ST is divided into five important sections. The first one being the in-
troduction that primarily identifies what is the TOE of this specific Security Target.
The second one is reserved for conformance claims which were explained previously.
The third section specifies the security problem definition. This section is intended
for threat modeling where the threat environment with the identified assets and
threat agents is presented. It also defines the threats that are to be countered, as-
sumptions of the TOE and organisation security policies. The fourth part explains
the Security Objectives of the ST. The fifth part is there to explain which extended
components the Security Target uses[27]. This is a space for vendors to add some-
thing specific to the Security Target of their product which may distinguish it from
other products or make it more secure in a defined way.

Evaluation criteria for Common Criteria compliant/compatible configuration

The evaluation criteria for assessing compliance of a given oVirt/RVH deployment
to the Common Criteria standard are based on the Security Target dedicated to
the Red Hat Virtualization. The Red Hat Virtualization Security Target specifies
all necessary security requirements that need to be met in order to claim compli-
ance. The security requirements in the Security Target are represented as SFRs and
SARs[27]. The following criteria for determining whether an oVirt/RHV environ-
ment is Common Criteria compliant were created:

1. the platform installed is RHV
2. the version of RHV is 4.3.17
3. hosts run RHEL

39

4. the version of RHEL is 7.9
5. all tests from the test suite must pass
The first, second, third and fourth item corresponds to the identification of the

TOE that the Security Target specifies. In order to claim strict compliance, these
to items must be true. If the configuration runs oVirt on CentOS Stream hosts,
the configuration shall not be strictly compliant but can be assessed further for
compatibility or soft compliance. The same goes for configurations with different
versions of RHV and RHEL. If the version of RHV is different from 4.3.17, the
configuration shall not be compliant. If the version of RHEL is different from 7.9,
the configuration shall not be compliant.

The last item on the list is to verify that the SFRs specified in the RHV ST
are implemented in accordance with the ST itself. This is done through the means
of functional testing. In order to execute such functional testing, a testing suite
provided by Red Hat shall be used. More on this shall be explained in the subsection
explaining the implementation of the role that manages the compliance evaluation
process to the Common Criteria standard.

Proposal for Common Criteria related enhancements

The only available proposal for Common Criteria related enhancement is for Red
Hat to schedule a more frequent schedule for Common Criteria certification. Since
the current and only ST for RHV has its TOE identified as RHV of the version
4.3.17 with RHEL hosts of the version 7.9[27], it misses a lot of new features, bug
fixes and other betterments that the newer versions of RHV and RHEL provide.

40

3 Practical implementation

3.1 Automated oVirt deployment
The manual process of oVirt deployment is not suitable for the fast-paced approach
to software development. Because the goal of this work is to determine through
the use of a software tool the state of the deployed oVirt infrastructure and based
on the state to evaluate whether the infrastructure is adhering to the security re-
quirements it is being tested against, it requires a large number of re-configurations,
re-installations and other changes to the sole infrastructure of the platform. These
changes would create a large over-head if they were to be done manually. Nowa-
days the software development process accompanies a discipline called Develop-
ment & Operations (DevOps) which integrates this idea of an automation-first ap-
proach to continuous integration, continuous delivery, and continuous deployment
(CI/CD)[60].

The sole implementation of the CI/CD process is not managed only by a single
technology but rather is distributed across a number of technologies all working in
an orchestrated manner.

Automation setup

For the purpose of this thesis, for the orchestrator of the CI/CD process the Jenkins
project is used.1 Because Jenkins in this case is used as an executor of automation,
one needs another layer of automation which would allow for an automated oVirt
deployment and the configuration of the operating systems upon which the platform
shall be deployed. This is done through the Ansible technology.2 The main goal
for Ansible in the Automation setup of the oVirt platform is to prepare the hosts
before the actual installation of the platform which in the case of this thesis is to
enable FIPS 140-2 compliance mode or the DISA STIG security profile. The whole
process of oVirt installation is then also fully automated by Ansible with the use of
oVirt Ansible Collection.

The oVirt Ansible Collection is a collection3 of Ansible modules4 in which each of
1Jenkins is a self-contained, open source automation server which can be used to automate all

sorts of tasks related to building, testing, and delivering or deploying software. More on Jenkins.[73]
2Ansible is a radically simple IT automation engine that automates cloud provisioning, configu-

ration management, application deployment, intra-service orchestration, and many other IT needs.
More on Ansible.[68]

3Collections are a distribution format for Ansible content that can include playbooks, roles,
modules, and plugins. As modules move from the core Ansible repository into collections, the
module documentation will move to the collections pages. More on Ansible collections.[65]

4Modules (also referred to as “task plugins” or “library plugins”) are discrete units of code that

41

the module represents a separate domain of actions applicable on the oVirt platform,
i.e. a Module is capable of managing a certain aspect of the configuration and
management of the oVirt platform’s components. For instance the module called
ovirt.ovirt.ovirt_user is used to "manage users in oVirt/RHV"[52].

Because the oVirt platform can be deployed in two ways (referenced in The full
virtualization architecture of the oVirt platform), both of them have to be supported
by the Automation setup and also by the verification script. The individual options
are to be viewed and used in the user interface of Jenkins when triggering the
automation Pipeline.5 The configuration files for the automation pipeline are stored
in the YAML6 file format. The Ansible playbooks7 and roles8 which configure the
oVirt setup and the hosts are stored in a Source Code Manager (SCM) software. In
the case of this thesis the Gerrit9 tool incorporating the Git10 SCM is used.

Last component of the Automation setup is a way of managing provisionable iso
files for the RHEL based operating systems running on the hosts or in the virtual
environment provided by the oVirt platform. This is done trough the use of Foreman
as a manager of both the iso files and the physical machines that get provisioned.

3.2 Architecture of the compliance verification script
High level overview

The basic principle behind the script is to check a given deployed oVirt/RHV in-
frastructure for compliance with the particular standards that are covered in this

can be used from the command line or in a playbook task. Ansible executes each module, usually
on the remote target node, and collects return values. More on Ansible modules.[62]

5A continuous delivery (CD) pipeline is an automated expression of your process for getting
software from version control right through to your users and customers. Every change to your
software (committed in source control) goes through a complex process on its way to being released.
More on pipelines.[72]

6YAML is a human-friendly data serialization language for all programming languages. More
on YAML.[67]

7Ansible Playbooks offer a repeatable, re-usable, simple configuration management and multi-
machine deployment system, one that is well suited to deploying complex applications. More on
Ansible playbooks.[63]

8Roles let you automatically load related vars, files, tasks, handlers, and other Ansible artifacts
based on a known file structure. After you group your content in roles, you can easily reuse them
and share them with other users. More on Ansible roles.[64]

9Gerrit provides a framework you and your teams can use to review code before it becomes part
of the code base. More on Gerrit.[66]

10Git is a free and open source distributed version control system designed to handle everything
from small to very large projects with speed and efficiency[61].

42

thesis. In order to check for compliance the script has to check for specific param-
eters. These parameters are represented in system configurations of the machines
deployed in the oVirt/RHV infrastructure. For the script to determine whether a
certain parameter is in accordance with the given standard a database with formal
definitions of the parameters has to be provided. The formal definitions have to be
thought of as rules that specify under which conditions a given parameter is correct.
A formally defined rule has to include 3 variables, these are:

• a variable defining which precise system configuration is to be checked,
• a variable defining precisely how to check that given system configuration,
• a variable defining the desired output of the system configuration check

When such a database with the formal definitions is provided, the script can use the
variables to determine compliance. Depending on the architecture of the part of the
script that deals with the particular standard, all three rules can either be defined
only in the database or partially in the database and the remaining parts in the
script itself. In the second scenario the what to check and how to check variables
would usually be defined in the script and only the variable containing the desired
output would be defined in the database of the formal definitions.

The basic flow of the script would then consist of three main entities. The first
one being the script, the second one being the database with the formal definitions
and the last part being the deployed oVirt/RHV infrastructure. The flow starts
with the script since the script is the executor and the orchestrator of the compli-
ance evaluation process. The script will use the what to check variable to determine
what specific system configuration it has to check within the oVirt/RHV infrastruc-
ture. Then it will use the how to check variable to determine how it should execute
such an action. The script will then establish communication with the deployed
oVirt/RHV infrastructure and will start querying it for the system configuration
parameters in the formally defined way. Once the script receives the system config-
uration parameters, it will compare the values of those parameters with the desired
output values stored in the database. If the compared values are equal, then the
rule passes and is recognized as correct. Otherwise the rule does not pass and is
recognized as incorrect. The script then repeats this process for every rule for each
of the given standards defined in the database until the list gets exhausted.

Once the list gets exhausted the script evaluates the compliance to the given
standard for the deployed oVirt/RHV infrastructure. The evaluation process does
not take into account partial compliance. If the deployed infrastructure fails on any
rule, it is then considered as not compliant. The script in its final stage generates a
report containing the final results with all the evaluated rules that it was checking.
This basic flow is graphically depicted in this diagram.3.1

43

Fig. 3.1: Basic flow of the application

High level architecture

The architecture of the compliance verification script is modular. This means that
for each of the security standards a separate module is designated. The purpose of
these modules is to implement the functionality that enables the process of compli-
ance verification to the specific standard. This means that every module implements
the basic flow and holds its own database with the formal definitions that are needed
for the evaluation process. There are also other modules that the script uses which
are designated to manage processes that are not strictly related to the compliance
verification process. These processes would include managing communication with
the oVirt/RHV infrastructure, basic information gathering about the deployed in-
frastructure and checking and resolving basic dependencies. The modular aspect of
the high level architecture is best depicted in the following diagram. 3.2

44

Fig. 3.2: High level architecture of the script - modular aspect

Since the architecture of the script is modular, it needs an orchestrator and an
executor of those modules. Such a part of the script handles the internal commu-
nication between the modules and parses the output. It also delegates and deter-
mines on which part of the oVirt/RHV infrastructure the how to check variable will
be executed. This layer also provides an outer interface for communication which
would include an actual user that accesses this script. In other words the modules
implement the specific functionality and the execution and orchestration layer only
includes those modules, places them in the desired order, most importantly executes
them in that order and lastly provides an interface for customizing the execution
process of the script. The execution and orchestration layer is not the outer most
layer that would provide an interface for the use of actual users of the script (eval-
uators). The layer could be used directly by users but would by no means provide
enough abstraction from the technical implementation.

The outer most layer that is designated to provide possibly enough abstraction
from the technical implementation is the user interface layer. The user interface
layer gives the user a set of defined states that customize the execution process of
the script. These defined states correspond to the modules that the script makes
use of for the compliance verification process. This means that the user interface
layer provides four states, these are:

• verify compliance only to the FIPS 140-2 standard,
• verify compliance only to the DISA STIG standard,
• verify compliance only to the Common Criteria standard,

45

• verify compliance to all three standards
The high level architecture of the script is modular and also layer based. Every

layer provides a defined functionality to the next layer. The execution and orchestra-
tion layer takes up the functionality provided by the modules and the user interface
layer provides an interface the change the course of execution of the script. The
layer based aspect of the script is depicted in the following diagram. 3.3

Fig. 3.3: High level architecture of the script - layer based aspect

Architecture of the roles

The modules developed for the use in the compliance verification script follow a
standardized skeleton in order to make them re-usable. The re-usability aspect of
those modules is key and gives an option to much broader integration possibilities,
even outside the use of the script. This standardized skeleton is provided by the
Ansible technology. The modular aspect of Ansible is given by the use of Ansible
roles. Ansible roles are designed to manage a strictly defined functionality and
nothing outside of this strictly defined functionality. Ansible roles can also be made
to customize the execution process or to enforce a desired state on the entity that
the strictly defined functionality manages. For the purpose of this work Ansible
roles are not used to enforce states on the entities it manages. This is because
for the implementation purposes of the security standards related modules, only a
comparative operation on the collected states shall be executed. Firstly the state
is fetched by the particular Ansible role and secondly this state is compared to the

46

desired state that is stored in the database with the formal definitions. Therefore
no states have to be enforced.

The stated skeleton of Ansible roles is also the applied architecture for the secu-
rity standards related modules. The skeleton follows this specific structure.

/...root directory of the role
defaults...
files ..
handlers...
library..
meta ...
tasks ..
templates..
tests ..
vars ...

Not all of the parts of the skeleton is used by the modules of the script nor
it is always desired to implement all of the parts in the modules. Nevertheless it
is always on the developer of those modules to decide which of these parts shall
be implemented. It is important to keep the whole structure of the skeleton, even
though not all parts are used. This is done purely for formal purposes for other
potential developers to be able to understand the module. Ansible will be able to
work with the role, if at least one of those parts is included. The parts of the skeleton
are instantiated as directories on a given file system.

The most important part of the skeleton is the tasks part. When Ansible at-
tempts to work with the role, it tries to look for the tasks directory. This directory
is intended as a container for executable parts of the role. The executable parts
of the role provide the actual strictly defined functionality. The strictly defined
functionality is represented by the functional pieces that the roles makes use of.
These functional pieces are integrated into Ansible and are called modules. Ansi-
ble modules create yet another layer of abstraction from the underlying technology.
They are even more granular than roles and provide an even more strictly defined
functionality. Here the strictly defined functionality manages only a very narrow
part of a sub-entity. Since roles manage whole entities, modules manage only parts
of those entities. Here an entity refers to a host. In terms of Ansible, a host is a
machine. A machine is either a bare metal one (a physical computer) a or a virtual
one (a virtual machine). A sub-entity refers to a part of the host. This part of a
host can be thought of a configurable part of an operating system that is installed
on the machine. This configurable part is for instance a package manager.

The tasks directory is intended to hold files that make use of the modules inte-
grated into Ansible and enriches them with logical functionality that Ansible itself
provides. These files are expected to follow a specific format. This specific file format
is the YAML format. Ansible always tries to find a file in the YAML format called

47

the main.yml which defines and provides the strictly defined functionality provided
by the role. There can be more than one file in the tasks directory but if these files
provide any functionality, they have to be imported or included in the main.yml
file. If they are used in that file, Ansible can access them and execute them. These
files (main.yml file included) are intended to hold and work with Ansible modules.
The syntax language of Ansible is YAML, just like the file format that the files in
this directory have to follow. Ansible can make use of logical, conditional and other
operators that create a control mechanism for the strictly defined functionality of
the role.

In the context of the script, the tasks directory is where a large part of the
database with the formal definitions is implemented. The files in the tasks directory
contain the what to check and most importantly the how to check variables. The
what to check and how to check variables are represented as Ansible modules grouped
into Ansible tasks together with logical and conditional operators that provide the
strictly defined functionality needed for the compliance check. Every rule in the
database with the formal definitions represent one particular security requirement
for the given standard. Here the particular security requirement is represented as
Ansible task. The task pulls the what to check variable either from the vars or
the defaults directory or it’s already contained in the task itself. The how to check
variable is represented by the combination of a particular Ansible module together
with logical and conditional operators and other functionality provided by Ansible
again grouped into an Ansible task. The Ansible tasks are then grouped into a list
of tasks which represent the set of security requirements for the given standard. The
task list has a reserved name which is just tasks. An example of tasks is provided
by Listing 3.1.

Listing 3.1: Example list of tasks
1tasks:
2- name: Check if ssh uses safe ciphers
3module_to_check_safe_ciphers :
4service : ssh
5check_safe_ciphers : yes
6register : safe_check
7
8- name: Determine if ssh uses safe ciphers
9set_fact :
10ssh_is_safe : "{{
11(safe_check == save_ciphers)|
12ternary (true , false)
13}}"

48

As can be seen from the example, there is a dummy module called
module_to_check_safe_ciphers. Every module, just like this dummy one, can be
executed with a set of defined parameters that are represented by the keys that
reside in the different suite in terms of indentation. In this example, these are the
service and the check_safe_ciphers parameters. The register key only saves the
output of this dummy module. It is a native functionality provided by Ansible and
is used quite frequently in the implementation of the modules for the compliance
verification script. In the following task of the example another module is used.
This one in particular is not a dummy one but an actual module from Ansible. The
second example task is just to show how a condition would be used. The condition
here is provided by the ternary operator marked with the ternary keyword in the
example.

The vars and defaults directories are intended to provide an option to customize
the execution of the role. This is done through the use of variables. Depending on
which container the variable is put into, different goal is being achieved. A variable
put into the vars directory is expected not to have its value changed by an external
entity. Usually the role depends on the preserved structure and value of the variables
put into the vars directory. Ansible also assigns higher priority on those variables[69].
On the other hand the variables put into the defaults directory are expected to have
its value changed by an external entity. The values of those variables are only
defaults that can be changed depending on the needs of the entity working with
the module. The variables put into the defaults directory can be viewed as optional
variables. Both of those directories store files in the YAML format. And the same
rules applies to them as for the tasks directory. The main.yml file is expected to
exist. Other files with different names can reside in the directory but for them to
be used by Ansible, they have to be included into the main.yml file.

When it comes to the script, the vars and defaults also implement the database
with the formal definitions as introduced in the high level overview. In the contrast
with the tasks directory, the vars and defaults are reserved to store the variables
defining the desired output of the system configuration check. In some cases these
directories also store the what to check variables. In this particular case where these
directories store the what to check variables, they store just a value of the entity
that is supposed to be checked. For example the variable could hold a name of a
cipher that is to be evaluated. The tasks directory then pulls this information and
actually uses it in a task that then defines the how to check variable. The variables
that hold the desired output are used to be compared with an output of an action
executed by the module within a task. The module executing such an action could
for example be a module that fetches contents of a certain configuration file. The
output of this action is then saved into memory and compared to the value stored

49

in the database.
In the context of the script, it does not make sense to hold any variables in the

default directory, since the user’s choices will not affect the sole execution of the role.
The choices that the user can make are handled by the user interface layer and do
not interfere with the roles themselves. In other words only the vars directory will
be populated with the needed variables for the role to be able to properly execute
the verification process. The following are contents of an example main.yml file
inside the vars directory represented by the Listing 3.2.

Listing 3.2: An example of variables
1allowed_ciphers :
2- RSA
3- AES
4allowed_key_lengths_for_allowed_ciphers :
5-
6name: RSA
7length : 3072
8-
9name: AES
10length : 256

In this example the concept of what to check variables and variables contain-
ing the desired output can be explained. Here the variable called allowed_ciphers
represents a list of values containing names of first an asymmetric cryptographic
system (RSA) and second a cryptograhic standard for symmetric encryption (AES).
The idea behind this is that the how to check variables contained in the tasks di-
rectory will fetch these values (RSA and AES in this example) and use a module
that provides the functionality to check whether these values are present. If they
are present, then another module will fetch the contents of
the allowed_key_lengths_for_allowed_ciphers that is capable of checking key lengths
of the cryptographic functions used by the system. In this example
the allowed_key_lengths_for_allowed_ciphers variable represents the variables that
hold the desired output that were presented in the high level overview. The com-
parative operation gets executed and the security requirement gets evaluated.

The meta directory of the role’s structure is supposed to hold metadata about
the role itself. Usually the meta directory is used for external dependencies that the
role has. The meta directory is also expected to hold files in the YAML format with
the particular file called main.yml. The meta directory is not implemented by any
of the modules used by the compliance verification script.

The files and templates directories have both a similar functionality but they

50

slightly differ. These directories are both expected to hold external files in non-
specified format that are supposed to be transferred onto the entity (host) that the
role manages. The difference is that the files directory contains files in its final
state. These files are not expected to change, they are static. The files that reside
in the templates directory are expected to change since they are considered only
as templates. The contents of these files is rather dynamic and can be changed,
depending on the template, during the course of execution of the role. This is
accomplished by a templating engine that Ansible uses.

In terms of the compliance verification script, it does not use the files directory
but it does use the templates directory. Here the templates directory serves the
purpose of containing templates of the report that each of the module generates.
These reports state whether the deployed oVirt/RHV infrastructure is compliant
with that particular standard and then lists the criteria that it used for verifying its
compliance. In terms of failure in some of these security requirements, the report
shall contain the specific requirement and a hint on how to remediate this issue.
The Listing 3.3 is an example of a template that is used to generate a report.

Listing 3.3: An example of a report template
1rule: System uses RSA key length of 3072 bits
2{% if rsa_uses_allowed_key_length %}
3pass: true
4hint: null
5{% else %}
6pass: false
7hint: Use key length of 3072 bits
8{% endif %}
9
10rule: System uses AES key length of 256 bits
11{% if aes_uses_allowed_key_length %}
12pass: true
13hint: null
14{% else %}
15pass: false
16hint: Use key length of 256 bits
17{% endif %}

This example shows two rules that correspond to the previous example that
showed how the modules that the script uses work with the vars directory. The
rule here is defined by three variables - rule, pass and hint. The rule variable
holds the name of the particular rule. The pass variable hold the a binary value
indicating whether the security requirement defined by this rule was satisfied or

51

not. Lastly the hint variable contains a possible way of remediating the failed rule
in order for it to pass. The curly brackets together with the percentage symbol are
used for the templating engine to determine which parts of the text is supposed to
contain logical operators. In this example, an if else statement is written in the
syntax of the Jinja templating engine that is used by Ansible. Let’s assume that
the rsa_uses_allowed_key_length is true and the aes_uses_allowed_key_length is
false. The templating engine would then generate the following report represented
by the Listing 3.4.

Listing 3.4: An example of a generated report from a template
1rule: System uses RSA key length of 3072 bits
2pass: true
3hint: null
4
5rule: System uses AES key length of 256 bits
6pass: false
7hint: Use key length of 256 bits

The handlers directory is supposed to contain handlers. Handlers are specific
parts of the Ansible code that listen to defined events. When the defined event
occurs, handler gets executed. The handlers directory is not implemented by any of
the modules used by the compliance verification script.

The last directory of the role structure is library. The library directory is reserved
for custom modules that the developer of the role chooses to develop for the use in
the role. Although Ansible offers a wide range of already developed modules, in
some cases it is desirable to create custom modules to handle a specific sub-entity.
The library directory is expected to hold files in the .py format. These files are used
by the Python programming language and it is the language that Ansible modules
are written in. There can be more than one files, all of them representing a specific
custom module. The name of the file in the .py format usually specifies the name
of the module. This means that when this module is being used in the main.yml
file in the tasks directory, it should be referenced by the name of the file in the .py
format.

The security standards related modules of the compliance verification script in
some cases make use of the library directory for custom module implementation.
This is done because if the strictly defined functionality that the custom module is
supposed to handle was to be achieved by the use of standard Ansible modules, it
would create large implementation difficulties. In the context of the script the role
implementing the security requirements of the FIPS 140-2 standard implements a
custom Ansible module. The details of the implementation shall be explained in the

52

respective subsection about the FIPS 140-2 role.
When it comes to further customization options in terms of Ansible roles, another

important part can be used. This part is called filter plugins and is also instantiated
as a directory. This directory is expected to hold files in the .py format that im-
plement custom filters for the use in the role itself. Filters in Ansible are generally
used to parse data and are part of the Jinja templating engine. Custom filters are
used when a very specific type of nested data has to be parsed. The filter_plugins
directory can be created on the same level as the root directory of the project or in
the specific role where the plugin should be used. The following is an example of
the placement of the filter_plugins directory.

/...root directory of the role
filter_plugins..
roles ..

role_1..
filter_plugins..

All of the modules that the script uses implement their custom filter plugins. The
implementation details of these filter plugins shall be presented in their respective
subsections.

3.3 Implementation of the compliance verification script
Implementation of the security standards related roles

The implementation of the security standards related modules builds up on the
presented architecture of the module. For the use of the script three security related
modules were developed. These modules correspond to the definitions of compliance
criteria set by the particular security standards and are applicable to the object of
compliance verification. The object of verification is the oVirt/RHV virtualization
platform and the related security standards are the already mentioned FIPS 140-2,
DISA STIG and Common Criteria.

It is important to state that not all of the compliance criteria is tested against
the oVirt/RHV platform, since some of them are either not applicable or cannot
be automated by a script. This is the case of some of the security requirements
from DISA STIG and Common Criteria. How and why some of those security
requirements are not covered, shall be explained in their respective subsections.

Implementation of the FIPS 140-2 role

In the context of the architecture the FIPS 140-2 module implements four directories
from the presented directory structure of a Ansible role. These are the tasks, vars,
library and templates directories. In the following text all implementation aspects

53

shall be explained and applied to the high level overview and high level architecture
already presented.

The high level purpose of this role is to verify compliance with the FIPS 140-
2 standard of the deployed oVirt/RHV infrastructure. This purpose is achieved
by validating a checklist. If this checklist is validated, meaning every rule of this
checklist passes, the deployed oVirt/RHV is compliant with the standard. The
checklist can be viewed as the database with the formal definitions. It therefore
also resides in the vars directory. All of the rules in the checklist contain three
parts - name of the rule, an information indicating whether the rule passed and a
hint specifying how to remediate the state of the infrastructure in a case that the
rule fails. The checklist of the FIPS 140-2 role is made of seven rules, all of them
implementing a different aspect of the compliance criteria.

The purpose of first rule in the checklist is determine, whether the product
that runs the deployed infrastructure is Red Hat Virtualization specifically. This
requirement is crucial because it is strictly specified in the security policy of the given
cryptographic modules that the operational environment in which the cryptographic
module operates must be RHEL. Since Red Hat Virtualization is a layered product
based on the RHEL operating system, it fulfils this criterion. It is specified in
the Applicability section in the security policy. In terms of implementation, this is
accomplished by the use of a role The Listing 3.5 is the representation of this rule
in the YAML format that resides in the main.yml file in the vars directory.

Listing 3.5: Product type rule in the compliance checklist
1product_type :
2name: Product type must be Red Hat Virtualization
3pass: false
4hint: According to the security policy ,
5the product applicability allows only
6Red Hat Virtualization (RHV)

The second rule also validates an aspect of the operation environment in which
the cryptographic modules are running. The security policy strictly limits the type
of the operating system only to RHEL. This means that both the hosts and the
hypervisor must run the RHEL operating system. In terms of implementation, this
is done through the use of Ansible facts. Before Ansible executes the contents of the
playbook, it tries to gather information about the managed host. This information
includes things such as storage devices available on the system, network interfaces
and other. Most importantly it contains information about the type of the operating
system that is installed on the managed host, the version of it and the distribution.
This information is then compared to the desired output of this action. The desired

54

output resides in the vars directory and is fetched by the main.yml file in the tasks
directory for comparison and evaluation. The Listing 3.6 is the representation of
this rule in the YAML format.

Listing 3.6: OS type rule in the compliance checklist
1os_type :
2name: Operating system must be RHEL
3pass: false
4hint: According to the security policy ,
5the operational environment must be RHEL

The third rule of the compliance checklist incorporates the interface for work-
ing with the FIPS mode of the cryptographic modules. This part of the module is
crucial because in order to fetch any information relevant to the FIPS 140-2 secu-
rity requirements it needs to have such an interface incorporated. The developed
FIPS 140-2 role makes use of the fips-mode-setup binary program. This binary is
a supported interface for working with the FIPS system-wide cryptographic policy.
In the case of this role, the only use of the fips-mode-setup binary program is to
confirm that the given cryptographic modules operate in FIPS mode. When FIPS
mode is enabled, it means that the given cryptographic modules operate in a defined
mode of operation specified by the FIPS 140-2 standard.

For every cryptographic module within the RHEL operating system a security
policy exists. A security policy is a documentation for the particular cryptographic
module. It follows the domains in which the cryptographic module is tested for
FIPS 140-2 certification and also specifies how to work with the module in accor-
dance with the standard. This information is crucial for the implementation of this
role. It resides in the Guidance section of all the security policies and it recommends
the use of the already mentioned fips-mode-setup binary program. The Listing 3.7
is the recommended method of enabling FIPS mode for all of the cryptographic
modules.

55

Listing 3.7: Recommended method of FIPS mode installation
11. To switch the system to FIPS enablement in RHEL 8:
2# fips -mode -setup --enable
3Setting system policy to FIPS
4FIPS mode will be enabled .
5Please reboot the system for the setting to take effect .
62. Restart your system :
7# reboot
83. After the restart , you can check the current state:
9# fips -mode -setup --check
10FIPS mode is enabled

The purpose of the third rule is then to validate whether the cryptographic
module are running in FIPS mode. This is achieved by the use of the fips-mode-
setup binary and the Shell Ansible module which execute arbitrary Shell code on
the managed hosts. Since this rule only checks for the enablement of FIPS mode, it
makes use of the –is-enabled parameter of the binary. The following task then parses
the output from the check and compares it with the desired output from the vars
directory. The –is-enabled parameter returns 0 if FIPS mode is enabled, otherwise
2. The Listing 3.8 is the representation of this rule.

Listing 3.8: FIPS mode enforcement rule in the compliance check
1fips_mode_enabled :
2name: FIPS mode must be enabled on the system
3pass: false
4hint: FIPS mode can be enabled
5via fips -mode -setup --enable

The fourth and fifth rules are there to ensure that the FIPS mode is truly enabled
on the system. Since RHEL handles the settings of cryptographic libraries via
its system-wide cryptographic policies, these rules check 2 aspects of them. The
fourth rules checks whether the system-wide cryptographic policy currently set on
the system is FIPS. The fifth rule check whether the FIPS system-wide cryptographic
policy is applied. Both of these checks are implement via the use of the update-
crypto-polices binary. The fourth rule uses the –show parameter which outputs the
currently set cryptographic policy. The fifth rule uses the –is-applied parameter
that outputs whether the currently set cryptographic policy is applied or not. Both
of these rules then check the returned output with the desired output from the vars
directory. The implementation is done through the use of the Shell module provided
by Ansible. The update-crypto-policies binary is then executed by the module on

56

the managed hosts with the corresponding parameters. These rules are represented
once again in the YAML format which can be seen from the Listing 3.9.

Listing 3.9: FIPS cryptographic policy enforcement rules in the compliance check
1fips_crypto_policy_enabled :
2name: FIPS system -wide cryptographic policy
3must be enabled
4pass: false
5hint: FIPS cryptographic policy can be enabled
6via update -crypto - policies --set FIPS
7fips_crypto_policy_applied :
8name: FIPS system -wide cryptographic policy
9must be applied
10pass: false
11hint: FIPS cryptographic policy can be applied
12via update -crypto - policies --set FIPS

The sixth rule of the compliance checklist makes sure that the specific kernel
parameter that corresponds to the FIPS mode enablement is also enabled on the
system. In case of inconsistencies on the system, it might happen that the fips-
mode-setup binary would output that the modules operate in FIPS mode but the
specific kernel parameter would not be enabled. The specific kernel parameter is
the crypto.fips_enabled and is checked via the sysctl command with the use of the
-n parameter. The Ansible Shell module is also used. The output of this command
is then compared with the desired output from the vars directory. The Listing 3.10
is the representation of this rule.

Listing 3.10: Kernel parameter enforcement rule in the compliance check
1fips_kernel_param :
2name: Kernel parameter crypto . fips_enabled
3must be set to 1
4pass: false
5hint: crypto . fips_enabled can be set
6to 1 via sysctl -w crypto . fips_enabled =1

The last rule from the compliance check ensures that only the versions of the
cryptographic libraries that the cryptographic modules represent are certified and
their certificates are active. These are the cryptographic modules that this role
checks:

• OpenSSL,
• Libgcrypt,
• Kernel Cryptographic API,

57

• GnuTLS,
• NSS
The versions of the active certificates of the cryptographic modules can be gath-

ered from the NIST website. Since Red Hat hosts a website that holds this infor-
mation in a machine readable format, this website is scraped and parsed by the
role. This functionality is achieved by the use of the custom Ansible module which
fetches the contents of the website in raw HTML format and parses out the related
information about the cryptographic modules. This module resides in the library
directory. The information that this custom module retrieves is then considered to
be the desired output which is loaded into memory. The actual output, meaning the
current versions of the binaries on the system, is fetched by using the Shell Ansible
module and the rpm command together with the -qa parameters. The actual output
and the desired output is then compared. The comparative action is executed by
a custom filter plugin that resides in the root directory of the project. A custom
filter plugin was developed for this purpose because the structure of the data is
quite complex and makes it easier to create a custom parser for the job rather than
use the standard ones provided by the templating engine. A specific condition also
applies to this rule. Since a state in which the versions of the cryptographic modules
might not be certified for a given version of RHEL is expected to occur, this state
is automatically marked as defective. Therefore this rule fails when such a state
occurs. The Listing 3.11 is the representation of this rule.

Listing 3.11: Active cryptographic module versions enforcement rule in the compli-
ance checklist

1fips_binaries_versions :
2name: " Binaries of the cryptographic modules must be of
3the versions specified by the security policy
4for RHEL {{ fips_rhel_version }}"
5pass: false
6hint: " Access this website to check which versions of
7the binaries are compliant :
8{{ redhat_gov_standards_url }}"

The purpose of this role is then to go through the compliance checklist and
execute their respective verification commands. If all of the rules from the checklist
pass, the infrastructure is compliant with the standard. In the last stage of the role
a scan report gets generated. In the top level of the report a text indicating whether
the infrastructure is compliant or not gets printed. Most importantly this report
contains all the rules with the information whether the rule passed or not. If the rule
did not pass, a hint is generated for a possible remediation of the defect. The Jinja

58

templating engine is used for generating this report and the format of it is HTML.
An example report is attached to this thesis in the example_reports directory in
the root of the project.

Implementation of the DISA STIG role

The DISA STIG module implements three directories from the presented directory
structure of a Ansible role. These are the tasks, vars and templates directories. In
the following text all implementation aspects shall be explained and applied to the
high level overview and high level architecture already presented.

The high level purpose of this role is to verify compliance with the DISA STIG
standard of the deployed oVirt/RHV infrastructure. This purpose is achieved by
validating a checklist. If this checklist is validated, meaning every rule of this check-
list passes, the deployed oVirt/RHV is compliant with the standard. The checklist
can be vied as the database with the formal definitions. The checklist differs from
the implementation of the FIPS 140-2 role. Since the DISA STIG module makes
use of the oscap scanner tool from the OpenSCAP project, it utilizes the checklist
provided by the OpenSCAP project. The checklist provided by the OpenSCAP
projects implements the STIG published on DISA’s website. The checklist formally
includes all the security requirements imposed by DISA and is produced by Red Hat
through the OpenSCAP project. The Listing 3.12 is an example from the RHEL
DISA STIG that is used to validate compliance in this role.

59

Listing 3.12: Example of a STIG rule
1Rule: Configure SSH Server to Use FIPS ~140 -2 Validated MACs:
2opensshserver . config
3
4Crypto Policies provide a centralized control over
5crypto algorithms usage of many packages ...
6
7Warning : The system needs to be rebooted for these changes
8to take effect .
9
10Warning : System Crypto Modules must be provided
11by a vendor that undergoes FIPS -140 certifications .
12FIPS -140 is applicable to all Federal agencies ...
13
14Rationale : Overriding the system crypto policy makes
15the behavior of the OpenSSH server violate expectations ,
16and makes system configuration more fragmented .
17
18Severity : medium
19
20Rule ID: xccdf_org . ssgproject . content_rule_harden_sshd_macs_
21opensshserver_conf_crypto_policy
22
23Identifiers and References :
24Identifiers : CCE -85899 -3
25References : CCI -001453 , AC -17(2) , SRG -OS -000250 - GPOS -00093 ,
26RHEL -08 -010290 , SV -230251 r743937_rule
27
28Remediation Shell script
29Remediation Ansible snippet

This example rule, just as every rule in the checklist, contains these main parts:
rule, rationale, severity, rule id, identifiers and references and lastly remediations.
If needed, warnings can be added to the rule explaining an important aspect of
this rule. The rule part provides a name for this rule in a human readable format.
Rationale provides an explanation for the rule. Severity is there to indicate how
severe is passing (not passing) this specific rule. Rule id serves the purpose of having
an unique identifier. The identifiers and references link the rule to the sources that
this checklist was built upon. Last but not least is the remediation part. Here two
possible methods of remediation can be chosen, either Ansible code or Shell script.
The purpose of the remediation part is to generate executable code that fixes the

60

non-compliant state of the machine to the correct state.
This particular role of the compliance verification script uses the oscap scanner

tool to determine compliance of the particular oVir/RHV infrastructure. The work-
flow for this scanning tool was presented in the section about oVirt and DISA STIG.
The management of the scanning tool is handled in the tasks directory. The work-
flow implemented there is the following:

• determine product type,
• determine operating system type,
• execute scan,
• fetch scan results from the machines,
• evaluate scan results
The presented workflow is formalized in the vars directory and is made out of

three rules in a checklist format. All of the rules in the checklist contain three parts
- name of the rule, an information indicating whether the rule passed and a hint
specifying how to remediate the state of the infrastructure in a case that the rule
fails.

The first rule corresponds to the product type condition, that is that the product
the deployed infrastructure runs on must be Red Hat Virtualization. This condition
is there because RHV is a layered product based on RHEL. The compliance with
the RHEL STIG is maintained only for this specific operating system, meaning
other operating systems like CentOS stream are inherently not compliant. The sole
implementation of this rule is the same as in the FIPS 140-2 role. In terms of
implementation the information about the product gathered from the base info role
is used. This information is then compared to the desired output obtained from the
vars directory.

Listing 3.13: Product type enforcement rule
1product_type :
2name: Product type must be Red Hat Virtualization
3pass: false
4hint: Since RHV is a layered product based on RHEL ,
5only this type of product is sufficient

The second rule is a sub-rule of the first rule, meaning it demands the RHEL
operating system to be installed on the machines. Ansible facts are used to gather
information about the operating system running on the managed hosts. This infor-
mation is then compared to the desired output residing in the vars directory. The
Listing 3.14 is the representation of this rule.

61

Listing 3.14: Operating system type enforcement rule
1os_type :
2name: Operating system must be RHEL
3pass: false
4hint: Since the STIG is developed for RHEL ,
5this operating system must be used

The last rule incorporates the DISA STIG checklist for RHEL from the Open-
SCAP project. The condition is fairly primitive. If the scan executed by the oscap
scanning tool passes, this rule is marked as passed as well. Although the workflow
for this particular rule seems to be fairly straight forward, it is not. Some security
requirements that are defined for the STIG are not covered by the checklist provided
by the OpenSCAP project. These security requirements are related to physical se-
curity and since such properties cannot be determined by the use of an automation
tool, they simply cannot be covered. The tool itself will mark the rules that are not
related as notapplicable. The Listing 3.15 is the representation of this rule in the
main.yml file residing in the vars directory.

Listing 3.15: Succesfull oscap scan enforcement rule
1name: Scan from the oscap tool must pass
2pass: false
3hint: Use the oscap tool with the generate fix argument to
4generate a remediation script , for example
5oscap xccdf generate fix
6--profile xccdf_org . ssgproject . content_profile_stig
7--fix -type ansible --output rem.yml

The purpose of this role is then to go through the compliance checklist and
execute its respective verification commands. If all of the rules from the checklist
pass, the infrastructure is compliant with the standard. In the last stage of the role
two scan reports get generated. The first one being the scan report generated by
the oscap scanning tool that contains all the security requirements from the RHEL
STIG indicating whether the particular rule passed or did not pass. The second one
being the report containing the three rules presented in this subsection and their
results. The third rule of the second report then include a relative link to the scan
generated by the oscap tool. The Jinja templating engine is used for generating the
second report and the format of it is HTML. The report generated by the oscap
tools is also in HTML format. An example report is attached to this thesis in the
example_reports directory in the root of the project.

62

Implementation of the Common Criteria role

In the context of the architecture the Common Criteria module also implements four
directories from the presented directory structure. These are the tasks, vars, files
and templates directories. In the following text all implementation aspects shall be
explained and applied to the high level overview and high level architecture already
presented.

The high level purpose of this role is to verify compliance with the Commmon Cri-
teria standard of the deployed oVirt/RHV infrastructure. This purpose is achieved
by validating a checklist. Since no formal automated way of verifying compliance
with a security target exists, there are two possible methods of achieving this goal:

• implement the security requirements from the security target of the product
itself,

• use the already created testing suite that an accredited laboratory uses to
determine compliance

For the purpose of this thesis the second method was chosen. The testing suite
had been provided to the author of this thesis by Red Hat and is distributed un-
der the General Public License (GNU) Version 2. It primarily provides functional
testing of the SFRs in the RHV Security Target. It is divided into domains of tests
corresponding to the security functional classes of the SFRs of the TOE. All of the
SFCs contain one to n number of SFRs. This is also reflected in the testing suite
where the SFCs are represented as directories and each of the directories contain
a different directory called tests. In the tests directory a test for each of the SFR
exists in the form of a Bash script.

The test suite for verifying compliance to the RHV Security Target resides in
the files directory. This directory was chosen for this use-case because its primary
function is to store external files which are not templates but are intended for transfer
to the remote host. These files will get executed on the remote host after the transfer.

A custom checklist that resides in the vars directory and its primary function
is to represent the database with the formal definitions was also created for the
purpose of this role. This custom checklist incorporates the testing suite and also
other requirements that are there to ensure compliance. These other requirements
are primarily derived from the Security Target itself. The testing suite is also a part
of the Security Target which only tests SFRs. This checklist is of the same format
as the checklists presented before for the FIPS 140-2 and DISA STIG roles. It once
again contains the three parts - name of the rule, an information indicating whether
the rule passed and a hint specifying how to remediate the state of the infrastructure
in the case the rule fails.

The first rule is directly pulled out from the Security Target for RHV. It is

63

specified in the TOE identification that the TOE is Red Hat Virtualization, meaning
no other product is sufficient e.g. oVirt[27]. The implementation of this rule is then
the comparison between the information retrieved about the product type from the
base info role and the desired output residing in the vars directory. The Listing 3.16
is the representation of this rule.

Listing 3.16: Product type enforcement rule
1product_type :
2name: Product type must be Red Hat Virtualization
3pass: false
4hint: The Security Target specifies that the TOE of
5this product is Red Hat Virtualization ,
6therefore only this product is sufficient

The second requirement from the custom checklist specifies that only the version
4.3.17 is compliant for the particular deployment of RHV. This requirement is also
pulled out from the Security Target where the TOE identification specifies that Red
Hat Virtualization 4.3.17 is the TOE[27]. In terms of implementation it checks the
obtained version of the product provided by the base info role and compares it with
the desired output from the vars directory. The Listing 3.17 is the representation of
this rule.

Listing 3.17: Product version enforcement rule
1product_version :
2name: Product version must be 4.3.17
3pass: false
4hint: The Security Target identifies the version
5of RHV to be 4.3.17

The third rule corresponds to the description of the TOE in the Security Target.
The Security Target specifies that Red Hat Enterprise Linux is the provider of
virtualization primitives for RHV and the components where RHEL is used i.e.
hosts and the hypervisor are also part of the TOE[27]. This rule then compares the
information gathered from Ansible facts about the operating system running and
compares it with the desired output from the vars directory. The Listing 3.18 is the
representation of this rule.

64

Listing 3.18: Operating system type enforcement rule
1os_type :
2name: Operating system must be RHEL
3pass: false
4hint: The Security Target identifies the RHEL
5operating system as the provider of
6virtualization primitives for RHV

The fourth rule from the custom checklist specifies that only the version 7.9 is
compliant for the particular installation of RHEL on the hosts and the hypervisor
in a particular deployment of RHV. This requirement is also pulled out from the
Security Target where the TOE description specifies that RHEL 7.9 is also part
of the TOE[27]. In terms of implementation it checks the obtained version of the
operating system provided by Ansible facts and compares it with the desired output
from the vars directory. The Listing 3.19 is the representation of this rule.

Listing 3.19: Operating system version enforcement rule
1os_version :
2name: Operating system version must be 7.9
3pass: false
4hint: The Security Target identifies the version of
5RHEL to be 7.9

The last rule from the custom checklist specifies that all tests from the test suite
made for testing the SFRs from the TOE must pass. In terms of implementation
it utilizes the shell module provided by Ansible to execute all of the tests from
their respective security functional classes that then test the single SFRs. Each
test from the test suite implements four functions which are run_test, show_test,
startup_hook and cleanup. These functions are sequentially ran in a block of tasks
in the main.yml file residing in the tasks directory. If the exit status of a given test
is 0, it means that the test had passed. If the exit status of a given test is 1, it
means that the test had not passed. Any other exit status indicates that an error
had occurred during the execution of the test. The last task in the block of tasks
evaluates the exit status for the given task and assigns whether the test had passed.

Listing 3.20: Successful test run enforcement rule
1test_results :
2name: All tests from the test suite must pass
3pass: false
4hint: Unfortunately there is no formal way of remediating
5this issue

65

The purpose of this role is then to go through the compliance checklist and exe-
cute its respective tests. If all of the rules from the checklist pass, the infrastructure
is compliant with the standard. In the last stage of the role a scan report get gen-
erated. The generated report includes all of the rules from the compliance checklist
indicating whether it passed or not. In the top level of the report a statement
indicating whether the deployed infrastructure is compliant is printed. The Jinja
templating engine is used for generating the report and the format of it is HTML.
An example report is attached to this thesis in the example_reports directory in
the root of the project.

Implementation of the not security standards related roles

The compliance verification script also utilizes roles that are not related to the func-
tionality that manages the compliance verification aspect of the given security stan-
dards. These roles are there to utilize a rather supporting function which is initial
information gathering about the deployed infrastructure and dependency checking
and resolvement.

Implementation of the base info role

The base info role implements only two directories from the presented directory
structure. The implemented directories are tasks and vars. In the tasks directory
the executable part of the role resides. The purpose of the vars directory is to store
relevant data for the use in the role itself. This relevant data is for instance the
FQDN of the oVirt/RVH engine or the username and password used to authenticate
against the oVirt API.

The primary use of this role is to implement an interface for communicating
with the oVirt API. This is achieved through the use of Ansible modules provided
by the oVirt Ansible Collection. The modules in this collection implement every
functionality needed to manage oVirt/RHV infrastructure. This role follows this
particular workflow:

• extract authentication url from the vars_files directory,
• extract authentication credentials from the vars_files directory,
• authenticate against the oVirt/RHV API with the extracted variables,
• retrieve information about the oVirt/RHV hosts,
• dynamically register the hosts into the inventory,
• retrieve general information about the deployed oVirt/RHV infrastructure

(product type for instance),
• parse and save this information for later use,
• revoke authentication session with the oVirt/RHV API

66

The first two items from the workflow are utilized by pure functionality provided
by Ansible. Ansible automatically registers variables in the namespace of the role
or in the whole playbook. These variables are then used in the next stages of this
workflow.

In order to authenticate against the oVirt/RHV API the extracted variables
are needed. These variables are then given to the module managing authentication
to the oVirt/RHV API. For the purpose of authentication against the oVirt/RHV
API, the ovirt_auth module provided by the oVirt Ansible Collection is used. This
module establishes an authentication session by creating a SSO token. This SSO
token is then revoked for the purpose of unauthentication[50].

The particular module that this role utilizes for API data retrieval is the
ovirt_api_info[58]. In order to fetch information related only to the hosts that
are registered in the oVirt/RHV manager, the ovirt_host_info module is used[51].
Since the script does not know the hosts beforehand, it needs to register them into
the inventory. This is done through the use of the add_host Ansible module.

For parsing and saving information for later use, the set_fact Ansible module is
made use of. This module saves and exports variables for later use in the playbook
or role[57]. The information gathered by this role is then used in the roles related
to the security standards.

The last stage of the workflow is achieved also with the ovirt_auth module with a
slight change in the configuration. Here the state parameter is used. This parameter
indicates to the module that the already established authentication session is ought
to be revoked.

Implementation of the dependency checking and resolvement role

The dependency checking and resolvement role implements only two directories from
the presented directory structure. The implemented directories are tasks and vars.
In the tasks directory the executable part of the role resides. The purpose of the
vars directory is to store relevant data for the use in the role itself. This relevant
data are for instance the dependencies needed to run the Ansible modules used in
the base info role or the dependencies needed to run the oscap scanning tool in the
DISA STIG role.

This role primarily uses the yum Ansible module. The function of this module is
to manage packages on RHEL-based systems[59]. This functionality is implemented
in the executable part of the role i.e. the tasks directory. The related dependencies
are stored in the vars directory. The workflow for this role is the following:

• determine for which role dependencies should be met,
• fetch dependencies from the vars directory,

67

• install them on the managed host via the yum module,
• remove the dependencies if needed
The first stage of the presented workflow is done through the dep_checker_deps

variable. This variable is required because without this variable the role would
not be able to determine, which dependencies should be installed on the particular
managed host. The role stores the dependencies in the vars directory for each of the
role used by the compliance verification script.

Once the role recognizes which role’s dependencies should be managed, it fetches
them from the vars directory and continues to the next stage of the workflow.

The role then installs the particular dependencies on the remote host using the
yum Ansible module. A list of the dependencies that are to be installed on the
managed host is given to the yum module. The yum module has to be told what it
should do with those dependencies. For this the state parameter is used. Since it is
desired to install the dependencies, the parameter has to be set to present[59].

It is desirable to remove the already installed dependencies from the system once
the compliance evaluation process finishes. This is also done with use of the yum
module together with the state parameter. In this specific case the state parameter
has to be set to absent[59].

Implementation of the execution and orchestration layer

The execution and orchestration layer of the compliance verification script is the
mid-level layer that sits above the implemented roles but is managed by the user
interface layer. This mid-level layer utilizes the Ansible playbook as the primary
functionality. The Ansible playbook is a file in the YAML format that is expected to
contain reserved words. These reserved words are then parsed by the engine running
underneath Ansible. The engine assigns a corresponding function to manage the
reserved word. The reserved words that are used by the compliance verification
script are the following:

• name,
• hosts,
• vars_files,
• roles
Since the playbook utilizes plays as stages for its execution, name, as one of

the reserved words, is there to assign a name for the particular play. The hosts
reserved word is there for Ansible to determine onto which managed hosts from
the inventory11 the particular play will get executed. The remaining roles reserved

11Ansible inventory specifies managed hosts and is represented as a text file. It can classify them
into groups. It most importantly assigns an IP or a FQDN to the particular host, so Ansible knows

68

word is there to indicate where Ansible roles will be located. It is also important
to mention that the roles that this layer manages also use another reserved word
called tasks. This reserved word is used for indicating where the executable part of
the playbook starts. Ansible tasks are put under these reserved words

In terms of usage for the script, the playbook provides an option to execute
the developed roles in an orchestrated manner. This is achieved by utilizing plays.
For each of the developed Ansible role a new play is reserved. This is done for
better management of Ansible facts and overall better control of the execution of
the particular role. The orchestration order of the plays is managed by conditional
logic. This feature is provided by Ansible in the form of a when statement. The when
statement works similarly to an if statement in ordinary programming languages and
can be enriched with additional logical operators like AND, OR and so on[55].

The execution and orchestration layer utilizes a playbook. This playbook resides
in the root directory of the whole project. It manages the execution and orches-
tration of the developed roles. The playbook is in the YAML format [63] and the
presented reserved words are used. For orchestration purposes a play for each of
the roles is reserved. The playbook starts with a first play that is reserved for the
base info role. The start of the play is indicated by the name reserved word. All
of the plays utilize the variables stored in the vars_files directory. These variables
include engine’s FQDN, credentials of an user that is able to authenticate against
the oVirt/RHV API of the tested infrastructure and credentials of an user with
root privileges. The user with root privileges is needed for package management
and other elevated processes. The same credentials of the user with root privileges
is also given to the user interface layer. The Listing 3.21 is the start of the play
reserved for the base info role.

Listing 3.21: Start of the play reserved for the base info role
1---
2- name: Compliance Verification Script v1.0 | Base info
3hosts: localhost
4vars_files :
5- vars_files / engine .yml
6- vars_files /hosts.yml

The last part of the reserved play for the base info role is the part marked with
the roles reserved word. Under this reserved word the base info role is used together
with the dependency checker role. The roles are put there in a sequential order,

to which machine it should try connecting to[56]. In terms of the compliance verification script,
the inventory is a file containing localhost as the managed host. It is one of the functions of the
base info role to dynamically register oVirt/RHV hosts into the inventory.

69

meaning that at first the dependency checker will check whether the dependencies
needed to run the base info role are met. This is ensured by the dep_checker_deps
variable which is assigned to the dependency checker role. After dependencies are
resolved, the base info role gets executed. When the execution of the base info role
is finished, the dependencies are not needed anymore. They are then removed with
help of the dependency checker role. The Listing 3.22 is the second part of the play
reserved for the base info role.

Listing 3.22: End of the play reserved for the base info role
1---
2roles:
3- role: dependency_checker
4dep_checker_os_flavor : |
5ansible_facts [" ansible_distribution_file_variety "]
6dep_checker_deps : base_info
7when: check_base_info | default (false)
8- role: base_info
9base_info_ovirt_url : "{{ engine_url }}/ ovirt - engine /api"
10base_info_ovirt_username : "{{ engine_username }}"
11base_info_ovirt_password : "{{ engine_password }}"
12when: check_base_info | default (false)
13- role: dependency_checker
14dep_checker_os_flavor : |
15ansible_facts [" ansible_distribution_file_variety "]
16dep_checker_deps : base_info
17dep_checker_remove_deps : true
18when: check_base_info | default (false)

The remaining plays of the playbook are all reserved for the roles managing the
compliance evaluation process of the discussed security standards. The structure
of the play is very similar to the one presented for the base info role. The only
difference is onto which hosts the play is going to be applied to. In the case of the
base info role, the role is applied to localhost. This is done because the script does
not know which are the virtualization hosts running in the oVirt/RHV infrastructure
beforehand. During the execution of the base info role, the virtualization hosts get
dynamically registered for later use. In other words in the case of the plays where the
security standards related roles are used, the dynamically registered virtualization
hosts are considered the managed hosts and therefore are put as the value for the
hosts key. The dynamically registered managed hosts are grouped into ovirt_hosts.
The first part of the play then looks very similar to the one already presented for
the base info role. It makes use of the name, hosts and vars_files reserved words.

70

The Listing 3.23 is the start of the play reserved for the FIPS 140-2 role.

Listing 3.23: Start of the play reserved for the FIPS 140-2 role
1- name: Compliance Verification Script v1.0 | FIPS ~140 -2
2hosts: ovirt_hosts
3vars_files :
4- vars_files / engine .yml
5- vars_files /hosts.yml

The remaining part of the play follows the same structure as presented for the
base info role. It first checks if dependencies are met for the particular role and it
resolves them. After that the functional aspects of the specific role get executed.
When the execution of the role gets finished, the dependencies that were installed
on the managed host get removed with the help of the dependency checker role.
The Listing 3.24 representation of the remaining part of the role is the same for
every security related role used by this script and therefore will not be covered in
the coming text.

Listing 3.24: End of the play reserved for the FIPS 140-2 role
1roles:
2- role: dependency_checker
3dep_checker_os_flavor : |
4ansible_facts [" ansible_distribution_file_variety "]
5dep_checker_deps : fips
6when: check_fips | default (false)
7- role: fips_140_2
8fips_rhel_version : "{{ ansible_distribution_version }}"
9fips_os_distribution : "{{ ansible_distribution }}"
10fips_prod_type : "{{
11hostvars [’localhost ’][’ prod_type ’]
12}}"
13fips_groups : "{{
14hostvars [’localhost ’][’ groups ’][’ hosts ’]
15}}"
16fips_host_username : "{{ host_username }}"
17when: check_fips | default (false)
18- role: dependency_checker
19dep_checker_os_flavor : |
20ansible_facts [" ansible_distribution_file_variety "]
21dep_checker_deps : fips
22dep_checker_remove_deps : true
23when: check_fips | default (false)

71

Implementation of the user interface layer

The primary role of the user interface layer is to parse a given input by the user and
mediate the user input to the orchestration and execution layer. The reason for this
layer is to give the user an interface for a bounded customization. The customization
is bounded because only expected states can be chosen by the user. The states of
the bounded customization were already presented in the section explaining the high
level architecture of the script.

This layer is represented as a Makefile. This Makefile is located in the root
directory of the project. It recognizes four commands which correspond to the
states the user can choose from. These states include:

• test-fips,
• test-stig,
• test-cc,
• test-all
The Makefile also includes variables needed for successful execution of the script.

They have to be added by the user that wants to use this script. These variables
are the credentials of an user with root privileges that exists on the machines reg-
istered as hosts in the oVirt/RVH manager. The condition on elevated privileges is
crucial, since some operations made by the script require such privileges (installing
dependencies, running oscap scanning tool).

All of the commands implemented by this Makefile internally use the ansible-
playbook binary program. This program executes Ansible playbooks with specified
parameters[63]. In order to hand over the required variables to the ansible-playbook
binary program for proper execution of the playbook, the –extra-vars parameter is
made use of. This specific parameter allows passing extra variables to the binary
program at the command line[69]. The Listing 3.25 is the representation of the
Makefile containing the test-fips command and variables containing privileged user’s
credentials.

Listing 3.25: Makefile as the user interface layer
1SECRET = "this is a secret "
2USERNAME = " priv_user "
3
4test -fips:
5ansible - playbook -i inventory -u $USERNAME main.yml \
6--extra -vars " check_fips =true check_base_info =true" \
7" ansible_password =${ SECRET } ansible_user =${ USERNAME }"

In order to execute the script with the test-fips command, it is required to be
located in the root directory of the project and then run the following command in

72

the command line represented in the Listing 3.26.

Listing 3.26: Example of executing the script with the test-fips command
1make test -fips

3.4 Testing scenario for the compliance verification
script

The testing scenario for the compliance verification script includes a tester’s lap-
top with the script installed on its operating system and put into operation and
then most importantly the deployed oVirt/RHV infrastructure made out of three
virtualization hosts and a hypervisor with the oVirt/RHV manager installed. The
operating system running on the tester’s laptop shall be a RHEL-based one (CentOS
Stream 8). The figure 3.4 depicts this scenario. 3.4

Fig. 3.4: Testing scenario for the compliance verification script

The specific system configurations of all components of the scenario are the
following:

• Red Hat Virtualization; version 4.4,

73

• hypervisor and hosts; RHEL 8.5,
• tester’s laptop; CentOS Stream 8
In order to run the script a few things have to be done beforehand. This includes

installing Ansible on the operating system of the tester’s laptop. Since the operating
system running on the laptop is RHEL-based, the following commands can be run
in order to install Ansible as according to the documentation[48].

Listing 3.27: Commands to install Ansible on RHEL-based systems
1$ sudo yum install epel - release
2$ sudo yum install ansible

After Ansible is installed, the git repository containing the compliance verifica-
tion script must be cloned. In order to clone a git repository, git itself has to be
present on the system. This can be achieved by running the following command.

Listing 3.28: Command to install git on RHEL-based systems
1$ sudo yum install git

Once git is installed on the system, the git repository can finally be cloned. The
git repository containing the compliance verification script is hosted on GitHub.
The link12 obtained from GitHub is then used together with the git clone command.
This can be done by the following command.

Listing 3.29: Command to clone the specific repository
1$ git clone url_to_the_repository

Depending on where the repository was cloned, the user has to change into the
newly cloned directory. In order to change to the newly created repository, the cd
command together with specified relative path has to be used.

Listing 3.30: Command to change to the specific directory
1$ cd ovirt_security_compliance_verification_script

A few configuration setting has to be done before using the script. Firstly it
requires putting the username and password of a privilege user into the Makefile and
secondly the FQDN, the username and password of a user that is able to authenticate
against the oVirt/RHV manager. The second variables need to be put into the
engine.yml YAML file residing in vars_files directory.

12https://github.com/vojtfa135/ovirt_security_compliance_verification_script.git

74

Listing 3.31: Configuring variables needed to run the script
1$ vim Makefile
2# needs to be filled in by the user
3SECRET = "this is a secret "
4# needs to be filled in by the user
5USERNAME = " priv_user "
6:wq
7$ vim vars_files / engine .yml
8---
9engine_profile : internal
10# needs to be filled in by the user
11engine_username : admin
12engine_username_full : "{{
13engine_username }}@{{ engine_profile }}"
14# needs to be filled in by the user
15engine_password : " 123456 "
16# needs to be filled in by the user
17engine_url : "https :// hosted - engine .lab. testing .com"
18:wq

In order to be able to use the Makefile provided by the script as the user interface
layer, other dependencies need to be installed on the system. For being able to run
the make command, the Development Tools need to be installed. The following
command in the Listing 3.32 takes care of this problem.

Listing 3.32: Command to install Development Tools
1$ sudo yum groupinstall " Development Tools"

The last dependencies that need to be met in order to run the compliance verifi-
cation script, are included in the install_local.sh script located in the root directory
of the project. Just running the script is sufficient.

The steps leading to this point were there just to make sure that all prerequisites
for running the compliance verification script are met. After this the commands
defined in the Makefile can be used. In the most basic scenario the make test-all
command would used for verifying compliance to all of the security standards.

Listing 3.33: Command to run all tests for compliance verification
1make test -all

After this command the sequence of base info, FIPS 140-2, DISA STIG and
lastly Common Criteria roles will get executed. The first role to be executed will

75

be the base info which will first resolve dependencies and then start gathering rele-
vant information about the infrastructure. After it gathers relevant information, it
removes the dependencies installed beforehand. The dots at the end of the Listing
3.34 symbolize that the execution continues with other tasks.

Listing 3.34: Execution of the base info role
1PLAY [Compliance Verification Script v1.0 | Base info] ******
2
3TASK [Gathering Facts] **************************************
4ok: [localhost]
5
6TASK [dependency_checker : Install oVirt repository]*********
7skipping : [localhost]
8
9TASK [dependency_checker : Ensure that all dependencies
10are met in order to install ovirt -engine -sdk - python] ********
11skipping : [localhost] => (item= sshpass)
12skipping : [localhost] => (item=libcurl -devel)
13skipping : [localhost] => (item=python38 -devel)
14skipping : [localhost] => (item=openssl -devel)
15skipping : [localhost] => (item=libxslt -devel)
16skipping : [localhost] => (item=libxml2 -devel)
17
18TASK [dependency_checker : Intall oVirt SDK] ****************
19skipping : [localhost]
20
21TASK [base_info : Authenticate against oVirt engine] ********
22ok: [localhost]
23
24TASK [base_info : Extract relevant information about hosts] *
25ok: [localhost]
26
27TASK [base_info : Retrieve oVirt API data] ******************
28ok: [localhost]
29...
30...
31...

The next role in the sequence is FIPS 140-2. This role shall start evaluating
compliance to the corresponding standard. The process of evaluation corresponds to
the compliance checklist presented in the subsection explaining the implementation
of this role. Next role that shall be executed is DISA STIG and once the execution

76

of this role gets finished, the remaining Common Criteria role also gets executed.
Since the execution of the other remaining roles related to the security standards is
very similar to following one represented by the Listing 3.35, it will not be covered.

Listing 3.35: Execution of the FIPS 140-2 role
1PLAY [Compliance Verification Script v1.0 | FIPS ~140 -2] *****
2
3TASK [Gathering Facts] **************************************
4ok: [host1]
5ok: [host2]
6ok: [host3]
7
8TASK [fips_140_2 : Evaluate product type] ******************
9ok: [host1]
10ok: [host2]
11ok: [host3]
12
13TASK [fips_140_2 : Evaluate OS type on the hosts] ***********
14ok: [host1]
15ok: [host2]
16ok: [host3]
17...
18...
19...

For each role a report gets generated. The contents of this report is the pre-
sented checklist implemented for each role and a total evaluation stating whether
the deployed infrastructure is or is not compliant with the particular standard. This
report is to be found in the root directory of the project. 3.5

77

Fig. 3.5: A part of the generated report for the FIPS 140-2 role

In this specific testing scenario, the FIPS 140-2 evaluation report ended up with
the following results:

• rule: Product type must be Red Hat Virtualization; pass,
• rule: Operating system must be RHEL; pass,
• rule: FIPS mode must be enabled on the system; fail,
• rule: FIPS system-wide cryptographic policy must be enabled; fail,
• rule: FIPS system-wide cryptographic policy must be applied; fail,
• rule: Kernel parameter crypto.fips_enabled must be set to 1; fail,
• rule: Binaries of the cryptographic modules must be of the versions specified

by the security policy for RHEL 8.5; fail
The final evaluation of such deployed RHV infrastructure with the corresponding re-
sults of the FIPS 140-2 compliance evaluation then states that such an infrastructure
with such configuration is not FIPS 140-2 compliant.

The third, fourth, fifth and sixth rules are marked as failed because according
to those rules none of the presented mechanisms designated to handle properties of
the FIPS 140-2 standard provided by the RHEL operating system were employed.
The last rule was marked as failed because as of now13 there are no versions of the
binaries of the cryptographic modules for RHEL of the version 8.5 that are in active
status.

13May 29 2022

78

In this specific testing scenario, the DISA STIG evaluation report ended up with
the following results:

• rule: Product type must be Red Hat Virtualization; pass,
• rule: Operating system must be RHEL; pass,
• rule: Scan from the oscap tool must pass; fail

The final evaluation of such deployed RHV infrastructure with the corresponding
results of the DISA STIG compliance evaluation then states that such an infrastruc-
ture with such configuration is not DISA STIG compliant.

The last rule was marked as failed because the scan results from the oscap tool
were also marked as failed. The reason for that was that not all of the require-
ments specified in the RHEL STIG were employed on the hosts of this particular
deployment of the virtualization platform. There exists a link to the oscap generated
report in the final report generated by the DISA STIG role under the section where
the last rule resides. This report can be found in the example_reports directory that
resides in the root of the project.

In this specific testing scenario, the Common Criteria evaluation report ended
up with the following results:

• rule: Product type must be Red Hat Virtualization; pass,
• rule: Product version must be 4.3.17; fail,
• rule: Operating system must be RHEL; pass,
• rule: Operating system version must be 7.9; fail,
• rule: All tests from the test suite must pass; fail

The final evaluation of such deployed RHV infrastructure with the corresponding
results of the Common Criteria compliance evaluation then states that such an
infrastructure with such configuration is not Common Criteria compliant.

Since the testing configuration employs RHV of the version 4.4 and RHEL of
the version 8.5, it can by no means pass the second and the fourth rule. The last
rule failed because the tests were primarily designed to test the functional aspects
of RHV of the version 4.3.17. Since the functional aspects of RHV of the version
4.4 might have changed, it did not pass.

79

Achieved goals of the thesis
The thesis managed to lay out the theoretical grounds of the security standards
that are to be evaluated. It also provided an explanation of oVirt architecture
and how the implementation of those standards is done in oVirt. It then managed
to sketch out compliance verification checklists for FIPS 140-2, DISA STIG and
Common Criteria. These compliance verification checklists represented theoretical
ground for further implementation in the compliance verification script. They are
also the formal way of assessing compliance of oVirt or RHV configurations. All of
the compliance verification checklists are based on the texts of the related standards
and also other findings that the author was able to derive from the study of those
standards and their representation in the virtualization platform. In the context of
the security standards presented, security improvements were proposed by the thesis
for the oVirt platform. These security improvements were rather procedural.

An automated way of deploying oVirt was also established. This was a crucial
step in testing and verifying correct functionality of the scanning tool made for the
purpose of assessing compliance to the given security standards. The automated
deployment of oVirt enabled the author of the thesis to dynamically provision dif-
ferent configurations of the oVirt platform in very little time when compared to
manual deployment. These configurations could be then analyzed and according to
the analysis a right implementation for the script could then be chosen.

The thesis managed to show an architecture of the scanning tool which turned
out to be layered and modular. This architecture was then implemented in the
form of Ansible playbook together with Ansible roles. The Ansible roles represent
modules dedicated for assessing compliance to each of the given standards. The
modules and the compliance verification script was developed in accordance with
the theoretical grounds laid out by the thesis.

The implemented compliance verification script representing the scanning tool
capable of assessing compliance was properly tested and its functionality was verified.
It is therefore not defective and can be used in real environments where Red Hat
Virtualization is used as a virtualization platform and compliance to the FIPS 140-2,
DISA STIG and Common Criteria security standards is of high concern. This is
applicable to governmental institutions such as federal agencies in the US.

80

Conclusion
This thesis established an overview of the particular standards and strived to point
out important and relevant information for a whole understanding of the presented
issue. It explained the architecture and functioning of FIPS 140 standards (the
140-2 in particular). It laid out an explanation of DISA STIGs and their link to
SRGs and vice versa. And lastly it created a general view of the Common Criteria
standard.

Furthermore, it declared what full virtualization technology means in the gen-
eral context and in the context of oVirt and its respective downstream product
Red Hat Virtualization. It then applied the presented security standards to the
oVirt platform. There a number of issues occurred regarding the difference between
compliance and compatibility, for which a satisfying definition was presented. For
each standard, the implementation of it in the oVirt/RHV platform was showed
and explained. It also presented an important link between oVirt/RHV and RHEL,
when it comes to the implementation of the security standards.

A compliance verification checklist was then established for FIPS 140-2,
DISA STIG and Common Criteria. In the case of FIPS 140-2, it used RHEL’s
system-wide cryptographic policies and criteria from the Security Policy. In the
case of DISA STIG, it used tools provided by the OpenSCAP project. Lastly it
explained that in order to verify compliance with the Common Criteria standard
the functional testing suite provided by Red Hat shall be used.

The thesis also presented practical security enhancements for the oVirt/RHV
platform. These security enhancements were more of a procedural concern in some
cases. The security enhancement for oVirt in the context of FIPS 140-2 was to
prepare and start a certification process of its respective cryptographic modules
for FIPS 140-3. In terms of DISA STIG, the author recommends to participate
with DISA on an official RHV STIG. Lastly in the case of oVirt/RHV and Com-
mon Criteria, the author recommended to set a more frequent process of undergoing
certification. This was recommended because the actual versions of RHV and RHEL
in the RHV ST are not the latest.

In the context of the practical implementation of this thesis, it first demonstrated
the importance of an automated setup of oVirt deployment and testing. This was
done through the means of CI/CD. All the functional pieces of the automated setup
were explained. It then laid out the high level overview and high level architecture
of the compliance verification script and how it is constructed. It also provided a
general architecture of all roles used in the script itself. The practical implementation
of the high level architectural aspects of both the script and roles was introduced
and properly described. Since the architecture was presented as modular, for each of

81

the security standard a dedicated module was implemented. As for the technology
chosen for the script and modules managing the compliance evaluation process to
the particular standards, Ansible was the best fit. The compliance verification
script makes use of the Ansible playbook properties and the corresponding security
standards related modules make use of the Ansible role properties.

In terms of the role, the thesis used the compliance verification checklists it
sketched out in the theoretical part explaining the link between the individual se-
curity standards and oVirt/RHV itself. The compliance verification checklists were
transformed in a formalized form that could be used in the implementation of the
script’s security standards related roles.

Since there were other functionalities that had to be implemented as well, non-
security related roles were also created. These were shown to have a rather support-
ing functionality such as initial information gathering about the deployed oVirt/RHV
infrastructure and the resolvement of dependencies.

The thesis was able to implement a piece of software that is capable of assessing
compliance of a given deployed oVirt/RHV infrastructure. In the last section of the
thesis, a testing scenario of the whole compliance verification script was presented.

The author therefore claims to have successfully satisfied the goals of the thesis.

82

Bibliography
[1] Red Hat: Government Standards [online]. [cit. 2. 11. 2021]. Available at:

<https://access.redhat.com/articles/2918071>.

[2] NIST: Current Approved and Draft FIPS [online]. [cit. 23. 10. 2021]. Available
at:
<https://csrc.nist.gov/publications/fips>.

[3] NIST: FIPS 140-2 [online]. [cit. 23. 10. 2021]. Available at:
<https://csrc.nist.gov/publications/detail/fips/140/2/final>.

[4] NIST: About NVLAP [online]. [cit. 23. 10. 2021]. Available at:
<https://www.nist.gov/nvlap/about-nvlap>.

[5] NIST: FIPS General Information [online]. [cit. 23. 10. 2021]. Available at:
<https://www.nist.gov/itl/fips-general-information>.

[6] NIST: FIPS 140-3 Transition Effort [online]. [cit. 5. 12. 2021]. Available at:
<https://csrc.nist.gov/projects/fips-140-3-transition-effort>.

[7] NIST: Cryptographic Module Validation Program [online]. [cit. 12. 11. 2021].
Available at:
<https://csrc.nist.gov/projects/cryptographic-module-validation-program>.

[8] NIST: Federal Information Processing Standards Publication 140-2: SECU-
RITY REQUIREMENTS FOR CRYPTOGRAPHIC [online]. Change Notice
2, 12/3/2002. USA: NIST, 2002. Available at:
<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf>.

[9] NIST: Annex B:Approved Protection Profiles for FIPS PUB 140-2, Security
Requirements for Cryptographic Modules [online]. USA: NIST, 2019. Available
at:
<https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/
documents/fips1402annexb.pdf>.

[10] NIST: Federal Information Processing Standards Publication 140-3: SECU-
RITY REQUIREMENTS FOR CRYPTOGRAPHIC [online]. USA: NIST,
2002. Available at:
<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf>.

83

https://access.redhat.com/articles/2918071
https://csrc.nist.gov/publications/fips
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://www.nist.gov/nvlap/about-nvlap
https://www.nist.gov/itl/fips-general-information
https://csrc.nist.gov/projects/fips-140-3-transition-effort
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexb.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexb.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

[11] Cryptographic Module Validation Program: CMVP FIPS 140-2 Standards
and Documents [online]. Available at:
<https://csrc.nist.gov/Projects/cryptographic-module-validation-program/
fips-140-2>.

[12] NIST: Implementation Guidance for FIPS 140-2 and the Cryptographic Module
Validation Program [online]. [cit. 7. 11. 2021]. Available at:
<https://csrc.nist.gov/CSRC/media/Projects/
Cryptographic-Module-Validation-Program/documents/fips140-2/
FIPS1402IG.pdf>.

[13] NIAP: Approved Protection Profiles [online]. [cit. 23. 5. 2022]. Available at:
<https://www.niap-ccevs.org/profile/pp.cfm>.

[14] DISA: Security Technical Implementation Guides (STIGs) [online].
[cit. 23. 5. 2022]. Available at:
<https://public.cyber.mil/stigs/>.

[15] Red Hat: Chapter 1. Introduction to Red Hat Virtualization [online].
[cit. 7. 11. 2021]. Available at:
<https://access.redhat.com/documentation/en-us/red_hat_
virtualization/4.4/html/product_guide/introduction#RHV_
Architecture>.

[16] oVirt Community: oVirt User Documentation [online]. [cit. 7. 11. 2021]. Avail-
able at:
<https://ovirt.org/documentation/>.

[17] Installing oVirt as a standalone Engine with local databases [online].
[cit. 7. 11. 2021]. Available at:
<https://www.ovirt.org/documentation/installing_ovirt_as_a_
standalone_manager_with_local_databases/index.html#Red_Hat_
Virtualization_Hosts_SM_localDB_deploy>.

[18] Brian Proffitt: Moving Focus to the Upstream [online]. [cit. 7. 11. 2021]. Avail-
able at:
<https://www.redhat.com/en/blog/moving-focus-upstream>.

[19] SolarWinds: Understanding DISA STIG Compliance Requirements [online].
[cit. 7. 11. 2021]. Available at:
<https://www.solarwinds.com/federal-government/solution/
disa-stig-compliance>.

84

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-2
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-2
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://www.niap-ccevs.org/profile/pp.cfm
https://public.cyber.mil/stigs/
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/product_guide/introduction#RHV_Architecture
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/product_guide/introduction#RHV_Architecture
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/product_guide/introduction#RHV_Architecture
https://ovirt.org/documentation/
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_local_databases/index.html#Red_Hat_Virtualization_Hosts_SM_localDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_local_databases/index.html#Red_Hat_Virtualization_Hosts_SM_localDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_local_databases/index.html#Red_Hat_Virtualization_Hosts_SM_localDB_deploy
https://www.redhat.com/en/blog/moving-focus-upstream
https://www.solarwinds.com/federal-government/solution/disa-stig-compliance
https://www.solarwinds.com/federal-government/solution/disa-stig-compliance

[20] SolarWinds: General Purpose Operating System SRG [online]. [cit. 7. 11. 2021].
Available at:
<https://www.stigviewer.com/stig/general_purpose_operating_
system_srg/2019-07-01/finding/V-56761>.

[21] SRG/STIG Tools [online]. [cit. 1. 12. 2021]. Available at:
<https://public.cyber.mil/stigs/srg-stig-tools/>.

[22] POWERFUL OPEN SOURCE VIRTUALIZATION [online]. [cit. 7. 11. 2021].
Available at:
<https://www.ovirt.org/>.

[23] Red Hat: Chapter 2. Red Hat Virtualization Components [online].
[cit. 18. 11. 2021]. Available at:
<https://access.redhat.com/documentation/en-us/red_hat_
virtualization/4.4/html/product_guide/rhv-components>.

[24] Red Hat: What is CentOS Stream? [online]. [cit. 7. 11. 2021]. Available at:
<https://www.redhat.com/en/topics/linux/what-is-centos-stream>.

[25] Common Criteria for Information Technology Security Evaluation: Part 1:
Introduction and general model [online]. [cit. 4. 12. 2021]. Available at:
<https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.
1R5.pdf>.

[26] Common Criteria for Information Technology Security Evaluation: Part 2:
Security functional components [online]. [cit. 4. 12. 2021]. Available at:
<https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.
1R5.pdf>.

[27] Red Hat: Red Hat Virtualization Security Target [online]. [cit. 22. 5. 2022].
Available at:
<https://ocsi.isticom.it/documenti/certificazioni/redhat/rhv/st_
red_hat_virtualization_43_v2.3.pdf>.

[28] Common Criteria for Information Technology Security Evaluation: Part 3:
Security assurance components [online]. [cit. 4. 12. 2021]. Available at:
<https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.
1R5.pdf>.

[29] About The Common Criteria [online]. [cit. 4. 12. 2021]. Available at:
<https://www.commoncriteriaportal.org/ccra/index.cfm>.

85

https://www.stigviewer.com/stig/general_purpose_operating_system_srg/2019-07-01/finding/V-56761
https://www.stigviewer.com/stig/general_purpose_operating_system_srg/2019-07-01/finding/V-56761
https://public.cyber.mil/stigs/srg-stig-tools/
https://www.ovirt.org/
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/product_guide/rhv-components
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/product_guide/rhv-components
https://www.redhat.com/en/topics/linux/what-is-centos-stream
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://ocsi.isticom.it/documenti/certificazioni/redhat/rhv/st_red_hat_virtualization_43_v2.3.pdf
https://ocsi.isticom.it/documenti/certificazioni/redhat/rhv/st_red_hat_virtualization_43_v2.3.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://www.commoncriteriaportal.org/ccra/index.cfm

[30] Organismo di Certificazione della Sicurezza Informatica: Elenchi certificazioni:
In corso di valutazione [online]. [cit. 4. 12. 2021]. Available at:
<https://ocsi.isticom.it/index.php/elenchi-certificazioni/
in-corso-di-valutazione>.

[31] National Information Assurance Partnership: Common Criteria Evaluation and
Validation Scheme: Validation Report for the Red Hat Enterprise Linux Version
8.1, Version 1.0 [online]. [cit. 4. 12. 2021]. Available at:
<https://www.niap-ccevs.org/MMO/Product/st_vid11107-vr.pdf>.

[32] National Information Assurance Partnership: Common Criteria Evaluation and
Validation Scheme: Validation Report for the Red Hat Enterprise Linux Version
7.6, Version 1.0 [online]. [cit. 4. 12. 2021]. Available at:
<https://www.niap-ccevs.org/MMO/Product/st_vid11039-vr.pdf>.

[33] Acumen Security, LLC: Red Hat Enterprise Linux 8.1 Security Target [online].
[cit. 4. 12. 2021]. Available at:
<https://www.niap-ccevs.org/MMO/Product/st_vid11107-st.pdf>.

[34] Red Hat: Strong crypto defaults in RHEL 8 and deprecation of weak crypto
algorithms [online]. [cit. 29. 11. 2021]. Available at:
<https://access.redhat.com/articles/3642912>.

[35] NIST: Compliance FAQs: Federal Information Processing Standards (FIPS)
[online]. [cit. 29. 11. 2021]. Available at:
<https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips>.

[36] Red Hat: Chapter 5. Using system-wide cryptographic policies [online].
[cit. 29. 11. 2021]. Available at:
<https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/security_hardening/
using-the-system-wide-cryptographic-policies_
security-hardening>.

[37] Red Hat: Chapter 9. Scanning the system for configuration compliance and
vulnerabilities [online]. [cit. 29. 11. 2021]. Available at:
<https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/security_hardening/
scanning-the-system-for-configuration-compliance-and-vulnerabilities_
security-hardening>.

86

https://ocsi.isticom.it/index.php/elenchi-certificazioni/in-corso-di-valutazione
https://ocsi.isticom.it/index.php/elenchi-certificazioni/in-corso-di-valutazione
https://www.niap-ccevs.org/MMO/Product/st_vid11107-vr.pdf
https://www.niap-ccevs.org/MMO/Product/st_vid11039-vr.pdf
https://www.niap-ccevs.org/MMO/Product/st_vid11107-st.pdf
https://access.redhat.com/articles/3642912
https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening

[38] Red Hat: Appendix F. Securing Red Hat Virtualization [online].
[cit. 29. 11. 2021]. Available at:
<https://access.redhat.com/documentation/en-us/red_hat_
virtualization/4.4/html/installing_red_hat_virtualization_as_
a_self-hosted_engine_using_the_command_line/security>.

[39] Red Hat: The value of a Red Hat subscription [online]. [cit. 29. 11. 2021]. Avail-
able at:
<https://www.redhat.com/en/about/value-of-subscription>.

[40] Red Hat: How RHEL 8 is designed for FIPS 140-2 requirements [online].
[cit. 29. 11. 2021]. Available at:
<https://www.redhat.com/en/blog/how-rhel-8-designed-fips-140-2-requirements>.

[41] atsec information security corporation: Red Hat Enterprise Linux 8 libgcrypt
Cryptographic Module: FIPS 140-2 Non-Proprietary Security Policy [online].
[cit. 29. 11. 2021]. Available at:
<https://csrc.nist.gov/CSRC/media/projects/
cryptographic-module-validation-program/documents/
security-policies/140sp3784.pdf>.

[42] Department of Defense: Control Systems Security Requirements [online].
[cit. 29. 11. 2021]. Available at:
<https://dl.dod.cyber.mil/wp-content/uploads/external/pdf/
071421_Control_Systems_SRG.pdf>.

[43] NIST: Guide to Security for Full Virtualization Technologies [online].
[cit. 29. 11. 2021]. Available at:
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-125.pdf>.

[44] NIST: NIST National Checklist for Red Hat Enterprise Linux 8.x content
v0.1.50 Checklist [online]. [cit. 29. 11. 2021]. Available at:
<https://ncp.nist.gov/checklist/909>.

[45] OpenSCAP User Manual [online]. [cit. 29. 11. 2021]. Available at:
<static.open-scap.org/openscap-1.3/oscap_user_manual.html>.

[46] Best Practices [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_
practices.html>.

87

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/security
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/security
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/security
https://www.redhat.com/en/about/value-of-subscription
https://www.redhat.com/en/blog/how-rhel-8-designed-fips-140-2-requirements
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3784.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3784.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3784.pdf
https://dl.dod.cyber.mil/wp-content/uploads/external/pdf/071421_Control_Systems_SRG.pdf
https://dl.dod.cyber.mil/wp-content/uploads/external/pdf/071421_Control_Systems_SRG.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
https://ncp.nist.gov/checklist/909
static.open-scap.org/openscap-1.3/oscap_user_manual.html
https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html

[47] Configuring Ansible [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/installation_guide/
intro_configuration.html>.

[48] Installing Ansible [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/installation_guide/
intro_installation.html>.

[49] oVirt REST API documentation [online]. [cit. 29. 11. 2021]. Available at:
<http://ovirt.github.io/ovirt-engine-api-model/>.

[50] Module to manage authentication to oVirt/RHV [online]. [cit. 29. 11. 2021].
Available at:
<https://docs.ansible.com/ansible/latest/collections/ovirt/
ovirt/ovirt_auth_module.html>.

[51] Retrieve information about one or more oVirt/RHV hosts [online].
[cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/collections/ovirt/
ovirt/ovirt_host_info_module.html>.

[52] Module to manage users in oVirt/RHV [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/collections/ovirt/
ovirt/ovirt_user_module.html>.

[53] Add a host (and alternatively a group) to the ansible-playbook in-memory
inventory [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/collections/ansible/
builtin/add_host_module.html>.

[54] Print statements during execution [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/collections/ansible/
builtin/debug_module.html>.

[55] Conditional [online]. [cit. 23. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/playbooks_
conditionals.html>.

[56] How to build your inventory [online]. [cit. 23. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/intro_
inventory.html>.

88

https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
http://ovirt.github.io/ovirt-engine-api-model/
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_auth_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_auth_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_host_info_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_host_info_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_user_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/add_host_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/add_host_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

[57] Set host variable(s) and fact(s) [online]. [cit. 22. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/collections/ansible/
builtin/set_fact_module.html>.

[58] Retrieve information about the oVirt/RHV API [online]. [cit. 22. 5. 2022].
Available at:
<https://docs.ansible.com/ansible/latest/
collections/ovirt/ovirt/ovirt_api_info_module.html#
ansible-collections-ovirt-ovirt-ovirt-api-info-module>.

[59] Manages packages with the yum package manager [online]. [cit. 22. 5. 2022].
Available at:
<https://docs.ansible.com/ansible/latest/collections/ansible/
builtin/yum_module.html>.

[60] Understanding DevOps [online]. [cit. 29. 11. 2021]. Available at:
<https://www.redhat.com/en/topics/devops>.

[61] Git [online]. [cit. 29. 11. 2021]. Available at:
<https://git-scm.com/>.

[62] Introduction to modules [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/modules_
intro.html>.

[63] Intro to playbooks [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/playbooks_
intro.html>.

[64] Roles [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/playbooks_
reuse_roles.html>.

[65] Using collections [online]. [cit. 29. 11. 2021]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/collections_
using.html>.

[66] Gerrit Code Review Product Overview [online]. [cit. 29. 11. 2021]. Available at:
<https://gerrit-documentation.storage.googleapis.com/
Documentation/3.5.0.1/intro-quick.html>.

[67] YAML: YAML Ain’t Markup Language™ [online]. [cit. 29. 11. 2021]. Available
at:
<https://yaml.org/>.

89

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/set_fact_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/set_fact_module.html
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_api_info_module.html#ansible-collections-ovirt-ovirt-ovirt-api-info-module
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_api_info_module.html#ansible-collections-ovirt-ovirt-ovirt-api-info-module
https://docs.ansible.com/ansible/latest/collections/ovirt/ovirt/ovirt_api_info_module.html#ansible-collections-ovirt-ovirt-ovirt-api-info-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://www.redhat.com/en/topics/devops
https://git-scm.com/
https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html
https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://gerrit-documentation.storage.googleapis.com/Documentation/3.5.0.1/intro-quick.html
https://gerrit-documentation.storage.googleapis.com/Documentation/3.5.0.1/intro-quick.html
https://yaml.org/

[68] OVERVIEW: How Ansible Works [online]. [cit. 29. 11. 2021]. Available at:
<https://www.ansible.com/overview/how-ansible-works>.

[69] Using Variables [online]. [cit. 14. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/user_guide/playbooks_
variables.html>.

[70] Developing Ansible modules [online]. [cit. 15. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/dev_guide/developing_
modules_general.html>.

[71] Developing plugins [online]. [cit. 15. 5. 2022]. Available at:
<https://docs.ansible.com/ansible/latest/dev_guide/developing_
plugins.html>.

[72] Jenkins: Pipeline [online]. [cit. 29. 11. 2021]. Available at:
<https://www.jenkins.io/doc/book/pipeline/#overview>.

[73] Jenkins: What is Jenkins? [online]. [cit. 29. 11. 2021]. Available at:
<https://www.jenkins.io/doc/#what-is-jenkins>.

90

https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_plugins.html
https://www.jenkins.io/doc/book/pipeline/#overview
https://www.jenkins.io/doc/#what-is-jenkins

A Content of electronic attachment
The graph on this page explains the directory structure of the attachment to this
thesis.

/.. root directory of the attachement
main.yml Executable part of the Playbook
ansible.cfg Configuration file for Ansible
inventory....................................FQDN of the engine resides here
group_vars....Generated according to the convention, resides empty in this case
host_vars.....Generated according to the convention, resides empty in this case
vars_files...............Here engine and host related configuration files reside

engine.yml..Engine related variables
hosts.yml...................................General hosts related variables

example_reports............. Examples of scan reports for each role reside here
install_local.sh........Script for installing dependencies needed by the script
README....................................Readme file for setting up the script
requirements.yml..............................Ansible collection requirements
roles............................Here implementations of the Roles shall reside

fips_140_2................................FIPS evaluation implementation
tasks................................Here actual tasks of the role reside
handlers.........................Convention purposes, otherwise empty
library Custom Ansible modules reside here
files.............................Convention purposes, otherwise empty
templates.............................Scan report template resides here
vars.............................Variables needed by the role reside here
defaults.........................Convention purposes, otherwise empty
meta..............................Convention purposes, otherwise empty
tests.............................Convention purposes, otherwise empty

disa_stig...........................DISA STIG evaluation implementation
tasks................................Here actual tasks of the role reside
handlers.........................Convention purposes, otherwise empty
library Convention purposes, otherwise empty
files.............................Convention purposes, otherwise empty
templates.............................Scan report template resides here
vars.............................Variables needed by the role reside here
defaults.........................Convention purposes, otherwise empty
meta..............................Convention purposes, otherwise empty
tests.............................Convention purposes, otherwise empty

common_criteria...............Common Criteria evaluation implementation
tasks................................Here actual tasks of the role reside
handlers.........................Convention purposes, otherwise empty
library Convention purposes, otherwise empty
files...................Functional tests for Common Criteria reside here
templates.............................Scan report template resides here
vars.............................Variables needed by the role reside here

91

defaults.........................Convention purposes, otherwise empty
meta..............................Convention purposes, otherwise empty
tests.............................Convention purposes, otherwise empty

base_info..Base info implementation
tasks................................Here actual tasks of the role reside
handlers.........................Convention purposes, otherwise empty
library Custom Ansible modules reside here
files.............................Convention purposes, otherwise empty
templates........................Convention purposes, otherwise empty
vars.............................Variables needed by the role reside here
defaults.........................Convention purposes, otherwise empty
meta..............................Convention purposes, otherwise empty
tests.............................Convention purposes, otherwise empty

dependency_checker...................Dependency checker implementation
tasks................................Here actual tasks of the role reside
handlers.........................Convention purposes, otherwise empty
library Custom Ansible modules reside here
files.............................Convention purposes, otherwise empty
templates........................Convention purposes, otherwise empty
vars.............................Variables needed by the role reside here
defaults.........................Convention purposes, otherwise empty
meta..............................Convention purposes, otherwise empty
tests.............................Convention purposes, otherwise empty

92

	Introduction
	Security standards
	FIPS
	DISA STIGs
	Common Criteria

	The oVirt virtualization platform
	oVirt Full Virtualization Architecture
	Implementations of security standards in oVirt

	Practical implementation
	Automated oVirt deployment
	Architecture of the compliance verification script
	Implementation of the compliance verification script
	Testing scenario for the compliance verification script

	Goals of the thesis
	Conclusion
	Bibliography
	Content of electronic attachment

