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AN EMPIRICAL DEMONSTRATION OF

THE NO FREE LUNCH THEOREM

EZEKIEL ADEBAYO OGUNDEPO and ERNEST FOKOUÉ

Abstract. In this paper, we provide a substantial empirical demonstration of the
statistical machine learning result known as the No Free Lunch Theorem (NFLT).

We specifically compare the predictive performances of a wide variety of machine

learning algorithms/methods on a wide variety of qualitatively and quantitatively
different datasets. Our research work conclusively demonstrates a great evidence in

favor of the NFLT by using an overall ranking of methods and their corresponding
learning machines, revealing in effect that none of the learning machines considered

predictively outperforms all the other machines on all the widely different datasets

analyzed. It is noteworthy however that while evidence from various datasets and
methods support the NFLT somewhat emphatically, some learning machines like

Random Forest, Adaptive Boosting, and Support Vector Machines (SVM) appear

to emerge as methods with the overall tendency to yield predictive performances
almost always among the best.

1. Introduction

Throughout the relatively young yet tremendously fascinating history of statistical
machine learning, data science and artificial intelligence, there has constantly been
a fascination and interest in the possibility of creating/finding the holy grail in the
form of a learning machine and hypothesis/function space that uniformly outper-
forms all other machines on all possible datasets. The so-called no free lunch the-
orem (NFLT) of which many different formulations and incarnations exist [3–5], is
an intriguing and sometimes controversial result, that establishes that such a holy
grail does not exist, namely that no learning machine exists that outperforms all
other possible learning machines on all datasets. The goal of this paper is nei-
ther to rehash the debate nor to re-ignite some of the controversies surrounding
NFLT but instead to harness the richness and easy availability of a wide variety of
datasets [2] in a substantial comparison of the predictive performances of some of
the most prominent and most commonly used statistical learning machines, with
the finality of finding if there might be a conclusively empirical evidence in favor of
NFLT. The very existence of NFLT stems from the fact that in statistical machine
learning, the fact that the probability distribution of the generator of the data is
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unknown in practice, makes it impossible to ever attain the universal best learn-
ing machine for any given task. Typically, the learning task consists of building
functions f : X −→ Y mapping elements of some input space X to those of some
output space Y. Specifically, one defines a theoretical risk functional R(f) which
is essentially the expected loss given by

R(f) = E[L(Y, f(X))] =

∫
X×Y

L(x, y)dP (x, y),

where L(·, ·) is the so-called loss function, and ideally set out to achieve the goal
of finding the universal best function

f? = arginf
f∈YX

{
E[L(Y, f(X))]

}
= arginf

f∈YX

{∫
X×Y

L(x, y)dP (x, y)

}
.

Unfortunately, the joint distribution P (x, y) of X and Y , is never known in prac-
tice, making it impossible to ever know f?. If the universal best function f? were
practically realizable, NFLT would make no sense. Since f? is indeed not prac-
tically realizable, a substantial part of the research effort in statistical machine
learning is dedicated to approximation theory in the sense of coming up with
function spaces that hopefully have as strong a representation power as possible
to help build function or learning machines that approximate f? as accurately and
precisely as possible specifically using data assumed to have been generated by the
unknown distribution P (x, y). Indeed, given a data set {(X1, Y1), · · · , (Xn, Yn)}
independently and identically drawn from P (x, y), along with a loss function L(·, ·)
and a function space H from which one can select members f ∈ H, one can define

a realizable empirical risk functional R̂(f) as in Equation (1.1) given by

R̂n(f) =
1

n

n∑
i=1

L(Yi, f(Xi)), (1.1)

and obtain the empirical best within the function space H, namely

f̂n = argmin
f∈H

{
1

n

n∑
i=1

L(Yi, f(Xi))

}
. (1.2)

It turns out that there are several practical, theoretical and philosophical chal-
lenges inherent in the empirical best defined in Equation (1.2), the details of which
are far beyond the scope of the present paper. A more detailed account of the the-
oretical underpinnings of this vast body of results can be found in [1]. Intuitively,
one of the foundational challenges in statistical machine learning lies in the fact

that making the empirical risk R̂n(f) is far from being ideal, since it is first of all
achieved only for a given function space H that has a built approximation error,
and even worst of all, it is constructed not on the whole population but solely on
a fragment therefrom. As a matter of fact, practical statistical machine learning
has continually fed, triggered and animated the creativity, ingenuity and imagina-
tion of statisticians and computer scientists, many of whom never cease to come
up with a wide variety of algorithms and learning machines vying to provide the
best predictive performances imaginable. By predictive performances here, one

means the average loss or risk on samples that were not used to build f̂n. Before
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delving into our gigantic empirical exploration, let it clear once again that we are
not doubting the proofs given by the authors of the various incarnations of NFLT,
and somehow trying to provide counters through evidences from the data. No!
We are simply herein providing an empirical account to help readers gain insights
into NFLT. Our work has the potential of serving the pedagogical and educational
purposes of helping students understand and appreciate the niceties and subtleties
of the construction of statistical learning machines and methods. Now, to date,
there are several incarnations of NFLT. However, one of the earliest can be rightly
attributed to [5], where the following claim is made by the authors: It is shown that
one cannot say: if empirical misclassification rate is low, the Vapnik-Chervonenkis
dimension of your generalizer is small, and the training set is large, then with high
probability your off-training set (OTS) error is small. This statement was given
in [5] to counter the pervading belief and use of the so-called bounds on the gener-
alization error among statistical machine learning researchers, believed to be the
ultimate way to deciding which machine is the best. Indeed, whether the function

space H from which the realized learning machine f̂ is selected, is explicitly or
implicitly defined, it cannot consistently yield the universal best learning all possi-
ble learning tasks of its type, simply because no H can be the whole universe YX ,
and high probability is not the same as almost sure convergence. In other words,
no learning machine predictively outperforms all other possible learning machines
on all problems of a given type. A learning machine works better than all other
learning machines on a given task only when the explicit or implicit assumptions
underlying the workings of that nicely performing machines are inherent in the
data generator for that task. If the generator is changed, that learning machine
will not longer have the best performance. The assumptions of a model for one
problem may not hold for another. Therefore, it is not uncommon in machine
learning, in fact it is typical to try several learning methods for any given task
with the finality of empirically finding one that works best for that particular
problem at hand. Practically speaking, rather than choosing a “favorite” learning
machine to be resort all the time, it is better to always try several algorithms
(parametric and/or nonparametric) and assess the trade-offs among speed, accu-
racy, and complexity of different models and find a model that works best for
that particular problem [6, 7]. Please note that we have deliberately elected not
to provide a formal mathematical version of NFLT, and we have done so to avoid
distracting the reader from our decision to provide an intuitive take on it. Hence
our repeated instances of intuitive aspects of NFLT throughout this paper. More
formal presentations of NFLT can be found in [5].

2. Empirical demonstration of NLFT

We live in an era of data abundance or even data opulence. So abundant indeed is
data in present times that the emerging field or discipline of Data Science is quickly
becoming one of the most desirable paths for a lucrative and deeply fulfilling ca-
reer. As we said earlier, the No Free Lunch Theorem (NFLT) has been around
for quite some time now, and has been formulated in several different ways, and
rigorously proven on sound mathematical foundations. Given the blessings of data
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abundance, we have deemed up of practical and educational use to provide an em-
pirical account of NFLT via a substantial comparison and ranking of the predictive
performances of several existing learning machines and many quantitatively and
qualitatively different data sets. Interestingly, we are not the first to embark on
such an empirical study. Similar work, albeit of a lesser magnitude and coverage
than ours, have been attempted before by several authors. To demonstrate em-
pirically with data that there is no best machine learning algorithm (classification
or regression) on every instance, [8] compared four classification learning methods
(J48, CART, Random Forest, and Bayesian Network) on the students’ academic
performance data at colleges of Assam in India before decided to choose random
forest due to its performance using classifier error metric. Realizing that the true
probability of default on credit card debt by clients is unknown, [9] compared
six data mining techniques which included k Nearest Neighbors (kNN), Logis-
tic Regression, Discriminant Analysis, Näıve Bayesian, Artificial Neural Networks
(ANN), and Classification Trees on the real card holders’ credit risk data in Tai-
wan. Among the methods used for the study, only an ANN model achieved the
best performance based on area ratio and a relatively low error rate. As a result,
[9] concluded that an ANN was the best model that could accurately estimate
the real probability of default among the 6 classification methods compared. The
reference [10] compared regression learning methods which are based on tree struc-
tures (Decision trees (DT), Random Forests (RF)) and non-linear functions such as
Neural networks (NN) and support vector machines (SVM) to predict the burned
area of forest fires from the northeast region of Portugal meteorological data. Out
of the five learning methods compared, only SVM was capable of predicting the
burned area of small fires, which are more frequent. The reference [11] applied
data mining classification algorithms viz. C4.5, C-RT, CS-MC4, Decision List,
ID3, Näıve Bayes, and RndTree in predicting vehicles collision patterns on the
road accident training dataset obtained from the Fatality Analysis Reporting Sys-
tem (FARS), University of Alabama. The experimental results indicated that the
RndTree classification algorithm achieved better accuracy than other algorithms
in classifying the manner of the collision which increases the fatality rate in road
accidents. Although all the authors cited above used the out of training sample
prediction to elect the best method for their particular task, one cannot use their
work as a basis of evidence for NFLT because the comparisons do not involve
the crucial cross product of several learning machines with several data sets. Our
work remedies their limitations by carefully considering the cross product of sev-
eral learning machines with several qualitatively and quantitatively different data
sets. Like we said earlier, one would ideally like to compare the true theoretical
performances of the methods measured by the risk function

R(f) = E[L(Y, f(X))] =

∫
X×Y

L(x, y)dP (x, y).

Due to the fact that P (x, y) is unknown in practice, we will instead compute many
instances of the error on the out-of-training set (test set), and perform several
statistics on those values in order to measure, compare and rank all the methods
considered for each of the datasets considered. The stochastic hold out approach
used here will typically create R random splits of the provided realized data set
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Dn = {(x1, y1), · · · , (xn, yn)}, into a training set and a test set, for each task, and

for each learning machine f̂ , predictive performance quantities like the average

test error AVTE(f̂) of f̂ over the R random splits [15] will be computed and then

used as the score of f̂ for comparison purposes.

AVTE(f̂) =
1

R

R∑
r=1

{
1

s

s∑
t=1

L(y
(r)
t , f̂r(x

(r)
t ))

}

where f̂r(·) is the rth realization of the estimator f̂(·) built using the training
portion of the split of Dn into a training set and test set, and (xr

t , y
r
t ) is the tth

observation from the test set at rth random replication of split of Dn. For each of

the datasets considered, AVTE(f̂) is computed for each of the learning machines of
interest, and the values are ranked.

3. Implementation and applications

The benchmark datasets used in this study are rich in terms of varieties and
dimensions. We have binary class, multi-class and regression datasets. Table 1, 2
and 3 has k = n

p which represented the measure of the information (data) richness.

When k is very small, we said we are in an information poverty regime, if otherwise,
we are in an information opulence regime. Data opulence is good for the weak law
of large numbers and the strong law of large numbers.

Table 1. Structure of multi-class datasets.

SN Dataset n p G(Number of classes) k = n/p

1 Balance scale 625 5 3 125
2 Cars 1728 7 4 246.86
3 Indonesia contraceptive method choice 1473 10 3 147.30
4 Iris 150 5 3 30
5 Red wine quality 1599 12 6 133.25

6 Seeds 210 8 3 26.25
7 Vechicle silhouett 846 19 4 44.53
8 White wine quality 4898 12 7 408.17
9 Wine recognition 178 14 3 12.71

The predictive performance of machine learning models depends on the struc-
ture of the dataset and proper data preparation will ensure the models work op-
timally. Since the best machine learning method on the dataset cannot be known
beforehand, in this section, we carry out an empirical study through benchmark
datasets to demonstrate that no universally best machine learning algorithm exists
for all datasets. This study used datasets at the UCI Machine Learning Reposi-
tory[16]. Additional datasets were retrieved from MLData and GPA dataset [12].
Statistical analyses were run in R studio with R version 3.6.1. Packages used in-
cluded tidyverse for data analysis and visualization [13] and caret for regression
and classification training [14]. Raw data and scripts are available on GitHub at
https://github.com/gbganalyst/NFLT-journal for scientific reproducibility.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://www.mldata.io/datasets
https://github.com/gbganalyst/NFLT-journal
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We performed various data pre-processing activities, such as data imputation for
data sets that were found to have missing values. We also scaled numerical features
and did some appropriate encoding of categorical features that needed it. We
specifically used 80% of data for model training, and the remaining 20% for model
evaluation or performance. Wherever needed, we also perform the appropriate
tuning of all the hyperparameters of models in the caret package using 10-fold
cross-validation.

Table 2. Structure of binary class datasets.

SN Dataset n p C(Number of classes) k = n/p

1 Asthmatic 405 11 2 36.82
2 Breast cancer 569 10 2 56.90
3 Congressional 435 17 2 25.59
4 Cryotheraphy 90 7 2 12.86
5 Diabetic retinopathy debrecen 1151 20 2 57.55

6 Gender voice 3168 21 2 150.86
7 HTRU2 17899 9 2 1988.78
8 Indian liver patient 583 11 2 53
9 Monk problem 1711 8 2 213.88
10 Social network advertisement 400 4 2 100

11 Sonar dataset 208 61 2 3.41

Table 3. Structure of regression datasets.

SN Dataset n p k = n/p

1 Abalone 4178 9 464.22
2 Airfoil self-noise 1503 6 250.5
3 Attendance 680 3 226.67
4 Auto mpg 392 8 49
5 Boston housing price 506 14 36.14

6 Charity 4268 5 853.6
7 Combined cycle power plant 9568 5 1913.6
8 Computer hardware 209 7 29.86
9 Concrete comprehesion strenght 1030 9 114.44
10 Diabetes 442 11 40.18

11 Ducan MBA 203 7 29
12 Forest fire 517 13 39.77
13 GPA 141 5 28.2
14 Hprice 2 506 6 84.33
15 Insurance 1338 7 191.14

16 Istanbul stock 536 8 67
17 Mortality rate 992 4 248
18 Red wine quality 1599 12 133.25
19 Servo 167 5 33.4
20 Wage 935 4 233.75

21 White wine quality 4898 12 408.17
22 Yacht hydrodynamics 308 7 44
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3.1. Empirical demonstration of NFLT in binary classification

To show tangible practical evidence that the No Free Lunch Theorem is backed by
several real life data sets, we trained fifteen (15) different classifiers chosen from
linear and/or non-linear, parametric and/or non-parametric learning machines on
different binary class datasets. The distribution of the test errors of all the learning
machines over 100 replications is shown in Figure 1a and Figure 1b for compar-
ison. As shown in Figure 1, Random Forest has the smallest test error on the
breast cancer dataset when compared to other learning methods under considera-
tion. One could therefore conclude empirically that Random Forest is the winning
method (minimum misclassification rate) for predicting whether a tumor is benign
or malignant.

(a) Distribution of test er-
ror over 100 replicates.

(b) Average test error over
100 replicates.

Figure 1. Example of NFLT of ML methods on breast cancer dataset.

The mean, median, and standard deviation rank of each classifier on each
dataset is shown in Table 4, 5 and 6, respectively.

Table 4. The rank of the mean score of method M on binary data S.

SN Dataset Bagging Adaboost CART Gauss glmnet kNN LDA Logit MARS naiveBayes NNET QDA RDA rForest SVM

1 Monk 1 3 6 10 11 2 13 14 12 15 5 9 8 4 7
2 Indian liver patient 9 10 12 2 3 11 6 1 7 15 13 14 8 5 4
3 Gender voice 5 3 13 6 9 7 11 8 4 14 12 - 10 2 1
4 Cryotherapy 7 13 15 3 2 9 4 5.5 11 14 12 5.5 8 1 10
5 Breast cancer 8.5 5 15 3 8.5 2 12 11 7 10 14 13 4 1 6

6 Diabetic retinopathy debrecen 11 9 13 6 3 12 5 2 1 14 4 - 8 10 7
7 Congressional voting 5 1 4 12 2 13 10 6 7 14 11 - 9 3 8
8 Social network advertisement 12 5 3 4 14.5 2 14.5 13 8 11 10 6.0 9 7 1
9 Sonar 8 3 14 6 9 7 11 13 10 15 5 12 4 1 2
10 HTRU2 9 4.5 11 6 2 10 12 3 1 15 4.5 14 13 8 7

11 Asthmatic 14 11 3 12 4 10 1 6 2 8 13 - 5 9 7
Mean of the mean rank 8.14 6.14 9.91 6.36 6.18 7.73 9.05 7.5 6.36 13.18 9.41 10.5 7.82 4.64 5.45
Overall rank 10 3 13 5.5 4 8 11 7 5.5 15 12 14. 9 1 2

General note for all tables:
Performance of classifiers are ranked on each dataset row-wise

For instance on Table 4, the mean test error of Bagging was ranked 1st while
Näıve Bayes was ranked 15th on Monk dataset (SN: 1). On breast cancer dataset
(SN: 5), the mean test error of Random Forest was ranked 1st while Decision
Tree (CART) was ranked 15th. It can be seen clearly that no classifier exists that
outperformed all possible learning machines on all datasets. Training Quadratic
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Discriminant Analysis (QDA) classifier on gender voice, diabetic retinopathy de-
brecen, and asthmatic datasets could not work due to rank deficiency in the classes
of their labels. The mean of the mean rank of each machine learning method was
calculated for all the datasets and it can be seen that random forest, SVM, and
naiveBayes were ranked 1st, 2nd and 15th, respectively.

Table 5. The rank of the median score of method M on binary data S.

SN Dataset Bagging adaboost CART Gauss glmnet kNN LDA Logit MARS naiveBayes NNET QDA RDA rForest SVM

1 Monk 1 3 7 10 11 2 13.5 13.5 12 15 5 8.5 8.5 4 6
2 Indian liver patient 9.5 9.5 12 3 3 12 7 3 3 15 12 14 7 7 3
3 Gender Voice 5.5 3.5 13 5.5 8.5 7 11 8.5 3.5 14 11 - 11 2 1
4 Cryotherapy 4 10.5 14.5 4 4 10.5 4 4 10.5 14.5 10.5 4 10.5 4 10.5
5 Breast cancer 6.5 6.5 15 6.5 6.5 1.5 13 6.5 6.5 11 13 13 6.5 1.5 6.5

6 Diabetic retinopathy debrecen 11 9 12.5 6 3 12.5 5 2 1 14 4 - 8 10 7
7 congressional voting 5.5 2.5 2.5 12 2.5 13 9 9 5.5 14 9 - 9 2.5 9
8 Social network advertisement 12 3 3 3 14 3 14 14 8.5 8.5 8.5 8.5 8.5 8.5 3
9 Sonar 8 4 14 6 9.5 6 11 12.5 9.5 15 6 12.5 2 2 2
10 htru2 6 6 10.5 6 6 10.5 12.5 1.5 1.5 15 6 14 12.5 6 6

11 Asthmatic 14 10 5.5 12 5.5 10 1.5 5.5 1.5 5.5 13 - 5.5 10 5.5
Mean of the median rank 7.55 6.14 9.95 6.73 6.68 8 9.23 7.27 5.73 12.86 8.91 10.64 8.09 5.23 5.41
Overall rank 8 4 13 6 5 9 12 7 3 15 11 14 10 1 2

Recalling that the mean as a measure of central tendency is always affected
by outliers, we considered comparing the median ranks of the test errors for all
the learning machines on all the datasets as shown in Table 5. For instance, on
the monk dataset (SN: 1), the median test error of Bagging was ranked 1st while
Näıve Bayes was ranked 15th. The median test error of Multivariate Adaptive
Regression Splines (MARS) was ranked 1st while Logistic Regression was ranked
2nd in predicting whether an image contained signs of diabetic retinopathy or
not on diabetic retinopathy debrecen dataset (SN: 6). This again shows that no
classifier won on all datasets as shown in the median rank of test error. The mean
of the median ranks of the learning machines was calculated for all the datasets
and it can be seen that Random Forest, SVM, and Näıve Bayes were ranked 1st,
2nd, and 15th respectively.

Table 6. The rank of the standard deviation (std) score of method M on
binary data S.

SN Dataset Bagging adaboost CART Gauss glmnet kNN LDA Logit MARS naiveBayes NNET QDA RDA rForest SVM

1 Monk 3 4 6 9 13 2 11 12 14 10 15 7 8 1 5
2 Indian liver patient 11 14 12 5 2 8 4 7 3 9 15 13 6 10 1
3 Gender Voice 6 2.5 12 10.5 9 10.5 8 5 4 13 14 - 7 2.5 1
4 Cryotherapy 6 13 14 1 3 8 5 12 15 10 11 4 9 2 7
5 Breast cancer 8 13 15 9 12 4 5 11 2 1 14 10 6.5 6.5 3

6 Diabetic retinopathy debrecen 13 8 11 6 4 7 10 3 12 1 5 - 14 9 2
7 congressional voting 5 2 8 10 13 1 14 3 11 6 15 7 12 4 9
8 Social network advertisement 7 5 2 6 14 1 13 15 9 12 8 10 11 3 4
9 Sonar 13 4 12 8 7 10 3 2 14 15 11 5 9 1 6
10 htru2 2.5 1 9 5 9 5 12 11 5 15 7 14 13 2.5 9

11 Asthmatic 13 9 1 12 2 10 3 4 7 5.5 14 - 11 5.5 8
Mean of the std rank 7.95 6.86 9.27 7.41 8.0 6.05 8 7.73 8.73 8.86 11.73 8.75 9.68 4.27 5
Overall rank 7 4 13 5 8.5 3 8.5 6 10 12 15 11 14 1 2

The predictive stability of the 15 classifiers was compared by taking the rank of
the standard deviation (std) of the test errors of each classifier on a given dataset
as shown in Table 6. The standard deviation test error of k Nearest Neighbors
(KNN) was ranked 1st while Artificial Neural Network (NNET) was ranked 15th on
the USA congressional voting dataset (SN: 7). This shows that a neural network
model is not stable in its prediction across 100 replications. Evidence of NFLT
can be seen, for example, while the std test error of Näıve Bayes was ranked 15th
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on Sonar and htru2 datasets, its std was ranked 1st on breast cancer and diabetic
retinopathy Debrecen datasets. The mean of the std rank of each machine learning
method was calculated for all the datasets and it can be seen that random forest,
SVM, and neural network were ranked 1st, 2nd, and 15th, respectively.

3.2. Empirical demonstration of NFLT in multicategorical classification

In this section, we show practical evidence that the NFLT is indeed valid by train-
ing 15 different classifiers on 9 different multi-class datasets. The classifiers were
chosen from linear and/or nonlinear, parametric and/or non-parametric. Figure
2a is the distribution of test errors of each learning method over 100 replications
on the Indonesia Contraceptive Method Choice dataset and Figure 2b is its the
average test error. The main idea of running all the methods on each dataset is
to vividly demonstrate that no classifier/learning method won on all the datasets
(see Tables 7–9).

(a) Distribution of test er-

ror over 100 replicates.

(b) Average test error over

100 replicates.

Figure 2. Example of NFLT of ML methods on Indonesia Contraceptive
Method Choice dataset.

As shown in Figure 2, MARS has the least test error on the balance scale dataset
when compared to other learning methods under consideration. This means that
MARS is suitable in predicting which way the scale tips (left, balance, or right)
accurately. It can be seen that Näıve Bayes has the least accuracy therefore, it is
not advisable to use it in this problem.

Table 7. The rank of the mean score of method M on multi class data S.

SN Dataset Bagging CART Gauss glmnet kNN LDA MARS MDA Multinom naiveBayes NNET QDA RDA rForest SVM

1 seeds 11 15 13 4 12 1.5 8 3 5 14 6 7 1.5 10 9
2 Wine recognition 14 15 5 7 13 3 12 4 9 11 10 2 1 8 6
3 Contraceptive method 7 3 2 11 6 9 1 8 10 14 13 15 12 5 4
4 Red wine quality 2 5 4 6 9 11 8 13 7 15 12 14 10 1 3
5 Cars 1 5 11 7 14 9 10 12 6 13 2 - 8 3 4

6 Balance scale 14 15 3 11 7 12 9 8 10 6 5 1.5 1.5 13 4
7 white wine quality 2 9 3 4 7 11 8 12 5 14 15 13 10 1 6
8 Vehicle Silhouette 11 14 12 4 13 7 6 3 5 15 9 2 1 10 8
9 Iris 13.5 12 10 5 8 1.5 15 3 6 7 9 4 1.5 13.5 11

Mean of the mean rank 8.39 10.33 7 6.56 9.89 7.22 8.56 7.33 7 12.11 9 7.31 5.17 7.17 6.11
Overall rank 10 14 4.5 3 13 7 11 9 4.5 15 12 8 1 6 2
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The rank of the mean test error of each classifier is shown in Table 7. For
instance, on wine recognition dataset (SN: 2), the mean test error of Regularized
Discriminant Analysis (RDA) was ranked 1st while Decision Tree (CART) was
ranked 15th in predicting the three types of wines accurately. Evidence of NFLT
can be seen, for example, while the mean test error of MARS was ranked 15th

on the Iris dataset (SN: 9), it was ranked 1st on Indonesia contraceptive method
choice dataset (SN: 3). As shown in Table 7, QDA could not work on the cars
dataset due to the rank deficiency in classes of the label. The mean of the mean
rank of each machine learning method was calculated for all the datasets and it
can be seen that RDA was ranked 1st.

Table 8. The rank of the median score of method M on multi class data S.

SN Dataset Bagging CART Gauss glmnet kNN LDA MARS MDA Multinom naiveBayes NNET QDA RDA rForest SVM

1 Seeds 10.5 14.5 10.5 5 10.5 1.5 10.5 5 5 14.5 5 5 1.5 10.5 10.5
2 Wine recognition 11.5 15 4 4 11.5 4 11.5 4 8 11.5 11.5 4 4 11.5 4
3 Contraceptive method 8 2.5 2.5 11 5.5 8 1 8 10 14 13 15 12 5.5 4
4 Red wine quality 2 4.5 6.5 4.5 9 10.5 8 13 6.5 15 12 14 10.5 1 3
5 Cars 1 5 11 7 14 9 10 12 6 13 2 - 8 3 4

6 Balance scale 14 15 4.5 11 8 12 8 8 10 4.5 4.5 1.5 1.5 13 4.5
7 white wine quality 2 6.5 3 6.5 6.5 11 6.5 12 6.5 14 15 13 10 1 6.5
8 Vehicle Silhouette 11.5 14 11.5 4 13 6.5 6.5 3 5 15 8 1.5 1.5 10 9
9 Iris 12.5 12.5 12.5 5 5 5 12.5 5 5 5 5 5 5 12.5 12.5

Mean of the median rank 8.11 9.94 7.33 6.44 9.22 7.5 8.28 7.78 6.89 11.83 8.44 7.38 6 7.56 6.44
Overall rank 10 14 5 2.5 13 7 11 9 4 15 12 6 1 8 2.5

We compared the rank of the median test error of each classifier has shown in
Table 8. The median test error of random forest was ranked 1st while artificial
neural network (nnet) was ranked 15th in predicting the rating of wine quality
on the white wine quality dataset (SN: 7). Overall, RDA has the least test error
across the 9 datasets.

Table 9. The rank of the SD score of method M on multi class data S.

SN Dataset Bagging CART Gauss glmnet kNN LDA MARS MDA Multinom naiveBayes NNET QDA RDA rForest SVM

1 seeds 9 14 8 6 13 1 7 3 5 15 10.5 4 2 12 10.50
2 Wine recognition 14 15 3 6 13 1 11.5 5 11.5 10 9 7 2 8 4
3 Contraceptive method 11 7.5 9 2 3 4 6 14 1 7.5 15 10 12 5 13
4 Red wine quality 7 8 5 3 9 10 4 13 6 15 12 14 11 2 1
5 Cars 1 6 3 7.5 10 9 11 14 5 12 13 - 7.5 2 4

6 Balance scale 13 14 2 8 3 5 7 6 9 4 15 10.5 10.5 12 1
7 White wine quality 11 7 5 3 1.5 10 4 12 6 14 15 13 9 8 1.5
8 Vehicle Silhouette 10 8 12 1 11 2 7 13 5 14 15 4 3 6 9
9 Iris 15 14 11 7 5 1.5 13 3 8 12 6 4 1.5 10 9

Mean of the std rank 10.11 10.39 6.44 4.83 7.61 4.83 7.83 9.22 6.28 11.5 12.28 8.31 6.5 7.22 5.89
Overall rank 12 13 5 1.5 8 1.5 9 11 4 14 15 10 6 7 3

Table 9 is the rank of the standard deviation test errors of each classifier on
a given dataset. On vehicle Silhouette dataset (SN 8), the std test error of GLM-
NET was ranked 1st while Neural Network was ranked 15th in predicting vehicle
type (Opel, Saab, Bus, and Van). This means that the neural network model is
not stable in its prediction across 100 replications. The standard deviation of the
test errors of Bagging was ranked 1st on the car dataset and was ranked 15th on
Iris dataset. The mean of the std rank of each machine learning method was cal-
culated for all the datasets and it can be seen that the neural network was ranked
15th.

3.3. Empirical demonstration of NFLT in regression learning

Fifteen (15) different regression function spaces which were chosen from parametric
and/or non-parametric to model the functional patterns underlying the data were



EMPIRICAL DEMONSTRATION OF NFLT 183

considered. We compared the test errors (MSE) of each learning method over
100 stochastic hold out subsamples with the training set representing 2

3 of the
data. The main idea of running all the methods on each dataset is to tangibly
demonstrate that no learning method won on all the datasets (see Tables 10–12).
The distribution of the test errors of each learning method on the Boston dataset
was shown in Figure 3. Out of the 15 learning methods compared in Figure 3, only
the decision tree (CART) has the least mean square error on the Boston housing
price test set.

(a) Distribution of test er-

ror over 100 replicates

(b) Average test error over

100 replicates

Figure 3. Example of NFLT of ML methods on Boston median housing
price dataset.

The mean rank of the test error of each machine learning method is shown in
Table 10. For instance, on the power plant dataset (SN: 1), the mean test error of
Random Forest was ranked 1st while Partial Least Square (PLS) was ranked 15th

in predicting the net hourly electrical energy output (EP) of the plant. Evidence of
NFLT can be seen, for example, while the mean test error of Boosted Linear Model
(BstLM) was ranked 15th on Istanbuck stock dataset (SN: 16), it was ranked 1st on
attendance figures dataset (SN: 4). The mean of the mean rank of each machine
learning method was calculated for all the datasets and Artificial Neural Network
(NNET) was ranked 1st.

The median rank of the test errors of each learning method on a given dataset
is shown in Table 11. For example, on the auto mpg dataset (SN: 6), the median
test error of SVM was ranked 1st while PLS was ranked 15th in predicting engine
miles per gallon of cars from 1970s and 1980s. The evidence of NFLT can be
seen for example, while the median test error of Random forest was ranked 1st on
datasets such as powerplant (SN: 1) and Boston housing price (SN: 5), its median
test error was ranked 15th on both diabetes (SN: 9) and wage (SN: 22) datasets.
The mean of the median rank of each machine learning method was calculated for
all datasets and it can be seen that nnet was ranked 1st.

Table 12 is the rank of the standard deviation of test error of each machine
learning method over 100 hold out sub-sample. With Istanbul Stock (SN: 16)
dataset, the std test error of Multiple Linear Regression (OLS) was ranked 1st
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Table 10. The rank of the mean score of method M on regression data S.

SN Datasets BstLm enet GBM glmnet KNN Lasso MARS MLR nnet PLS Relaxo rForest Ridge RLM SVM

1 Powerplant 12 9 4 9 2 13 6 9 5 15 14 1 9 9 3
2 Abalone 15 7 5 9.5 12 9.5 3 7 1 13 14 4 7 11 2
3 Air foil 14 9 5 7 4 12 6 9 2 13 15 1 9 11 3
4 Attendance 1 4.5 9 3 12 6 7 2 10 11 15 14 4.5 8 13
5 Boston 15 11 2 8 5 7 6 10 4 14 9 1 12 13 3

6 Auto mpg 8 14 4 13 6 10 5 8 1 15 12 3 8 11 2
7 Computer hardware 5 9 13 10 14 8 3 6 2 11 4 1 7 12 15
8 Concrete 14 9 2 11 6 12 5 9 3 15 7 1 9 13 4
9 Diabetes 9 6 10 5 14 4 13 2 1 8 11 15 7 3 12
10 Charity 9 13 1 11 3 10 5 12 2 8 7 4 14 15 6

11 Ducan MBA 2 7 13 1 15 4 8 6 14 9 5 11 3 10 12
12 MSU GPA 8 7 10 1 13 5 12 4 11 2 9 14 3 6 15
13 Forest fire 6 4 1 7 13 5 8 11 9 2 3 14 12 10 15
14 Housing price 12 9 2 7 5 11 6 8 3 13 15 1 10 14 4
15 Insurance 12 7 1 9 13 10 5 7 2 11 15 3 7 14 4

16 Istanbuck Stock 1 5 12 3 14 7 11 2 9 10 6 13 8 4 15
17 Red wine quality 8 11 3 12.5 15 7 4 12.5 5 14 6 1 9 10 2
18 white wine quality 15 12 3 11 4 8 6 10 5 14 9 1 13 7 2
19 Yacht 14 5 2 8 10 9 4 7 3 15 12 1 6 11 13
20 Servo system 14 12 2 9 5 10 6 8 3 7 15 1 11 13 4

21 Mortality rate 14 8 4 10 5 13 6 8 1 11 15 2 8 12 3
22 Wage 2.5 6 12 2.5 14 7 10 4.5 9 8 11 15 4.5 1 13

Mean of the mean rank 9.57 8.39 5.45 7.61 9.27 8.52 6.59 7.36 4.77 10.86 10.41 5.55 8.23 9.91 7.5
Overall rank 12 9 2 7 11 10 4 5 1 15 14 3 8 13 6

Table 11. The rank of the median score of method M on regression data S.

SN Datasets BstLm enet GBM glmnet KNN Lasso MARS MLR nnet PLS Relaxo rForest Ridge RLM SVM

1 Powerplant 12 9 4 9 2 13 6 9 5 15 14 1 9 9 3
2 Abalone 15 9 4 7 12 6 3 10 1 13 14 5 8 11 2
3 Air foil 14 8.5 5 8.5 3 12 6 8.5 2 13 15 1 8.5 11 4
4 Attendance 3 6 9 7 12 8 2 4.5 1 11 15 14 4.5 10 13
5 Boston 14 12 3 7 5 9 6 11 4 15 10 1 8 13 2

6 Auto mpg 13 8.5 4 14 6 8.5 5 8.5 3 15 12 2 8.5 11 1
7 Computer hardware 6 11 13 8 14 5 3 9 2 12 7 1 10 4 15
8 Concrete 14 11 2 9 6 7.5 5 13 3 15 7.5 1 11 11 4
9 Diabetes 10 2 9 6 14 3.5 13 3.5 1 5 11 15 8 7 12
10 Charity 9 13 1 12 7 10 3 4 2 8 11 14 6 5 15

11 Ducan MBA 1 5 13 2 15 8 3 9 14 4 10 12 6 7 11
12 MSU GPA 8 6 10 1 12 2 13 3 11 5 9 14 4 7 15
13 Forest fire 7 5 2 6 13 4 8 10 9 3 1 14 11 12 15
14 Housing price 12 9 2 7 4 11 6 9 3 13 15 1 9 14 5
15 Insurance 12 6.5 1 9 13 6.5 5 10 2 11 15 3 8 14 4

16 Istanbuck Stock 1 8 12 2 14 4 11 3 9 10 5 13 7 6 15
17 Red wine quality 14 8.5 3 12 15 8.5 5 6 4 13 7 1 10 11 2
18 white wine quality 15 12 3 10 4 8 6 12 5 14 9 1 12 7 2
19 Yacht 14 6.5 3 5 10 9 4 8 1 15 11 2 6.5 12 13
20 Servo system 14 12 2 7 5 11 6 10 3 9 15 1 8 13 4

21 Mortality rate 14 9 4 7 5 13 6 9 1 11 15 2 9 12 3
22 Wage 8 5.5 12 4 14 1 10 5.5 9 3 11 15 2 7 13

Mean of the median rank 10.45 8.32 5.5 7.25 9.32 7.66 6.14 7.98 4.32 10.59 10.89 6.09 7.91 9.73 7.86
Over all 13 10 2 5 11 6 4 9 1 14 15 3 8 12 7

while Support Vector Machine (SVM) was ranked 15th in predicting engine miles
per gallon of cars from 1970s and 1980s. This means that SVM is not stable in its
prediction across 100 replications. The std of the test error of random forest which
was always ranked 1st was later ranked 15th on wage dataset (SN: 22). The mean
of the std rank of each machine learning method was calculated for all the datasets
and it can be seen that the Gradient Boosting Machine (GBM) was ranked 1st.

4. Post-processing of predictive ranking of results on
classification and regression datasets

So far we have created a battery of potential very rich scores for each of the learning
machines considered. Indeed, using the datasets and the internal characteristics
of attributes, we can view each learning machine as a sampling unit in some hypo-
thetical population, and then seek to investigate if there might be some groupings
among the learning machines. This makes sense in the presence of the plurality
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Table 12. The rank of the SD score of method M on regression data S.

SN Datasets BstLm enet GBM glmnet KNN Lasso MARS MLR nnet PLS Relaxo rForest Ridge RLM SVM

1 Powerplant 5 5 13.5 5 5 5 11 5 13.5 13.5 9.5 1 5 9.5 13.5
2 Abalone 13 10 4 12 6 8 2 10 1 14 15 5 10 7 3
3 Air foil 5 9 3 7 2 6 15 9 14 11 12 1 9 13 4
4 Attendance 4 2 11 3 9 7 6 1 15 10 14 13 5 8 12
5 Boston 14 9 1 11 7.5 12 4 7.5 2 13 6 3 10 15 5

6 Auto mpg 9 15 4 8 12 7 2.5 5.5 2.5 13 14 1 5.5 10 11
7 Computer hardware 6 2 12 8 14 7 13 3 9 4 5 10 1 11 15
8 Concrete 6 11.50 1 8 7 9 5 11.50 2 14 11.50 3 11.50 15 4
9 Diabetes 7 3 11 1.5 15 1.5 8.5 4.5 10 4.5 14 13 6 8.5 12
10 Charity 10 13 1 11 3 9 7 12 2 8 6 4 14 15 5

11 Ducan MBA 7 8 13 5.5 4 3 1 10 15 12 2 5.5 9 14 11
12 MSU GPA 6 5 10 1 12 2 15 7 11 3 9 14 8 4 13
13 Forest fire 8 10 2 7 6 12 3 15 11 1 4.50 4.50 14 13 9
14 Housing price 8 9 1 6.5 5 11 4 6.5 3 12 13 2 10 14 15
15 Insurance 1 5 8 3 15 2 10 5 11 7 13 9 5 14 12

16 Istanbuck Stock 6 3 12 7.5 14 7.5 11 1 10 9 5 13 4 2 15
17 Red wine quality 3.5 10.5 1 6 15 5 2 9 14 12.5 7 10.5 8 12.5 3.5
18 White wine quality 6 15 3 10 4 8.5 5 13 7 8.5 11 1 12 14 2
19 Yacht 13 6.5 1 8 11 9 4 5 3 12 15 2 6.5 10 14
20 Servo system 11 10 3 9 4 7 2 6 15 5 12 1 8 13 14

21 Mortality rate 13 9 3 11 5 15 6 9 1 12 7 2 9 14 4
22 Wage 6 6 4 8.5 12.5 2 12.5 10 3 6 1 15 8.5 11 14

Mean of the std rank 7.61 82 5.57 7.16 8.55 77 6.8 7.52 7.95 9.32 9.39 67 8.14 11.25 9.59
Overall rank 7 9 1 5 11 4 3 6 8 12 13 2 10 15 14

of learning machines, as one can understandably hypothesize that some learning
machines are more similar than others. We pursued this idea of groups (clusters)
of learning machines by performing cluster analysis on the learning machines used.
We further visualized the results of our cluster analysis by plotting the mean rank
of test errors using both the corresponding dendrogram and the corresponding
graph-theoretic plot. The graph-theoretic plot was created and displayed with the
finality of hopefully revealing any potential network structure among the learn-
ing machines. As shown in Figures 4, 5 and 6, the pattern of association among
the learning methods appears to reveal that learning machines with similar overall
predictive performances across all the datasets tended to fall within the same clus-
ter. It would be very revealing to explore the discovered associations in greater
details, perhaps to find out if methods can be clustered according to the founda-
tional building blocks like kernel methods together, tree based methods together or
ensemble methods together. That might require using different scores other than
average ranks on the learning machines. Our work in this paper has contributed
a little bit towards a more tangible grasp of the so-called No Free Lunch Theorem,
and it is re-assuring to know that there is no one size fits all learning machine out
there, at least not yet, and that the ingenuity of machine learning researchers is
still in as greater a need as ever. So please go right ahead and finalize that great
learning machine idea you had and bless us with a nice package so that we can
add your learning machine to our data science arsenal.

5. Discussion and conclusion

Many experts have contributed various instances of a result known as the no free
lunch theorem (NFLT) in machine learning that says essentially that no functional
representation (function space) along with its accompanying algorithms can yield
the best prediction performance on all possible datasets. For any typical statisti-
cal machine learning approach to a typical data science task, one can and should
consider a wide variety of possible and plausible function spaces to model the
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(a) Dendrogram of methods. (b) Graph theoretic plot of

methods on datasets.

Figure 4. Clustering of methods on binary classification datasets.

(a) Dendrogram of methods. (b) Graph theoretic plot of

methods on datasets

Figure 5. Clustering of methods on multi classification datasets.

functional pattern underlying the data. The theoretical result of NFLT though
somewhat intuitive for some could be made intuitive by a substantial empirical
demonstration on various datasets. The idea of running both parametric learning
methods and nonparametric learning methods on different qualitative and quanti-
tative benchmark datasets is to vividly show that NFLT is really true (see Tables
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(a) Dendrogram of methods. (b) Graph theoretic plot of

methods on datasets.

Figure 6. Clustering of methods on regression datasets.

4–6, Tables 7–9 and Table 10–12, respectively). This is useful to data science prac-
titioners as it serves as a recommendation to carefully consider as many function
spaces and algorithms as possible for serious statistical machine learning tasks. In
this paper, we consider a wide variety of datasets that are suitable for classifica-
tion and regression learning problems (see Tables 1, 2 and 3) and we show tangible
practical evidence that the NFLT is indeed valid. After all, commonsense seems
to suggest that it would actually be very strange if a learning machine did indeed
exist in practice that were always superior to all other learning machines on all
possible data sets. Indeed, the existence of such a learning machine would apply
the knowledge of the origin of reality, a knowledge we have not yet, and most likely
are very far from attaining.
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