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ABSTRACT
The thesis discusses the optimization of algorithms that reconstruct images of specific con-
ductivity from data acquired via electrical impedance tomography. In this context, the author
provides a brief mathematical description of the forward and inverse tasks, characterizes rel-
evant data acquisition procedures, and outlines available numerical tools. Procedurally, the
initial working stages involved analyzing the methods for optimizing those parameters of the
model that influence the reconstruction accuracy; demonstrating approaches to the parallel
processing of the algorithms; and proposing a survey of available instruments to acquire the
data. The obtained knowledge then yielded a process for optimizing the parameters of the
mathematical model, thus allowing the model to be designed precisely, based on the measured
data; such a precondition eventually reduced the uncertainty in reconstructing the specific
conductivity. When forming the numerical model, the author investigated the possibilities
and overall impact of combining the open and closed domains with various regularization
methods and mesh element scales, considering both the character of the reconstruction error
and the computational intensity. A complementary task lay in parallelizing the reconstruction
subalgorithms by using a graphics card. The results of the thesis are directly reflected in a
reduced reconstruction uncertainty and accelerated computation via parallelized algorithms.
The actual research benefited from an in-house designed automated tomography unit.

KEYWORDS
Electrical impedance tomography, optimization of domain parameters, electrode placement,
current patterns, conductivity, data acquisition unit

ABSTRAKT
Tato disertační práce pojednává o optimalizaci algoritmů pro rekonstrukci obrazu měrné vodi-
vosti z měřených dat pořízených elektrickou impedanční tomografií. Danou problematiku zde
vymezuje stručný matematický popis dopředné a inverzní úlohy, metodika měření a pořizování
dat a přehled dostupných numerických nástrojů. Uvedenou charakteristiku rozšiřuje rozbor
optimalizací parametrů modelu ovlivňujících přesnost rekonstrukce, způsoby paralelního zpra-
cování algoritmů a souhrn dostupných zařízení pro měření dat. Na základě získaných poznatků
byla navržena optimalizace parametrů matematického modelu, která umožňuje jeho velmi
přesný návrh dle měřených dat. V této souvislosti dochází ke snížení nejistoty rekonstrukce
konduktivity. Pro zefektivnění procesu získávání dat bylo navrženo zařízení k automatizaci
tomografie s důrazem na snížení nejistoty měření. V oblasti tvorby numerického modelu byly
dále zkoumány možnosti užití otevřených a uzavřených domén pro různé metody regularizace
a hrubost sítě, a to s ohledem na velikost chyby rekonstruované konduktivity a výpočetní
náročnost. Součástí práce je také paralelizace subalgoritmů rekonstrukce s využitím grafické
karty. Předložené výsledky mají přímý vliv na snížení nejistoty rekonstrukce a urychlení vý-
počtů paralelizací algoritmů, přičemž výzkum byl podpořen vlastním návrhem jednotky pro
automatizaci tomografie.

KLÍČOVÁ SLOVA
Elektrická impedanční tomografie, optimalizace parametrů domény, rozmístění elektrod, prou-
dové vzory, konduktivita, měřicí jednotka
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Introduction
This doctoral thesis discusses current challenges in electrical impedance tomography
(EIT), a relatively new non-destructive and non-invasive diagnostic method that, thanks
to its properties and capabilities, is advantageously applied in various fields of technology.
An acceptable cost and practical design of the equipment then make EIT an inexpensive
and effective data acquisition technique.

In functional terms, the method applies an AC current to an electrode system. The
electrodes are usually placed equidistantly on the border of the examined object (do-
main), except in geophysical measurement. The voltage is commonly measured on the
non-current carrying electrodes, and the relevant values correspond to the magnitude of
the flowing current and the conductivity or impedivity distribution inside the domain.
Based on the obtained results, the inverse task is processed and the inverse image calcu-
lated. The spatial resolution of the reconstructed image is improvable by increasing the
number of electrodes.

The outlined properties enable EIT to be employed in a variety of technical fields
and activities, such as biomedicine [1], material engineering [2], monitoring of chemical
processes [3], and geophysical mapping [4].

One of the topical problems in EIT rests in optimizing algorithms with respect to
image reconstruction; functionally, the optimization can be carried out through novel nu-
merical methods (e.g., the non-iterative D-Bar method with scattering transformation),
precise FEM modeling (domain deformation, electrode placement, contact impedance),
suppressing undesired changes in the tomographic domain (e.g., during breathing), and
eliminating the measurement uncertainties (such as the stability of the current sources,
and phase shift sensing). The thesis focuses on the precise FEM-based modeling, for
which an optimization process using EIDORS library was designed. The numerical solu-
tion is correlated with the laboratory experiments, where the optimization functionality
is verified.

The thesis contains relevant experiments and results executed or otherwise acquired
within cooperation between the Faculty of Electrical Engineering and Communication
and the Faculty of Civil Engineering, Brno University of Technology. Additionally, the
experimental part of the work presents the deterministic methods practised during the
author’s internship at Netrix (Net-Art) Reseach and Development center, Lublin, Poland.
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1 Electrical impedance tomography
Electrical impedance tomography (EIT) is a diagnostic method to estimate the conduc-
tivity distribution in examined objects. To illustrate the concept of the technique in
general terms, we can imagine a domain having a pre-defined shape, electrodes on the
boundary, and material properties. The principle lies in feeding a pair of electrodes with
an AC current and sensing the voltage on the non-current-carrying electrodes. Relevant
data then enable us to perform the image reconstruction. The EIT-based procedure
comprises two main processes: the forward and the inverse tasks [5, 6].

The forward task calculates the voltage on the electrodes with respect to the given
conductivity. In practice, this task is unambiguous and could be replaced with experi-
mental laboratory measurement. By contrast, the inverse task is a non-linear, ill-posed
problem which estimates conductivity distribution inside a domain. More specifically,
the small changes occuring at the beginning of the process produce significant errors in
the conductivity distribution [7, 8].

1.1 Mathematical formulation
The mathematical formulation of EIT was derived from Ampere’s law and Faraday’s law
of induction in the differential form. The product of the derivation leads to the Laplace
equation, which describes the behavior of an electric potential inside the domain, reading

−∇(𝜎∇𝜙) = 0, (1.1)

where 𝜎 is a conductivity, and 𝜙 denotes a potential.
The solution of the equation is supposed to be in accordance with the Dirichlet and

Neumann conditions on the domain’s boundary [9, 10].

1.2 Forward task
The forward task computes the voltage on the electrodes according to the examined con-
ductivity. The task is best described by means of a complete electrode model (CEM). The
numerical solution exploits discretization, and the partial differential equations (PDEs)
are aproximated via the finite element method (FEM) to yield the following equation:

𝜙(𝑥) =
∑︁

e

∑︁
n

𝜙e,n(𝑥)𝑊e,n(𝑥, 𝑦), (1.2)

where 𝜙(𝑥) is the electric potential, 𝜙e,n(𝑥) denotes the potential in the nodes of the mesh,
and 𝑊e,n(𝑥, 𝑦) represents a basis function to facilitate the approximation [5, 9, 11].
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1.3 Inverse problem
The inverse problem is defined as an ill-posed (and thus difficult to solve) mathematical
task. The principle of the problem rests in computing an objective function. The function
of the least squares method (LSM) is mathematically defined as

Ψ(𝜎) = min1
2

∑︁
‖UM − UFEM(𝜎)‖2, (1.3)

where Ψ(𝜎) is an objective function related to the specific conductivity, UM represents
the vector of the voltages measured on the boundary, and UFEM(𝜎) denotes the vector
of the voltage values computed via the forward task [6, 8].

Applying the bare LSM to the inverse problem is insufficient, especially due to the
actual ill-conditioning. To increase the stability and convergence of the reconstruction,
a mathematical supplement, namely, regularization, is required. In the role of examples,
we list here the most common approaches to regularize the problem: Tikhonov regular-
ization, the total variation method, NOSER1, and the Laplace filter. All of these items
are contained in the numerical tool EIDORS2 [12], and some will be briefly discussed be-
low. As regards the first option, i.e., Tikhonov regularization, the focus is on expanding
the objective function to give

Ψ(𝜎) = min1
2

∑︁
‖UM − UFEM(𝜎)‖2 + 𝛼‖R𝜎‖2, (1.4)

where 𝛼 is the regularization parameter, and R denotes the regularization matrix [6].
The stability and sensitivity of the Tikhonov technique depend on the regularization
parameter 𝛼 and also on the initial conductivity value [7, 13].

Another of the techniques, NOSER, relies on calculating only one step of the im-
age reconstruction, utilizing Newton’s method. This procedure is often employed in
difference imaging, exploiting the linearized model

U ≈ U(𝜎ref) + J(𝜎 − 𝜎ref) + e, (1.5)

where U(𝜎ref) denotes the matrix of the voltage values obtained through the forward
solution; J indicates the Jacobian, i.e., the sensitivity matrix of the forward task, and
this in turn is evaluated at the conductivity 𝜎ref ; and e stands for a randomly generated
value expressing the noise [13, 14].

By contrast to the deterministic approaches (regularizations), there are also stochastic
techniques utilizing neural networks or genetic algorithms. An artificial neural network
(ANN) is based on exciting neurons and combining basic fuctions, e.g., addition, mul-
tiplication, and Boolean logic operations, to solve complex problems. An ANN has a
simple algorithmic structure but requires a long procedure of prior learning. The pro-
cess of machine learning rests in evaluating the outputs in relation to the neuron weight
changes located at individual layers, until the required accuracy is achieved [15, 16, 17].

1Newton’s One Step Error Reconstructor
2Electrical Impedance tomography and Diffuse Optical tomography Reconstruction Software
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An alternative to ANNs is embodied in genetic algorithms (GAs), which evolve a pop-
ulation via initialization, selection, crossover, and mutation. The structure is sequential
and is launched until the convergence criterion has been met [18, 19]. In EIT, various
GAs are available, including modified variants and adaptive differential algorithms with
a circular topology [20, 21, 22].

1.4 Inverse crime
The inverse task comprises ill-posed features that limit the algorithm‘s capability of
delivering accurate reconstruction. From the perspective of EIT, we introduce here some
inverse crimes, these being illegal ways to simplify and reduce the ill-posedness [23, 24].
Such steps are characterized as follows:

• using one and the same forward model in both simulating the data and executing
the reconstruction;

• not adding simulated noise to the synthetic data;
• showcasing the reconstruction of a few special cases that produced reliable results

and claiming these to represent the general performance;
• tuning the reconstruction parameters manually, using prior knowledge of the cor-

rect answer, and not presenting any blind trials, where the parameters cannot be
“tweaked” (e.g., teaching a neural network by utilizing solely a training set).

1.5 Measurement strategies: current patterns
The data acquisiton mode depends on the system of electrodes and the feeding method.
This subchapter presents the most common drivings for an open or a closed domain.

A closed domain is a system with electrodes equidistantly distributed on the domain
perimeter. A very traditional example of such a setup is the adjacent stimulation pat-
tern (ASP), whose principle rests in injecting immediately neighboring electrodes while
leaving the others to carry out the voltage sensing. Another current driving option is
the opposite stimulation pattern (OSP). Procedurally, the technique installs the feeding
electrodes on the opposite side, with the other electrodes left to perform the voltage
sensing. By way of an alternative, we can use Skip-X patterns, where a selected number
of electrodes X is skipped between the current-carrying electrodes. To complement the
discussed single-source methods, experts in the field have designed multi-source driv-
ing, namely, the trigonometric stimulation pattern, which relies on multiple independent
sources capable of creating a homogeneous current density inside the domain [6, 9, 25].

The open domain setup can be demonstrated on geophysical mapping, where the
electrodes are pinned to the ground equidistantly in a line or a matrix, usually on one
side of the domain. A simple option is Wenner driving, exploiting dipole-dipole feeding
and sensing. An alternative approach lies in the Schlumberger method. If the equidistant
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and symmetrical configuration is employed, the Schlumberger concept passes into the
Wenner scheme. Other current patterns are discussed in references [9, 26].

1.6 Complete electrode model parameters
The number of parameters accurately estimable is small, mainly due to the ill-posedness
of the inverse problem. The individual parameters can be optimized through an a priori
operation, using a forward solver and clearly defined physical and numerical domains.
The parameters that affect the inverse imaging include boundary deformation, electrode
misplacement, imprecise electrode surface, and contact impedance. The domain param-
eters related to the stimulation patterns are summarized in the table below [27].

Tab. 1.1: Comparing the stimulation patterns in terms of the individual parameters and
current injection requirements [28].

Parameter Adjacent Opposite Trigonometric
Sensitivity at the domain boundary 3 7 3

Sensitivity in the middle of the domain 7 3 3

Required VCCS output voltage Low Higher Higher
Sensitivity to electrode position High High Mid

Impact of contact impedance Negligible Negligible High
Sensitivity to domain shape High High Mid

Sensitivity to electrode surface Low Low High
Electrode noise interference High High Low

Uniform current density 7 7 3

Signal to noise ratio Low Low High
Multiple current sources 7 7 3

1.7 Approaches to solving the domain parameters
In the real-world environment, most of the individual parameters are unknown; some,
however, can be directly measured or computed before or during the reconstruction. The
concepts currently available for evaluating the domain parameters are outlined below.

The compensation of skin contact impedance was studied in article [29] via a novel
construction of the electrodes. The researchers fabricated compound electrodes, in which
the feeding and the sensing components operated separately within one compact unit.
The effect of unknown contact impedance was further investigated in sources [30, 31].
The proposed procedure was compared with a measurement. The results showed that
the distributions of the conductivity and contact impedance are inseparable and cannot
be estimated without a measurement using a uniform conductive medium. A method
for compensating variable electrode contact was introduced in [32]. The researchers
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developed a hybrid reconstruction algorithm, utilizing the CEM. The procedure indicates
- and significantly reduces - artifacts caused by poor contact.

Another technique to reduce the unknown domain boundaries error was character-
ized in [33]. The concept exploits the Bayesian approximation error approach. The
results showed that the method ensures efficient compensation, and this outcome was
also verified through an experimental measurement with a KIT 4. An optimization
of the electrode position at different domain shapes was devised in [34]. The method
allowed fine-tuning the electrodes by solving the Fréchet derivative of the CEM, and
the researchers incorporated it into the output of the LSM. The proposed algorithm
facilitated simultaneous reconstruction of the conductivity distribution and electrode lo-
cations. A simultaneous estimation of the conductivity and electrode contact impedances
was formulated in [35]. The method exploited Toeplitz matrices to identify bad contact
and was validated via a measurement on a homogeneous vessel.

Various electrode placement options were studied in [36]. The researchers proposed
an optimality criterion derived from the Bayesian approach, approximating the poste-
rior density of the conductivity by linearizing the current-to-voltage map of the CEM.
A further research on imprecise electrode modeling, electrode movement artifacts, and
surface movement reconstruction was detailed in source [9]. Another procedure for opti-
mizing the electrode position was introduced in [37]; the researchers employed an ANN
to resolve electrode misplacement, exploiting EIDORS. The algorithm was validated by
means of noisy simulated voltage measurements.
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2 Aims and objectives
The practical section of the thesis contributes to electrical impedance tomography in the
following research subdomains, problems, and tasks:

• Reducing the uncertainty of reconstructed conductivity distribution by optimizing
the mathematical model

– Designing a precise physical model
– Creating relevant parametric FEM models
– Computing the domain parameters, including shape deformation, misplace-

ment of the electrodes, and initial conductivity
– Analyzing the sensitivity of the mathematical models with respect to the

measurement-based inverse imaging
• Accelerating the data acquisition process relating to unknown conductivities in lab-

oratory and field conditions
– Improving the parameters in view of the existing solutions
– Collecting the open data to be made accessible to the EIT community

• Optimizing the parameters of the closed and the open domain models
– Exploring innapropriately constructed domain borders in the closed and open

domains and examining their impact on the reconstructed conductivity dis-
tribution

– Determining the relationship between mesh density, number of elements, and
computational effort

– Analyzing the convergence error according to the selected regularization ap-
proach

• Decreasing the image reconstruction time via parallelizing the algorithms
– Parallelizing the individual image reconstruction steps
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3 Experiments
This chapter discusses the contribution and outcomes of the thesis. The first subsection
presents an optimization procedure to precisely evaluate the individual domain param-
eters by using EIDORS. This procedure originates from a laboratory measurement on a
tomograph, and its purpose was to demonstrate the impact of the individual parameters.
The subsequent subsection, 3.2, describes the designing and properties of a device to fa-
cilitate effective data acquisition; this device includes, among other components, a low
impedance multiplexer and a data acquisition unit. Part 3.3 outlines the impact of an
extended domain (an improved parametric model), evaluates the convergence over the
mesh element scale, and classifies the normalized error convergence of the selected regu-
larization methods. The last portion of chapter 3 then characterizes the parallelization
of the algorithm, delivering also a comparison of the CPU and GPU processes.

3.1 Optimizing the domain parameters
This chapter outlines a novel approach to optimizing the domain parameters; in this
context, we characterize the relevant numerical modeling and simulation, together with
the laboratory measurement and applied instrumentation.

Optimizing the geometry of the model, regularity, and electrode placement funda-
mentally affects the image reconstruction [40]. The actual solution then lies in specifying
and determining the parameters that are critical in terms of the accurate results, image
artefact reduction, and computational effort. All of the items can be optimized during
the inverse task, albeit at the expense of a higher computational intensity; for this rea-
son, we decided to define in advance as many parameters as possible, via pre-calculation
before launching the inverse solver [41].

In view of the purpose, the Nelder-Mead algorithm was employed as the procedure
to adjust an imprecise domain setup by means of homogeneous sensing. The designed
approach allowed us to verify the physical and numerical FEM models, delivering a
match between the resulting vectors of the simulated and the measured voltages. The
heuristically based method facilitated solving nonlinear optimization problems where
the derivative of the function is unknown. In such cases, the algorithm computes the
relationship between the measured voltages and the properties of the domain. The
method was implemented by using EIDORS library and the relevant Matlab optimization
toolbox. The procedure had been designed to improve the reconstruction accuracy and
to reduce the artefacts in inverse images [41].
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To facilitate the optimization, we defined the minimization function of the Nelder-
Mead algorithm, yielding

𝑓(𝑝) = 1
2‖UM − UFEM(𝑝)‖2, (3.1)

where 𝑓(𝑝) is the minimization term of the least squares method, UM represents the
vector of the voltage measured on the physical model of the laboratory tomograph, and
UFEM(𝑝) stands for the voltage on the electrodes computed via the forward task. The
relevant domain is parametrized by 𝑝 [41].

The implementation of the procedure is visualized in Fig. 3.1.

Fig. 3.1: The flowchart of the optimization procedure based on the measured dataset
and selected parameters [41].

As indicated therein, the input comprises one or more selected parameters, including:
• parametric deformation of the domain boundary;
• evaluation of the initial conductivity;
• electrode location on the border of the domain.

In addition to the input parameter/s, the optimization requires the vector of measured
voltages, which depends on the given current pattern; in this particular experiment, the
sequence is measured on the non-excited electrodes. Exploiting the preset parameters
and the voltage vector, the process initiates Netgen to generate the parametric FEM
model. This model is computed via the forward task by utilizing EIDORS library [12].
The end solution then yields the voltage vector of the simulated numerical model, and
the vector is evaluated by means of the optimization. If the sum of the squares reaches
the convergence criterion, the optimization stops, and the return value of the function
indicates the nearest possible value of the parameter preset by the user within the selected
tolerance; otherwise, a new FEM model is generated and calculated [41].

Where the procedure handles multiple unknown parameters 𝑝 simultaneously, the
computational time becomes longer, and the algorithm may not find a correct solution.
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To validate the functionality of the optimization, we employed a laboratory model with
an inserted homogeneous medium; this step allowed us to verify the results physically. In
addition to estimating the listed optimization parameters, the procedure has a potential
to approximate the contact impedance by evaluating the sensing on the current-carrying
electrodes. The actual impact of the parameters is demonstrated on inverse images that
include inhomogeneities [41].

In the experiment, we used a laboratory tomograph and a corresponding numerical
model (Fig. 3.2). The height and diameter of the tomograph equaled 35.5 and 19 cm, re-
spectively. The physical model also contained electrodes equidistantly distributed along
its perimeter. The individual levels were located at 13.6, 21.6, and 29.6 cm above the
bottom plane of the vessel; each stage involved 16 electrodes (stainless steel bolts) with
the diameter of 9 mm and height of 6 mm [41].

0
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0.2
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0.25

-0.05
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Y axis deformation X axis deformation

Fig. 3.2: The tomograph and the related Netgen-based numerical model [41].

To demonstrate the impact of the individual parameters on the inverse imaging,
we set up an 8-electrode configuration. For the purposes of the optimization, we then
prepared a corresponding, FEM-based model containing approximately 15,000 elements.
The unused electrodes allowed us to form an irregular placement pattern on the domain
boundary [41].
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Initial conductivity
An optimal initial conductivity value constitutes a factor that simplifies the conver-

gency of the inverse solution. We employed potable water as the medium to optimize
the initial conductivity. The input data were embodied in a vector of voltages measured
via the ASP and the OSP and at two tomograph shapes. The initial model was designed
with respect to the real dimensions, namely, the height and the regular diameter of 0.316
m (water level) and 0.19 m, respectively; the axis diameters of X = 0.186 m and Y =
0.194 m, capturing the elliptic deformation; the electrode placement level of 0.296 m
above the bottom; and the contact impedance of 10 mΩ1, equaling the EIDORS default
value. The injected current was 2.002 mA at the frequency of 1,007 Hz. To start the
optimization, we employed a total dissolved solids conductometer, obtaining the conduc-
tivity value of 47.2 mS/m. The outcomes of the conductivity optimization are presented
in Tab. 3.1. The setup to acquire the data is shown in the figure below [41].

Tab. 3.1: Comparing the current patterns in terms of the actual parameters [41].
Current pattern Domain shape Conductivity [mS/m]

Adjacent Circular 54.4
Adjacent Elliptic 53.7
Opposite Circular 54.9
Opposite Elliptic 54.2

I = 2.002 mA; f = 1,007 Hz.

Fig. 3.3: The data acquisition setup [41].

The optimization delivers the initial conductivity values (Tab. 3.1) associated with
the current patterns and domain shapes. The computational intensity of the optimization
reached 7 s at the maximum, while the generation of the FEM model took 3.5 s [41].

1The sensing on the non-excited electrodes was accompanied by a small current and thus a low
voltage drop, leading to the conclusion that the impact of the contact impedance is almost negligible.
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Shape deformation
The shape deformation influences the quality of the inverse imaging. To resolve this

problem, we extended the applied procedure; in addition, we prepared the same setup as
that employed in optimizing the conductivity. The procedure enabled us to evaluate the
shape deformation in diameters X, Y. Within the initial step, we assigned the value of
19 cm (in each axis), thus starting with a circular shape. The variation of the diameters
during the process and the inhomogeneous setup are displayed in Fig. 3.4.
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Fig. 3.4: (a) The variation of the diameters on axes X and Y, relating to the opposite
pattern in the non-optimized (solid lines) and optimized (dotted lines) scenarios, and
(b) the tomograph containing water and an inserted aluminum pipe [41].

In Fig. 3.4a, we characterize two different optimization scenarios: A non-optimized
model where the algorithm has found the diameters of the elliptic deformation (solid
lines) of the circle, and an optimization of the original, or true, scenario (dotted lines) to
demonstrate the convergence ability and to specify the error of the algorithm. Based on
the outputs of the homogeneous measurement, which were compared with the resulting
vector of simulated voltages produced by the forward task, we calculated the shape
deformation. The estimates of the optimized axis diameter equaled X = 18.62 cm and
Y = 19.35 cm in the ASP and X = 18.66 cm and Y = 19.35 cm in the OSP. The values
are very close to the real dimensions [18.6; 19.4]. The outcomes delivered by the OSP
show that the algorithm exhibits very good robustness. The error of the diameter values
was 0.1 %, corresponding to 0.2 mm on the absolute scale. The inaccuracy of the results
may have arisen from insufficient precision in measuring the diameter or the voltage
uncertainty. The deformation took between 205 and 250 s to optimize. The resulting
diameters were employed as the inputs to perform the reconstruction (Fig. 3.4b) [41].

To demonstrate the impact of an imprecise domain shape, we reconstructed the in-
valid and true models, applying the ASP and OSP (Fig. 3.5). The initial conductivity had
been selected from within Tab. 3.1, with the regularization parameter set to 0.001 [41].
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Fig. 3.5: The reconstructed conductivity distributions, obtained with ASP (top) and
OSP (bottom). The tomograph’s axial dimensions equal X = 18.6 cm and Y = 19.4 cm;
(a,c) wrongly selected circular shapes, and (b,d) the true model of the elliptic domain [41].

The reconstructed images show the effect of the original domain model, where the
imprecise domain boundary led to incorrect localization of the inhomogeneity (Fig. 3.5a).
By comparison, the optimized model (Fig. 3.5b) localized the aluminium object better
but still did not deliver a flawless result. This problem could be eliminated by a more
parametrizable model deformable in multiple dimensions and shapes [41].

The conductivity images obtained via the OSP provided a higher sensitivity to the
shape deformation. The imprecise boundary diameters (Fig. 3.5c) caused the inhomoge-
neous areas to rotate, unlike the conditions in the optimized model (Fig. 3.5d). Further,
the inverse image exposed two higher conductivity regions, and these corresponded to
the original object and artefact. The same effect was described in references [42, 43].
The object mirroring is preventable via a different sensing configuration [41].
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Misplaced electrodes
Misplaced electrodes embody a major source of artefacts and inverse imaging errors

within our experiments. To analyze the problem, we set the tomograph in such a manner
that the 6th electrode was shifted one step nearer the 7th one (Fig. 3.6a). Before running
the optimization, we decided to utilize both homogeneous water to find the position of the
electrode and a heterogeneous medium to demonstrate the impact on the inverse image
(Fig. 3.6b). The changing position of the electrode, related to the function count, and a
top view on the optimized domain mesh in the elliptic shape are shown in Fig. 3.7 [41].

(a) (b)

Fig. 3.6: (a) The experimental setup including the shifted 6th electrode (highlighted in
yellow); (b) the tomograph filled with water, comprising an aluminum object [41].
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Fig. 3.7: Optimizing the electrode misplacement: (a) electrode position related to the
function count; (b) optimized electrode placement in the domain mesh [41].
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As regards the graphical representation above, Fig. 3.7a visualizes the electrode shift,
correspondingly to the changing value of the angle on the domain perimeter during the
count of the optimization operations. The electrode moves along the domain boundary
within the range of 225° - 260° and converges to 247.6°. The discussed procedure took
between 90 and 110 s. The result of optimizing the electrode positions via ASP is
presented in Fig. 3.7b. The model was solved sucessfully, with the 6th electrode shifted
in the same manner as in the original model (Fig. 3.6). In addition, we performed the
experiment also by means of opposite sensing (Fig. 3.8) [41].
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Fig. 3.8: A top view of the optimized models obtained via opposite sensing. The images
display a duality of the solution ((a) the 2nd or (b) the 6th electrode shifted) [41].

The mesh on the left-hand side (Fig. 3.8a) contains the 2nd electrode evaluated at
the angle of 68° with respect to the 1st electrode. The other mesh (Fig. 3.8b), by
comparison, shifts the 6th electrode to 248°, the initial value being 225°. Both of the
models are verified via the forward task, and the simulated voltages exhibit almost
identical values. The detected duality means that the procedure had not yielded an
acceptable result. Eventually, we found opposite sensing inconvenient for evaluating the
electrode misplacement; the impact of the electrode positioning had been reconstructed
only with the ASP (Fig. 3.9) [41].

An incorrect placement of the electrode is presented in Fig. 3.9a, together with the
resulting inverse image. The reconstructed inhomogeneity was recognized wrongly, near
the boundary between the 6th and the 7th electrodes. Compared to the imprecise model,
the correct domain (Fig. 3.9b) includes the conductivity at the presumed position, lo-
calizing it satisfactorily. The randomly distorted conductivity areas in the reconstructed
images could arise from an insufficient image resolution, limited by the number of active
electrodes [41].
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Fig. 3.9: The reconstructed conductivity distributions in the (a) inaccurate regular elec-
trode setup and (b) correct placement of the 6th electrode [41].

Error evaluation
To evaluate the reconstructed conductivities with respect to the original setup, we

sampled the images at the resolution of 256 × 256 pixels. The accuracy was calculated
via the relative root mean square error, by using the following equation [44]:

R𝑅𝑀𝑆𝐸(𝜎) =

⎯⎸⎸⎷∑︀𝑝𝑥
𝑖=1(𝜎(𝑖) − 𝜎orig(𝑖))2∑︀𝑝𝑥

𝑖=1(𝜎orig(𝑖))2 · 100, (3.2)

where 𝑅𝑅𝑀𝑆𝐸(𝜎) denotes the total error in the sampled inverse image; 𝑝𝑥 characterizes
the number of pixels; 𝜎(𝑖) stands for the reconstructed conductivity in a pixel; and 𝜎orig(𝑖)
is the original conductivity corresponding to the real measurement setup [41].

The area of the inhomogeneous object was evaluated through comparing the FEM
model that represented the setup of the experiment with the one expressing the recon-
structed conductivity distribution. To estimate the space of the object, we preset the
experimentally established threshold to 66 % of the maximum conductivity, thus ob-
taining the mask to effectively separate the background from the inhomogeneity. This
allowed us to compare the individual inhomogeneity areas, calculated via the equation

I𝐴𝑅0.66 =
∑︀𝑝𝑥

𝑖=1(𝜎Inv(𝑖))∑︀𝑝𝑥
𝑖=1(𝜎Fwd(𝑖)) , (3.3)

where 𝐼𝐴𝑅0.66 is the area ratio between the original and the reconstructed conductivity
regions of the inhomogeneity in the cross-sectional image, 𝜎Inv(𝑖) denotes the conductivity
in the reconstructed image, and 𝜎Fwd(𝑖) represents the conductivity distribution in the
FEM model that corresponds to the real laboratory setup [41].

The above equations enabled us to classify the actual impacts on the domain shape
(Tab. 3.2) and the electrode placement (Tab. 3.3) optimization process as regards the
computed conductivity distribution [41].
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Tab. 3.2: The image errors in the boundary deformations [41].
Current pattern Domain shape 𝑅𝑅𝑀𝑆𝐸(𝜎) [%] 𝐼𝐴𝑅0.66 [-]

Adjacent Circular 34.59 0.658/2.542
Adjacent Elliptic 28.43 0.768/1.905
Opposite Circular 51.99 0.274/5.947
Opposite Elliptic 40.41 0.763/3.504

The measurement was performed on the elliptically deformed domain.

Tab. 3.3: The image errors in view of the electrode positioning [41].
Electrode position 𝑅𝑅𝑀𝑆𝐸(𝜎) [%] 𝐼𝐴𝑅0.66 [-]

Equidistant 52.73 0.000/1.483
6th shifted 40.04 0.667/3.124

The measurement was performed by applying adjacent driving in the elliptically deformed domain,
utilizing the non-equidistant electrode setup (shifted 6th electrode).

Summary
The initial conductivity was optimized with potable water, yielding between 53.7 and

54.9 mS/m in dependence on the actual combination of the current pattern and domain
deformation (Tab. 3.1). The evaluation of the procedure took 7 s at the maximum [41].

In addition, the optimizing process evaluated the boundary deformation of the cir-
cular domain. To verify the designed procedure with real data, we employed a clamp
in the laboratory model to obtain a deformation of 2 %. The estimated modified di-
ameters of the domain shapes equaled X = 18.62 cm and Y = 19.35 cm in the ASP
option and X = 18.66 cm and Y = 19.35 cm in the OSP one. Considering the real axial
dimensions {18.6; 19.4} of the tomograph, the optimization delivered acceptable results.
Evaluating the boundary deformation took 205 to 250 s, with a significant portion of
the computational effort allocated to the generation of the meshes. The impact of the
imprecise boundary modeling was demonstrated via reconstructing the image from the
data measured on the elliptical domain. We performed the experiment on the accurate
and the incorrect circular models (Fig. 3.5). The results show an imperfect localization
of the inhomogeneity compared to its original position. In both of the driving techniques,
the optimized model reduced the overall conductivity distribution errors by 6.16 % and
11.58 %. In the expected region of the object, the inhomogeneity area ratio defined
through equation 3.3 increased from 0.658 to 0.768 (11.0 %) in the adjacent driving
option and rose from 0.274 to 0.763 (48.9 %) in the opposite pattern, the latter change
being especially remarkable. The area of the object in the space of the tomograph was
also evaluated by applying the inhomogeneity area ratio, with the inhomogeneity volume
in the inverse image diminishing from 2.542 to 1.905 in the ASP and falling from 5.947 to
3.504 in the OSP. The outcome of the optimization then lay in that the opposite option
was considerably more sensitive to the shape deformations (Tab. 3.2). We also demon-
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strated the mirroring effect of opposite sensing to propose a solution which requires either
complementing the measurement or selecting another sensing strategy [41].

The optimization procedure also facilitated evaluating the electrode misplacement.
For this reason, we prepared the model containing the shifted 6th electrode. Observing
the design of the experiment, we measured on an accurate (shifted) and an incorrect
(regular, or equidistant) electrode setup of the model, via both the ASP and the OSP.
The optimization had to be supported by the dataset of the homogeneous conductivity
measurement. The ASP proved convenient because, unlike opposite sensing, it does not
deliver an unacceptable duality. In this context, the duality means that the two different
optimization products (the shifted 2nd and 6th electrodes) provide identical voltage val-
ues, which are interchangeable in the forward task (Fig. 3.8). Based on such an outcome,
we decided to exclude the OSP from the optimization of the electrode misplacement. We
demonstrated the impact of an inaccurate electrode location via reconstructing the con-
ductivity with the ASP. The relationship between the recognition of the object and
changes in the position of the electrode is exposed in the inverse images above. The
relative root mean square error dropped by 12.69 %, and the inhomogeneity localization
improved significantly, from a zero match to the similarity of 0.667 (in Tab. 3.3). The
time required to compute the electrode misplacement ranged between 90 and 110 s [41].

The entire procedure was implemented by using the Matlab optimization toolbox,
EIDORS tool, and Netgen mesh generator; the last of these softwares allowed us to gen-
erate the three-dimensional models. The designed scheme is suitable for adjusting the
unknown parameters of the real laboratory model to create a corresponding numerical
model for a precise image reconstruction. At present, the optimization solves only one
parameter per run, this being one of the deficiencies; the other limitation consists in that
the computational intensity grows with an increasing number of the degrees of freedom,
which are computed simultaneously. The optimization concept is universal, bringing a
potential to include another parameter, such as contact impedance; this capability is
important in analyzing the current-carrying electrodes and multisource strategies. The
procedure is independent of the applied mesh generator and can utilize multiparameter
models compatible with the EIDORS tool [41].

Hardware and software
The experiment exploited the following devices and software [41]:
• CPU: Intel Core i3-6098P (3.6 GHz); 16 GB RAM;

operating system: Windows 10 (x64);
• Matlab R2016b (x64); EIDORS version 3.9;
• Keysight 34450A multimeter; Agilent DSO-X 3014A oscilloscope;
• PLI EIT system version 0.1.
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3.2 Hardware for the tomographic measurement
To perform an appropriate tomographic measurement, we assembled and set up con-
venient instruments. Based on the information outlined in actual thesis, a prototype
Precise Low-Impedance (PLI) system [41, 45] was designed, with a structure as follows:

Fig. 3.10: The PLI EIT system [45].

As indicated in Fig. 3.10, the electrodes are connected to a multiplexer, which also
wires them to the current source and the differential amplifiers. In our case, the source
was voltage-controlled and completed with a grounded shunt to measure the voltage gap
by using another amplifier. The other amplifier monitored the voltage on the electrodes
of the tomograph. Additionally, bandpass filters are installed behind the amplifiers to
prevent voltage drifts and instability. The filtered signal passes to an ADC. The feeding
part comprises a low-pass filter and a DAC. The circuit is controlled by a microprocessor
including a digital generator (DDS) to produce a harmonic signal for feeding [45].

As regards the parameters of the components (a current source, a multiplexer, and a
measuring unit), the most important specifications are summarized in the table below.

Tab. 3.4: The ideal parameters of the equipment.
Parameter Range
Frequency 10 Hz - 400 kHz

Phase shift resolution 1°
Measured voltage range 1 mV - 10 V*

Switching voltage ± 30 V
Multiplexer on-state resistance < 10 Ω

Switching points per plane 16*
Injection current 0 - 3 mApp

The symbol * indicates parameters in which further expansion is desirable.
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To design a current source for the PLI EIT system, we utilized a Howland cur-
rent pump including two operational amplifiers. This circuit ensured a higher output
impedance and a wider frequency range compared to the basic and improved variants.
In our case, the Howland pump functioned as a voltage to current converter.

Another part of the design lies in the structure of the multiplexer. To materialize the
above- mentioned parameters of the device, we eventually abandoned integrated circuits
due to their low operating ranges and opted for an in-house built discrete multiplexer.
This component was assembled with galvanically separated switches (TLP3545A) deliv-
ering a low on-state resistance (40 mΩ) and sufficient voltage swiching (60 V) [45, 46].

To complement these system parts, we designed a unit to perform measurement and
data conversion; the design of the unit is characterized in the figure below. The relevant
diagram visualizes only one sensing wing because the other has the same structure.

Fig. 3.11: The designed measuring branch of PLI EIT system.

The measuring unit relies on two supply values: 12 V and 5 V to feed the PGA,
ADC, and hysteresis comparator. The inputs of the amplifier are directly connected
to the multiplexer, a TVS diode to prevent damage to the circuit, and a resistor R4

to create the DC feedback of the inputs with respect to the power supply. Behind the
amplifier, we inserted an RC filter with a bandwidth adjusted to 440 kHz. The filter’s
output is connected in parallel to the ADC and the hysteresis comparator. Based on
the evaluated frequency from the comparator, the MCU determines precisely the time
to repeatedly measure the signal via the ADC, and the final value is specified as a mean
of the individual measurements. The communication between the MCU, the PGA, the
ADC, and the comparator is expected to be galvanically separated by digital isolators.
The power supply is supposed to exploit isolated DC/DC converters to avoid ground
loops, with an inserted LC filter on the output to suppress ripple and noise.
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Results
The device is still being developed at present; thus, this section discusses only a

partially assembled prototype of the PLI EIT system. The prototype contains a low
impedance multiplexer; a shunt resistance; a microcontroller that manages the pairs of
switching electrodes; LabView-based software; and an external VCCS. The multiplexer‘s
impedance was verified via four-electrode measurement (Fig. 3.12).
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Fig. 3.12: Top: The PLI EIT prototype [45]. Bottom: The frequency characteristics of
the multiplexer’s impedance, and phase.

As is indicated in the figure, the impedance begins to increase at 10 kHz and rises
from 0.40 Ω to 0.54 Ω at 100 kHz. The phase of the impedance then jumps from 0 to
40 degrees between 1 and 100 kHz. The impedance of the multiplexer can be considered
very low (smaller than 1 Ω), and the relevant parasitic impact on the measured values
is almost negligible [45, 46].
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Experimental reconstruction using the PLI EIT prototype
To launch the reconstruction procedure, we employed a tomograph and the above-

discussed PLI EIT prototype (the VCCS and multiplexer), which was supported by
applicable laboratory devices (a function generator, digital multimeters, and an oscillo-
scope). The images display a diagram of the voltage and phase shift measurement circuit
and visualize the setup for the inhomogeneous conductivity distribution.

(a) (b)

Fig. 3.13: (a) A diagram characterizing the voltage and phase shift measurement circuit;
(b) the tomograph with an inserted graduated cylinder [47].

In Fig. 3.13a, we introduce the feeding and sensing wings, which are galvanically
separated. The 𝑍12 and 𝑍34 represent the impedances between the electrodes of the
tomograph. The feeding part of the circuit comprises an AC source including a func-
tion generator, and a VCCS. The AC source output was connected with the excitation
electrodes through a shunt resistance (𝑍B = 10 Ω), to which we wired a voltmeter, an
amplifier, and an oscilloscope. The voltmeter enabled us to control the amplitude of
the injection current. Combining the amplifier and the oscilloscope then ensured the
measurement of the phase shift between the feeding and the measuring branches. The
measuring wing of the circuit contained the impedance 𝑍34, where the voltmeter indi-
cated the voltage. Furthermore, the amplifier and the oscilloscope were wired in parallel
to the impedance; thus, we scanned the signal to measure the phase shift for the admit-
tivity evaluation [47].

The setup of the experiment is depicted in Fig. 3.13b, with the images showing the
water-filled tomograph and the graduated cylinder inserted to generate an inhomogeneity
having a pre-defined shape [47].

In the experiment, we utilized 8 electrodes arranged on a single level. The injection
and sensing pattern relied on the ASP. The injected current (𝐼B) equaled 2.008 mA at
1,007 Hz, and the excitation current was measured on the shunt resistance (𝑍B). By
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extension, we measured the sequences of the voltage and the phase shift of the signals
monitored under homogeneous and inhomogeneous conductivity distributions [47].

When reconstructing the image, we employed Netgen to prepare a mesh including
17,708 elements. The mesh was refined near the electrodes and boundaries, allowing us to
compute the admittivity distribution more accurately. The reconstruction was performed
via a difference inverse algorithm utilizing the objective function, and this algorithm
involved the Gauss-Newton method complemented with a Tikhonov regularization term.
The reconstructed admittivity components are visualized in Fig. 3.14 [47].
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Fig. 3.14: The reconstructed difference in the admittivity distribution: 3D cross-sectional
images (top), and two-dimensional cross-sections at the electrode level (bottom) [47].

The cross-sectional images (Fig. 3.14a, 3.14c) of the conductivity indicate an inho-
mogeneity region around the coordinates [-0.01; -0.04]. The 3D cross-section comprises a
vertical expansion; this effect was expectable, as the reconstruction process utilizes only
one level of electrodes, and the object then extends beyond the scanning plane [47].
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The imaginary part of the admittivity is represented in Fig. 3.14b and 3.14d, where
the three-dimensional cross-section resembles that characterizing the conductivity. Thus,
the imaginary component too exhibits a major vertical expansion, mainly due to the
actual concept of the experiment. In view of the reconstruction results, the object
can be described as weakly capacitive (see the red band). The cross-section at the
electrode level (Fig. 3.14d) contains weakly inductive areas represented by blue patterns;
these elements arise from the measurement error. In addition, the resulting cross-section
includes a randomly distributed capacitive area near the original position of the object;
generally, this capacitive region appears to be shapeless, meaning that its form does
not entirely match that of the inserted cylinder. Such an error is most probably caused
by the small phase difference between the measured phase values of the homogeneous
and the inhomogeneous states on the one hand and the character of the graduated
cylinder, which acts as an insulator, on the other. Another factor probably rests in the
non-shielded cables that connected the tomograph and multiplexer [47].

The reconstructed cross-sectional images were defined at the electrode level and then
evaluated by using the Jaccard index and the mean absolute value. The Jaccard index
characterized the location of the inhomogeneity. In the specific conductivity, the values
of the index and the mean square error equaled 0.8498 and 1902.5, respectively, while
those of the imaginary component corresponded to 0.5837; 8994.7 [47].

The experiment showed that the PLI EIT system is suitable for data acquisition in
EIT. The device can still be improved in terms of, for example, the shielded cables and
active electrodes. Furthermore, the overall results also revealed that the conductivity has
a major impact on determining the position and approximate size of the object. By com-
parison, the imaginary component cannot provide enough position-related information;
this deficiency stems from several factors, including but not limited to the amplitude and
frequency of the excitation current and the different electrical properties of the medium
and the inserted cylinder. Such factors cause the phase between the injected current
and the measured voltage to be almost unmeasurable, making the reconstruction of the
imaginary part very problematic [47].

The sensing sequence, involving 40 voltage values, took approximately 90 seconds.
The most time-consuming activity lay in the measurement performed with the applied
laboratory devices (2 seconds per value). In the 16-electrode configuration, which we
had not used practically, the assumed data acquisition time reached approximately 500 -
550 s. Thus, by contrast to the manual cycle, the time to obtain the data was theoretically
reduced from 3 hours to less than 10 minutes, improving the process significantly.

To enable the discussed experiment, we utilized the following hardware:
• PLI EIT version 0.1 (multiplexer, VCCS);
• Agilent 33220A function waveform generator;
• Keysight 34450A 5½digit multimeter;
• Agilent DSO-X 3014A four channel oscilloscope.
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3.3 Error exploration in the open and closed domains
A correct mesh model is of fundamental importance in EIT imaging due to FEM calcu-
lations. The main challenge lies in achieving a compromise between the size of a mesh
element and the computational cost. For this reason, we evaluated the a posteriori con-
vergence of the imaging algorithms; the mesh element size; and the computational effort
for the open and closed domains. The analysis was performed by using the EIDORS
tool, which comprises the Gauss-Newton algorithm and regularizations. The error was
evaluated with a minimum mean squared error, a sum squared error, and the Jaccard
distance. To evaluate the convergence error, we designed the procedure in Fig. 3.15, with
the domains generated by using the GMSH tool [48].

Fig. 3.15: The individual stages in evaluating the domains [48].

In the initial phase, we generated an unstructured fine mesh to constitute the original
domain. This domain was processed via the forward task to obtain the data of the
homogeneous medium. Subsequently, we inserted an inhomogeneity into the domain
and calculated the inhomogeneous data. These operations were performed separately
because we employed a difference inverse solver to carry out the reconstruction. To avoid
an inverse crime, we prepared a coarse mesh. At the next stage, we applied the Gauss-
Newton method expanded with the Laplace, NOSER, and Tikhonov regularizations, thus
obtaining the results that facilitated a comparison of the algorithms. The reconstructed
and the original domains were quantized and saved as an image having a regular grid.
The results were then evaluated by the Jaccard distance, the sum of squared errors
(SSE), and the minimum mean square error (MMSE) [48].

Before the simulation, we fixed the forward solver and random noise to ensure com-
parable results (the same sequence of voltage values). The closed domain mesh covered
the range of 62 to 20,408 elements, and the open domain encompassed 160 to 19,958
elements. Examples of the closed and the open domain designs with inserted inhomo-
geneities and reconstructed conductivities are shown in Fig. 3.16 [48].
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Fig. 3.16: The reconstruction in the closed (top) and the open (bottom; zoomed to detail
at the regions of interest) domains, executed via the Gauss-Newton method including
the Tikhonov penalty [48, 49].

The relationship between the computational time and the mesh element scale with
respect to the Gauss-Newton method and the different regularizations, observed in both
the open and the closed domains, is illustrated in Fig. 3.17.

100 101 102

time[s]

102

103

104

Nu
m

be
r o

f m
es

h 
el

em
en

ts

GN-Laplace, closed domain
GN-Noser, closed domain
GN-Tikhonov, closed domain
GN-Laplace, open domain
GN-Noser, open domain
GN-Tikhonov, open domain

Fig. 3.17: The relationship between the number of mesh elements and the computational
time in the selected reconstruction methods [48].
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As is shown in Fig. 3.17, the applied regularization technique does not have a sig-
nificant impact on the computational intensity. The difference between the open and
the closed domain models was almost negligible. Based on these results, the selected
regularization and the mesh design appear to be stable for the purposes of the Gauss-
Newton inversion. By extension, the image above also relates the convergence behavior
of the inversion to the increasing number of elements and mesh complexity given by the
specific hardware. The actual convergence estimation normalized into the range of 0 to
1 is displayed in Fig. 3.18 [48].

Summary
In the closed domains, the optimum range to enable the Tikhonov inversion was

identified between 500 and 1,000 elements; here, the Jaccard distance, MMSE, and SSE
achieved the best results in terms of the computational intensity. Generally, in the
same context, NOSER proved to be more stable and suitable for a wider range of mesh
element scales, albeit only at the cost of a decreased quality of the inverse image. The
Laplace regularization then delivered the worst results. As regards the open domain,
the most convenient method was Tikhonov, especially if employed in the area of 2,700
elements, where it ensured acceptable computational intensity. A good compromise lay
with NOSER: This algorithm offered a stability markedly better than Tikhonov‘s and
operated in a wider range of selected meshes, but the inversion accuracy did not match
the results delivered by the Tikhonov in this respect. In the Laplace method, we observed
a high variation of the normalized error scale, and, by extension, the highest absolute
value [48].

The discussed experiment was calculated on a standard computer with an Intel Core
i3-6089P 3.60 GHz processor and 4 GB RAM. The software, i.e., the EIDORS tool and
GMSH mesh generator, ran on OS Win 10 x64, under Matlab R2016a [48].

27



102 103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
un

ct
io

n 
(s

ca
le

d)

Closed Domain GN-Laplace
Jaccard
MMSE
SSE

103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
un

ct
io

n 
(s

ca
le

d)

Open Domain GN-Laplace

Jaccard
MMSE
SE

102 103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r 

fu
n
ct

io
n
 (

sc
a
le

d
)

Closed Domain GN-NOSER

Jaccard

MMSE

SSE

103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0
E
rr

o
r 

fu
n
ct

io
n
 (

sc
a
le

d
)

Open Domain GN-NOSER

Jaccard

MMSE

SSE

102 103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
un

ct
io

n 
(s

ca
le

d)

Closed Domain GN-Tikhonov
Jaccard
MMSE
SSE

103 104

Number of mesh elements

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
un

ct
io

n 
(s

ca
le

d)

Open Domain GN-Tikhonov
Jaccard
MMSE
SSE

Fig. 3.18: The error convergence estimates normalized in the range of 0 to 1, charac-
terizing the closed (left-hand column) and the open (right-hand column) domains and
considering the numbers of mesh elements and regularizations [48].
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3.4 Parallelization
One of the most prominent challenges in EIT imaging lies in reducing the computational
intensity of the solution. For this reason, we parallelized the algorithm designed by
Vauhkonen in Matlab [50]. In our case, the first procedural phase involved computing
the Jacobian because this part embodies the most time-consuming part of the calculation.
At the next stage, we substituted the sequential CPU code in the parallel solution via the
CUDA function processed by the GPU (Fig. 3.19). The relevant computational times
are compared in Tab. 3.5. The results show that the parallel processing is approximately
twenty times faster than the sequential approach [51].

Fig. 3.19: The A) sequential and B) the parallel implementations of the Jacobian [51].

Tab. 3.5: Comparing the Jacobian computing procedures [51].
Hardware Time [ms]

CPU: Intel Core i5-4460 (3.2 GHz; x64; 8 GB RAM) 5
GPU: NVIDIA GTX 970 (1.215 GHz; memory 4 GB) 0.25

Based on the results specified above, we decided to run the whole EIT image recon-
struction process on a CUDA platform to reduce the time cost. The most time-consuming
portion of the image reconstruction (the Jacobian) had been successfully implemented
in the previous phase, for which we had selected the Gauss-Newton approach, including
the Tikhonov penalty. The CPU and GPU-based options are visualized in Fig. 3.20 [52].
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Fig. 3.20: The flowcharts of the differently processed forward and inverse tasks [52].

Tab. 3.6: The computing times in the reconstruction via CPU and GPU [52].
Process CPU time [ms] GPU time [ms]

Calculating the regularization matrix 1.6 1.3
Updating the FEM matrix 4.3 0.9

Forward solution 0.7 6.0
Computing the Jacobian 20.6 0.1

Solving 𝜎 with the Gauss-Newton method 1.6 7.5
Total time per iteration 28.8 15.8

As indicated, the GPU option is superior in terms of the total time per iteration. The
calculating the regularization matrix item exhibited a slightly reduced overall time con-
sumption thanks to multiplying the 1D vector and the regularization matrix; updating
the FEM matrix proved to be faster, and greater differences are assumable at increasing
numbers of elements; forward solution significantly slowed down in the parallel process-
ing, due to the RAM - VRAM data transfer caused by an unsupported symamd function;
the CUDA-based code of the Jacobian was computed almost two hundred times more
quickly than that of the original CPU processing; and solving 𝜎 markedly increased
the computational intensity, due to the matrix division. The sequential behavior of the
process had most prominently decelerated the GPU-based implementation [52].

The experiment utilized an Intel Core i5-4460 CPU (3.2 GHz; x64; 8 GB RAM),
NVIDIA GTX 970 GPU (1.215 GHz; memory 4 GB), Win 10 (x64), and Matlab R2016a.

30



Discussion
Optimization

The applied optimization procedure can reduce the image reconstruction uncertainty
in three different ways, depending on the choice. The first step rests in evaluating the
initial conductivity from the sequence of measured voltages. For this reason, we prepared
a corresponding cylidrical FEM model containing approximately 15,000 elements and
8 electrodes. The initial conductivity value reached between 53.7 and 54.9 mS/m. The
designed procedure converges very fast and, with the computer and experiment employed
in this thesis [41], takes 7 s at the maximum.

In addition, the proposed approach also facilitates calculating the boundary defor-
mation of the elliptical domain, considering the dimensions of the {X, Y} axes. The
designed procedure was verified on real data acquired from a laboratory tomograph de-
formed with a clamp. By optimizing the shape deformation, we yielded the centimeter
lengths of {18.62, 19.35} and {18.66, 19.35} in adjacent and opposite driving, respec-
tively. In the real axial dimensions of X = 18.6 cm and Y = 19.4 cm, our approach de-
livered acceptable results (the relative axis value errors amounted to {0.31 %, -0.25 %}).
The impact of an innacurately modeled shape was also demonstrated on an image re-
construction involving wrongly constructed circular and true elliptical domain shapes,
where the relative root-mean-square error dropped by 6.2 % and 11.6 % in the adjacent
and the opposite current patterns, respectively [41].

The optimization also allowed evaluating the electrode position on the domain bound-
ary. For this reason, we prepared a model containing a shifted 6th electrode, which was
then monitored with the adjacent and the opposite patterns. The optimization produced
suitable results in the adjacent measurement and a non-acceptable duality in the oppo-
site sensing strategy. The duality had arisen from the two possible electrode placement
options (the shifted 2nd and 6th electrodes), where the forward solver provided a sequence
with the same, interchangeable voltage values (Fig. 3.8). Thus, we present the impact
of an electrode misplacement only on the adjacent pattern, via inverse images (Fig. 3.9)
of the innacurate and the correct models. The optimization reduced the relative root-
mean-square error by 12.7 %; the inhomogeneity localization was significantly improved
too, from a mismatch to the Dice similarity of 0.667 [41].

The procedure was implemented by using the Matlab Optimization toolbox, the
EIDORS tool, and the Netgen mesh generator. Overall, the approach is suitable for ad-
justing the unknown parameters of the real laboratory model to create a corresponding
numerical model that will enable precise image reconstruction. The current limitations
rest in that only one parameter is solvable per run and that the computational inten-
sity markedly increases due to the rising number of degrees of freedom being computed
simultaneously. The optimization design is universal and yields a potential to include
another parameter, such as contact impedance [41].
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Newly proposed system
Accelerating the data acquisition process in laboratory and other in- and outdoor

conditions is based on identifying and exploring a device for automatized data collec-
tion. The first step to reach this goal lies in specifying the key parameters of such a
device. To reduce the time to obtain the tomographic data of the laboratory model, we
proposed a setup comprising a multiplexer, a voltage-controlled current source, and a
microcontroller-regulated circuit to operate the feeding and the sensing branches. The
multiplexer was materialized in a discrete manner, utilizing a shift register connected
into a combination of photorelays with a low on-state resistance (lower than 1 Ω). The
VCCS was built on a multirange Howland current pump. This design enabled us to con-
trol the injection current either through the amplitude of the input voltage or manually,
by switching the resistors placed before the voltage follower. The presented multiplexer
and VCCS were verified via an experimental measurement on a laboratory tomograph
that allowed the actual image reconstruction. The results showed that the assembled
device is suitable for obtaining EIT imaging data. The setup facilitated research into the
optimization procedure and reduced the time required to obtain the tomographic data
from hours to minutes. The device for effective data acquisition in EIT (a precise, low
impedance EIT system) is being refined within diverse Bachelor‘s projects supervised by
the author of this thesis [45, 46, 47].

Error exploration in the open and the closed domains
The experiment centered on designing the open and the closed domains was performed

by using EIDORS library, which contained different regularizations, namely, Tikhonov,
NOSER, and Laplace. To explore the errors, we generated domain meshes consisting
of 62 to 20,408 elements. The computational time for the specified mesh element scale
remained stable (0.4 s - 0.5 s) between 60 and 1,000 elements but then began to rise (0.5 s
to 300 s), with a gradual increase in the number of elements from 1,000 to 20,000 [48].

The reconstructions for the domains were performed by utilizing the results of the
a priori calculated forward solution and the fixed random seed facilitating the noise data
generation. The Jaccard distance, minimum mean square error, and sum squared error
were selected to evaluate the inverse images. The results of the designed simulation
process relating to the above-mentioned regularization approaches are summarized in
Tab. 3.7.

Tab. 3.7: The regularization approaches compared in terms of the Jaccard distance,
MMSE, and SSE over the mesh element scale.

Regularization Jaccard distance MMSE SSE Mesh element range
Tikhonov 0.30 - 0.40 0.03 - 0.06 300 - 550 2,000 - 16,000
NOSER 0.44 - 0.48 0.06 - 0.09 400 - 600 500 - 20,000
Laplace 0.60 - 0.65 0.19 - 0.28 950 - 1,150 60 - 20,000
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The table presents the Tikhonov method as the one with the smallest values of the
error metrics; the stability, however, was not perfect. A good alternative to the Tikhonov
option was found in NOSER, whose capabilities ensured an enhanced stability at a wider
scale of mesh elements. This tool nevertheless also produced a slightly higher error than
the Tikhonov procedure. Considering the selected techniques, the worst results were
delivered by the Laplace term; the reason apparently lies in that the output depends on
the a priori conductivity information, which had not been involved in the experiment.
Such conditions then yielded amplified noise and decreasing solution stability in the
Laplace regularization [48].

In terms of the computational effort (approximately 0.5 s), the best area for the image
reconstruction involving the close domains was identified in the vicinity of 800 elements.
The open domain model provided the best results in the range of 2,600 to 3,000 elements,
considering the inverse image quality and time consumption (between 1 s and 2 s). The
experiment was performed on a standard personal computer, described in detail at the
end of section 3.3 [48].

Parallelizing the algorithms
The parallelization of the algorithm created by Vauhkonen [50] indicates that the

GPU-based implementation is positively faster than the original sequential Matlab code.
To compare these two options, we employed a FEM model containing 300 elements, 167
nodes, and 16 electrodes. The experiment was carried out by applying trigonometric
driving and the injection current of 1 mA. The final computational time reached 28.8 s
and 15.8 s in the CPU and the GPU-based variants, respectively. The most significant
improvement in the inverse task processing was eventually achieved in the Jacobian,
with the time intensity falling from 20.6 s to 0.1 s. The individual procedural steps
had comprised functions not supported by the GPU processing, and these slowed down
the computation. In the given context, the forward solution proved to be hampered by
the data transfer between the RAM and the VRAM, namely, the unsupported symamd
function, and solving the conductivity of the Gauss-Newton iteration appeared problem-
atic due to the matrix division performed during the solution of the system of linear
equations. Further exploration generated the possibility of another decrease in the com-
putational effort; the potential to reduce this factor lies in the GPU implementation of
the unsupported symamd function [51, 52].
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Conclusion
The results outlined in the thesis, the Discussion chapter in particular, contribute sig-
nificantly to EIT research worldwide, especially by

• decreasing the uncertainty of the reconstructed conductivity distribu-
tion via optimizing the mathematical model through a set of laboratory
measurements [40, 41];

• accelerating the data acquisition in laboratory and other in- and outdoor
conditions [45, 46, 47];

• optimizing the parameters of the closed and the open domain models
(mesh density, computational effort, and analysis of the convergence
error) [48, 49];

• improving the time intensity of the image reconstruction via paralleliz-
ing the individual algorithm steps [49, 51, 52].

The central target fields and activities comprise, above all, multidisciplinary provinces
such as geophysical mapping and exploration, laboratory equipment design and testing,
and the optimization or analysis of multiparametric models to reduce the uncertainty in
reconstructed conductivities. The newly obtained concepts are applicable in automating
data acquisition tasks and conducting diverse laboratory practicals at technical universi-
ties, inclusive of the specialized measurement and electromagnetic field modeling courses
delivered at the Faculty of Electrical Engineering and Communication, Brno University
of Technology.

The outcomes presented herein relate back to the author’s internship at Netrix
(NetArt) S.A. Research and Development Center, Lublin, Poland, and his participa-
tion in science seminars at University of Economics and Innovation in Lublin and at
Warszaw University of Technology. By extension, the thesis contains the products of a
project (junior grant FAST/FEKT-J-18-5385) executed in cooperation with the Depart-
ment of Water Structures, Faculty of Civil Engineering, Brno University of Technology.
The relevant research involved experimental measurement of inhomogeneities inserted in
water and soil, and the findings were published in [53, 54].

The future efforts will be pursued in collaboration with the above-specified institu-
tions, the target fields and activities being effective data sensing, exploration of the open
domain models, application of neural networks to the EIT problem, and improvement of
the existing optimization procedure to include the contact impedance parameter and a
multiparametric model with irregular boundaries.

The results of the experiments were published in the MDPI Sensors journal (impact
factor 3.275 (Q2) [41]), Elektrorevue peer-reviewed journal [54], and international and
national conference proceedings (Eureka [40, 46, 53], ICUMT [45], Mechatronika [47],
IIPhDW [48, 52], EEICT [49], PIERS [51]).
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