
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

INOVATIVNÍ WEBOVÁ APLIKACE PRO ORGANIZACI
GENERICKÝCH INFORMACÍ
INNOVATIVE WEB APPLICATION FOR ORGANISING GENERIC DATA

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE JAN PŘICHYSTAL
AUTHOR

VEDOUCÍ PRÁCE Ing. IGOR SZÖKE, Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt
Práce se zabývá vytvořením obecné, inovativní aplikace pro správu dat, která bude běžet
v prostředí webového prohlížeče s úložištěm na vzdáleném serveru. Důraz je kladen na
vhodný návrh architektury a implementaci s využitím nejnovějších technologií.

Abstract
This thesis focuses on a creation of a multipurpose innovative application that runs in
a web browser with a remote repository. Emphasis is put on clean architecture design,
implementation and utilizing modern technologies.

Klíčová slova
Webová aplikace, Ext JS framework, MVC, organizace dat, prohlížeč, vzdálené úložiště.

Keywords
Web application, Ext JS framework, MVC, organization of data, browser, remote repository.

Citace
Jan Přichystal: Innovative web application for organising generic data, bakalářská práce,
Brno, FIT VUT v Brně 2013

Innovative web application for organising generic
data

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Igora Szöke, Ph.D.

. .
Jan Přichystal

May 8, 2013

c© Jan Přichystal, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakulta in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introductions 3
1.1 Goals . 3
1.2 Use cases . 3
1.3 Web applications . 4
1.4 Comparison with existing products . 4
1.5 Summary . 5

2 Tools 6
2.1 Front-end . 6

2.1.1 Code structure . 6
2.1.2 Browser differences abstraction . 7
2.1.3 User interface manager . 7
2.1.4 Conclusions . 8

2.2 Back-end . 8
2.2.1 Scripting language and a database platform choice 8

3 The back-end 9
3.1 Back-end structure . 9
3.2 Autoloading classes . 10
3.3 Point of entry . 10
3.4 Database access . 11
3.5 High level entity-relationship model . 11
3.6 Back-end security issues . 11

3.6.1 SQL injection . 11
3.6.2 File access . 12

4 Front-end 13
4.1 Layout . 13
4.2 Code organization . 13

4.2.1 More on MVC . 13
4.2.2 Class file organization . 14

5 Ext JS OOP 16
5.1 JavaScript’s OOP model . 16
5.2 Class system in Ext JS . 17
5.3 Application bootstrapping . 17

5.3.1 Dynamic loading . 18
5.3.2 Static loading . 18

1

6 Front-end structure 19
6.1 Controllers . 19
6.2 Models and stores . 20
6.3 Views . 20

6.3.1 The View class . 21
6.3.2 File app.js . 21

7 Front-end implementation details 22
7.1 Storing application state . 22
7.2 Deployment . 22
7.3 Error logging . 23
7.4 Functional programming in JavaScript . 23
7.5 Ext JS themes . 24

8 Conclusions 25
8.1 Published resources . 25
8.2 Software metrics . 25
8.3 Summary of personal gains . 25
8.4 Future development . 26

A Content of the enclosed disc 28

B Manual 29
B.1 The main screen . 29
B.2 Object detail . 29

2

Chapter 1

Introductions

In this chapter, the intention is to cover author’s incentives leading to the choice of this
topic, provide broader view on contemporary course of application development, define
general goals and advocate his choices in selected technologies.

1.1 Goals

The ultimate goal of this work is to implement a versatile web application that allows
its users to store any kind of data. This data must be easy to find and categorize, the
application itself must serve multiple purposes (case studies are presented further) and
provide user-friendly, intuitive interface. Strong focus is targeted to overcome the fact that
the application is browser-based and provide interface that is close native destop application
interfaces as regards user experience.

In order to provide a good organizational system, the concept of tags and object has
been introduced. Every new item put into the system should be labeled with at least one
tag. Semantically, these tags are then used to categorize objects. By combining multiple
tags, the objects are filtered and because many object can be labeled by the same tag, it’s
possible to choose an intersection or a unification of those sets.

An object is a unit that holds all the actual information. For convenient orientation in an
object list, every object is optionally assigned an image, which is displayed as a thumbnail.
What’s more, every object can be assigned an unrestricted number of attachments, rich
text description, media and, of course, a name.

1.2 Use cases

Despite the fact that the intention of the application is supposed to be as generic as possible
to target as wide audience as possible, let’s outline possible use cases. After all, it would be
hardly possible to address users directly without pivoting the application guidelines towards
their needs.

A large group of people that can take good advantage of this piece of software are
collectors, in the general meaning of the word. We could even say that it serves the purpose
of a framework that provides space for users to create neat electronic records of their specific
collection. The application environment is greatly suited to fulfil this task: real world
objects are modeled by object units carrying information and swiftly divided to categories
by assigning tags to them, allowing to flexibly filter those objects.

3

To give but one example, consider you want to keep track of a butterfly collection.
There would be tags covering the biological scientific classification and areas of occurrence.
Then, every time you want to add a new specimen to the collection, you just select the
appropriate tags an create an object with a name of the butterfly, short description about
where you got it from and upload photos and/or more information.

1.3 Web applications

The development of computer applications for the end-users has undergone a huge shift in
the last few years. The platforms that used to dominate the market are becoming obsolete
due to vast accessibility of the Internet and common devices gaining more computational
power than ever before. Instead of focusing on optimization and getting the best possible
performance, development speed and ability to deploy to as many platforms as possible
without rewriting the code are accented.

Traditionally, these features have been achieved by running an application in a vir-
tual machine (VM) such as Java VM, which has became very popular all over the world.
Although JVM can provide high-performance and is supported on all major platforms,
application written for it have never been able to provide the user experience that native
applications have. Additionally, it requires users to have a JVM installed on their devices.

With the Internet making its way to our everyday lives, huge amount of time spent
using the computer consists of using a browser. Combined with devices with higher per-
formance that we would have never been able to imagine in the past, this lead to a huge
spread of JavaScript’s popularity in the browser. JavaScript, which formerly started as a
simple scripting language to validate forms, is becoming one of the most used programming
languages in the world with countless complex frameworks around it. According to [6], a
study of programming languages popularity considering number of projects on GitHub and
number of tags on StackOverflow.com, JavaScript was in top 5 most popular languages in
February 2012. New development frameworks such as PhoneGap or Titanium also enable
applications written in JavaScript (using HTML5 and CSS3 for user interface) to be de-
ployed for various mobile platforms: iOS, Android, webOS, Windows Phone or BlackBerry.
The browser has become the new VM.

For the reasons stated in the preceding text, implementing the application as a web
service was a clear choice: there are technologies to achieve it with and wider user base can
be accessed via web rather than traditional native applications.

1.4 Comparison with existing products

This application usage lies somewhere between these kinds of products: to-do list appli-
cations, application for storing notes and knowledge base software. It takes some feature
from all of them and could serve their purpose if required.

Let’s consider Microsoft’s OneNote web app and look at the differences. Whereas
OneNote gives its users a free hand, my application enforces a certain structure. That
could be perceived both negatively and positively. I believe, however, that insisting on
storing information one way avoids confusion.

Additionally and most importantly, I took advantage of the graphical elements to help
with orientation. The intention is to make it instantly obvious what kind of information
objects or tags contain by applying an image to them.

4

A web app that comes the closest to the one of my own is certainly Evernote. It allows
using tags to label notes, but it is less obvious and the tag system does not create the very
core. Apart from that, their user interface is very different — I tried to get as close to a
native application behavior as possible.

1.5 Summary

The goal is to create a maintainable web application that will allow users to neatly organize
their information and files. It will be in a form of single-page web site, so user actions will
evoke asynchronous requests (AJAX), manipulating data in a remote database. Emphasis
is to be placed on friendly user-interface that follows practices in native applications and
creating a clear, maintainable architecture.

In order to accomplish this, the program is split in two parts: the back-end and the front-
end. The back-end is a database and a script layer that accesses it and serves requests. The
core of the application is the front-end, JavaScript application that runs in the browsers.

In the upcoming chapters, there are parts dealing with the back-end and then the front-
end implementation aspects.

5

Chapter 2

Tools

A wrong choice of tools to build a project can lead to its very failure; hence it is essential
to put a lot of thought into it. We need to take into account programmer’s knowledge of
given programming environments, accessibility (Are those tools free? Can we run a specific
interpreter on our servers?) and suitability. All these directly impact speed of development
and resultant quality.

2.1 Front-end

Front-end represents the client-side, in this case the JavaScript running in a client’s browser.
The programming language for this part is given, but we need to choose a framework very
carefully. Whereas in less complicated applications it is possible to avoid using a framework
at all, for more complex tasks a solid framework is an absolute necessity to keep the code
structured, readable and maintainable. Some frameworks provide libraries that can save a
lot of work and the ability to hide browser differences comes in handy as well. We need the
following:

• A way to organize code, preferably using some form of a Model-View-Controller pat-
tern

• Abstraction from differences among browsers

• A library for DOM manipulation and AJAX calls

• User interface manager

Some of these items require further elaboration, which is provided in the paragraphs
below.

2.1.1 Code structure

It is not uncommon for JavaScript code to become unreadable very quickly. To properly
structure JS code is hard on its own and mixing HTML & CSS with scripts, storing data
in the DOM, chaining events and other bad practices make it virtually impossible to read
and maintain. That is the reason why the Model-View-Controller architectural pattern is
so widely used. It allows the programmer to clearly separate presentational and business
logic code. The model represents the data, the view describes how the model should be

6

presented to the user (user interface) and the controller binds the two together by defining
events and relevant actions to them. In this scenario, some frameworks automatically
projects changes in the model to the view, in others it needs to be evoked manually. This
concept is illustrated by Figure 2.1.

Figure 2.1: Model-View-Controller model

Among frameworks that offer some kind of code structuring patterns belong Back-
bone.js, Spine.js, Ember.js and many more. However, they very often require libraries such
as JQuery for extended functionality.

2.1.2 Browser differences abstraction

Because browsers — our JavaScript interpreters in this case — are provided by multiple
vendors, the syntax of JavaScript code can sometimes differ from browser to browser. This
applies also to the DOM manipulation. Solution can be achieved be either using an external
library such as JQuery or using a JavaScript framework that provides this functionality.

2.1.3 User interface manager

Truly dynamic web applications are still very new and it results in lack of good tools to
design a complex user interface. Even though it would be possible to design the components
or combine existing from multiple sources, it would have taken much more time to build.
That’s why I decided to look for a framework that also has this feature available.

7

2.1.4 Conclusions

After extensive search for a framework suitable for this task, the selection was narrowed to
two candidates: Ext JS and Dojo Toolkit. I found Dojo to be more lightweight, but on the
other hand, Ext JS more visually pleasing, robust and with a bigger community around it.
That should lead to much quicker issue solving, so I decided to go with Ext JS. It provides
all the required qualities: native support for MCV architecture, notable graphical interface
designer, vast set of libraries, dynamic loading for optimization and it does not require any
support from external vendors.

2.2 Back-end

The back-end in this case means a usual server-side scripts and a database to provide
standard CRUD (create, read, update, delete) functionality. The back-end services requests
by a user. Actions taken by a user in the front-end that affect data must result in changes of
the user’s database to ensure persistence: although smaller amounts of data could be stored
inside the browser itself (using HTML5 local storage or cookies), it is not desired behavior
for the users might want to access their data from multiple devices. For this reason, all
data must be stored on server.

2.2.1 Scripting language and a database platform choice

The data are sent from the Ext JS framework in the form of JSON objects and thus need
to be transformed in order to be used to change the state of user’s database. There is a
broad variety of languages to achieve this: Python, Ruby, Perl or Java and all of them
would be fine to implement the back-end with, but I decided to choose PHP, because of its
availability on most of servers. The same reasoning was used to choose a database platform
- MySQL. The back-end is not the most complicated part of this project, so this open-source
and well-accessible database platform is the best choice. Using a NoSQL databases such as
MongoDB could lead to a better performance, but the deployment possibilities were more
important.

Figure 2.2: Server accepts and returns JSON objects

8

Chapter 3

The back-end

In the scope of this work, the server side makes up for the less complicated part. In
spite of the fact that without the server side the application could never exist, from the
implementation point of view it appears not to be overly complicated.

The back-end functions as an intermediary between the database storage and the front-
end JavaScript application running within the browser. Front-end application sends the
server requests, server scripts analyze them, perform appropriate actions on the database
and returns a message containing information ab out the result. That means either an error
message describing why the action has failed or a success message.

The application is programmed using PHP scripting language. To make the code more
readable, objective design was used. This would not be absolutely neccessary, because
the complexity of the back-end is not too extensive and because it does not take advan-
tage of the abstraction aspect of object-oriented programming, but the encapsulation and
modularization possibilities could be utilized very well.

3.1 Back-end structure

The application’s entry point must be used to evoke any action in the back-end, otherwise
no return values can be reached. In this case, the point of entry is

”
index.php“ file. In

accordance with the GET values of a HTTP request, the control flow is redirected to a
newly created object or a static method of a class, which is defined to deal with requested
kind of action. Every time a request is made to the point of entry, it analyzes the

”
action“

parameter, instantiates necessary object, invokes appropriate method and returns a mes-
sage with the results back to the front-end application. Other parameters associated with
the request are passed in JSON format.

The following diagram illustrates the process of inserting a new object into the database:

9

Figure 3.1: Inserting a new object

First, a HTTP request with is send with all the information about the newly created
object. The back-end returns the objects new ID. This is generated by the RDBMS and it’s
necessary to pass it back to the front-end application for future reference and manipulation.

3.2 Autoloading classes

One of the good practices of object oriented programming is creating one source file per
class definition to keep the sources well-structured and easily manageable. This may lead
to long list of includes in the beginning of scripts. This is no longer inevitable in PHP
5, because an autoloading function was introduced in this version. When an autoloading
function is registered in a script, it is called every time a class that has not been defined
yet is used. While normally accessing such a class would result in an error, the autoloading
function can try to find the class and load it before it does. The function gets the the
class name as a parameter. If classes are categorized and stored in multiple folders, it is
possible to recursively search the directory that contains all the classes, but this is would
lead to very poor performance. For this reason, naming convention is used for each class in
the back-end system, that the name of a class contains the path and the name, delimited
by underscores. File in which the class definition is stored is named the same as the class
name. The class name is then just split by underscores to construct the path and the actual
loading takes place.

3.3 Point of entry

Another important issue is chaining includes - including a file withing another one. It is a
feature of PHP programming language that the it takes either an absolute file path or, in
the case of relative paths, the directory of the first file that is being included. If a file should
be included in several scripts that are stored in different directories, it would be necessary to
always use absolute path or change the path in every file to a location-specific relative one.
This can be very inconvenient and get annoying when a file is moved to a different directory.
Introducing the

”
point of entry“ approach is very helpful in this situation, because if the

program always starts withing a file which is known in advance, files with classes can be
easily included from this point in every application file regardless of their physical location.

10

This approach solves some of the security issues. If the application backend could
be accessed from more than one places, it would be more susceptible to an attack. The
checking whether the user is authenticated can be done before any action is taken and the
logic taking care of this issues doesn’t need to be placed anywhere else.

3.4 Database access

MeekroDB, a light-weight MySQL access library for PHP, was used in this project. It
simplifies most database use cases and prevents SQL injections. Accessing the database
directly with SQL statements from PHP is possible but includes serious security risks
associated with SQL injections. Default approach is to use PDO (PHP Data Objects)
library, which provides similar functionality. This option was ruled out because of high
verbosity of its interface. MeekroDB, on the other hand, has most of its functions in well-
known

”
printf“ format and enables to write most functions in one line. As was already

mentioned, the back-end is not the major part of the project and thus does not require vast
frameworks for database abstraction that would just decrease performance: MeekroDB
addresses important security issues, is light-weight, easy to use, free and open source as
well.

3.5 High level entity-relationship model

The database data structure can be simplified as follows:

Figure 3.2: High level ERD

The diagram conceptually shows how the data are stored, while all the implementation
details are hidden.

3.6 Back-end security issues

3.6.1 SQL injection

Direct SQL Command Injection is a technique where an attacker creates or alters existing
SQL commands to expose hidden data, or to override valuable ones, or even to execute
dangerous system level commands on the database host. This is accomplished by the
application taking user input and combining it with static parameters to build an SQL
query.[2] The-backend accepts parameters in the form of integers (IDs to find rows in a
database) or strings (e.g., tag names, object descriptions, etc.) that form parts of the SQL
queries. To prevent SQL injectin, we must check if the input type is actually the type we

11

expect and escape strings so they are treated as strings and don’t add any new logic to the
SQL statement. The MeekroDB [1] takes care of these issues for you. All you need to do is
specify an input type in the WHERE clause. When inserting into a database, MeekroDB
infers the types on its own. Escaping strings is done implicitly.

DB: : update (’ ob j ec t s ’ ,
array (’ desc ’ => $item−>desc) ,
” id=\%d” , $item−>id) ;

This code sample updates the objects table. The field(s) to update is specified by the second
parameter (a hash of key-value pairs) and the third one is a WHERE clause. The input
parameters are referenced by symbols as in a printf function in C. Before the SQL query
is compiled and executed, it checks if the data type which is being inserted fits the column
type in a database and so it does with the input parameters in the WHERE clause.

3.6.2 File access

Users of the application upload images and file attachments, which are stored in the server’s
file system. The issue here is how to make these accessible from a web browser and maintain
users’s privacy. If these files were to be accessed directly, everyone could just type a URI
of that file to download it. Even if they didn’t know the filename, they could try to guess
in order to retrieve data. Despite the fact it would be possible to store files in a database
instead of the file system, this is not an optimal option, because that could lead to significant
performance drops if the userbase grew larger.

A rather simple solution to this problem is to use a PHP script that checks if the user
accessing a file has been authenticated and if he has, it just reads the file and sends it to
him. The actual files are then stored someplace where they cannot be reached by the public
users.

12

Chapter 4

Front-end

The front-end is the core of the whole project. The main goal is to achieve the comfort of
a desktop application in a browser. Many tasks emerge with this: designing a user-friendly
layout, making the application intuitive to use, choosing the right techniques to keep the
application swift etc. Contemporary browsers were not intended to provide dynamic widgets
as we know them from desktop environment, so every task related to this gets much more
complicated. Fortunately, most of the work for designed a UI has been done by the creators
of Ext JS framework.

4.1 Layout

The picture figure 4.1 shows the first draft of the application layout.
1. On the top there is a toolbar with text buttons. Those are to be replaced by buttons
with pictures, but for the prototype are sufficient. They are used to add content: objects
and tags.
2. The section with tags is on the left side and serves as a navigation panel. Every change
in tag selection affect displayed objects.
3. The main area shows objects that contain tags selected in area. It allows to user to
select multiple objects at once either by pressing control and clicking on the objects or by
creating a selecting area with a mouse. 2.
4. When the details panel is clicked, it expands over the main area and shows details about
selected objects.

4.2 Code organization

4.2.1 More on MVC

JavaScript is an example of a language with support of object oriented design. It uses
prototype-based model, but this does not apply when working with Ext JS framework. In
Ext JS, they changed this to class-based model, which is well-known to most developers.
There will be more about that in the next chapter. As mentioned earlier, to keep the
code well-structured and maintainable, Ext JS allows programmers to use Model-View-
Controller architectural pattern. This means that the code resides in three kinds of classes,
each with different semantics:

13

Figure 4.1: Application layout

• Model is a collection of fields and their data (e.g. a User model with username and
password fields). Models are normally used with Stores to present data into grids and
other components

• View is any type of component - grids, trees and panels are all views. Views are
updated when a change in its related model occurs.

• Controllers are special places to put all of the code that makes the app work - whether
that’s rendering views, instantiating Models, or any other app logic. [9]

4.2.2 Class file organization

In the front-end, the standard practice of one file per one class is also followed. The file name
is directly mapped to the class name, e.g. My.class.Name is located in My/class/Name.js.
This is important for the Ext JS class loader to work. The application is being loaded when
index.html is accessed. The file is almost empty, but contains important dependencies: Ext
JS framework, plugins, css files and file

”
app.js“, which bootstraps the entire application.

The layout is coded and controllers are registered in this file. The rest of the application
code is then located in MVC classes.
The directory structure looks as shown below:

14

Figure 4.2: File structure

15

Chapter 5

Ext JS OOP

As it was mentioned in the previous chapter, the object-oriented system has been reworked
in Ext JS framework and the changes were quite wide and important for Ext JS develop-
ment. This chapter deals with this matter in more detail. First, the classical JavaScript
object-oriented paradigm is briefly explained and then the approach of Ext JS is presented
and explained how it was taken advantage of in this particular project.

5.1 JavaScript’s OOP model

Unlike the majority of languages that support object-oriented programming, JavaSript
does not implement class-based model and supports prototype-oriented OOP model in-
stead. That is important to know when we want to discuss behavior reuse, because most
programmers are familiar with class-based model and thus get confused easily, even though
the principles are not hard to grasp. In JavaScript, there is no special keyword for class
definition. New classes are defined the same way functions are. [5]

f unc t i on NewClass (arg1) {
t h i s . f i r s t a r g u m e n t = arg1 ;

}

var newClassInstance = new NewClass (’ value ’) ;

The code above defines a class and creates an instance of this class. There is also no explicit
keyword for a class constructor, because the function’s code is a constructor itself. It gets
executed every time a new instance of this class is created. As there are no keywords for
class definition and constructor method, there is no keyword for inheritance. Inheritance
in JavaScript is put into practice by chaining prototype properties. Every class has a
prototype object containing its methods and static variables. When a new instance is
created, it automatically gets a [[prototype]] property pointing to it’s class prototype.
When we want to implement inheritance, we change the prototype property to point the
superclass. In the new class’ constructor we must manually call the superclass’ constructor
before any other code is executed.

The following code shows what this process looks like in an actual implementation:

//Shape − s u p e r c l a s s
func t i on Shape () { }
// add a method to Shape c l a s s

16

Shape . prototype . move = func t i on (x , y) { /∗ move the shape ∗/ } ;
// Rectangle − s u b c l a s s

func t i on Rectangle () {
Shape . c a l l (t h i s) ; // c a l l super con s t ruc to r .

}
// change the prototype to po int to s u p e r c l a s s
Rectangle . prototype = Object . c r e a t e (Shape . prototype) ;

5.2 Class system in Ext JS

The creators of Ext JS framework decided to go with a different approach that would be
more suitable for what what actually happens when an Ext JS application is developed
and to simplify this whole process. It makes the framework more accessible to the majority
of programmers, but also makes the process less verbose. They introduced two functions:
Ext.define and Ext.create [8]. The former takes two parameters: name of the class and
a data object. The name usually consists of a vendor’s initials, packages (path to the file)
and the actual name of the class (filename without extesion), e.g. Ext.form.field.Textfield.
Note that this is just a convention, so it is not mandatory yet highly recommended. [7]
The data object contains key-value pairs of methods and properties that are to be copied
to the newly created class as static. Example of creating a new component extending the
Window class.

Ext . d e f i n e (’MyApp. view . user . Add ’ ,
extend : ’ Ext . window . Window ’

}) ;

Inheritance is then added very elegantly by adding a pair where the key is named
”
extend“

and the value is the name of the class to be extended, the superclass. Everything is then
taken care of automatically by Ext JS engine.
Ext.create function is used to instantiate objects by the class definition. It takes two

parameters as well: a class name and a data object, whose properties will be injected to the
new instance. The framework adds them to the constructor they will consequently become
private properties of the instance.

var window = Ext . c r e a t e (’ Ext . window . Window ’ , { width : 600 }) ;

Every new class in this project is created this way: all views, controllers, models, stores,
custom components etc.

5.3 Application bootstrapping

Speaking of classes definition and instantiation is a good invitation to discuss how these
classes are initially loaded — application bootstrapping. The entry point to the front-end is
a simple html file with CSS and JavaScript includes. There is no HTML markup apart from
the very skeleton, all element of the

”
body“ are created and rendered on the fly. Loading of

the CSS files is quite tedious, but it gets interesting with the JavaScript part. There are just
two JS files to be initially loaded: ext.js and app.js. The former is supplied by Sencha
and contains the foundation of Ext JS framework — class system, layout managers etc.
The app.js is the very core of the program that load everything necessary dynamically.

17

5.3.1 Dynamic loading

Dynamic loading means that whenever a class that has not been loaded is accessed, Ext
JS will try to load it dynamically according to its name from a file (according to naming
convention described in section 5.2. This is a supported feature, which results in faster
initial loading time, but it also has drawbacks: whenever such an event occurs, the users
need to wait until the file is downloaded from server and executed before it is possible to
continue, thus creating unwelcome delays.

5.3.2 Static loading

Alternatively and more standardly, static loading takes place. There is a function in Ext JS
that takes care of including classes in a program: Ext.require. It takes a string parameter
— name of the required class — and synchronously loads it. I chose static loading for this
project after some testing. Despite longer loading time, the whole loading process takes
about five seconds and every further loading on the same device is faster because of caching.
After taking into account that it was hosted on a server in America and almost all users
were from the Czech Republic, I found this sufficient. Over one hundred of different people
tried this application, so this should be statiscically valid sample. Additionally, when all
classes are loaded statically, it is possible to make use of the Sencha SDK and pack all
classes into one minified file.

18

Chapter 6

Front-end structure

We will have a look at some core classes, especially Controllers, Views and Models and how
this system used in practice. This project’s front-end uses four controllers, three models,
four stores and eleven views.

6.1 Controllers

Application logic is stored in controllers and before any application is started to be imple-
mented, a programmer must decide how to name them and what responsibilities should be
assigned to respective controllers.

Figure 6.1: Responsibilities of controllers associated with UI

Figure 6.1 shows how the functionality is divided in this particular project by associating
every controller to a specific part of the user interface. This way, it is very easy to figure
out where to put a new function or where to look for an existing one, e.g. the function that
takes care of event that is fired when a tag is selected in a tag list is to be found in

”
Tags“

controller located in a file within a folder with controllers. There are three controllers that
correspond directly with the UI components: Tags, Detail, and Items controller, but there

19

is also a
”
General controller“. It serves miscellaneous purposes: handling events in the

toolbar, registering hotkeys or saving/loading of application state.
Event handling is also taken care of in controllers, there is even a special way to treat

events to make this process easy and concise. There is a function static method control
in a Controller class that takes care of adding listeners for events. Vast majority of events
is associated with some component (clicks, rendering, hiding, etc.), so we need to specify
this component. This is done by specifying a string to find the component by component
query method provided by the framework. An example taken from the project:

t h i s . c o n t r o l ({
’ v iewport > t a g l i s t ’ : {

viewready : t h i s . checkSe lectedRecords ,
i t e m d b l c l i c k : t h i s . editTagDblCl ick

}
}) ;

This piece of code registers two event listeners for a taglist component, a descendant of a
viewport. If there were more components that fit the description, it would register events
listeners and handlers for all of them. The this keyword refers to the controller, so the
handler functions are to be found in the same controller. However, an anonymous function
could be uses instead as well.

6.2 Models and stores

Before we dive into views in Ext JS, models and stores should get mentioned, because
they are tightly connected with them. In models, we specify what record in a data store
should look like, it is a definition of a data structure, similar to what we know from other
programming languages such as C, Java etc. Models define the patterns, it is a class, and
records are instances with actual data. A data store is a collection of records. When we
want to manipulate what is displayed in the application, we access a particular store and
change the data there, which automatically result in a change of what is presented to the
user.

One of the features of data stores is a proxy. It is utilized by stores to load and save
data, either from from/to a server or locally. This saves a lot of time, because instead
of handling every event for every CRUD operation on the store and creating the requests
(in case of a server transfer) manually, the programmer defines just URIs and parameters
to handle respective events. I took advantage of this feature with manipulatings tags and
object in this project and it saved a lot of time and code lines.

6.3 Views

Views represent the presentational logic of an application. The first purpose they serve is
grouping components that are semantically connected together, for example a window with
a texfield and a confirm button should be members of one view. This is not a rule though,
even one component, assumably heavily customized, can form a view too.

In Ext JS, the term view is a little different from what we imagine under this word in
other programming languages and frameworks. Usually, a view means an instance of a View
class. This can true in Ext JS as well, but not necessarily, because a class that extends

20

some component considered to be a view likewise. Usage of this kind of views is abundant,
but less interesting than customized instances of the View class, which were used in this
project as well.

6.3.1 The View class

Even though extending a view class also allows to add pre-defined components, its main
purpose is to create brand new look with HTML markup and connect with a data store.
It uses a templating mechanism. Templates are HTML fragments with added markup
elements.

new Ext . XTemplate (
’<p>Kids : ’ ,
’< t p l f o r =”.”> ’ , // i t e r a t e over the data source

// use cur rent array index to
’<p>{#}. {name}</p> ’ , autonumber

’</ tpl></p>’
) ;

Let’s describe what happens with help of the example above: when such a template is
assigned to a View class, it will be used to when the view is rendered. The Ext JS engine
will automatically take a store assigned to the View class, analyze the template and fill it
with data from the store by replacing the variables (in curly braces) with actual values.
That results in complete HTML that can be rendered.

Another feature of the View class that is worth to be noted is that the view also provides
built-in behavior for many common events that can occur for its contained items (rendered
by the template) including click, doubleclick, mouseover, mouseout, etc.

6.3.2 File app.js

This file is the entry point to the front-end where everything is initiated from. The first lines
are Ext.require commands to load the classes from the Ext JS framework that are utilized
in the project. Some of them are used directly and some of them are further extended to
provide additional functionality. After that there is specified a list of controllers. When
the controllers are loaded, they further require their own views, stores and models until the
program is fully processed.

The main layout is defined in this file as well and is rendered the processing is finished.
Some of the customized views are listed as composite components that should be rendered
in the layout.

21

Chapter 7

Front-end implementation details

7.1 Storing application state

I decided not to store information about the application state — meaning tags, that the
user has selected, that should become selected next time the app is loaded again — on
server, but to utilize some of the possibilities to archive content in the web browser itself.
The first think that would come to mind is to use cookies. Cookies allow to save up to 4kB
of data, which would be sufficient. On the other hand, cookies are sent to the server every
time a HTTP request is made resulting in more data being sent over the network. Another
solution, which actually got implemented, is a HTML5 feature localStorage object. It
has been present in all major browsers since 2010 and allows to save key-value pairs in the
browser without the server knowing. However, there is no support of advanced data types
such as arrays or objects. Luckily, Ext JS framework contains functions that can deal with
this by decoding the object or array to a string before writing and encoding it back when
the value is read. Every time a tag is selected/deselected in this application, it is pushed
to/removed from an array of selected tags in this persistent localStorage objects. When
the application is loaded, it read that array, selects appropriate tags, that fires the select
events, so the list of associated objects is updated as well.

7.2 Deployment

There are about 275 classes in the Ext JS framework and all of them are heavily commented.
It is highly unlikely that all of them would be used in a project, so there is no need to copy
them to a deployment environment — in fact, they take up almost six megabytes. For
this reason, Sencha introduced a product Sencha SDK Tools, that takes care of this and
makes it simple to get a project ready for deployment. Using a command line, the tool goes
through your project folder and seeks for dependencies — used classes of the framework,
controllers, models, views etc. This produces a JSON file with a JSON-formatted list of all
the classes that must be included in the production version. The second step is to use this
in order to generate a single, minimized file containing the whole application code. It takes
all the file, strips the comments, redundant whitespace characters and changes identifiers
(function arguments, variable names etc.) to short versions everywhere possible.

Deploying the application in such manner significantly reduces the amount of data that
needs to be transferred and as everything resides in one file, the number of HTTP request
is minimized as well.

22

7.3 Error logging

Even after the application is put into production bugs may occur and should be dealt with.
However, it is not possible to expect users to be sending the error description that appears
in the browser’s console, ideally with the function call stack. Luckily, browsers provide an
event that is fired whenever an error occurs with information about that particular error
passed to the handler function in an argument. Error then can be sent to a server and
stored for further analysis. Instead of creating a brand new solution addressing this issue,
I decided to use an existing one. I went with an application called Muscula available at
http://www.muscula.com. It provides a free service with cloud storage of logged errors,
email notifications and graphs showing when and what errors occurred.

7.4 Functional programming in JavaScript

JavaScript is a multiparadigm programming language; it supports object-oriented, imper-
ative and to some degree even functional paradigm. This turned out to be quite helpful
for managing arrays. In the project I needed to do some filtering of objects according to
currently selected tags and so I took advantage of JavaScript’s functional nature. The al-
gorithm must check if the set of tags selected in the left view is a subset of the object’s tags
— that is if the application runs in intersection mode, otherwise it check if at least one of
the selected tags is a member of the object’s tag set. If the condition is not met, the object
will be discarded.

Standardly, this would include branching to decide which operation is to be performed
and then looping through the arrays, but this can be avoided by using Ext JS functions
for array filtering, higher-order functions Ext.Array.some and Ext.Array.every. Note
that these are usually also natively built-in in the Array object and then Ext JS just calls
them, but are also implemented in the framework library in case they the user uses an
older browser that doesn’t support them. These functions are similar to list manipulation
functions common in functional languages, e.g. filter or map function in Haskell. Their
first argument is an array to be worked upon and the second one is a function. They
execute the specified function for each array element until the function returns a falsy or
truhty value, respectively. If such an item is found, the function will return false (true if
Ext.Array.some) immediately. Otherwise, it will return true (false). The code snippet
then look something like to following:

// mode v a r i a b l e conta in s t rue / f a l s e accord ing to cur rent
// s e l e c t i o n mode ; arrayLoopFunction i s u n i n i t i a l i z e d
mode ? arrayLoopFunction =

Ext . Array . every : arrayLoopF = Ext . Array . some ;

var i s V a l i d = arrayLoopFunction (
se l ectedTags ,
f unc t i on (i) { // i s the item ” i ” member o f that array ?

return Ext . Array . indexOf (objectTagsArray , i) >= 0 ;
}

) ;

First, the ternary operator decides which reference to a function should be stored in the
mode variable. The reference is that used to evoke the function and is given two arguments:

23

array of selected tags and a function that decides whether an element is a member of an
object array and return true or false accordingly. The every function return true only if
all the return values of its argument function return true, while the some function succeeds
after one element from the selected tags has been found in the object’s tag array.

7.5 Ext JS themes

A problem that comes with using a well-established framework such as Ext JS is that the
application look it produces is rather similar. The light blue design may become irritating
after a while. Sencha designers decided to address this issue by introducing a very sophis-
ticated theming system that takes employs SASS language [4] and Compass compiler [3].
SASS is a language that extends regular CSS expressing ability and compiles back to CSS.

Figure 7.1: New theme

Working with SASS allows to use variables, functions, selector inheritance, nested rules,
etc. Basically, we write the code in more generic way. For instance, instead of defining a
color for each element, the color is defined once in a global variable. First, the generic color
scheme is changed and then redesigning each Ext JS component that is used in the project
takes place. Sencha provides a template that serves as a base theme to be customized. After
the editing has been done, the Compass compiler utility is used to generate minimized css
file that can be put into production.

The process can be found in full detail in documentation. [10]
The theme I created as a part of this project is to be seen in figure 7.1. It is not

completely finished, but most of the component have been redesigned.

24

Chapter 8

Conclusions

8.1 Published resources

In order to share the product with the public, I registered a domain and hosted the appli-
cation online. Furthermore, a login system has been set up, so everyone can register their
own account and use the application in his or her own way. All the source codes are present
on an attached disc — there is a minified version of the application online, which is not
really readable.

• www.thingsmaster.com/ - a website with forms to register a separate user space and
log-in the web application

• www.thingsmaster.com/statnice.php - shared user space for gathering knowledge needed
for bachelor final state exams. This also serves as a demo, no login is needed.

• www.thingsmaster.com/app/statnice theme.php - the previous with a custom made
theme

• http://www.thingsmaster.com/manual.html - concise manual with images to demon-
strate how the application should be used

8.2 Software metrics

External libraries and framework apart, the actual application itself consists of:

• 2680 lines of code

• divided in 34 files

SQL statements to construct a database and the website for login and registration are not
included as they are not a concern of the assignment.

8.3 Summary of personal gains

The work on this project led not only to an interesting and useful product, but also provided
me a really great opportunity to get familiar with the world of single page dynamic web
applications. During the research stage I learnt about many frameworks that are used for

25

this purpose. Then, I was struggling with the Ext JS framework for a very long time,
because its learning curve is rather unfriendly for newcomers. However, after I finally got
comfortable with it, I appreciate the flexibility and countless tools and shortcuts it provides
for developers, saving enormous amount of time and resources. From the very beginning,
I kept in mind to keep the code open for future extensions as well and I hope it is evident
by looking into it.

Lastly, this project gave me an opportunity to get my hands on some amazing new
technologies and tools, being it SASS language, Muscula error logger service or the Google
Chrome Developer tools, that make debugging this kind of application possible and much
less painful.

8.4 Future development

My intentions are to keep the development going on in my free time. The improvements
that can be done are indeed numerous. They range from user experience and design to
performance optimization. To name just a few: extend support of drag & drop to increase
user productivity, finish the custom theme to distinguish the application, assigning priority
to objects and many more. It is a great project to further develop my skills with Ext JS,
which can be also utilized on the job market in the future, because dynamic web application
are a hot topic these days and Ext JS is a great tool to get the job done.

26

Bibliography

[1] Meekrodb. http://www.meekro.com/.

[2] Php manual.
http://php.net/manual/en/security.database.sql-injection.php.

[3] Eppstein C. Compass. http://compass-style.org/.

[4] Weizenbaum N. Catlin H. and Eppstein C. Sass language.

http://sass-lang.com/.

[5] Mozilla. Javascript guide.

https://developer.mozilla.org/en-US/docs/JavaScript/Guide.

[6] Stephen O’Grady. The redmonk programming language rankings: February

2012. http://redmonk.com/sogrady/2012/02/08/language-rankings-2-2012/.

[7] Ashworth S. and Duncan A. Ext JS 4 Web Application Development

Cookbook. PACKT Publishing, 2012. ISBN 1849516863.

[8] Sencha Development Team. Ext js documentation.

http://docs.sencha.com/extjs/4.1.3/!/api/Ext.

[9] Sencha Development Team. The mvc application architecture.

http://www.sencha.com/learn/the-mvc-application-architecture/.

[10] Sencha Development Team. Theming guide.

http://docs.sencha.com/extjs/4.1.3/!/guide/theming.

27

Appendix A

Content of the enclosed disc

• application/ - the actual application source codes and database layout

– application/data - back-end source codes

– application/app - front-end source codes

– application/app.js - minified front-end in one file

• manual/ - manual in HTML

• theme/ - theme source code

• theme/css - compiled theme

• video/ - short video presentation about the project in Czech

28

Appendix B

Manual

B.1 The main screen

• First, you need to choose tags from the list on the left or create you own by clicking

”
New tag“ button from the toolbar

• After that, doubleclick existing tags to see them in detail or create new, name them
and add text or attachments.

Figure B.1: Main screen - manual

B.2 Object detail

• Doubleclick on the name or desctription to edit it. You can write anything you want
into the textfield and style it. The text is saved automatically three seconds after you
finish writing.

29

• Below the description, there is a box where you can edit tags associated with this
object. This affects what is displayed when you select these tags. Additionally, you
can choose a primary tag - the object will be shown in the object list with the same
image as this tag’s image.

• Finally, there is a field for attachments. It’s possible to drag & drop them or invoke
upload dialog by clicking ’Add attachment’ button from the toolbar.

Figure B.2: Object detail - manual

30

	Introductions
	Goals
	Use cases
	Web applications
	Comparison with existing products
	Summary

	Tools
	Front-end
	Code structure
	Browser differences abstraction
	User interface manager
	Conclusions

	Back-end
	Scripting language and a database platform choice

	The back-end
	Back-end structure
	Autoloading classes
	Point of entry
	Database access
	High level entity-relationship model
	Back-end security issues
	SQL injection
	File access

	Front-end
	Layout
	Code organization
	More on MVC
	Class file organization

	Ext JS OOP
	JavaScript's OOP model
	Class system in Ext JS
	Application bootstrapping
	Dynamic loading
	Static loading

	Front-end structure
	Controllers
	Models and stores
	Views
	The View class
	File app.js

	Front-end implementation details
	Storing application state
	Deployment
	Error logging
	Functional programming in JavaScript
	Ext JS themes

	Conclusions
	Published resources
	Software metrics
	Summary of personal gains
	Future development

	Content of the enclosed disc
	Manual
	The main screen
	Object detail

