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Introduction

Airborne thermal hyperspectral data offer valuable information about the
observed objects. Image data of this kind has found application in fields
focused on evapotranspiration [27], vegetation [28], soil moisture [31], min-
eral mapping [26] and urban studies [34]. Let us emphasize that the most
important quantities derived form airborne thermal hyperspectral data are
temperature and emissivity. However, direct derivation of temperature and
emissivity by observing radiance in N bands results in N equations but
N+1 unknowns (N emissivities plus temperature). This problem, separat-
ing the contributions of temperature and emissivity to observed radiances,
has been the subject of a great deal of research and many methods have
been developed to address it [23].

The temperature and emissivity separation algorithm [14], designated
TES, that was developed for the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), has since been applied to process-
ing of TIR image data acquired by various airborne and spaceborne, and
various multispectral and hyperspectral sensors.

Section 2 describes the problem of temperature and emissivity sepa-
ration and Section 3 introduces the improvement of the TES algorithm,
which is referred to as Optimized Smoothing for Temperature and Emis-
sivity Separation (OSTES). The OSTES algorithm is firstly tested on a set
of simulated data representing different natural materials as they would
be acquired by Thermal Airborne Spectrographic Imager (TASI) sensor.
Section 4 includes incorporation of the OSTES algorithm to the processing
chain of image data acquired by the TASI sensor and then it compares the
performance of the OSTES and TES algorithms on image data obtained
from TASI.

Aims of dissertation

• Enhancing the accuracy and precision of the products generated by
the TES algorithm.

• Incorporating a new algorithm to the processing chain applied on im-
age data acquired by TASI sensor.
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1. Background

Imaging systems

From the wide range of airborne sensors operating in the TIR region one
are chosen to analyze the performance of the OSTES algorithm: TASI
sensor developed by Itres Ltd. (Calgary, Canada).

The TASI sensor is one of the very few commercially available hyper-
spectral TIR sensors. It contains 32 bands all of which are in the TIR
region. Bands are situated in the 8 to 11.5µm region and have a Full
Width at Half Maximum FWHM ≈ 0.11µm with Noise Equivalent Tem-
perature difference NE∆T ≈ 0.1 K. The response function of this sensor is
depicted in Fig. 1.

Figure 1: Response functions of TASI sensor.

Theoretical Basis

Any TIR sensor observing the earth from an airborne or spaceborne plat-
form receives radiation from the surface, attenuated by atmosphere, plus
radiation from the atmosphere along the line of sight. Thus the measured
radiance at sensor level (Lm) consists mainly of radiance emitted from the
land surface, downwelling atmospheric radiance (L↓atm) reflected by the sur-
face and the atmospheric upwelling radiance (L↑atm). The sum of all these
components is expressed by a radiative transfer equation (RTE) as follows:

Lm = τεB(Ts) + τ(1− ε)L↓atm + L↑atm, (1)

where B(Ts) is radiance of the surface at temperature Ts according to the
Planck’s law, ε is the surface’s emissivity and τ is atmospheric transmit-
tance. The RTE as applied to thermal remote sensing is discussed at length
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2 TES ALGORITHM

in [23]. It is important to emphasize that all elements in the equation are
wavelength dependent but notation for this is omitted for the sake of clar-
ity.

Since sensors are of finite bandwidth, quantities in eq. (1) are replaced
by band-effective equivalents. These are obtained using weighted averages:

Xi =

∫ λ2
λ1
ri(λ)X(λ) dλ
∫ λ2
λ1
ri(λ) dλ

, (2)

where ri(λ) is response function of band i, λ1 and λ2 are lower and upper
boundaries of band i and any quantity can be substituted for X.

For any multispectral or hyperspectral sensor with N bands one gets an
equation in the form of eq. (1) for each band. Even after compensating for
the atmosphere the system ofN equations containsN unknown emissivities
plus an unknown temperature, which is considered to be constant in all
spectral bands. This makes the system of equations underdetermined.

2. TES Algorithm

Many approaches have been developed to overcome the problem of hav-
ing an underdetermined system of equations [23]. Among these, the TES
algorithm is the most popular and it is widely applied to many sensors
including TASI. Application of TES to data acquired by the TASI sensor
is mentioned in a few studies [35, 27].

The TES algorithm is based on a semi-empirical relationship between
spectral contrast (i.e. difference between the highest and lowest values
in the emissivity spectrum) and the minimum emissivity. The algorithm
consists of three modules, namely the Normalization Emissivity Module
(NEM) [12], the Ratio module and the Maximum-Minimum Difference
(MMD) module [24]. The inputs to the algorithm are land-leaving radi-
ance LLL and downwelling radiance L↓atm. Land-leaving radiance is ob-
tained from eq. (1) by compensating for atmospheric transmissivity τ and
atmospheric upwelling radiance L↑atm:

LLL = εB(Ts) + (1− ε)L↓atm. (3)

The NEM module performs an iterative process for estimating tempera-
ture and emissivity, and compensating for the downwelling radiance. The
output of the NEM module is an initial estimation of temperature and
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emissivity. Then the ratio module normalizes the emissivities obtained by
the NEM module by their arithmetic mean. Thus one obtains the so called
β spectrum, which should be less sensitive to sensor noise. Finally, the
maximum and minimum of the β spectrum are found and their difference
(MMD) is used in following semi-empirical relationship:

εmin = 0.994− 0.687×MMD0.737. (4)

Derivation of eq. (4) is explained in following paragraph. Ratioing the
β spectrum back to an emissivity spectrum with knowledge of minimum
emissivity increases the precision of the emissivity spectrum estimates. The
band with highest emissivity is then used for temperature estimation.

The relationship between spectral contrast and minimum emissivity,
shown in eq. (4), is a regression based on 86 laboratory spectra of rocks,
soils, vegetation, snow and water chosen from the ASTER spectral library
[5]. It is important to note that eq. (4) is tailored for the ASTER sensor.
To apply TES to a different sensor, the regression of εmin on MMD must
be refined by using sensor specific response functions.

The regression coefficients in eq. (4) were recomputed for TASI sensor
using their respective response functions. The regression was performed
on a set of 108 spectra chosen from same categories and library as in
the ASTER case mentioned above. The coefficients for TASI sensor are
following:

εmin = 1.001− 0.737×MMD0.760. (5)

After ASTER was launched, [15] and [29] suggested to replace the power
regression shown in eq. (4) with linear regression. The replacement is
connected with modification of the threshold for separating materials with
low spectral contrast. The main advantage is elimination of artefacts in
retrievals. However, the drawback is loss of accuracy in cases of materials
with low spectral contrast [29]. The TES algorithm used for generation
ASTER standard products [4], as well as its modifications for other sensors
[33, 20, 35, 32, 21, 18, 25, 19], is based on the power law regression. Thus,
in this work the TES algorithm is considered to be that using the power
regression.

3. Algorithm Improvement

The algorithm described below brings a new approach for separating tem-
perature and emissivity by replacing the NEM module in the TES algo-
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3 ALGORITHM IMPROVEMENT

rithm with a completely new module. The new module is based on the
similarity between brightness temperature spectral features and emissivity
spectral features. Brightness temperature is obtained from land-leaving
radiance under the assumption of emissivity ε = 1 for every wavelength.
Although land-leaving radiance includes some portion of reflected down-
welling radiance, it still retains the spectral features arising from the emis-
sivity of the surface materials, which is 0.6 or higher for natural materials
[14]. Since the magnitude of downwelling radiance is usually much lower
than the surface radiance the features contained in the brightness temper-
ature spectra may be distorted but will not be completely hidden. The
new module approximates this relation between brightness temperature Tb
and emissivity. The OSTES deeply discussed in [1].

In order to demonstrate the relationship, three emissivity samples with
different spectral contrasts were chosen from the ASTER spectral library,
namely green grass, fine sandy loam and altered volcanic tuff. These emis-
sivities are depicted in Figure 2 (solid lines) together with corresponding
band-effective values for TASI sensor (empty symbols). Band-effective val-
ues of emissivity for each sensor are distributed among three samples for
reasons of clarity. These emissivities were applied to Planck’s law at tem-
perature 300 K and combined with downwelling radiance from standard
mid-latitude summer atmosphere generated by MODerate resolution at-
mospheric TRANsmission (MODTRAN) [6]. The resulting radiances, were
transformed to band-effective quantities with respect to the TASI response
function. Brightness temperatures for every band of each sensor were ob-
tained by applying inverse Planck’s law on sample land-leaving radiances
under the assumption of ε = 1. Figure 2 also includes brightness tempera-
tures (full symbols) in order to demonstrate spectral similarity with emis-
sivity. Figure 3 plots emissivity against brightness temperature for chosen
samples and for TASI sensor (empty symbols). These quantities clearly
exhibit relationship with linear trend regardless of spectral contrast. Also
displayed in Figure 3 are lines that approximate this relationship, derived
in the manner described later in the next.

The only factor which can jeopardize the linear relationship between
brightness temperature and emissivity is the high magnitude of down-
welling radiance in comparison with surface radiance. This will occur
rarely, if at all, as described in the first paragraph of this section. Let
us emphasise that the brightness temperature and emissivity relationship
can be approximated by the linear relationship at any surface temperature
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(a) Case I (b) Case II (c) Case III

Figure 2: Emissivity spectra (black solid line) of three samples chosen
from ASTER spectral library [5]. Symbols represent band-effective values
of emissivity (empty symbols) and brightness temperature (full symbols)
for TASI sensor.

since we are interested in the brightness temperature features rather than
in absolute values. The algorithm description below uses band-effective
values of quantities linked to i-th band by subscript index i.

The dependence of emissivity εi on brightness temperature Tbi will be
approximated by following equation:

εi = pTbi + q, (6)

where p and q are empirical coefficients. These coefficients are determined
by solving the system of two equations using two points, namely maximum
brightness temperature coupled with emissivity equal to 1 and minimum
brightness temperature coupled with lowest emissivity εmin:

1 = pmax(Tbi) + q,

εmin = pmin(Tbi) + q.
(7)

The next step is estimation of the the lowest emissivity εmin.
This is done by varying εmin over the range of possible emissivities for

natural materials [0.6, 1], determining corresponding coefficients p and q by
solving eq. (7) and then approximating emissivity by eq. (6) using bright-
ness temperature for all spectral bands. The estimated emissivity is then
used together with land-leaving radiance LLL and downwelling radiance L↓

in a computation that yields spectral radiance:

L′i =
LLLi

− (1− εi)L↓i
εi

. (8)

The temperature in every spectral band is derived from spectral radiance
L′ applying inverse Planck’s law. The highest one is chosen as the reference
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3 ALGORITHM IMPROVEMENT

(a) Case I (b) Case II (c) Case III

Figure 3: Symbols represent examples of the relationship between bright-
ness temperature Tb and emissivity as would be observed by the TASI
sensor. Lines illustrate the approximations of the relationship between
brightness temperature and emissivity. The procedure used for estima-
tion of the brightness temperature and emissivity relationship is described
in the text.

temperature Tmax. Finally, the estimated spectral radiance L′ and Planck’s
law at the reference temperature Tmax are normalized and compared against
each other as follows:

∑

i

∣∣∣∣
Bi(Tmax)

||B(Tmax)||1
− L′i
||L′||1

∣∣∣∣. (9)

The value of εmin is considered final if its corresponding spectral radiance
L′ is the best fit to Planck’s law.

The whole process of determining εmin can be understood as smooth-
ing the spectrum by finding the optimal value of εmin. Pseudocode de-
picted in Figure 4 summarizes the above described procedure as a function
SmoothingErr(εmin, LLL, L

↓) evaluating the error between Planck’s law
and estimated spectral radiance. This function is minimized with respect
to the variable εmin as follows:

arg min
εmin∈[0.6,1]

SmoothingErr(εmin, LLL, L
↓). (10)

Continuous curves in Figure 3 show the optimal brightness temperature
and emissivity relationship approximation. Let us emphasize that by ap-
plying emissivities obtained from the approximated relationship between
brightness temperature and emissivity to eq. (8), one gets L′ as the best fit
to Planck’s law. This means that B−1(L′i) produces a temperature value
for each band. These temperatures have minimum variability since they
are derived from the best fit to Planck’s law. Let us also remind the reader
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Function SmoothingErr(εmin, LLL, L
↓)

Tbi
= B−1(LLLi

)
Find p and q by solving

Estimate emissivity

Estimate spectrum

Tmax = max(B−1(L′i))
return

εi = p Tbi
+ q

L′i =
LLLi

−(1−εi)L↓
i

εi

∑
i

∣∣∣ Bi(Tmax)
||B(Tmax)||1 − L′

i

||L′||1

∣∣∣

1.
2.

3.

4.

5.
6.

1 = p max(Tbi
) + q

εmin = p min(Tbi
) + q

Figure 4: Pseudocode of the function that is being minimized in order to
estimate the value of εmin.

that maximum brightness temperature is coupled with emissivity equal to
1, which implies that it is part of the set of temperatures with smallest
variability. It is important to note that maximum brightness tempera-
ture Tb computed from land-leaving radiance is usually less than surface
temperature T computed from surface radiance. Land-leaving radiance is
less than surface radiance since natural materials are of emissivity higher
than 0.6 and the contribution from reflected downwelling radiance is usu-
ally much lower than surface radiance. By reason of maximum brightness
temperature Tb being less than surface temperature T and by being part
of the set of temperatures with smallest variability, it can be concluded
that maximum temperature from the set of temperatures tends to be the
closest to the surface temperature T and is therefore taken as the reference
one.

Before passing emissivity to the Ratio and MMD modules, it is recom-
puted according to eq. (11):

εi =
LLLi

− L↓i
Bi(T )− L↓i

, (11)

where T is the maximum temperature associated with optimal εmin. Equa-
tion (11) is derived from eq. (3) and it is important for relating temperature
and emissivity. This recomputation keeps temperature and emissivity con-
sistent with each other (i.e. the same temperature can be derived from
any emissivity band). The emissivity is then further processed with the
Ratio and MMD modules, with minor changes to the original version of
the TES algorithm as it is described in [14] and [13]. These changes in-
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4 OSTES VALIDATION

clude: 1) there is no refinement of εmax according to the emissivity spectral
contrast, 2) the threshold T1 for separation emissivities with small spectral
contrast is not applied, and 3) the number of MMD iterations is set to
one. Let us emphasize that before reporting algorithm outputs, emissivity
is recomputed by eq. (11) using the final value of temperature.

4. OSTES validation

The OSTES algorithm was tested on both synthetic and real data. Syn-
thetic data were generated from spectral and climatological libraries such
that they cover many possible scenes and conditions. These data were sim-
ulated as would be acquired with TASI sensor. The OSTES was further
tested on a real data. For this purpose image data TASI image data over
urban areas of city of Brno were chosen.

Synthetic data

A data set of 6588 samples was artificially created to compare the per-
formance of the TES and OSTES algorithms. Samples include 108 differ-
ent natural surfaces chosen from ASTER spectral library [5] at different
temperatures coupled with 61 different atmospheric conditions taken from
TIGR (TOVS Initial Guess Retrieval) database [9, 8]. Sample tempera-
tures range from 244 K to 310 K. In order to simulate real conditions, every
sample at a certain temperature is coupled with a certain type of atmo-
sphere. The chosen atmospheres represent a variety of possible conditions
within polar, mid-latitude and tropical airmasses. These samples were
processed to land-leaving and downwelling radiance, as standard TES al-
gorithm input, and they were transformed to band-effective quantities with
respect TASI response functions. Samples were passed to the algorithms
individually.

The version of the original TES algorithm in cases of TASI sensor was
implemented in a manner similar to that described in [20]. In addition,
the implementation omits the εmax refinement for emissivities with low
spectral contrast. The OSTES was applied to TASI data as it is described
in Section 3.
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Figure 5: Box plots representing temperature error produced by OSTES
and TES algorithms for TASI sensor. Results are divided in two groups
based on the Maximum-Minimum emissivity Difference (MMD) in order
to demonstrate the improvement of the OSTES algorithm. Whiskers rep-
resent minimum and maximum of temperature error.

Samples were passed to the TES and OSTES algorithms and the tem-
perature and emissivity results were compared with true values. We divide
the results into two groups according to the emissivity spectral contrast.
We determined a threshold for Maximum-Minimum emissivity Difference
(MMD) in order to separate the samples with small spectral contrast such
as water, vegetation, snow or samples with small particle sizes from other
samples with higher spectral contrast. The performance of both algorithms
was determined by subtracting retrieved temperature from true tempera-
ture value. The temperature error and chosen MMD values for TASI are
shown in Figure 5.

Application to TASI image data

The OSTES algorithm was applied on image data acquired by TASI sen-
sor and the results were compared with emissivities obtained from in-situ
mesaurements and the TES algorithm esmissivity estiamtions.

Experiment setup
The study was performed using data acquired over the city of Brno, Czech
Republic (lat: 49.2, lon: 16.6). The examined data are subset of a flight line
crossing the city from south-west to north-east. The acquisition was per-
formed on 4.7.2015 at 14:03 (UTC). The FLIS operated by Global Change
Research Institute CAS (Brno, Czech Republic) [16] was used for this
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4 OSTES VALIDATION

acquisition. FLIS consists of Compact Airborne Spectrographic Imager
(CASI), Shortwave infrared Airborne Spectrographic Imager (SASI) and
TASI sensor. All sensors are developed by Itres Ltd. (Calgary, Canada).

In-situ measurements of urban materials were performed with Fourier
transform infrared (FTIR) Spectrometer Model 102 developed by D&P In-
struments (Simsbury, USA). The emissivity of measured surfaces was esti-
mated by a spectral smoothing algorithm [17]. Emissivity spectra of water
and deciduous trees were not measured but instead they were extracted
from ASTER spectral library [5]. All emissivity spectra were resampled
with respect to TASI response functions. The study area and locations of
the in-situ measurements are shown in the upper part of the Figure 7.

Spectral emissivity libraries are very useful for calibration and validation
purposes. Let us emphasize that there are many other spectral emissivity
libraries available apart from ASTER spectral library. Notable libraries are
Johns Hopkins University Spectral Library [30], Arizona State University
Spectral Library [10], United States Geological Survey Spectral Library
[11] and the Spectral Library of Urban Materials (SLUM) [22]. In the [2]
is described a spectral emissivity library which is specifically focused on
spoil substrates.

The OSTES implementation in the TASI pro-
cessing chain
Image data acquired by the TASI sensor were radiometrically, atmospher-
ically and gemetrically pre-processed. The result of the pre-processing is
land-leaving radiance, which is the first input parameter for the OSTES
and the TES algorithm. The second input parameter to both algorithms
is downwelling atmospheric radiance. This quantity was obtained from the
radiative transfer model MODTRAN [6]. MODTRAN requires temper-
ature and water vapour profiles, which were extracted from MOD07 L2
product [7] generated from MODIS image data.

The described procedure of temperature and emissivity estimation from
pre-processed TASI image data is the continuation of the processing chain
as is used at Global Change Research Institute CAS (Brno, Czech Repub-
lic). The schematic illustration of the OSTES implementation into the
processing chain of the TASI image data is depicted in the Figure 6.

The processing of the TASI image data acquired during this experiment
was limited to 22 spectral bands. First five and last five spectral bands
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Georeferenced
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radiance (L2B)

MODTRAN
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Downwelling rad.

Satellite products

Figure 6: Continuation of the processing chain of the TASI image data.
This part illustrates temperature and emissivity separation processing
chain applied to the pre-processed TASI image data.

were not considered since they were most affected by imperfect atmospheric
corrections.

The TASI image data were processed by the TES and OSTES algorithms
in order to compare the temperature and emissivity retrievals. The TASI
image data were processed with the TES algorithm by substituting OSTES
algorithm in the processing chain of TASI image data. The implementation
of the TES algorithm is based on the implementation described in [20]
without the εmax refinement for emissivities with low spectral contrast.

Comparison
Temperature and emissivity results of the OSTES algorithm are depicted
in the middle and lower part of Figure 7 in the form of temperature and
emissivity maps. The temperature map shows high temperature differences
between vegetated and built areas. Emissivity map is a false color compo-
sition (red - band 10, green - band 15, blue - band 20) showing variability
of surface materials in the image data.

16



4 OSTES VALIDATION
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Figure 7: Part of flight line over the city of Brno. Image data were acquired
on 4.7.2015 at 14:03 (UTC). The top image displays true color image of
the studied area. The middle image is a temperature map obtained from
the OSTES algorithm applied on image data from the TASI sensor. The
bottom image is false color emissivity map obtained from OSTES algorithm
(red - band 10, green - band 15, blue - band 20). On the top and middle
images locations and labels of in-situ measurements are shown. Labels
refers to following surface types: 1 - asphalt hotel parking, 2 - concrete
blocks, 3 - vegetation, 4 - Svratka river, 5 - asphalt parking lots and 6 -
asphalt rooftop.
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Figure 8: Comparison of TES and OSTES emissivity retrievals with emis-
sivities obtained from in-situ measurements. Error bars display standard
deviation.

The in-situ measurements were not performed during the overflight.
Therefore temperature could not be used for the comparison and the val-
idation of the TES and OSTES algorithms. The comparison of the TES
and the OSTES algorithms’ performance was tested against six emissivi-
ties obtained from in-situ measurements. Results are shown in the Figure
8, where error bars display standard deviation. Both TES and OSTES
emissivity retrievals are very similar. The OSTES performs slightly better
than TES in cases of deciduous trees and the river of Svratka. However,
neither of these two spectra agrees with the shape and magnitude of the
expected emissivity spectra. These discrepancies can be caused by var-
ious sources of errors but the main error source has been attributed to
the imperfect atmospheric corrections. Emissivities of the spot 5, asphalt
parking lots, retrieved by the TES and OSTES significantly differ from
in-situ measurement. This shift in magnitude is introduced by the insuffi-
cient compensation of the downwelling radiance. This spot is surrounded
by buildings, which increase the amount of downwelling radiance. This ad-
ditional radiance is not included in the atmospheric parameters retrieved
from MODTRAN. The rest of the emissivity retrievals are considered to
follow in-situ measurements well. Let us emphasize the reader that OSTES

18



4 OSTES VALIDATION

offers only moderate improvements in emissivity retrievals. These are not
possible to observe in this comparison due to the magnitude of the error
introduced by the imperfect atmospheric corrections.

These data were acquired within a campaign focused on detecting urban
heat island of the city of Brno. The main goal was determination of pa-
rameters affecting temperatures in the city. Preliminary observations are
introduced in [3].
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Conclusion

Thermal hyperspectral data delivers unique information about tempera-
ture and emissivity of the Earth surface which is used in many application
in both scientific and commercial fields. However, derivation of these quan-
tities leads to the underdetermined system of equations. Many approaches
have been developed to overcome this problem among which the TES al-
gorithm is the most widely known and used.

Section 3 introduced a module that estimates temperature and emissivity
from an approximation of the relationship between brightness temperature
and emissivity. The new module replaces the NEM module in the original
TES to create an algorithm that we call OSTES.

The performance of OSTES was firstly tested on a set of simulated
data recomputed with respect to TASI response functions. Results show
that temperature estimations using OSTES are more accurate and pre-
cise than TES for samples with low spectral contrast. The performance
of the OSTES and TES was tested on image data acquired by TASI sen-
sor and validated against in-situ measurements. The emissivity retrievals
from both algorithms follow in-situ measurements well in most of the cases.
We also conclude that improvements in atmospheric compensation will be
crucial for further improvements in emissivity results. Thus, further work
should be focused on this topic.

The OSTES algorithm is preferred mainly because of higher precision
and accuracy under conditions of low spectral contrast. We believe that
implementing OSTES to processing chain of TASI image data will benefit
application for landscape assessment, as the OSTES algorithm was chosen
for processing image data acquired from TASI sensor operated by Global
Change Research Institute CAS (Brno, Czech Republic).
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