
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

SIMULATION OF ROBOTIC SEARCH OF LOST RADIATION
SOURCES
SIMULACE ROBOTICKÉHO VYHLEDÁVÁNÍ ZTRACENÝCH RADIAČNÍCH ZDROJŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Miloš Cihlář

SUPERVISOR
VEDOUCÍ PRÁCE

prof. Ing. Luděk Žalud, Ph.D.

BRNO 2022

Date of project
specification:

7.2.2022
Deadline for
submission:

 18.5.2022

Supervisor: prof. Ing. Luděk Žalud, Ph.D.

doc. Ing. Petr Fiedler, Ph.D.
Chair of study program board

Master's Thesis
Master's study program Cybernetics, Control and Measurements

Department of Control and Instrumentation
Student: Bc. Miloš Cihlář ID: 201303
Year of
study:

 2 Academic year: 2021/22

TITLE OF THESIS:

Simulation of Robotic Search of Lost Radiation Sources

INSTRUCTION:

1. Make search for mobile robotics simulation tools with a focus on Gazebo and Ignition.
2. Familiarize yourself with Robot Operating System 2.0 and summarize its advantages and possible
disadvantages.
3. Based on the results of the semester work, select and implement in the chosen simulation tool two suitable
algorithms for searching for so-called lost radiation sources in the external environment together with the
supervisor.
4. Compare the implemented algorithms in the supplied map and also compare their advantages and
disadvantages.

RECOMMENDED LITERATURE:

Mahtani Anil, Effective Robotics Programming with ROS, Packt Publishing Limited, 2016, ISBN 9781786463654

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
The master thesis considers simulating the outdoor environment and lost radiation
sources in the Gazebo simulator and then deals with radiation search algorithms. Simu-
lators play an essential role in research, and robotics companies widely use them. Sim-
ulation accelerates and facilitates testing, verification, and evaluation of developed al-
gorithms. Therefore the thesis establishes a system based on ROS2 and Gazebo that
simulates robot models. The performance of the simulation is evaluated. The work
presents and compares a model of a four-wheel skid steering mobile robot with the model
created in the simulator. In future work, this model comparison allows the improvement
of the robot model simulation’s parameters based on the real model tested. A solution
is proposed for the trajectory tracking problem based on linear proportional-integral (PI)
or optimal linear quadratic regulator (LQR). One method of modeling radiation sources
and sensors to simulate radiation was suggested. The simulated radiation is compared
with the measurement gained from a real (and simulated) outdoor experiment, in which
the robot searches the radiation source. The thesis describes the particle filter designed
for searching a lost radiation source.

KEYWORDS
ROS2, Gazebo, Simulator, Radioactivity, Radiation sensor, Lost radiation source, Gazebo
environment, Skid steering mobile robot, Particle filter, Motion analysis, Dynamic anal-
ysis, Dissipative forces, Radioactivity simulation

ABSTRAKT
Simulátory, společnostmi zabývající se robotikou hodně využívané, hrají důležitou roli
při výzkumu robotů. Zrychlují, zjednodušují, zlevňují a usnadňují vývoj softwaru a al-
goritmů. Magisterská práce se proto zabývá návrhem systému, založeného na ROS2 a
Gazebo simulátoru, umožňující simulaci pozemních robotů ve vnějším prostředí s mož-
ností hledat ztracené radiační zdroje. Práce navrhuje několik metod vytváření prostředí
v Gazebo simulátoru včetně návrhu prostředí z mračna bodů a je vytvořen model čtyř-
kolového, smykově řízeného mobilního pozemního robota. Chování robota v simulátoru
bylo ověřeno a upraveno pomocí teoretického dynamického popisu robota. Před simulací
algoritmů pro hledání ztracených radiačních zdrojů je navržena metoda sledování refe-
renční trajektorie pomocí proporcionálně integračního (PI) a lineárně kvadratického (LQ)
regulátoru a navrhuje metodu k simulaci zdroje radiace a jeho měření. Hledání radiačního
zdroje jsou použity dvě typově odlišné metody, kdy jedna je založena na prozkoumání
celé oblasti a vytváří mapu radiace, a druhá metoda založená na částicovém filtru aktivně
hledá ztracený zdroj záření.

KLÍČOVÁ SLOVA
ROS2, Gazebo, Simulátor, Radioaktivita, Senzor radiace, Ztracený radiační zdroj, Pro-
středí v Gazebu, Smykově řízený mobilní robot, Částicový filtr, Analýza pohybu, Analýza
dynamiky, Odporové síly, Simulace radioaktivity

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT

ÚVOD
Robotika je multidisciplinární obor kombinující znalosti z elektrotechniky, in-

formatiky, matematiky, fyziky, řízení, měření, umělé inteligence, filosofie, psycholo-
gie a dalších vědních oborů, kterých se robotika, jako obor, dotýká. V posledních
dvaceti letech je robotika, zejména mobilní robotika, na velkém vzestupu. Mod-
erní robotické systémy vybaveny množstvím různých senzorů, aktuátorů, počítačů
a dalším vybavením mají za cíl splnit požadovanou misi, úkol, kterou může být li-
bovolná činnost vykonávána člověkem nebo činnost, jež člověk vykonávat nechce či
nemůže. Robot, způsobilý vykonávat tyto úkoly, musí být schopen základního po-
hybu, orientace, vnímání a rozhodování. Všechny zmíněné obory, jimiž se robotika
zabývá, pomáhají k rozvojí schopností robota.

Senzory jsou drahé, práce s hardwarem náročná, riziko nehody velké, proto
vzniká tlak a tendence přesouvat vývoj, testování a lazení algoritmů do simulátorů,
které značně urychlují, zjednodušují a zlevňují vývoj a výzkum robotů.

Tato diplomová práce se zabývá simulací kolových mobilních robotů a různými
metodami vytváření a simulování vnějšího (outdoor) prostředí, včetně prostředí
vytvořeného na základě změřených dat. Práce dále porovnává model čtyřkolového
mobilního robota se simulací. Na základě modelu jsou navrženy různé metody řízení
a sledování trajektorie. Závěrečným cílem celé práce je otestovat algoritmy hledající
ztracené radiační zdroje, včetně simulace radioaktivity simulátoru Gazebo.

SIMULÁTOR
Simulace poskytuje vývojářům a vědcům řadu výhod, především zrychlení, ze-

fektivnění, zkvalitnění a usnadnění práce. Proto taky přibližně 70% organizací zabý-
vající se robotikou používají simulátory. Simulátory mají taky určitá omezení, která
se týkají především výpočetní náročnosti. Byl zkoumán vliv na výpočetní náročnost
vzhledem k počtu robotů v simulaci. Bylo zjištěno, že využití paměti roste lineárně s
množstvím simulovaných robotů, ale využití procesoru při rtf = 1 (real time factor)
kvadraticky roste. Práce využívá robotický simulátor Gazebo, ve kterém lze simulo-
vat vnitřní a vnější prostředí. K vytvoření vnějšího prostředí ze změřených dat byl
použit point cloud, získaný z experimentů popsaných ve ve článku An automated
heterogeneous robotic system for radiation surveys: Design and field testing [44]
z roku 2020. Původní point cloud obsahuje přes 29000000 bodů rozmístěných na
oblasti 200m x 170m. Před vytvářením 3D modelu musel být původní point cloud re-
dukován na 2000000 bodů a došlo k vyfiltrování neúplných objektů, převážně stromů.
Z takto připraveného point cloudu pomocí nástrojů Meshlab and Cloudcompare byl
vytvořen 3D model a extrahována textura.

MODEL ROBOTA
K hledání ztracených radiačních zdrojů byl vybrán a simulován robot Orpheus

X4. Robot se v Gazebo simulátoru skládá ze čtyř kol a těla. Fyzikální vlastnosti
robota ovlivňují hlavně základní parametry, jako je hmotnost, rozložení hmotnosti,
velikost robota. Tyto parametry jsou definovány při vytváření objektů (tvar kol
a těla) modelu. Tření kol a kloubů ovlivňuje pohyb robota. Pro klouby (spojení
mezi tělem a koly, pohon) je nastaveno statické a dynamické tření. Pro kola je
nejdůležitější tření a maximální síla, kterou je robot odpuzován od styku s povrchem,
ovlivňuje skákavost robota, a maximální množství kontaktů.

Po otestování chování robota v simulaci je popsán čtyřkolový mobilní robot z
pohledu kinematického a dynamického. Na základě těchto modelů lze lépe popsat
chování robota v simulátoru vzhledem k nastavovaných parametrům, což je možné
využít při porovnávání pohybu skutečného a simulovaného robota.

Pro splnění cíle práce, tedy testování algoritmů na hledání ztracených radi-
ačních zdrojů, je zapotřebí vyřešit problém sledování trajektorie. Pro navigaci přes
množinu waypointů je nejprve vygenerována trajektorie pomocí kubického spinu
(Cubic spline), zajišťující spojitost prvních dvou derivací v průjezdních bodech.
Regulační problém je rozdělen na dvě části, první, vnitřní zpětnovazební smyčka,
řídí lineární a úhlovou rychlost robota pomocí PI nebo optimálního LQ regulátoru.
Druhá generuje referenční rychlosti na základě současné pozice robota vygenerované
trajektorie.

SIMULACE RADIOAKTIVITY
Práce a testování algoritmů na reálných robotech je drahé, pomalé a složité,

o to více to platí pro zdroj radiace. Experimenty se zdroji radiace musí splnit
všechny legislativní podmínky, což prodlužuje a komplikuje jejich přípravu. Jedním
z cílů práce je umožnit simulovat radiační zdroje a senzory. Práce využívá existující
řešení popsané v článku Simulating Ionising Radiation in Gazebo for Robotic Nuclear
Inspection Challenges, které je modifikováno pro použití s ROS2 a více scintilačními
senzory s různými útlumy v různých překážkách pro každý zdroj.

HLEDÁNÍ ZTRACENÝCH RADIAČNÍCH ZDROJŮ
Již více než před 120 lety Henri Becquerel, Pierre Curie a Marie Curie-Skłodowska

objevili a popsali radioaktivitu. Později v roce 1942 byl spuštěn první jaderný reak-
tor v Chicagu v USA. O tři roky později byl proveden první test jaderné zbraně.
V dnešních dnech se radioaktivita používá v mnoha různých oborech, od průmyslu,
armády, lékařství až po zemědělství. S rostoucím použitím radioaktivních látek,
zároveň roste potřeba bezpečně hledat radioaktivní materiál.

Poslední kapitola se zabývá simulací algoritmů pro lokalizaci radiačního zdroje.

První metoda je založena na průzkumu terénu pomocí předem navržených trajektorií
a současným snímáním radiace. Výstupem je tedy mapa obsahující intenzity záření.
Z mapy je později určena pozice, případně další parametry zdroje. Nevýhodou to-
hoto přístupu je dlouhá doba mapování pro větší oblasti, případně úplná nemožnost
prozkoumat celé území. Proto dalším simulovaným algoritmem je částicový filtr
(Particle filter), který aktivně vyhledává pozici zdroje. Jeho výhodou je rychlost,
ovšem není tak přesný jako přístup založený na tvorbě mapy, a nemusí konvergovat.

Author’s Declaration

Author: Bc. Miloš Cihlář

Author’s ID: 201303

Paper type: Master’s Thesis

Academic year: 2021/22

Topic: Simulation of Robotic Search of Lost Ra-
diation Sources

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno 17. 05. 2022 .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to express my thanks to the advisor of my thesis, prof. Ing. Luděk Žalud
Ph.D. for his valuable comments and excellent leadership. I would like to also thank
Zuzana Urbancová for her never-ending support. And last but not least, I would like to
express my gratitude to my family, who helped me and supported me all the time in my
studies.

Brno 17. 05. 2022 .
author’s signature

Contents

Introduction 14

1 Preliminaries 16
1.1 Source of Radiation . 16

1.1.1 Isotopes . 18
1.1.2 Radioactivity . 19
1.1.3 Units of Radioactivity . 23
1.1.4 Dosimetry . 24
1.1.5 Health Risks . 26
1.1.6 Radiation Protection . 27

1.2 ROS and ROS2 . 28
1.3 Robotic Simulators . 29

1.3.1 Robotic Simulators Overview 31
1.3.2 Gazebo . 32
1.3.3 Ignition Gazebo . 35

2 Environment 37
2.1 Environment from Model Database 39
2.2 Generation of Random Environment 40
2.3 Building Editor . 41
2.4 Environment from Real Data . 41

2.4.1 Digital Elevation Model . 42
2.4.2 Point Cloud . 43

3 Robot Models 46
3.1 Orpheus X4 . 46
3.2 Robot Model in Gazebo . 47

3.2.1 Methods for Defining Models 47
3.2.2 Physical Properties . 48

3.3 Motion Analysis . 51
3.4 Dynamic Model . 53

3.4.1 Dissipative Forces . 56
3.4.2 Comparing with Gazebo . 61

3.5 Controllers . 66
3.5.1 Trajectory Generator . 67
3.5.2 Trajectory Controller . 69
3.5.3 Velocity Controller . 70

3.5.4 Trajectory Tracking . 74
3.6 Coordinate System . 78

3.6.1 REP 105 . 78
3.6.2 Conversion of Geographic Coordinate System 79

4 Radioactivity Simulation 81
4.1 Radiation Gazebo Plugin . 81

4.1.1 Gazebo Experiment . 82

5 Searching Lost Radioactive Source 86
5.1 Mapping Based Approach . 86
5.2 Particle Filter . 89

Conclusion 95

Bibliography 96

List of Figures
1.1 The division of EMR . 16
1.2 An overview of ionizing radiation . 17
1.3 Table of nuclides and their half-life 19
1.4 The energy spectrum of emitted electrons and positrons during 𝛽 decay 22
1.5 Architecture of ROS1 and ROS2 in terms of their layers 29
1.6 A reason for using robotic simulations 30
1.7 Types of commonly used robotic simulators 31
2.1 The Gazebo simulator’s Real-Time Factor 37
2.2 CPU and memory usage of simulator 38
2.3 The evaluation of the Gazebo simulator 38
2.4 Environment from model database 39
2.5 Overview of distribution option in the population of models 40
2.6 The difference between DTM and DSM. 41
2.7 Create an environment with LIRS-WCT 42
2.8 Two types of real data environment. 43
2.9 An example of point cloud reduction 44
2.10 Using the output density . 45
3.1 Orpheus X4 . 46
3.2 The robot’s center of mass . 48
3.3 Parameter minDepth and its visualization in Gazebo 49
3.4 Parameter maxContacts and its visualization in Gazebo 49
3.5 Robot’s bounciness . 50
3.6 The robot trajectory depending on maxContacts parameter 50
3.7 Robot coordinates system. 52
3.8 Robot wheels’ velocities . 53
3.9 Forces performing the wheel motion 54
3.10 Simulink scheme of longitudinal velocity 55
3.11 Simulink scheme of angular velocity 56
3.12 Approximation of Signum Function by Arctangent 57
3.13 Approximation of Joint Static Resistive force with Hyperbolic Tangent 58
3.14 Comparison of linear velocities model 3.11 and robot in the Gazebo

simulator . 63
3.15 𝑅2 and 𝑅𝑀𝑆𝐸 values for linear velocity 63
3.16 Comparison of linear velocities model 3.12 3.31 and robot in the

Gazebo simulator . 64
3.17 𝑅2 and 𝑅𝑀𝑆𝐸 values for angular velocity with Coulomb friction model 64

3.18 Comparison of linear velocities model 3.12 3.32 and robot in the
Gazebo simulator . 65

3.19 𝑅2 and 𝑅𝑀𝑆𝐸 values for angular velocity with a combination of
Coulomb and viscous friction model 65

3.20 Trajectory tracking diagram . 66
3.21 Diagram of the trajectory generator 67
3.22 Example of cubic spline trajectory . 69
3.23 Feedback loop with PI controller . 71
3.24 Linear and angular velocity response - PI 72
3.25 Feedback loop with LQR . 73
3.26 Linear and angular velocity response - LQR 74
3.27 Simulink diagram of T-PI trajectory tracking controller 75
3.28 T-PI: Desired and actual (true) trajectory and linear and angular

velocity . 75
3.29 Simulink diagram of LQ-PI trajectory tracking controller 76
3.30 LQ-PI: Desired and actual (true) trajectory and linear and angular

velocity . 76
3.31 Simulink diagram of LQ-LQ trajectory tracking controller 77
3.32 LQ-LQ: Desired and actual (true) trajectory and linear and angular

velocity . 77
3.33 Multi-robot relationship between frames in ECEF 78
3.34 Earth-centered, Earth-fixed coordinate system 79
4.1 The decay scheme of Cobalt-60 . 82
4.2 Using the output density . 83
4.3 The heat map of radiation (ideal sensor) 84
4.4 The heat map of radiation (real sensor) 85
5.1 Mapping-based algorithm example . 86
5.2 Mapping-based radiation search real-world experiment 87
5.3 Mapping-based radiation search experiment in simulation 87
5.4 Particle filter - first experiment . 91
5.5 Particle filter - second experiment . 92
5.6 The example of non-convergence of particle filter 93
5.7 Particle filter - third experiment . 93

List of Tables
1.1 Examples of quality factor 𝑄𝑅 and tissue weighted factor 𝑤𝑇 26
1.2 Quality factor 𝑄𝑅 for . 26
1.3 Tissue weighted factor 𝑤𝑇 . 26
3.1 Experiments overview . 62
5.1 Particle filter experiment overview . 91

Introduction
Robotics is an interdisciplinary field that involves electrical engineering, computer
engineering, mathematics, information technology, control engineering, physics, etc.
Mobile robotics has been in rapid development in recent years. Robotic systems
are equipped with numerous sensors and perform a variety of tasks. The main
functions in robotics are localization and mapping to determine the exact robot’s
position. Path planning searches trajectory from start to final position. Motion
control, computer vision, perception, artificial intelligence, etc., are challenges that
robots must complete. Therefore robots are complex hardware devices, and their
development is expensive. Simulation is the way how to accelerate development,
especially algorithm testing. There is no risk of breaking robots or very expensive
sensors and equipment with the simulator. With correctly modeled robots and
simulation environments, the software used in the simulation can be directly used in
the real world [1]. One of the ways how to design a robot’s environment in a simulator
is to use real sensors data. The article Tool for 3D Gazebo Map Construction from
Arbitrary Images and Laser Scans [2] deals with constructing a map from the laser
scans. Improvement previous work Automatic tool for Gazebo world construction:
from a grayscale image to a 3D solid model [3] is construction 3D Gazebo world
using a grayscale image.

Using robots in hazardous environments can prevent and reduce the human
health risk. One of the hazardous is nuclear environments. Most of the organiza-
tions dealing with robot development use a simulators [32]. It is advantageous to
deal with implementation and modeling radiation sources and sensors. The work Lo-
calization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With
Pixel Detectors in Real-Time [4] deals with the Timepix semiconductors detector
and its simulation in the Gazebo simulator. And the next work Simulating Ionising
Radiation in Gazebo for Robotic Nuclear Inspection Challenges [5] implements radi-
ation sensors more generally. The simulated environment has a number of benefits.

The article An automated heterogeneous robotic system for radiation surveys:
Design and field testing [44] presents a multi-robotic system designed for radiation
mapping and source localization. With properly designed simulation and models,
the whole experiment can be realized easier multiple times.

This master thesis deals with creating a system based on ROS2 and the Gazebo
simulator that allows to simulate, test, and evaluate robotics software. The work
offers several ways to model the environment, including the world construction from
the real-based world. The robot model is presented the same as the theoretical
robot model compared with the simulation. Movement robot into trajectory is nec-
essary for proper simulation of searching radiation sources. Therefore, the method

14

is proposed to solve the trajectory tracking problem based on PI and LQ controllers.
The thesis is organized as follows. In Preliminaries section are mentioned the the-

oretical information about the source of radiation, the ROS and ROS2 are compared,
and the possibilities of different simulators are mentioned. The section Environment
discusses the influence number of robots on Gazebo performance, and several op-
tions are described to create simulated worlds. In the third chapter Robot Models,
the robot model is designed, and theoretical model descriptions are derived. In the
same chapter the trajectory tracking problem is also solved. The Radioactivity Sim-
ulation chapter is described and tests radiation sources and sensors. Furthermore,
the two last chapters Searching Lost Radioactive Source, Conclusion contain the
radiation search algorithm and work conclusion.

15

1 Preliminaries

1.1 Source of Radiation
A radiation source is an object, which can produce energy embodied by waves or
particles, and these waves or particles can transmit through space or materials. The
radiation can be classified into two following sections, as the picture below refers
1.1, according to the radiation energy. The first is that non-ionizing1 radiation
includes electromagnetic radiation (EMR), such as radio waves, microwaves, infrared
and visible light, and these waves do not have sufficient energy to ionize atoms or
molecules.

Fig. 1.1: The picture shows the division of EMR into non-ionizing and ionizing
radiation. For each group is shown the type of waves with their immediate physical
effects. [7]

The second is ionizing radiation, and this thesis deals with only ionizing radiation
that has multiple health risks than non-ionizing radiation. Moreover, therefore the
simulation of radiation sources and sensors is one of the aims of this thesis. Better
division for ionizing radiation is according to Radiation Detection and Measurement
[8]. All of the following sections in Source of Radiation section are taken over from
the book [8] unless otherwise stated.

Radiation is a process when occurs the emission of waves or particles mainly
originates in the atomic or nuclear process. The radiation can be categorized into
four following general parts according to what is emitted.

• Charged particulate radiation
– Fast electrons

1Ionization is a process when the atom or molecule gains an electrical charge by losing or gaining
an electron.

16

– Heavy charged particles
• Uncharged particulate radiation

– Electromagnetic radiation
– Neutrons

Fast electrons, in other words, beta radiation or beta ray is a beam of beta
particles that includes electrons or positrons, which is produced in nuclear decay or
any other atomic process. This radiation is described in more detail in section Beta
Decay.

The next type of charged radiation is heavy charged particles. The aforemen-
tioned radiation is a group of radiation that encompasses all energetic ions with a
mass of one atomic unit or grater. Namely, it is alpha particles 2, which is explained
more deeply in section Alpha Decay, protons or fission products.

The electromagnetic radiation mentioned above is the first uncharged radiation
include X-rays and gamma rays. The difference between X-rays and gamma rays is
in their source. X-rays are emitted by rearranging electron shells of atoms, whereas
gamma rays are produced from transition within the nucleus itself.

Neutron radiation is a beam of free neutrons that can react with other nucleus
and cause new isotopes. Neutrons are obviously created when an atom is split in
nuclear fission.

Fig. 1.2: An overview of ionizing radiation and its ability to penetrate different types
of obstacles. [9]

The range of energy, which is carried by ionizing radiation, is over six decades.
The minimum energy is set to bound when radiation can produce ionization in
typical material. The radiation and their energy differ in the ability to penetrate
thickness of material. In other words, the radiation can be split according to its
"hardness".

2Alpha particles (4
2𝐻𝑒2+) consist of two protons and two protons joined together (without two

electrons).

17

Soft radiation can penetrate only a small thickness of a material such as a sheet
of paper or human skin. It encompasses alpha particles (1.2) or low-energy X-
rays. The previously mentioned radiation sources must be deposited in thin layers.
Thicker sources can be subject to self-absorption, which affect energy released from
the surface.

Beta particles are more penetrative than alpha particles, and it can pass through
units centimeters of material depending on energy. Harder radiation, gamma, high-
energy, X-rays, or neutron can go through millimeters or centimeters materials with-
out changing physical properties.

Before radioactivity is specified, it is necessary to mention information about
what isotopes are.

1.1.1 Isotopes

If radioactivity is mentioned, the following terms are often used. When talking about
atomic nuclei and their properties, the nuclei are often called nuclide. Atomic nuclei
consist of protons and neutrons. Atomic number or sometimes called proton number
indicates the number of protons in the nucleus and is marked as Z. The same way
is denoted neutron number N, which holds the number of neutrons. The sum of
atomic number and neutron number is the mass number.

𝐴 = 𝑍 + 𝑁 (1.1)

Therefore, the mass number includes the number of nucleons, which is a general
designation of protons and neutrons. The better way how to note chemical elements
with respect to the number of protons and neutrons is to write 𝐴

𝑍𝑋, where X is
chemical element.

Isotope is a modification of chemical elements that differ in the number of neu-
trons in a nucleus. So, isotopes are nuclide with the same atomic number Z and
with the different neutron number N.

All isotopes with the same number of protons (Z) and electrons are neutral
atoms and are placed in the periodic table. Neutral atoms have identical chemical
properties, but the nuclear properties of various isotopes are much different. All
isotopes are organized in the table of nuclides which is shown in figure 1.3.

The table of nuclides shows a layout of isotopes of all chemical elements. On
the horizontal axis is proton number Z, which defines chemical elements, and on the
vertical axis is shown neutron number. A color of nuclides on the chart 1.3 assigns
their half-life. Half-life is a time that is required the disintegration of one-half of
atomic nuclei [12]. As it graph follows, most of a nuclides are unstable and are
placed around stable elements.

18

Fig. 1.3: Table of nuclides and their half-life [11]

The light stable nuclides lie near the line 𝑍 = 𝑁 and have a same number of
protons and neutrons. On the contrary heavy nuclides have more neutrons than
protons and lie over the line 𝑍 = 𝑁 . The last and heaviest stable isotope is a
Bismuth-2093 209

83 𝐵𝑖.
This entire chapter is taken from [10].

1.1.2 Radioactivity

The physical property of unstable isotopes is radioactivity. Radioactivity, nuclear
decay, or radioactive decay is a process when isotopes lose energy and tend to a
more stable configuration (unstable nuclide is converted to another nuclide). As
stated above, this process emits radiation appearing as charged particles, electro-
magnetic waves, or neutrons to space. Radioactive decay is a stochastic process that
is described with two significant terms, activity and half-life.

The activity 𝐴𝑐of an unstable isotope (radioisotope) is defined as

𝐴𝑐 = 𝑑𝑁

𝑑𝑡
= −𝜆𝑁 (1.2)

where N is a number of radioactive nuclei. Disintegration speed 𝑑𝑁/𝑑𝑡 is di-
rectly proportional to N. Lambda, defined as decay constant with unit 𝑠−1. Activity

3Bismuth-209, according to [13], undergoes alpha decay and has a half-life of (1.9 ± 0.2) × 1019

yr.

19

measures disintegration rate, but it is not equal to the emission rate of radiation
sources. In many cases, radiation is made only a fraction of all decay. To determine
the emission rate from an activity is necessary decay scheme of a particular isotope.

When activity is used in a specific sample, the specific activity can be defined as
activity per unit of mass of the radioisotope.

𝐴𝑠 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑚𝑎𝑠𝑠
= 𝜆𝑁

𝑁 𝑀
𝐴𝑣

= 𝜆𝐴𝑣

𝑀
(1.3)

where M is molecular weight of the radioisotope, 𝐴𝑣 is Avogadro’s number (𝐴𝑣 =
6.02× 1023). Decay constant lambda is evaluated

𝜏 = 𝑙𝑛(2)
𝜆

(1.4)

where 𝜏 is half-life in seconds 𝑠.
The unit used for the measurement of radiation energy is electron volt denoted

as 𝑒𝑉 . Electron volt is defined as kinetic energy of an electron which is accelerated
by a potential difference of 1 volt. For measurement energies for ionizing radiation,
kiloelectron volt (𝑘𝑒𝑉) and megaelectron volt (𝑀𝑒𝑉) are commonly used. Electron
volt is not the SI unit. For conversion from electron volt to joule (𝐽) is used following
equality.

1𝑒𝑉 = 1.602× 10−19𝐽 (1.5)

Photon energy of gamma or X- rays is directly proportional to the frequency as
follows

𝐸 = ℎ𝑣 (1.6)

where ℎ is Planck’s constant (ℎ = 6.626 × 10−34𝐽𝑠 or 4.135 × 10−15𝑒𝑉 𝑠) and 𝑣 is
frequency in 𝐻𝑧.

Alpha Decay

From isotopes are released alpha particles, consisting of two protons and two neu-
trons when alpha decay occurs. And without a product of rare spontaneous fission,
alpha particles are the heaviest product of nuclear decay. Alpha particles can be
denoted as the nucleus of 4𝐻𝑒 or 4

2𝛼. Because of the lack of electrons, alpha parti-
cles have a strong positive charge and are highly reactive with surrounding matter.
According to the following equation [14],

𝐴
𝑁𝑋𝑁 →𝐴−4

𝑁−2 𝑋 ′
𝑁−2 +4

2 𝐻𝑒2 (1.7)

20

an unstable nucleus 𝑋 disintegrates into lighter nucleus 𝑋 ′ and the aforemen-
tioned alpha particles. For example [10],

238
92 𝑈146 →234

90 𝑇ℎ144 +4
2 𝐻𝑒2 𝑄 = 4.25𝑀𝑒𝑉 (1.8)

The probability of released alpha particles is governed by quantum-mechanical
barrier penetration, described in Modern Physics [14].

During the nuclear decay process, energy is released, distributed as kinetic energy
between alpha particles 4𝐻𝑒 and the nucleus 𝑋 ′. Energy is obtained from atomic
mass differences of products of nuclear decay according to [14]

𝑄 = [m(𝑋)−m(𝑋 ′)−m(4𝐻𝑒)]𝑐2 (1.9)

And the energy of alpha particles is determined [14] as

𝐾𝛼
∼=

𝐴− 4
𝐴

𝑄 (1.10)

Beta Decay

Beta decay is another nuclear disintegration process. Neutron in the nucleus is
changed into a proton4 and proton into a neutron5. Therefore atomic and neutron
number (𝑍 and 𝑁) change by one unit, but mass number 𝐴 is unaffected. There are
two variants of beta decay.[14] As was mentioned before, beta radiation is a beam of
electrons and positrons.

Before the beta decay is specified, it is necessary to describe what neutrino is.
Neutrino 𝜈 and its antiparticle antineutrino 𝜈 is elementary particle. Its mass is low
compared to other elementary particles. The electric charge of neutrino is zero and
is nonreactive. First of all, he assumed the existence of a neutrino Wolfgang Pauli
in 1930. [10]

The first type of decay process is when a neutron is changed according to the
following equation. All followings information in Beta decay section are derived
from [14].

𝑛→ 𝑝 + 𝑒− + 𝜈 (1.11)

Neutron 𝑛 is changed to protons 𝑝, electrons 𝑒−, and antineutrino when beta
decay occurs. Next equation of nuclear decay if for 𝛽− radiation.

𝐴
𝑍𝑋𝑁 →𝐴

𝑍+1 𝑋 ′
𝑁−1 + 𝑒− + 𝜈 (1.12)

4And electron with antineutrino
5And positron with neutrino

21

Energy released during beta decay is distributed between energy of antineutrino
𝐸𝑣, the kinetic energy of electron 𝐾𝑒, and negligible kinetic energy of 𝐾𝑥′ .

𝑄 = 𝐸𝜈 + 𝐾𝑒 + 𝐾𝑋′ ∼= 𝐸𝜈 + 𝐾𝑒 (1.13)

Unlike beta disintegration, the energy of an emitted particle has a continuous
energy spectrum shown in figure 1.4a. Energy of electron is from zero up to 𝐾𝑚𝑎𝑥.

(a) The energy spectrum of
electrons emitted in beta decay.

(b) The energy spectrum of
positrons emitted in beta decay.

Fig. 1.4: The energy spectrum of emitted electrons and positrons during 𝛽 decay

Another beta decay process is when a proton is changed to neutron, positive
electron (positron), and a neutrino, as shown by the following equation.

𝑝→ 𝑛 + 𝑒+ + 𝜈 (1.14)

Nuclear decay equation for 𝛽+ radiation is shown bellow.

𝐴
𝑍𝑋𝑁 →𝐴

𝑍−1 𝑋 ′
𝑁+1 + 𝑒+ + 𝜈 (1.15)

And its energy spectrum is shown in figure 1.4b.

Electromagnetic Radiation

After Alpha Decay and Beta Decay, gamma radiation is the next type of radiation.
Gamma radiation is high excited photons without any charge; therefore is more
dangerous than the aforementioned radiation. The absence of charge causes it’s
dangerous because it goes through air, skin, and wood. Electromagnetic radiation
can originate in many ways. Gamma radiation is emitted from atomic nuclei. The
photons are released when the nuclei transit from higher to lower-laying nuclear
levels. One of the first causes is connected to beta decay.

The beta decay with a long half-life time causes an excited state of the daugh-
ter nucleus. With a much shorter half-life time, the subsequent transitions release

22

gamma radiation whose energy is equal to the difference in energy between nuclear
states. Annihilation radiation is another origin of gamma radiation. When the nu-
cleus undergoes 𝛽+ decay, the positrons are emitted in the primary decay process.
The energy of released positrons is very low. They travel a few millimeters before
recombining with normal negative electrons. The collision with an antiparticle is
called annihilation. The annihilation results are the disappearance of both the orig-
inal particle and antiparticle and are replaced with two photons. 𝐵𝑟𝑒𝑚𝑠𝑠𝑡𝑟𝑎ℎ𝑙𝑢𝑛𝑔

is the process causing releasing photons from the kinetic energy of fast electrons,
which are decelerated by another particle, such as atom nuclei.

Neutron Radiation

Neutron radiation is a beam of free neutrons that are released by spontaneous or
nuclear fission. The neutron does not have a charge, and it can interact with nuclei
of other atoms and turns it into new isotopes, which can turn into a new radiation
source. This is one of the reasons for high radiation hazards for tissue.

1.1.3 Units of Radioactivity

The activity of a radioisotope is a rate of decay described in the section Radioac-
tivity. The historical unit of activity is curie (𝐶𝑖). Curie is defined as the activity
(disintegration per second) of 1 gram of pure 226𝑅𝑎. Its value is evaluated as

1𝐶𝑖 = 3.7× 1010𝑠−1 (1.16)

For laboratory use, the units millicurie (𝑚𝐶𝑖) and microcurie (𝜇𝐶𝑖) are more
suitable.

At the General Conference of Weights and Measures (GCPM) in 1975, curie the
standard unit for activity was replaced by becquerel (𝐵𝑞). Becquerel is defined as
one disintegration per second.

1𝐵𝑞 = 2.703× 10−11𝐶𝑖 (1.17)

The radiation source can also be expressed by luminosity 𝐿, which describes the
power of emitted radiation. Luminosity has units the watt (𝑊). The watt is defined
as the joule per second

𝑊 = 𝐽 · 𝑠−1 = 𝑘𝑔 ·𝑚2 · 𝑠−3 (1.18)

and therefore, finding the power of the radiation source is necessary to know the
energy of the radiation carrier.

23

The power of the radiation source captured by the unit area is the intensity 𝐼 or
radiation flux [15].

𝐼 = 𝐿

4𝜋𝑟2 (1.19)

where 𝑟 is the distance from the radiation source. Unit of intensity 𝐼 is 𝑊 ·𝑚−2.
Similarly, as luminosity per area unit, the activity per area unit can be defined

as
𝐼𝑎 = 𝐺

𝐴𝑐

4𝜋𝑟2 (1.20)

where G (dimensionless) is a number of particles released from radionuclide per
one nuclear decay. Unit of 𝐼𝑎 is 𝑠−1 ·𝑚−2.

1.1.4 Dosimetry

Various kinds of radiation affect tissue (especially human tissue). See chapter Health
Risks. Sources of radiation are also naturally located in our environment. First,
Cosmic rays continuously impact the Earth and interact with Earth’s atmosphere
and create radioactive isotopes 14𝐶, Tritium 3𝐻 or 7𝐵𝑒. Next, radiation sources are
placed in the Earth’s crust. [17] Besides natural sources, there are extensive usages
of radiation in many fields.

Therefore was a need to create units to describe the properties and effects of radi-
ation on the tissue because the damage caused by radiation is not easily quantified.
The dosimetry was originally used to determine the integrated energy deposited to
a person working in a radiation environment. In general, dosimetry deals with a
dose and dose rate to refer to integrated energy and the energy deposited per unit
time.

In the damage detection of radiation plays a role in two essential aspects. First,
the damage depends on the amount of radiation absorbed by a material, and the
amount of radiation has a crucial effect when acute tissue damage appears. Second,
the stochastic effects do not depend on radiation intensity. The mutation of cells, one
of the stochastic effects, can cause damage when tissue absorbs even low radiation
levels.

Roentgen

Roentgen 𝑅 measures only radiation based on photons only (X-rays and gamma
radiation). Value of 1𝑅 is defined as 2.58×10−4 coulombs of a positive and negative
charge, which is caused by radiation in one kilogram of air. Roentgen is not used at
dosimetry because it is not applicable to all tissue.

24

Absorbed Dose

Absorbed dose is described as the amount of energy deposited to medium with unit
mass by ionizing radiation. The unit of the absorbed dose is Gray with the abbre-
viation 𝐺𝑦.

1𝐺𝑦 = 1𝐽 ·𝐾𝑔−1 (1.21)

The older and still used unit of the absorbed dose is rad which is equivalent to
0.01𝐺𝑦.

Equivalent Dose

The absorbed dose described above 1.1.4 cannot determine the biological effect of
radiation, and it only brings information about the quantity of energy absorbed by
a material. The absorbed dose does not differentiate types of radiation and deals
with all kinds of radiation equally.

The dosimetry focuses on safety, and therefore, equivalent doses characterize
radiation’s effect on tissue.

𝐻𝑇,𝑅 = 𝑤𝑅 ·𝐷𝑇,𝑅 (1.22)

The equivalent dose 𝐻𝑇,𝑅 caused by radiation type 𝑅 is gained as absorbed dose
𝐷𝑇,𝑅 multiplied by a radiation weighting factor 𝑤𝑅. The weighted factor is

𝑤𝑅 = 𝑄𝑅 ·𝑁𝑅, (1.23)

where 𝑄𝑅 is quality factor and 𝑁𝑅 is modified factor for the radiation 𝑅. 𝑁𝑅 is
one for external6 sources. The formula above 1.22 is only for one type of radiation.
For mixed radiation

𝐻𝑇 =
∑︁
𝑅

𝑤𝑅 ·𝐷𝑇,𝑅 (1.24)

Unit of the equivalent dose is the same as the absorbed dose 𝐽 · 𝐾𝑔−1, but for
distinguishing its specific name is sievert with symbol 𝑆𝑣.

Effective Dose

The relationship between the absorbed dose and the equivalent dose is similar to
the relationship between the equivalent dose and a effective dose. Equivalent dose
distinguish different radiation types for one tissue type, but the sensitivity of various
tissue types to the same kind of radiation is different. The effect of a different type
of radiation on various tissue is described by effective dose 𝐸 with an equation.

𝐸 = 𝑤𝑇 ·𝐻𝑇 , (1.25)
6Radiation comes from around the environment [18]

25

where 𝑤𝑇 is the tissue weighting factor, and 𝐻𝑇 is the equivalent dose in the tissue
𝑇 .

In the following table 1.1 are shown quality factor 𝑄𝑅 and tissue weighted factor
𝑤𝑇 .

Tab. 1.1: Examples of quality factor 𝑄𝑅 and tissue weighted factor 𝑤𝑇

Tab. 1.2: Quality factor 𝑄𝑅 for

Type of radiation 𝑄𝑅 [-]
𝛼 particles 20
𝛽 particles 1

X and gamma rays 1
Neutrons (various energy) 5-20

Tab. 1.3: Tissue weighted factor 𝑤𝑇

Tissue or organ 𝑄𝑅 [-]
Gonads 0.2

Colon, Lung, Stomach 0.12
Bladder, Breast, Liver 0.05

Skin, Bone surface 0.01

More information about dosimetry can be found in Physics & Engineering of Ra-
diation Detection [16]. From this book is inspired section Dosimetry unless otherwise
stated.

1.1.5 Health Risks

The radiation can interact with atoms (more information in [16]) as same as with
atoms witch are in all organism’s cells. The cell consists of various organelles, and
not of them has the same critical role in cell functioning. The most important are
the chromosomes which include DNA, and when the chromosomes are damaged, it
has the potential to cause wrong cell behavior. No matter how intense ionizing radi-
ation is (every intense ionizing radiation can cause damage) but damage occurrence
probability decreases with decreasing radiation. Acute exposure occurs when tissue
receives a high instantaneous dose in a short time. The amount of dose is generally
intended to 0.1𝐺𝑦 with time hours or a few days. The cells start to die when acute
exposure occurs. Final consequences for organisms depend on dose size.

• Dose > 2𝐺𝑦: hair loss or reddening skinn
• Dose > 5𝐺𝑦: visual impairment and cataract
• Dose > 25𝐺𝑦: deep skin necrosis
• Dose > 50𝐺𝑦: internal bleeding, death

When the dose is low, the cell can repair the damage caused by irradiation. Un-
fortunately, the repair mechanism may not work entirely correctly. Therefore after
irradiation, the cell starts to work abnormally. This abnormal behavior can develop

26

into cancer or genetic disorders due to excessive or incomprehensive division of dam-
aged cells. It is important to note that damage caused by low-level radiation does
not differ from damage caused by foreign chemicals or autoimmune disorders. [16]

1.1.6 Radiation Protection

In the previous section 1.1.5 are mentioned the health risks when tissue is exposed
to ionizing radiation. Radiation is beneficial in different fields, and it is essential
to remove hazards associated with radiation. One of this thesis aims to create
a simulated environment with a radiation source and sensors. The properties of
attenuation and shielding of radiation are used for the correct detection of radiation
that passes through various materials. In the following subsection are discussed
techniques to eliminate radiation.

Distance

The radiation be subject to inverse square law. This law says that radiation flux is
proportional to the square of the distance from the point source. The inverse square
law is described by following equation.

𝐼 ∝ 1
𝑟2 (1.26)

The distance from measurement to point source in the previous equation is de-
noted as 𝑟. This law is applicable for all types of radiation in a vacuum.

X-rays and gamma rays suffer a little absorption and dispersion in the air and,
therefore, are suitable in the real world. Besides, the radiation consisted of huge
particles such as 𝛼 particles or electrons cannot be approximated by inverse square
law. The massive particles are very reactive, and they lose their energy in the air
very fast.

Shielding

The shielding is the most effective way how to decrease radiation exposure. When
gamma or X rays pass through some material, they lose their intensity exponentially
with distance. The following equation describes intensity behavior in the material.

𝐼 = 𝐼0𝑒
−𝜇𝑥 (1.27)

𝐼 is the intensity of radiation (𝐼0 is the initial intensity), and 𝑥 is the thickness of
material in 𝑐𝑚, and 𝜇 is the attenuation coefficient of the material with unit 𝑐𝑚−1.
The attenuation coefficient depends on the material as well as on the energy of the
ionizing radiation.

27

1.2 ROS and ROS2
Robot Operating System (ROS) [19] is a free, open-source framework that is used in
the development of robotic systems. Many different approaches commonly used for
robotic systems include various components, such as sensors, control software, data
visualization, or actuators are provided. ROS middleware mediates communication
infrastructure between sensors and software and provides hardware abstraction.

The ROS1 was developed by Willow Garage [23], and Open Robotics [24] from
scratch in 2007. In recent years the amount of the ROS1 packages has grown ex-
ponentially [22]. "Today we see ROS used ... on wheeled robots of all sizes, legged
humanoids, industrial arms, outdoor ground vehicles (including self-driving cars),
aerial vehicles, surface vehicles, and more.[25]" The ROS1 was originally developed
for the academic research community, but the ROS1 expanded beyond the academic
sphere to a commercial area. [25]

ROS application is consists of independent nodes that contain program code
that performs the computing process. The communication model between two or
more nodes is publish/subscribe model.[28] Based on this model, the nodes exchange
data to each other via messages which are clustered to topics. The messages are
simple data structures that carry specialized information, such as odometry, sensors
data, images, and more. The nodes that receive (subscribe) some messages are
named a subscriber, and the node that sends (publish) messages is a publisher. The
programming language used in ROS1 and ROS27 is C++ and Python, and all ROS1
environments run on Ubuntu OS. [19] [21]

A communication system in ROS1 is based on TCP and UDP sockets. Option-
ally, ROS1 provides nodelet [27] to use optimized, intra-process data transport. In
ROS1, a master whose function is similar to a server function collects and manages
information about all exchanged topics. Before starting to exchange data, nodes
(subscriber and publisher) must interact (XML/Remote Procedure Call) with the
master. After this procedure is enabled to move messages between nodes (peer-to-
peer). ROS1 is not able to fulfill real-time requirements and cannot guarantee a
fault-tolerance process. [28]

ROS2 is an improved and redesigned version of ROS1 which preserves time-
proven methods and adds new use cases. It works above more commonly used
operating systems such as Linux, Windows, and macOS. Unlike ROS1, ROS2 sup-
port real-time application and therefore support the real-time OS. Both systems are
similar from the user’s point of view. ROS2 also include nodes, topic, and messages,
but it mainly differs in the middleware layer, as the picture below shows 1.5a.

7improvement of ROS1

28

(a) ROS1 and ROS2 architecture. (b) Data-centric publish-subscribe
model

Fig. 1.5: In the left figure is shown the architecture of ROS1 and ROS2 in terms
of their layers. The figure on the right is the detail of the Abstract DDS Layer of
ROS2 middleware. [28]

An aforementioned communication system in ROS1 is based on custom protocols
TCPROS. For ROS2 is used existing middleware solution Data Distribution Service
(DDS). There are different implementations of DDS that each has their own pros
and cons (supported platform, programming language, performance, memory usage,
and more). Therefore ROS2 supports many different implementations of DDS, and
each implementation has a specific API. ROS2 provides Abstract DDS Layer that
defines an interface between ROS and specific implementation.[26]

The data transfer in DDS is based on Data-Centric Publish-Subscribe model
(DCPS). This model creates a global data space, and all participants can access it.
Participants are called processes in DDS that can publish or subscribe data, same
as in the ROS node. [28]

The DCPS model is shown in Figure 1.5b.
• Publisher : Is responsible for data issuance
• Subscriber : Is responsible for receiving data and making it available
• Data Writer : Must publish data through the publisher
• Data Reader : Receive, access data for the subscriber

Each data transmission is subject to the Quality of Services (QoS) policy such as
History, Depth, Reliability, and Durability [28].

1.3 Robotic Simulators
Shannon defined the simulation in 1975 as "the process of designing a model of a
real system and conducting experiments with this model for the purpose either of

29

understanding the behavior of the system or of evaluating various strategies (within
the limits imposed by a criterion or set of criteria) for the operation of the system".
[29]

Simulation plays an important role in robotics research. Nowadays, it is used for
design, development, verification, validation, testing, and proving complex robotics
systems’ theoretical methods. Todays’s robotics systems are consist of complex
hardware devices and numerous sensors. Especially mobile robots are used in dif-
ferent tasks in various environments with multiple and changing conditions. All
of these aspects make the development and testing of robots very expensive. The
simulation allows developers or groups of developers to work with various robots or
sensors without the risk of damage. Using well-developed simulations such as en-
vironment, sensors, actuators, and others reduces developing and testing time and
makes it much easier and safer. [30] [1]

A robotics simulator is defined according to Jack Collins, Shelvin Chand et al.
[31] as end-user software that includes the following features.

1. Physics engine
2. Collision detection and friction models
3. Graphical User Interface
4. Possibility to import scenes and meshes
5. API for programming language
6. Models of joints, actuators, and sensors
The 2020 survey [32] showed that approximately 72% of organizations use robotic

simulators for their activities, which is shown in the figure 1.6. Furthermore, types
of robotic simulators and their popularity which are commonly used [31] are shown
in the figure 1.7.

Fig. 1.6: A reason that participant organizations gave for using robotic simulation.
[32]

30

Fig. 1.7: Types of commonly used robotic simulators according to a number of
citations on Google Scholar between 2016 to 2020. [31]

1.3.1 Robotic Simulators Overview

The Robotic Simulators sections described what a robotic simulator is and what
types of simulators are used. The last figure 1.7 mentions the citation counts of
reviewed simulators in the range of years 2016-2020. The most commonly used are
Gazebo, MuJoCo, CoppeliaSim, CARLA, Webots, and AirSim descending in order.
This chapter describes the suitability of using these simulators according to the
diverse robotics areas.

Mobile Ground Robotics

One of the most extensively studied domains in robotics is mobile ground vehicles.
The most popular simulator is Gazebo, and it is famous for the simulation of mobile
ground robots. The Gazebo can cover all types of mobile robots mentioned earlier.
The Robot Operating System simplifies creating control software and contributes
to Gazebo’s popularity. As well as the next rigid body simulator CoppeliaSim [34]
(formerly called V-Rep), the Gazebo provides many commonly used sensors and
allows to simulates multiple robots in real-time. Another popular alternative is
Webots [37]. [31]

The specialized simulator of the mobile ground robot is CARLA [36], which
focuses on simulation in a self-driving car, and its features are aligned with this
goal. [31]

31

Manipulators

All of the aforementioned simulators except CARLA are suitable for creating robot
manipulators. The manipulation in robotics is a large and diverse field. It deals with
the physical design of arms and grippers, algorithms for planning and control, etc.
Therefore, the second most cited robotic simulator from the figure 1.7 is MuJoCo
[35]. The simulator MuJoCo stands out in contact stability. [31]

Aerial Robotics

Unmanned aerial vehicles (AUVs) are the most popular field in aerial robotics re-
search. The UAV simulators simulate the complex real-world environment, including
turbulence, air density, clouds, and other fluid properties. The last of a mentioned
group of six is Microsoft’s AirSim [33]. It is based on an Unreal engine and supports
many UAV sensors, i.e., magnetometers, barometers, GPS, etc. The disadvantage
of AirSim is computing power consumption against other simulators. [31]

Gazebo, Webots, and CoppeliaSim are also suitable to simulate aerodynamic
properties. In Gazebo is implemented physical phenomena lift and drag in Lift-
DrugPlugin [6] and also support hardware controllers and Ardupilot and PX4 [31].

1.3.2 Gazebo

Gazebo8 is an open-source robotic simulator developed by Open Source Robotics
Foundation9. Well-designed robotic simulators accelerate the development time pri-
marily test developed algorithms, train and testing Artificial Intelligent systems.
One of the most significant advantages of simulator usage is that the Gazebo pro-
vides realistic scenarios based on a real physical engine. [6]

The Gazebo has become the most popular robotic simulator (see 1.3.1) because
it provides many options to simulate indoor and outdoor three dimensions envi-
ronments. It also simulates many sensors which are protected before the damage
unlike the real-world experiments. It brings a wide variety of robots, objects, and
simulation models10 due to the large Gazebo community.

Gazebo application is split into two main parts. It is divided into gzserver
which executes the physics update-loop and sensor data generation, and gzclient
which runs graphical users interface with the possibility of setting and controls
simulation properties and run other applications embedded in a Gazebo. Gzserver
is independent on gzclient and can be launched without gzclient. It also supports
remote launch on cloud computers without user interfaces. Gazebo

8http://gazebosim.org
9https://www.openrobotics.org

10https://app.ignitionrobotics.org/fuel/models

32

http://gazebosim.org
https://www.openrobotics.org
https://app.ignitionrobotics.org/fuel/models

Besides gzclient and gzserver separation is the Gazebo architecture distributed
between separate libraries. [6]

• Gazebo Master
• Communication Library
• Physics Library
• Rendering Library
• Sensor Generation
• GUI
• Plugins
Gazebo handles four Physics Library in Gazebo Master. Physics Library pro-

vides simulation of components, including rigid bodies, collision shapes, joints, and
their constraints, frictions, slipping. Each Physics Library (Open Dynamic En-
gine - ODE11, Bullet12, Simbody13, Dynamic Animation and Robotics Toolkit -
DART14)has its own properties and can be set in World Files.

Another division of the Gazebo components does not deal with internal structure
but is essential for using the Gazebo simulator. When the Gazebo starts, it can be
attached World File (or implicitly is load world) defines the properties and object
layout.´Models can be spawned from Models Files to world loaded by the Gazebo.
Properties or behavior can be affected by Plugins.

World Files

World files describe all simulation elements such as models, robots, objects, light,
gravity, wind, etc. This file has .world extension, and a file is described in XML
Simulation Description Format, SDFormat, or SDF [38].

The following code shows the basic structure of the world file.

<?xml version =’1.0 ’?>
<sdf version =’1.9 ’>

<world name=’default ’>
<physics type="ode"> ... </ physics >

<scene > ... </scene >

<model name="box"> ... </model >

<model name="sphere"> ... </model >

11http://ode.org
12https://pybullet.org/wordpress
13https://simtk.org/projects/simbody
14http://dartsim.github.io

33

http://ode.org
https://pybullet.org/wordpress
https://simtk.org/projects/simbody
http://dartsim.github.io

<light name=" spotlight "> ... </light >

<spherical_coordinates > ... </ spherical_coordinates >
</world >

</sdf >

The code, as mentioned earlier, is self-explanatory, and the complete documenta-
tion can be found on SDFormat website15. This SDFormat is used for the description
of Model Files 1.3.2

Description complex indoor environment consisting of many walls, doors, and
objects can be tedious and error challenging. In the Gazebo’s graphical user inter-
faces is inbuild functionality called Building Editor with the help of which can be
created complex indoor multi-floors building.

Model Files

Model files are like world files with the difference in SDF files must be only one
following element. It is recommended to reuse the code. [6]

<model name=" default ">
...

</model >

As the building editor in a complex world file generation is a build-in functionality
for model creating called the Model Editor, which is launched from the Gazebo.

Every model in SDFormat is consisted of Links, Joints, and Plugins according
to the following structure.

<model name="box">
<pose >x y z r p y</pose >
<static >false </static >

<link name="link">
<inertial > ... </ inertial >

<collision name=" my_collision "> ... </ collision >

<visual name=" my_visual "> ... </visual >
</link >

15http://sdformat.org/spec

34

http://sdformat.org/spec

<joint type=" revolute " name=" my_joint "> ... </joint >

<plugin filename =" libMyPlugin .so" name=" my_plugin "/>

</model >

Inertia element describes dynamic properties, mass, and rotational inertia ma-
trix. Every link has its own Collision and Visual properties. These properties are
separated due to maintaining simplicity for the physical library and saving the com-
putation power.

The SDF model file is significantly longer with increasing robot complexity be-
cause it is essential to write similar code for similar links. For example, four links
for four wheels of the robot. The Unified Robot Description Format (URDF) [39] is
also an XML format used in ROS, allowing adding parameters to XML files, reusing
code with XACRO (XML macro) format, and reducing the number of line lines in
the description file.

Plugin

Plugins provide a convenient mechanism to affect and control almost arbitrary be-
havior of Gazebo and simulated objects. For affecting different components of the
Gazebo, there are six different types of Gazebo plugins.

1. World
2. Model
3. Sensor
4. System
5. Visual
6. GUI
The world, model, and sensor plugins are attached and affect (provide some

functionality) relevant parts of the object.[6] For example, the world plugin can add
wind, change the atmosphere, light properties, etc. Often used is the Sensor plugin,
which can inherit from different types of sensors and change their properties or use
similarities and create a new type of sensors.

1.3.3 Ignition Gazebo

"Simulate before you build"[40] is the motto of Ignition Robotics. Ignition Gazebo,
part of the Ignition Robotics project, is the same as the Gazebo open-source robotic
simulator, which brings a fresh approach to simulation with a complex toolbox,
libraries, and cloud services. Ignition will be the replacement from the Gazebo

35

simulator, and it’s directly derived from it. Ignition Gazebo is focused on high-
performance dynamics simulation based on Ignition Physics16, advanced 3D graph-
ics, sensors, and noise models, plugins, communication, etc. [40]

The Ignition Gazebo is encompassed from Ignitions Libraries. The simulator is
divided into two independent launched processes. A backend server is responsible for
the "simulation loop" which computes physics, recording logs, receiving commands,
etc. A frontend process primarily stands on the Graphical User Interface (GUI)
and rendering scene. Communication between the backend and frontend server is
based on Ignition Transport library17. Ignition Gazebo is consists of several plugins
(libraries). The plugins are modular. Therefore, these plugins are independent of
each other components and can be loaded at runtime with some exceptions. One
of the exceptions is Ignition Common18 which provides common functionality to all
plugins. Some of the plugins run default when starting the Ignition Gazebo, but all
are optional, and the user can remove it or add other plugins. [40]

It is essential to communicate between ROS (both ROS or ROS2) and the simu-
lator to develop the robotic system. Similarly, as gazebo_ros_pkgs19 in the Gazebo,
the ros_ign_bridge20 package enables the exchange of messages between ROS and
Ignition Transport.

16https://github.com/ignitionrobotics/ign-physics
17https://ignitionrobotics.org/libs/transport
18https://ignitionrobotics.org/libs/common
19https://github.com/ros-simulation/gazebo_ros_pkgs
20https://github.com/ignitionrobotics/ros_ign

36

https://github.com/ignitionrobotics/ign-physics
https://ignitionrobotics.org/libs/transport
https://ignitionrobotics.org/libs/common
https://github.com/ros-simulation/gazebo_ros_pkgs
https://github.com/ignitionrobotics/ros_ign

2 Environment
This thesis has proposed some approaches to creating a world environment essential
for good approximation for future real-world experiments. The simulated world can
be made from artificial solid objects, laser scans or grayscale images, DEMs, and 3D
point clouds. This section provides an overview and performance evaluation of the
simulated world.

The performance1 and CPU load of the Gazebo affects two factors with different
properties. A face’s - the surface between three or more edges - number and number
of robots. The more restrictive factor on the Gazebo performance is the number
of robots in multi-robot scenarios depicted in the following experiment. This ex-
periment was performed with hardware: Intel(R) Core(TM) i7-5500U CPU @2.4
GHz 2 Cores (4 Logical) 8 GB RAM Intel(R) HD Graphics 5500 NVIDIA GeForce
940M and software: Gazebo 11, ROS2 Foxy, Ubuntu 20.04 LTS. Into the Gazebo
was gradually spawned from zero to four Orpheus X4 robot to the empty world -
default world - and recorded the real-time factor (RTF), CPU load, and memory
usage of gzserver. RTF is a ratio of simulation time to real-time.

The following diagram shows the rapid RTF decreasing according to the number
of robots in simulation. This constraining allows spawning to the simulation only a
small number of movable robots (in this case is Orpheus X4).

Real-Time Factor of an Empty World

0.99

0.75

0.51

0.34

0.21

0 1 2 3 4

Number of robots [-]

0

0.2

0.4

0.6

0.8

1

R
T

F
 [
-]

Fig. 2.1: The Gazebo simulator’s Real-Time Factor (RTF) depends on the number
of spawned robots in the simulation.

The CPU load and memory usage of gzserver were recorded after spawning the
robot into the simulation. The relationship between CPU usage and the number of

1Performance of the Gazebo is RTF in this case

37

robots in the simulator represents the graph 2.2a. CPU load doesn’t grow so fast as
the memory usage of gzserver. More robots were not spawned because RTF dropped
very low. Dropped RTF is why CPU loads were gone to the final value and did not
consume more computer power.

CPU Gzserver Load in an Empty World

21.7

74.4

99.1

109.8
115.8

0 1 2 3 4

Number of robots [-]

0

20

40

60

80

100

120

140

C
P

U
 l
o

a
d

 [
%

]

(a) CPU load of gzserver depending on
number of robots

Memory Gzserver Usage in an Empty World

2.6

11.2

19.4

27.8

36.2

0 1 2 3 4

Number of robots [-]

0

5

10

15

20

25

30

35

40

M
e

m
o

ry
 u

s
a

g
e

[%
]

Data

Fitted data

Fitted curve

(b) Memory usage of gzserver depending on
number of robots

Fig. 2.2: On the left figure is the CPU load of gzserver and the right’s picture shows
the memory usage depending on the number of robots in the simulation

CPU load of an Empty World per unit RTF

21.93

98.91

194.07

327.73

545.02

0 1 2 3 4

Number of robots [-]

0

100

200

300

400

500

C
P

U
/R

T
F

 [
%

]

Data

Fitted data

Fitted curve

Fig. 2.3: The evaluation of the Gazebo simulator according the CPU load per unit
RTF. The data represents the estimation CPU load (100% = 100% use of one core)
when RTF equals one

The memory usage of gzserver has the linear character that is described with
an equation 𝑀(𝑘) = 2.68 + 8.38𝑘, where 𝑘 (non-negative integer) is the number of

38

robots, and 𝑀(𝑘) is memory usage in percentage. Every next robot consumes 8.38%
of memory. The graphs 2.2 show the aforementioned relationship.

The previous RTF graph 2.1 or RTF value in the Gazebo provides useful and
fast knowledge about the Gazebo performance, but it does not provide a reliable
relationship between computing requirements and the number of simulated robots,
same as CPU or memory usage. The following graph 2.3 shows the ratio of CPU
load to RTF. This dependency describes theoretical computing requirements for
simulation where simulation time is equal to real-time (RTF = 1).

The graph 2.3 shows that the computing requirements increase quadratically
depending on the number of simulated robots with the extrapolating equation
𝐶(𝑘) = 22.79𝑘2 + 36.33𝑘 + 28.12. 𝐶(𝑘) is the estimation of the computing power of
one core in percentage. 𝑘 (non-negative integer) is the number of robots.

2.1 Environment from Model Database
The file that describes a world has a .world extension, as the previous section Gazebo
describes. One of the ways to create an environment is to define or include the
static object inside the <model> ... </model> structure. The inserted object can
be acquired from the gazebo_models database [41], ignition database 2, or create
its own object in the Blender[42] or any other 3D computer graphics software. This
way is tedious and error challenging for a large number of inserted objects. A faster
approach with a less clear .world file is to use the drag and drop mechanism of the
Gazebo’s GUI. The following figure 2.4 shows an example of a thus created outdoor
environment with collapsed factory after some disaster for a robot rescue mission.
This environment had formed from the gazebo_model database [41].

Fig. 2.4: The example of the world created from an object from the gazebo_models
database.

2https://app.ignitionrobotics.org/fuel/models

39

https://app.ignitionrobotics.org/fuel/models

2.2 Generation of Random Environment
One of the most significant advantages of robotic simulators is the possibility of
creating a large number of different worlds and fast testing developed algorithms.
Creating an environment from the model database is a suitable solution for creating
one complex environment. Nevertheless, pathfinding, collision avoidance, SLAM,
search and rescue, and other robotics tasks need evaluation and verification accord-
ing to the varied environment.

Population of Models

The Gazebo simulator offers an excellent feature3 for inserting a population of iden-
tical models into the world. The population of models is defined in <population> ...
</population> tag in SDF format. Population tag includes information about the
position and orientation of the area in which the models are spawned, number, and
type of models in the defined area. This feature allows defining different properties
of the distribution model in the area, as the followings graphs show 2.5.

(a) Random distribution (b) Grid distribution

(c) Linear-x and linear-y
distribution

Fig. 2.5: Overview of distribution option in the population of models

The population model can be used for inserting requisition subject to the sim-
ulated world. For example, in this thesis, the population of models can randomly
add lost radiation sources4 to the world already created.

3http://gazebosim.org/tutorials?tut=model_population&cat=build_world
4or another point of interest

40

http://gazebosim.org/tutorials?tut=model_population&cat=build_world

2.3 Building Editor
The Gazebo offers an inbuild application called building editor5 for robotic tasks
inside the building. The building editor has a simple GUI divided into three parts.
In the first part, the type of component is selected to build. It offers walls, doors,
windows, stairs, and color and texture. The building is designed from this com-
ponent in a 2D window. In the 3D window, under the 2D window, is visualized
model from the 2D drawing editor. It is possible to design buildings with the floor
or import floor plans. The Gazebo building editor crashes when adding a door or
windows in the 2D editor for hardware and software configuration listed in previous
chapters. The other users of the Gazebo building editor have the same issue that is
solved on the official Gazebo GitHub page6.

2.4 Environment from Real Data
Creating an environment similar to real-world, robot models with proper physical
properties, and approaching of tests results in simulation and real-world is the aim of
the robotic simulator. The use of software without whatever changes in simulation
and real-world leads to faster and cheaper development. In these assumptions,
the natural idea is to use real data to set up a simulation, especially to create an
environment (world). Such an environment/world allows repeating the exact same
experiment in real-world. Comparing the results can find the differences and improve
the simulation or allow more to rely on simulation only. This section suggests some
options for creating/modeling the world based on real data.

Fig. 2.6: The difference between Digital Terrarian Model (DTM) and Digital Surface
Model (DSM) [43]

All of the worlds/environment above was built on a plane surface. For outdoor
UVG is appropriate to build a world with the terrain. One of the options is model’s

5http://gazebosim.org/tutorials?tut=building_editor&cat=build_world
6https://github.com/osrf/gazebo/issues/2276

41

http://gazebosim.org/tutorials?tut=building_editor&cat=build_world
https://github.com/osrf/gazebo/issues/2276

based. The surface can be modeled in 3D modeling software and imported as a static
object to the world file. The next option is to use Digital Elevation Model (DEM).
This DEM embodied the surfaces elevation of the Earth, the Moon, or other celestial
bodies. DEM is suitable for a large-scale outdoor environment. For simulation can
be used two types of DEM. Digital Surface Model (DSM) or Digital Terrain Model
(DTM). Differences between DSM and DTM are shown in the picture 2.6.

Point cloud as a method for representing data in 3D space is the next option to
create a real environment. Model created from the point cloud is loaded to Gazebo
as mesh COLLADA7 file (with extension .dae). This method can be utilized for
indoor and outdoor applications.

The following worlds are generated from data obtained from the mission de-
scribed in An automated heterogeneous robotic system for radiation surveys: Design
and field testing [44].

2.4.1 Digital Elevation Model

There are several ways to transform DEM into an importable model for the Gazebo.
DEM can be represented as a grayscale image that is needed for the automatic tool
(LIRS World Construction Tool or LIRS-WCT [3]) for Gazebo world construction
developed by Bulat Abbyasov, Roman Lavrenov et al. This tool generate Collada
format from a grayscale image that could be directly imported into the Gazebo
simulator [3]. LIRS-WCT tools can be used for creating the terrain model or recon-
struction 2D occupancy grid (or simply handmade occupancy grid), as shown in the
following example 2.7.

(a) The grayscale pattern
for LIRS-WCT

(b) Solid Collada model output from
LIRS-WCT

Fig. 2.7: Process of creating a model for the Gazebo simulator using LIRS-WCT.
An occupancy map on the left where a black pixel represents occupied cells and
white free cells. An output model is shown in the Gazebo.

7based on XML same as SDF

42

Another tool (Gazebo_heightmap_preparation) to transfer occupancy maps to
the Gazebo world is described in the article: "Tool for 3D Gazebo map construc-
tion from arbitrary images and laser scans [2]". LIRS-WCT has significantly better
performance than Gazebo_heightmap_preparation [3].

Following tools can be used to create a 3D terrain model is with the help of
QGIS[45] software and plugin DEMto3D or using the Gazebo’s8 <heightmap> ...
</heightmap> tag with GDAL libraries9.

(a) The world create from DEM (b) The world created from point cloud

Fig. 2.8: On the picture is shown two types of environment. On the top is a model
from DEM and on the lower picture is a world created from a point cloud

In this example, the model in the picture 2.8a has many artifacts (cone or im-
passable bridge) that non correspond with reality caused by trees or climbing walls.
This problem solves creating a model from a point cloud.

2.4.2 Point Cloud

This section describes the process of making a model/mesh from the point cloud
consisting of at least two steps. For these steps are used CloudCompare[46], Meshlab
[47], and/or Blender[42]. Before making a mesh (one step) is necessary to preprocess
data from the point cloud. After preprocessing and creating a mesh is optional to
extract and apply texture.

Point cloud preparation

A point cloud has a commonly wide range of points number depending primarily on
the size of the displayed object. The 3D scan can consist of millions to hundreds of
millions of points. Such point cloud is too dense, and therefore, it would need large

8http://gazebosim.org/tutorials?tut=dem&cat=build_world
9https://gdal.org/

43

http://gazebosim.org/tutorials?tut=dem&cat=build_world
https://gdal.org/

computing, memory, and time resources. It is appropriate to reduce the point cloud
with these assumptions.

Original point cloud has over 29000000 points spaced on the area with size
200𝑚 × 170𝑚, approximately. To view and adjust point clouds is using a great
tool, CloudCompare[46]. With this tool, point cloud reduction is performed with
the inbuild Subsample10 function. The Sumbsample creates a new subsampled/re-
ducted point cloud, a subset of the original data. Subsampling can be performed
with random, spatial, and octree11 methods. The random method defines a final
number of points, the spatial defines the minimum distance between two points,
and the last octree method selects the level of subdivisions. For this thesis, the
spatial method was selected with easily imaginable results. The value was set to
0.1 (CloudCopare does not use units. Units are inherited from an original point
cloud. It is called implicit units), and the number of points was reduced to 2000000
approximately. Next point reduction can be made with filters1213 or manually re-
move visible artifacts, for example, trees without tree trunks. The point reduction
is shown in the following figure 2.9.

(a) The world create from DEM (b) The world created from point cloud

Fig. 2.9: An example of point cloud reduction. The left figure embodied the original
point cloud with over 29 million points, and on the right is a reduced point cloud
with the same point size.

After reduction and/or filtering, a point cloud is about 5% to 10% of the orig-
inal point cloud. Nevertheless, these points do not have any information about a
local surface. The substep in point cloud preparation is computing normals that
estimate a local surface and orientation represented by points and their neighbors.
The options in tool Compute normals14 are the neighbors and orientation. For the

10https://www.cloudcompare.org/doc/wiki/index.php?title=Edit%5CSubsample
11https://en.wikipedia.org/wiki/Octree
12https://www.cloudcompare.org/doc/wiki/index.php?title=Noise_filter
13https://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter
14https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5CCompute

44

https://www.cloudcompare.org/doc/wiki/index.php?title=Edit%5CSubsample
https://en.wikipedia.org/wiki/Octree
https://www.cloudcompare.org/doc/wiki/index.php?title=Noise_filter
https://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter
https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5CCompute

neighbor is selected its number. The more points used for computing normals gener-
ate smoother and more consistent normals. Calculation time is, therefore, naturally
longer. Orientation of normals can be computed with Minimum Spanning Tree15 or
can be preferred certain orientation (this example, it is +Z axis).

Create a Mesh

After the normals are computed, it is possible to create a mesh model. The normals
must be clear and consistent for a good mesh reconstruction from the point cloud.
This step uses the plugin PoissonRecon, commonly used for closed 3D shapes, and
therefore, the PoissonRecon extends the original output mesh. Output density as
SF16 (scalar function) can be easier used to remove this redundant mesh from the
model on picture 2.10a. The sparse spatial density is shown with blue color. For
removing this redundant mesh is used tool Filter by Value17. Boundary values for
this function is acquired just from the scalar function 2.10.

(a) Before filter by scalar value (b) After filter by scalar value

Fig. 2.10

15https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5COrient_
Normals_With_Minimum_Spanning_Tree

16https://www.cloudcompare.org/doc/wiki/index.php?title=Poisson_Surface_
Reconstruction_(plugin)

17https://www.cloudcompare.org/doc/wiki/index.php?title=Scalar_fields%5CFilter_
by_Value

45

https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5COrient_Normals_With_Minimum_Spanning_Tree
https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5COrient_Normals_With_Minimum_Spanning_Tree
https://www.cloudcompare.org/doc/wiki/index.php?title=Poisson_Surface_Reconstruction_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php?title=Poisson_Surface_Reconstruction_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php?title=Scalar_fields%5CFilter_by_Value
https://www.cloudcompare.org/doc/wiki/index.php?title=Scalar_fields%5CFilter_by_Value

3 Robot Models
In previous chapters 2, some options were introduced on how to build and simulate
robot environments. Both outdoor and indoor environments were mentioned, as well
as the creating environment from real sensor data. They also outlined the Gazebo
simulator performance statistics, limiting the number of simulated robots.

This chapter dealt with the mobile robot model used in this work for complete
radiation search tasks. First, the creation of a physical robot model in the simulator
is described. The kinematics and dynamics are described for such a model. Dis-
sipative forces are discussed based on the physical properties affecting the model’s
behavior in the simulator. To complete comprehensive robotics tasks is necessary
to combine many processes, ensuring robot localization, control robot motion, tra-
jectory generation, path following, and more. For complete control motion, robot
models are derived and compared with simulated data.

3.1 Orpheus X4
The motion of the mobile robots is a result of the interaction of a wheel and a
ground. According to wheel slippage, mobile robots can be divided into two types.
[52]

1. Robots do not occur sliding (or minimalizing sliding) during a motion
2. Robots it’s a feature of the movement is sliding
Robots belonging to the first category typically work in indoor environments

with a flat floor. The second category usually includes more than two-wheeled and
non-steered robots that can move in rough outdoor terrain. The four wheels mobile
robot Orpheus X4 3.1 was chosen for radiation search tasks in this thesis. The four-
wheeled mobile robot was selected for its mechanical robustness due to the lack of
a steering system and good maneuverability.

Fig. 3.1: Four-wheel Orpheus X4 robot for work in inaccessible or dangerous areas
(http://cafr.cz/orpheus---x4.html)

46

http://cafr.cz/orpheus---x4.html

3.2 Robot Model in Gazebo
Simulators in robotics research have many benefits in the form of acceleration and
cheaper development, easy to perform experiments, protecting physical damages,
etc., as shown in the Robotic Simulators Overview chapter about simulators. This
subsection 3.2 describes the process of making a robot model in the Gazebo simulator
in more detail and will be mentioned different methods of describing the robot and
some crucial physical properties of links and joints (basic building elements).

3.2.1 Methods for Defining Models

There are three main ways to build (define) and simulate robots or other models in
the Gazebo simulator. The first fundamental approach is to define the robot model
via SDFormat 1.3.2. Using SDFormat is suitable for defining elementary physical
objects, including one or two links. Otherwise, the output file describing the robot is
long and confusing because of the necessity to redefine similar links. For example, the
wheel with the same physical properties must be defined four times instead of using
macro and reusing the code. Unified Robot Description Format1 (URDF) allows
using and clearing up of the description file with XML macro (Xacro). Reusing the
code with Xacro is fulfilled with the following code structure.

<xacro:macro name="wheel" params="prefix ...">
...

</ xacro:macro >

Between these two tags are defined robots’ links, for example, the wheel.

<xacro:wheel prefix=" left_wheel " ... />
<xacro:wheel prefix=" right_wheel " ... />

The URDF description is inserted into the appropriate place from the macro by
calling the macro.

<xacro:arg name=" simulated " default ="true" />
<xacro:property name=" wheel_radius " value="0.19"/>
<xacro:property name=" wheel_width " value="0.055"/>

XML also supports the variable. Defining constant in one place brings an obvious
advantage.

URDF is also an XML file format, like SDF. However, proper simulation is needed
to add some simulation-specific tags 3.2.2, defining the suitable physical properties
for simulation, see next section. The last approach is to use drag and drop build-in

1http://wiki.ros.org/urdf

47

http://wiki.ros.org/urdf

Gazebo function Model Editor, which generates ’unapplicable’ code for the human,
which is not recommended to modify manually.

3.2.2 Physical Properties

The object behavior is dependent on physical properties that can be managed in a
few types of Physics Library (dart, simbody, bullet, ode) that can be chosen in the
world SDF description file. Some general settings can be adjusted in the world SDF
file, such as real-time factor and max step size. These settings affected the behavior
of the method of calculating, but this chapter will be mentioned some interesting
properties affecting mobile robot behavior directly.

The URDF is the best practice to define robot properties. For accurate simula-
tion, the URDF file must fulfill one requirement. Each robot’s link must contain an
inertia tag. Together with collision properties, the inertia tags (all robot links) de-
scribe the robot’s dimensions, mass, weight distribution 3.2, and moment of inertia
tensor. All of these properties can be easily gained from an actual robot structure,
and they do not change during the experiments in most cases.

(a) Front view (b) Side view

Fig. 3.2: The robot’s center of mass

In addition to basic physical properties, the Gazebo allows defining optional
parameters in <gazebo> tags for every joint, link, and whole model. One of the
most attractive properties2 are mentioned in the following division.

• Model
– static - Sets the mobility and immobility of the object

• Links
– maxVel - maximum correction velocity when contacts
– minDepth - minimum depth before maxVel is applied
– mu1 - friction coefficient in fdir1 direction
– mu2 - friction coefficient iin the direction perpendicular to fdir1

2http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros

48

http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros

– fdir1 - direction
– maxContacts - maximum allowable number of contacts between two links

• Joints
– dynamics

∗ friction - define static friction force of joint in 𝑁 or 𝑁𝑚

∗ damping - define damping force in 𝑁𝑠/𝑟𝑎𝑑 or 𝑁𝑚𝑠/𝑟𝑎𝑑

– limit

(a) minDepth = 0.1m (b) minDepth = 0.001m

Fig. 3.3: Parameter minDepth and its visualization in Gazebo

The properties maxVel and minDepth 3.3 work together and affect the robot’s
or model’s bounciness and stickiness. Values are not intuitive and determinable,
unlike weights, etc. Their setting is an iterative process. It is appropriate to set the
default3 value on minDepth to 0.002𝑚 and maxVel to 10𝑚𝑠−1. After performing the
experiment and evaluating the model’s behavior is suitable to change the minDepth
and maxVel values. The following graph 3.5 shows the experiment’s result when the
robot was spawned to Gazebo from one meter above the ground at different values
of minDepth and constant value of maxVel. Increasing minDepth is increasing
stickiness and decreasing bounciness.

(a) maxContacts = 1 (b) maxContacts > 1

Fig. 3.4: Parameter maxContacts and its visualization in Gazebo

3Default value for settings in this thesis. This does not default values in Gazebo

49

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
 [
m

]

Dependence of minDepth Value on Bounciness

minDepth = 0.0000 m

minDepth = 0.0005 m

minDepth = 0.0010 m

minDepth = 0.0015 m

minDepth = 0.0020 m

minDepth = 0.0035 m

minDepth = 0.0040 m

Fig. 3.5: The influence minDepht parameter on bounciness of spawned robot. The
graph shows the height of robots depending on the time with different values of
minDepth.

-6 -4 -2 0 2 4 6 8 10 12 14 16

x [m]

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

y
 [
m

]

Dependence of maxContacts Value on Trajectory

maxContacts = 1

maxContacts > 1

Fig. 3.6: The wheels have only one contact between the wheel and the ground in the
left picture. The position of contact oscillates from one side of the wheel to another.
The robot has two contacts simultaneously, on the right image.

50

The maxContacts parameters play an important role in the contacts of complex
objects, especially when a collision is a mesh object. In this thesis, the maxContacts
parameter is set for the wheels. The picture 3.4 shows two cases setting of max-
Contacts parameter. The robot on the left image has set maxContatcs to one, and
on the right, maxContacts to five. There are a maximum of two contacts with the
ground so that the parameter can be set greater than 1 with the same result, in this
case. Because the wheel of the robot has the shape of an ordinary cylinder. The
robot’s behavior is shown on the graph 3.6 with different settings of maxContacts.

3.3 Motion Analysis
Knowing robot kinematics is essential to understanding how the mechanical sys-
tem behaves. And kinematics is necessary to design control software also. One of
the features of knowing how robots move is the possibility to estimate the motion.
Motion estimation is an extremely challenging robotics task due to the necessity to
integrate wheels velocity loaded by inaccuracy. Dead reckoning, one of the meth-
ods to determine a robot’s position, is not suitable for four-wheeled robots, where
slippage is the basic property of the robot. Nevertheless, the equation describes
the four-wheel robot motion used to develop the software. The kinematics analysis
is the well-described issue, and this description is based on this [52] [53] [54] [55]
articles.

It is necessary to define some assumptions before describing kinematics equa-
tions.

1. Between ground and wheels are the only point contact
2. All wheels are always in connection with a surface
3. The wheels on the same side have the same rotation speed
4. The robot moves on a horizontal plane
5. The longitudinal slippage is neglected

Assumption 4. limits the movement only on the plane 3.7; therefore, the robot state
can be described as a position 𝐺�⃗� in the fixed global 𝑋𝑔𝑌𝑔𝑍𝑔 coordinate system {𝐺}.

𝐺�⃗� = (𝐺𝑋 𝐺𝑌 𝐺𝜃)𝑇 (3.1)

And as the robot velocity 𝐺 ˙⃗𝑞 in the coordinate system G and robot velocity 𝑅 ˙⃗𝑞
in the moving frame 𝑥𝑙𝑦𝑙𝑧𝑙 attached to the robot COM (Center of Mass) {𝑅}.

𝐺 ˙⃗𝑞 = (𝐺�̇� 𝐺�̇� 𝐺𝜃)𝑇 (3.2)

𝑅 ˙⃗𝑞 = (𝑅�̇� 𝑅�̇� 𝑅𝜃)𝑇 (3.3)

51

Fig. 3.7: Robot coordinates system of four-wheel mobile robot. [53]

Where �̇� and �̇� are robot COM velocity in frame 𝐺 (/odometry frame accord-
ing to Coordinate System) and 𝜃 is robot angular velocity according to 𝐺𝑧 axis
counterclockwise. See picture 3.7.

Velocities in coordination systems 𝐺 and 𝑅 are in the following relationship,

𝐺 ˙⃗𝑞 =𝐺 R𝑅 𝑅 ˙⃗𝑞 (3.4)

where rotation matrix 𝐺R𝑅 has the following form.

𝐺R𝑅 =

⎛⎜⎜⎝
𝑐𝑜𝑠(𝑅𝜃) −𝑠𝑖𝑛(𝑅𝜃) 0
𝑠𝑖𝑛(𝑅𝜃) 𝑐𝑜𝑠(𝑅𝜃) 0

0 0 1

⎞⎟⎟⎠ (3.5)

The equation 3.5 allows unlimited robot velocity in a lateral 𝑅�̇� direction. As-
suming that COM is the same as COG (Center of Geometry), the robot velocity 𝑅�̇�

in the lateral direction can be considered zero. The equation 3.4 can be simplified
to the following form.

𝐺 ˙⃗𝑞 =

⎛⎜⎜⎝
𝑐𝑜𝑠(𝑅𝜃) 0
𝑠𝑖𝑛(𝑅𝜃) 0

0 1

⎞⎟⎟⎠
⎛⎝𝑅�̇�

𝑅𝜃

⎞⎠ (3.6)

The motion of the mobile robot is based on an interaction between wheels and
the ground. Therefore it is necessary to obtain robot velocity from the angular
velocity of each wheel. From assumption 3) angular velocity, right and left wheels
are the same, respectively. Let denote 𝜔𝑟 and 𝜔𝑙 as an angular wheel. Parameter 𝑡

is the half span of the robot. From assumption 1. span is computed as the distance
between the centers of wheels.

52

Fig. 3.8: Robot wheels’ velocities [53]

The lateral velocities of wheels are generally nonzero 3.8 because the four-wheeled
mobile robot’s properties slip when changing its orientation. Wheels are tangent to
the path only when 𝑅𝜃 = 0 [53]. For simplicity is, according to [53] and [56], are
rotational velocities

�⃗�𝑤 =
⎛⎝𝜔𝑙

𝜔𝑟

⎞⎠ = 1
𝑟

⎛⎝𝑣𝑙

𝑣𝑟

⎞⎠ (3.7)

Where 𝑣𝑙 and 𝑣𝑟 are left and right longitudinal4 wheels velocities, respectively.
Effective rolling radius is denoted as 𝑟. The relationship between wheel velocities
and the robot’s velocity is shown in those articles [53] and [54].

⎛⎝𝑣𝑙

𝑣𝑟

⎞⎠ =
⎛⎝1 −𝑡

1 𝑡

⎞⎠⎛⎝𝑅�̇�
𝑅𝜃

⎞⎠ (3.8)

From equations 3.7 and 3.8, the following mutual relationship between the rota-
tional velocity �⃗�𝑤 and the robot velocity in frame 𝑅 is obtained.

⎛⎝𝑅�̇�
𝑅𝜃

⎞⎠ = 𝑟

⎛⎝𝜔𝑟+𝜔𝑙

2
𝜔𝑟−𝜔𝑙

2𝑐

⎞⎠ (3.9)

3.4 Dynamic Model
A dynamic model of a skid steering mobile robot (SSMR) plays an essential role
in control applications such as trajectory tracking problems. Sliding is an integral
part of robot motion, especially in changing its orientation; therefore, the dynamic

4The longitudinal velocity of each wheel correspond with 𝑅𝑥 axis

53

model highly affects the robot motion much more than the kinematics model and
knowing about wheel rolling. One of the goals of a robotics simulator is to simulate
a real system authentically. Knowledge of the model of the simulated robot is much
easier to set appropriate properties in the Gazebo simulator concerning real-world
experiments. Therefore in this section is derived the dynamic model of the four-
wheel SSMR with respect to the physical properties of the Gazebo model described
in the previous chapter. This section also discussed the resistive forces affecting
robot motion and model verification with Gazebo experiments. It is necessary to
define assumptions in advance at defining an equation of motion.

1. Motion is neglected at the y-axis.
2. Low movement speed (to 3𝑚𝑠−1 and 3𝑟𝑎𝑑𝑠−1)
3. Assumptions from Motion Analysis unless otherwise stated
The wheel and robot motion is based on control input torque 𝜏𝑖, which is in

following mutual relationship with forces 𝐹𝑖 acting on each wheel, see picture 3.9.

𝐹𝑖 = 𝜏𝑖

𝑟
(3.10)

According to assumption and minimalizing the longitudinal slippage, wheel torque
𝜏 is the same on both wheels on the left and the right side, respectively.

Fig. 3.9: Forces performing the wheel motion [53]

The equation of robot motion in a longitudinal direction can be expressed as
the following equation, where the mass of the robot is denoted as 𝑚, forces causing
the movement as 𝐹𝑙 and 𝐹𝑟. Resistive forces 𝐹𝑠𝑡𝑎𝑡𝑖𝑐, 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐, 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔 and 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 are
detailed described in section Dissipative Forces.

𝑚�̈� = 2𝐹𝑙 + 2𝐹𝑟 − 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 − 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 (3.11)

The acceleration is related to coordinate frame 𝑅, and the forces from the equa-
tion have the same orientation as the 𝑥𝑙 axis on the picture 3.7. The model was

54

realized in Matlab Simulink. The following picture 3.10 shows the schema of lon-
gitudinal acceleration and velocity, respectively. On the bottom of the scheme are
the outputs of right and left wheel resistive forces denoted in the future equation
deriving as 𝐹𝑅𝑅 and 𝐹𝑅𝐿.

Fig. 3.10: The picture illustrates the Simulink scheme of the longitudinal velocity
of the mobile robot in frame R. Inputs are forces on the left (Left Force) and right
(Right Force) wheel and the robot’s angular velocity (Theta’). Output is longitudi-
nal velocity symbolized as x’.

Change orientation is caused by torque, whose originators are left and right forces
reduced by resistive forces acting on half of the robot span 𝑡 . Resistive torque 𝑇𝑅,
which is described in the chapter Dissipative Forces, is caused by lateral sliding
friction.

𝐼Θ̈ = (2𝐹𝑟 − 𝐹𝑅𝑅)𝑡− (2𝐹𝑙 − 𝐹𝑅𝐿)𝑡− 𝑇𝑅 (3.12)

The Simulink wired schema is demonstrated in the picture 3.11. By joining
two schemas on pictures 3.10 and 3.11 through Resistive Force Left, Resistive Force
Right, and Theta’ is created a complete model which describes the robot behavior
via its longitudinal and angular velocity. The function Matlab Function fcn only
determines the size and orientation of the resistive torque. Resistive torque cannot
be greater than active torque.

55

Fig. 3.11: Simulink scheme of angular velocity

According to the equation 3.6, local velocities in frame R can be transformed
into global frame G. Subsequent integration of state 3.2 can get the robot’s position
and orientation.

3.4.1 Dissipative Forces

Equations 3.11 and 3.12 generally describe the longitudinal and angular robot mo-
tion. This section will specify all resistive forces used in the Dynamic Model and
complete the whole motion model. The model contains four resistive forces with a
dominant role in the Gazebo simulator, which can be easily transferred and tuned
to a physical mobile robot. The first two forces are related to joint and are set
in <gazebo> tags in URDF format. There are static resistive force (friction in
<gazebo> tags) and dynamic resistive force (damping in <gazebo> tags). The
other two forces are pretty natural, rolling and sliding resistive force.

Friction is a reactive force acting against a force that causes relative motion. The
friction force is caused by many different mechanisms, which rely on material, surface
proportions, the velocity of the bodies, lubrication, and contact geometry. Before
describing the individual forces, some basics properties of friction are mentioned.
Static friction depends only on the force’s size and is active when velocity is zero.

𝐹 =

⎧⎪⎨⎪⎩𝐹𝑒 𝑣 = 0 ∧ |𝐹𝑒 < 𝐹𝑠|

𝐹𝑠𝑠𝑔𝑛(𝐹𝑒) 𝑣 = 0 ∧ |𝐹𝑒| ≥ 𝐹𝑠

(3.13)

The body starts to move after external 𝐹𝑒 force overcoming the static friction
force 𝐹𝑠.

The next friction model is called Coulomb friction (sometimes called kinetic
friction), which only depends on the velocity direction but does not depend on

56

its size. The velocity 𝑣 direction is acquired from a math function called signum
𝑠𝑔𝑛(𝑥), which has a discontinuity at zero and cannot be differentiated. This problem
is solved in the followings paragraphs.

𝐹 = 𝑓𝑐𝐹𝑁𝑠𝑔𝑛(𝑣) (3.14)

𝑓𝑐 is the Coulomb friction coefficient, which usually depends on materials and is
lower than the static friction coefficient 𝑓𝑠.

Viscous friction depends linearly on velocity.

𝐹 = 𝑓𝑣𝐹𝑁𝑣 (3.15)

This type of friction occurs when there is some oil between the contact surface. [57]
Discontinuity function signum caused the impossibility of Jacobian linearization

around a near-zero operating point. Therefore, the arctan function approximates
the signum function (𝑘 ≫ 1), as shown in the following equation 3.16 and graph
3.12 with different k parameters.

𝑠𝑔𝑛(𝑥) = 2
𝜋

arctan(𝑘𝑥) (3.16)

The limit equation 3.17 gives the exact relationship.

𝑠𝑔𝑛(𝑥) = lim
𝑘→∞

2
𝜋

arctan(𝑘𝑥) (3.17)

-2 -1 1 2

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Approximation of Signum Function by Arctangent

k = {2, 5, 10, 50}

Signum Function

Arctangents

Fig. 3.12: The increasing 𝑘 (in the direction of the arrow) better approximates the
signum function by arctan.

57

The force 𝐹𝑛 from equations one and two is the normal force, which acts on the
body and protects the movement through obstacles. The originator of normal forces
is the gravitational force. The normal force acts on each wheel can be expressed
according to [54] [53] as

4∑︁
𝑛=1

𝐹𝑁𝑖 = 𝑚𝑔 (3.18)

Where 𝐹𝑁1 and 𝐹𝑁2 are expressed as equations 3.19 and 3.20 for the front and
back wheels. The parameters 𝑎 and 𝑏 are the distance from COM to the front wheel
and back wheel, respectively.

𝐹𝑁1 = 𝐹𝑁2 = 𝑏

𝑎 + 𝑏
𝑚𝑔 (3.19)

𝐹𝑁3 = 𝐹𝑁4 = 𝑎

𝑎 + 𝑏
𝑚𝑔 (3.20)

Joint Static Friction

The aforementioned joint properties (chapter Physical Properties)in the Gazebo
simulator allow setting friction value 𝑇𝑠, which determines the minimum torque
[𝑁𝑚] or force [𝑁] needed to move. The unit depends on the type of joint (prismatic,
revolute, continuous, etc.). The behavior of this resistive force is static friction
without zero-speed conditions. The static joint friction acts until the input force
is stopped. The joint or wheel connected with the joint start to move after input
force or torque overcomes the set value. The ideal action of this resistive force is
shown in the following graph 3.13 with a dashed line and its approximation with
the hyperbolic tangent function.

-F
st

F
st

Input Force [N]

-2F
st

2F
st

Resistive force [N]

Approximation of Joint Static Resistive Force by Hyperbolic Tangent

Joint Static Resistive Force

Hyperbolic Tangent

Fig. 3.13: The graph represents the approximation model of Static Joint Friction.
On the x-axis is the input force acting on one wheel. Doubled output resistive force
is due to applying the same input force on two wheels on each side.

58

The continuous function approximately represents the static joint friction force
of the left 𝐹𝑠𝑙 and the right 𝐹𝑠𝑟 side of the robot is shown below.

𝐹𝑠𝑙 = 2𝑇𝑠

𝑟
tanh(𝐹𝐿

𝑟

𝑇𝑠

)

𝐹𝑠𝑟 = 2𝑇𝑠

𝑟
tanh(𝐹𝑅

𝑟

𝑇𝑠

)
(3.21)

Doubled force 𝑇𝑠

𝑟
results from the third assumption - the wheels on each side

have the same velocity. Parameter 𝑟 is wheel radius.

Joint Dynamic Friction

Unlike static joint friction, dynamic joint friction 𝑇𝑑 acts on the joint depending on
the angular velocity. Its unit is 𝑁 𝑑

𝑟𝑎𝑑
or 𝑁𝑚 𝑠

𝑟𝑎𝑑
depending on the type of the joint,

same as in previous friction. The angular velocity of wheels can be determined from
equations 3.8 and knowledge about wheel radius 𝑟. The dynamic resistive forces are

𝐹𝑑𝑙 = 2𝑇𝑑

𝑟2 (�̇�− Θ̇)

𝐹𝑑𝑟 = 2𝑇𝑑

𝑟2 (�̇� + Θ̇)
(3.22)

The picture shows that the left and right forces are crucial to derive the equation
of robot angular motion. But knowing these forces is irrelevant for linear velocity,
and the equations above can be joined together.

𝐹𝑑 = 𝐹𝑑𝑟 + 𝐹𝑑𝑙 = 4𝑇𝑑𝑦

𝑟2 �̇� (3.23)

Rolling and Sliding

The robot’s motion is caused by rolling wheels on the surface. When the robot
moves, it can be two types of resistive forces. One of them occurs when the wheel
rotates, and no slipping happens. This resistive force caused by deformations and
inequality on the surface is called rolling. 5 Rolling friction can be expressed by
Coulomb friction or can be neglected because rolling friction is much smaller than
other resistance sources. The next not negligible resistive force is sliding friction.

The robot’s motion is caused by rolling wheels on the surface. When the robot
moves, it can happen two types of resistive forces. The rolling resistive force caused
by deformations and inequality occurs when the wheel rotates, and no slipping
happens. Rolling friction can be expressed by Coulomb friction or can be neglected

5The first assumption from the section 3.3 is omitted

59

because rolling friction is much smaller than other resistance sources. 6 The next,
not negligible resistive force is sliding friction. Sliding friction occurs when the
robot moves and the input torque (the force in the model) goes to zero, and the
wheel stops. The model of sliding friction can be modeled as viscous friction. The
assumption from the 3.3 section does not allow the wheel slippage. This assumption
is not considered because the Gazebo experiments demonstrate that wheel slippage
occurs when the force is stopped due to the realistic friction coefficient set in the
Gazebo model.

Both rolling resistance and sliding friction occur when the robot moves, and
the resulting resistive force must be distinguished. Two cases of friction can be
determined with the help of input force. The rolling friction is active when the
wheels move; therefore, it is active when the input force (torque) overcomes the static
joint. In other cases, when the robot has nonzero velocity and input force is less
than static friction force. Such a sharp transition between those states is unsuitable
for a simplified model. Therefore, a Gaussian function is used to transition from
one state to another. It is the use of similarity with part of fuzzy logic.

The following equations derive the properties of the resulting Gaussian functions,
which are used in the rolling and sliding friction model. Let’s have the simple
Gaussian function.

𝑓(𝑥) = 𝑒−𝑘𝑥2 (3.24)

Let the friction force set in the static friction model intersects the Gaussian
function at the inflection point. The second derivative of the equation 3.24 is as
follows.

𝑑2𝑓(𝑥)
𝑑𝑥2 = 4𝑘2𝑥2𝑒−𝑘𝑥2 − 2𝑘𝑒−𝑘𝑥2 (3.25)

The inflection point is the solution of the equation.

𝑑2𝑓(𝑥)
𝑑𝑥2 = 0

𝑥1,2 = ±

√︁
2 1

𝑘

2

(3.26)

The value 𝑘 depends on 𝐹𝑠𝑡 is equal as follows.

𝑘 = 1
2𝐹 2

𝑠𝑡

(3.27)

6The first assumption from the section 3.3 is omitted

60

The rolling resistance can be modeled as

𝐹𝑅𝑂 = 𝑓𝑅𝑂
𝑚𝑔

2
(︁
(1− 𝑒−𝑘𝐹 2

𝑅)𝑠𝑔𝑛(�̇� + 𝑡Θ̇) + (1− 𝑒−𝑘𝐹 2
𝐿)𝑠𝑔𝑛(�̇�− 𝑡Θ̇)

)︁
(3.28)

and sliding friction as

𝐹𝑆𝐿 = 𝑓𝑆𝐿
𝑚𝑔

2
(︁
𝑒−𝑘𝐹 2

𝑅(�̇� + 𝑡Θ̇) + 𝑒−𝑘𝐹 2
𝐿(�̇�− 𝑡Θ̇)

)︁
(3.29)

When𝑓𝑅𝑂 and𝑓𝑆𝐿 are rolling friction and sliding friction coefficients, respectively.

𝑓𝑅𝑂 ≪ 𝑓𝑆𝐿 (3.30)

All resistive forces from the equation 3.11 describing the linear velocity of the
robot are defined.

Resistive Sliding Torque

The different wheels’ velocities on each robot side cause the change orientation. This
effect is caused by torque 3.12 induced with different sizes of input force acting on
wheels according to the equation. This torque is reduced by resistive forces acting
on each wheel described in previous subsections, and sliding movement in a lateral
direction acts against torque also with considerable resistive torque 𝑇𝑟.

The Gazebo’s robot description does not clearly imply the resistance torque
properties. Therefore are two ways how to describe sliding resistive torque, which
are compared in the Comparing with Gazebo. The first resistance model does not
depend on the angular velocity, only on its signs.

𝑇𝑟 = 2𝑓𝑆𝐿𝑦𝑚𝑔
𝑎𝑏

𝑎 + 𝑏
𝑠𝑔𝑛(Θ̇) (3.31)

The second model depends on the angular velocity, where

𝑇𝑟 = 2𝑓𝑆𝐿𝑦𝑚𝑔
𝑎𝑏

𝑎 + 𝑏

(︁
Θ̇ + 𝑠𝑔𝑛(Θ̇)

)︁
(3.32)

𝑓𝑆𝐿𝑦 is the lateral sliding friction coefficient.

3.4.2 Comparing with Gazebo

This section compares the derived model in previous chapters 3.4 with measured
data from the Gazebo experiment. It was realized two types of experiments. The
first was made to check the correctness of the equation of motion 3.11 in a linear
direction. The second was made to check the angular velocity 3.12 correctness,

61

which, as opposed to experimenting with linear velocities, the robot was driven with
the opposite wheel’s torque.

Before continuing, the metrics for evaluating the robot model are mentioned.
For the two first experiments is used the RMSE (Root-mean-square error),

𝑅𝑀𝑆𝐸 = 1
𝑁2

⎯⎸⎸⎷ 𝑁∑︁
𝑘=1

(𝑦𝑘 − 𝑦𝑘)2 (3.33)

where 𝑁 denotes the number of measurements and R2 (R squared or the coefficient
of determination)

𝑅2 = 1−
∑︀

𝑘 (𝑦𝑘 − 𝑦𝑘)2∑︀
𝑘 (𝑦𝑘 − 𝑦𝑘)2 (3.34)

represents the amount of variation that model explains. 𝑅2 multiplied by 100 rep-
resents the amount in percentage.

In each experiment, the type was realized five experiments. The order of the
experiments and applied left and right wheels torque shows in the table 3.1 (it
shows the sum torque on both wheels on the side).

Tab. 3.1: Experiments overview

Order 1 2 3 4 5

Linear: Torque [Nm]
L 40 80 120 160 200
R 40 80 120 160 200

Angular: Torque [Nm]
L -60 -80 -100 -120 -140
R 60 80 100 120 140

The results of the first set of experiments show the following graphs 3.14. The
only visual evaluation shows a good match model with the simulator. The transient
response and steady-state value could correspond to the real process.

62

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
in

e
a
r

V
e
lo

c
it
y
 [
m

s
-1

]

Linear Velocities

v
gazebo

 LM = 100 and RM = 100

v
simulink

 LM = 100 and RM = 100

v
gazebo

 LM = 80 and RM = 80

v
simulink

 LM = 80 and RM = 80

v
gazebo

 LM = 60 and RM = 60

v
simulink

 LM = 60 and RM = 60

v
gazebo

 LM = 40 and RM = 40

v
simulink

 LM = 40 and RM = 40

v
gazebo

 LM = 20 and RM = 20

v
simulink

 LM = 20 and RM = 20

Fig. 3.14: The graph compares the model and robot motion in the Gazebo simulator

The model suitability confirms the 𝑅2 values, which are close to one, while the
𝑅𝑀𝑆𝐸 values are near to zero 3.15.

Coefficient of Determination

0.998
0.987

0.997 0.996
0.991

1 2 3 4 5

Experiments [-]

0.8

0.85

0.9

0.95

1

1.05

R
2

(a)

RMSE

0.004

0.032

0.024

0.041

0.079

1 2 3 4 5

Experiments [-]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
E

 [
m

s
- 1

]

(b)

Fig. 3.15: 𝑅2 and 𝑅𝑀𝑆𝐸 values for linear velocity

The previous section defines two types of resistance models affecting robot mo-
tion. The first depends on the resistance model that does not depend on angular
velocity size (Coulomb friction model), and the next resistance model depends on
the size of angular velocity (combination of Coulomb and viscous friction model).
Therefore the second experiment is compared with two models. The experiment
results are shown in pictures 3.16 and 3.18. From the first picture is seen that the
robot’s angular velocity is less correspondent with increasing velocity.

63

0 1 2 3 4 5 6 7

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

A
n

g
u

la
r

V
e

lo
c
it
y
 [

ra
d

s
-1

]

Robot Angular Velocity

gazebo
 LM = -70 and RM = 70

simulink
 LM = -70 and RM = 70

gazebo
 LM = -60 and RM = 60

simulink
 LM = -60 and RM = 60

gazebo
 LM = -50 and RM = 50

simulink
 LM = -50 and RM = 50

gazebo
 LM = -40 and RM = 40

simulink
 LM = -40 and RM = 40

gazebo
 LM = -30 and RM = 30

simulink
 LM = -30 and RM = 30

Fig. 3.16: The graph compares the model and angular robot motion in the Gazebo
simulator with Coulomb friction resistive model

The angular velocity oscillates during the motion, which is caused by changing
the center of rotation. A sharp edge of the wheel could cause this, but the thesis
does not deal with it anymore. The 𝑅2 values decrease with increasing velocity.
The 𝑅𝑀𝑆E values rapidly grow with increasing velocity. The result shows that the
resistive sliding torque depends (increases) on the angular velocity.

Coefficient of Determination

0.455

0.757
0.731

0.696

0.627

1 2 3 4 5

Experiments [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

(a)

RMSE

0.208

0.268

0.418

0.599

0.822

1 2 3 4 5

Experiments [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M

S
E

 [
ra

d
s

- 1
]

(b)

Fig. 3.17: 𝑅2 and 𝑅𝑀𝑆𝐸 values for angular velocity with Coulomb friction model

Enhanced Coulomb friction to a combination of viscous and Coulomb friction
model shows the following results 3.18. With this change, the angular velocity is

64

modeled correctly. The metrics 𝑅𝑀𝑆𝐸 and 𝑅2 from the picture 3.19 show significant
improvement, except for the 𝑅2 value with the smallest velocity. It is caused by high
variance due to inaccurate simulation of robot rotation while the average speed is
low, but the 𝑅𝑀𝑆𝐸 value confirms the correctness of the model resulting from the
picture 3.18.

0 1 2 3 4 5 6 7

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

A
n
g
u
la

r
V

e
lo

c
it
y
 [
ra

d
s

-1
]

Robot Angular Velocity

gazebo
 LM = -70 and RM = 70

simulink
 LM = -70 and RM = 70

gazebo
 LM = -60 and RM = 60

simulink
 LM = -60 and RM = 60

gazebo
 LM = -50 and RM = 50

simulink
 LM = -50 and RM = 50

gazebo
 LM = -40 and RM = 40

simulink
 LM = -40 and RM = 40

gazebo
 LM = -30 and RM = 30

simulink
 LM = -30 and RM = 30

Fig. 3.18: The graph compares the model and angular robot motion in the Gazebo
simulator with the enhanced friction model

Coefficient of Determination

0.385

0.805

0.928
0.962 0.976

1 2 3 4 5

Experiments [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

(a)

RMSE

0.221

0.24

0.216 0.213
0.207

1 2 3 4 5

Experiments [-]

0

0.05

0.1

0.15

0.2

0.25

R
M

S
E

 [
ra

d
s

- 1
]

(b)

Fig. 3.19: 𝑅2 and 𝑅𝑀𝑆𝐸 values for angular velocity with a combination of Coulomb
and viscous friction model

The model base on the equation is complex and includes too much detail, which
does not bring much information relative to the complexity of the model. The follow-

65

ing section deals with the controls trajectory tracking problem, and the complexity
model is solved. Two methods control methods are mentioned.

3.5 Controllers
The movement is a fundamental, essential property of mobile robots. The goal of
autonomous robotics is to fulfill some task missions. In the mission process, the
trajectory correct movement is a necessary assumption to complete the robotics
task without collision. Therefore this research deals with the trajectory tracking
problem, whose diagram is shown in the following figure 3.20.

Trajectory
Generator

Trajectory
Controller

Velocity
Controller

Dynamical
System

𝐹

Velocity
Estimator

Position
Estimator

𝑤𝑝𝑡 𝑇 𝑣 𝑠𝑡𝑎𝑡𝑒𝑠
−

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

−

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Fig. 3.20: The picture shows the diagram of the trajectory tracking problem solution.
Where 𝑤𝑝𝑡 is a set of waypoints, 𝑇 is generated trajectory, 𝑣 is desired robot velocity,
and action 𝐹 are forces acting on the robot’s wheels.

The diagram 3.20 of the trajectory tracking problem consists of five function-
alities or ROS nodes whose cooperation will ensure the movement of the robot on
the trajectories. The first application is not shown in the diagram 3.20 because this
Controllers does not deal with it. However, after achieving the waypoints, the Tra-
jectory Generator computes the trajectory with respect to kinematics and dynamics
restrictions or other metrics that solve different optimal aspects (time, distance,
smoothness, and more). The outer feedback loop generates the robot velocities,
ensuring the robot’s movement to the gained trajectory. The inner loop generates
the forces, which guarantees the robot moves with the proper velocity. The picture
shows 3.20 the Dynamical System described in the previous section, and Estimators
estimate the dynamical system states. Estimators are not considered in this thesis.

The following sections Trajectory Generator, Trajectory Controller, and Velocity
Controller describe the individual functionality mentioned above.

66

3.5.1 Trajectory Generator

The picture 3.21 augments the trajectory tracking diagram 3.20 in the previous
chapter. The waypoints can be obtained from a higher level using the robot or as a
control input.

Robotics
Task

Environments

Trajectory
Generator

User

𝐺𝑜𝑎𝑙𝑠 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

Fig. 3.21: The diagram of the trajectory generator in cooperation with inputs and
higher levels of planning

This thesis generates trajectory from waypoints as the generally known cubic
spline. Let us have a set of waypoints 𝑊 in the XY plane and

𝑊 = {[𝑋0, 𝑌0], [𝑋1, 𝑌1], . . . , [𝑋𝑛, 𝑌𝑛]} (3.35)

time set 𝑇 .

𝑇 = {𝑡0, 𝑡1, . . . , 𝑡𝑛} (3.36)

The cubic spline is derived only for X coordinates 𝑊𝑥 without loss of generality.

𝑊𝑥 = {𝑋0, 𝑋1, . . . , 𝑋𝑛} (3.37)

The cubic spline is based on finding 𝑛 polynomial functions piecewise between
𝑊𝑥 points. The name cubic suggests the polynomial has third order.

𝑓1(𝑡) = 𝑎1𝑡
3 + 𝑏1𝑡

2 + 𝑐1𝑡 + 𝑑1 𝑡 ∈ ⟨𝑡0, 𝑡1⟩
𝑓2(𝑡) = 𝑎2𝑡

3 + 𝑏2𝑡
2 + 𝑐2𝑡 + 𝑑2 𝑡 ∈ ⟨𝑡1, 𝑡2⟩

...
𝑓𝑛(𝑡) = 𝑎𝑛𝑡3 + 𝑏𝑛𝑡2 + 𝑐𝑛𝑡 + 𝑑𝑛 𝑡 ∈ ⟨𝑡𝑛−1, 𝑡𝑛⟩

(3.38)

The first requirement for these functions is that their border points in the given
times are equal with 𝑊𝑥.

67

𝑓1(𝑡0) = 𝑋0

𝑓1(𝑡1) = 𝑋1

𝑓2(𝑡1) = 𝑋1

𝑓2(𝑡2) = 𝑋2

...
𝑓𝑛(𝑡) = 𝑋𝑛

(3.39)

Sustain the continuity of motion is defined as a requirement for first and second
derivatives. The derivatives of two functions 3.38 for points 𝑋1, . . . , 𝑋𝑛−1 must be
equal.

𝑑

𝑑𝑡
𝑓1(𝑡1) = 𝑑

𝑑𝑡
𝑓2(𝑡1)

𝑑2

𝑑𝑡2𝑓1(𝑡1) = 𝑑2

𝑑𝑡2𝑓2(𝑡1)
𝑑

𝑑𝑡
𝑓2(𝑡2) = 𝑑

𝑑𝑡
𝑓3(𝑡2)

𝑑2

𝑑𝑡2𝑓2(𝑡2) = 𝑑2

𝑑𝑡2𝑓3(𝑡2)
...

𝑑

𝑑𝑡
𝑓𝑛−1(𝑡𝑛−1) = 𝑑

𝑑𝑡
𝑓𝑛(𝑡𝑛−1)

𝑑2

𝑑𝑡2𝑓𝑛−1(𝑡𝑛−1) = 𝑑2

𝑑𝑡2𝑓𝑛(𝑡𝑛−1)

(3.40)

Four coefficients of each spline have a 4𝑛 equations that must be defined for a
successful solution. Which 2𝑛 equations define equality at points, and 𝑛− 1 defines
first and second derivatives, respectively. The last two-equation solves the initial
and end conditions for velocities.

𝑑

𝑑𝑡
𝑓1(𝑡0) = 𝑣𝑠𝑡𝑎𝑟𝑡

𝑑

𝑑𝑡
𝑓𝑛(𝑡𝑛) = 𝑣𝑒𝑛𝑑

(3.41)

68

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

(a) Zero conditions

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

(b) Nonzero symmetric
conditions

-2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(c) Nonzero asymmetric
conditions

Fig. 3.22: Example of cubic spline trajectory with different initial conditions

3.5.2 Trajectory Controller

The trajectory controller computes reference velocities satisfying the input trajec-
tory. This thesis implements two types of trajectory controllers. The first controller
[59] [60] is described below, and the second controller is based on a Linear-quadratic
regulator 3.5.3.

The following equation shows the mutual relationship between desired robot
velocity in the coordinate system 𝐺 3.3 and linear and angular speed,

⎛⎝�̇�𝑑 + 𝑖𝑥

𝑌𝑑 + 𝑖𝑦

⎞⎠ =
⎛⎝cos Θ 𝐷 sin Θ

sin Θ −𝐷 cos Θ

⎞⎠⎛⎝𝑣

𝜔

⎞⎠ (3.42)

where 𝐷 is the difference between 𝐶𝑂𝐺 and 𝐶𝑂𝑀 and 𝑖𝑥, 𝑖𝑦 is the control action
to eliminate disturbances. After matrix inversion, the control input is obtained from
3.42.

⎛⎝𝑣

𝜔

⎞⎠ =
⎛⎝ cos Θ sin Θ
− 1

𝐷
sin Θ 1

𝐷
cos Θ

⎞⎠⎛⎝�̇�𝑑 + 𝑖𝑥

𝑌𝑑 + 𝑖𝑦

⎞⎠ (3.43)

𝑖𝑥 = 𝑙𝑥 tanh 𝑘𝑥

𝑙𝑥
�̃� (3.44)

𝑖𝑦 = 𝑙𝑦 tanh 𝑘𝑦

𝑙𝑦
𝑌 (3.45)

The �̃� and 𝑌 are defined as the distance between the actual position and desired
trajectory.

�̃� = 𝑋 −𝑋𝑑

𝑌 = 𝑌 − 𝑌𝑑

(3.46)

𝑙𝑥 and 𝑙𝑦 define maximum tracker action to remove position and desired trajectory
inaccuracies. 𝑘𝑥 and 𝑘𝑦 determine the slope of the tanh 𝑥 function.

69

3.5.3 Velocity Controller

According to chapters Motion Analysis and Dynamic Model, the robot model shown
in the pictures 3.23 3.25 3.27 3.29 3.31 can be described by following the nonlinear
equation, representing the states 𝑋, 𝑌 , Θ in reference G and its local linear and
angular velocity Ω and 𝑣.

�̇� = 𝑣 cos Θ = 𝑓1(�⃗�, �⃗�)
�̇� = 𝑣 sin Θ = 𝑓2(�⃗�, �⃗�)

Θ̇ = Ω = 𝑓3(�⃗�, �⃗�)

Ω̇ = 2𝐹𝑟 − 𝐹𝑅𝑅

𝐼
𝑡− 2𝐹𝑙 − 𝐹𝑅𝐿

𝐼
𝑡− 𝑇𝑅

𝐼
= 𝑓4(�⃗�, �⃗�)

�̇� = 2𝐹𝑙 + 2𝐹𝑟

𝑚
− 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 − 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔

𝑚
= 𝑓5(�⃗�, �⃗�)

(3.47)

This nonlinear dynamic system can be divided into a simplified linear dynamic
and a kinematic system. Linearized dynamic systems contain the robot’s linear and
angular velocities. Its equation in state-space description format

˙⃗𝑥 = A�⃗� + B�⃗�

�⃗� = C�⃗� + D�⃗�
(3.48)

is as follows.

⎛⎝Ω̇
�̇�

⎞⎠ =
⎛⎝−4 𝑇𝑑

𝑟2𝐼
𝑡2 − 2𝑓𝑆𝐿𝑦𝑚𝑔

(𝑎+𝑏)𝐼 𝑎𝑏 0
0 −4 𝑇𝑑𝑦

𝑟2𝑚

⎞⎠⎛⎝Ω
𝑣

⎞⎠+
⎛⎝−2𝑡

𝑇
2𝑡
𝐼

2
𝑚

2
𝑚

⎞⎠⎛⎝𝐹𝑙

𝐹𝑟

⎞⎠
�⃗� =

⎛⎝1 0
0 1

⎞⎠⎛⎝𝜔

𝑣

⎞⎠ (3.49)

And kinematic part of the system is⎛⎜⎜⎝
�̇�

�̇�

Θ̇

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos Θ 0
sin Θ 0

0 1

⎞⎟⎟⎠
⎛⎝𝑣

Ω

⎞⎠

y =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑋

𝑌

Θ

⎞⎟⎟⎠
(3.50)

The equation 3.50 is valid when input forces are much greater than joint static
resistive. In these assumptions, the joint static forces can be neglected, like rolling
friction. The sliding friction is zero when the forces are active; Therefore can also
be neglected. The simplification in the equation for angular velocity counts with

70

the joint static resistive, rolling, and sliding forces do not cause torque and therefore
are not included in 𝐹𝑅𝑅 and 𝐹𝑅𝐿.

For such a simplified system can be designed the linear controllers. This section
deals with designing controllers, and the trajectory tracking problem is finished.

Discrete PI

PID (Proportional Integral Derivative) feedback control law is highly used in in-
dustry for there simplicity, intuitive tuning, and robustness. Not all parts of PID
must be contained; therefore, other derivatives such as P, PI, or PD controller are
used. The first controller discussed in the thesis is the PI controller. The following
equations describe the PI controller in discrete time with step k and Z-transform.

𝑢𝑘+1 = 𝐾

(︃
𝑒𝑘 + 𝑇𝑠

𝑇𝑖

𝑘∑︁
𝑖=1

𝑒𝑘

)︃
(3.51)

𝐺(𝑧) = 𝐾

(︃
1 + 𝑇𝑠

𝑇𝑖

𝑧−1

1− 𝑧−1

)︃
(3.52)

The control action output is based on tracking error, the difference between
desired and actual values. The following structure 3.23 of Simulink control feedback
implementation shows that two PI controller commands wheels on each side (the
wheel’s velocity is the same on each side).

Fig. 3.23: Feedback loop with PI controller

The output of the velocity controller is desired linear and angular velocity. The
kinematic equation 3.8 calculates the desired wheel’s velocity, the same as the robot’s
actual wheel’s velocity.

The following step response presents linear and angular velocity steps and applied
wheels forces. The PI controller is set up to reduce overshot, which implies a slower

71

angular velocity response. A slower angular velocity response brings a problem with
a sharply curved trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

[m
s

-1
]
[r

a
d
s

-1
]

Linear and Angular Velocity

Angular Actual

Linear Actual

Angular Desired

Linear Desired

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

100

200

300

400

500

600

700

800

F
 [
N

]

Forces

Left

Right

(b)

Fig. 3.24: The graphs show linear and angular velocity responses and applied force
to the wheels - PI

Discrete LQR

Linear quadratic regulator (LQR) [61] [62] [63] is a state feedback controller based
on solving optimal quadratic criterion 3.61. The controller ensures the best state
behavior with respect to a predefined criterion, penalizing input and state. As the
name suggests, the LQR is suitable for linear or linearized dynamic systems.

This section derives a linear quadratic regulator with each step linearization of
the dynamic system at a non-equilibrium point.

The linearized nonlinear dynamic system �⃗�(�⃗�, �⃗�) can be described in the following
form around the actual state 𝑥0 and actual input 𝑢0.

�⃗�(�⃗�, �⃗�, 𝑡) = �⃗�(𝑥0, 𝑢0, 𝑡) + 𝜕𝑓

𝜕�⃗�

⃒⃒⃒
0
(�⃗�− 𝑥0) + 𝜕𝑓

𝜕�⃗�

⃒⃒⃒
0
(�⃗�− 𝑢0) (3.53)

�⃗�(𝑥0, 𝑢0, 𝑡) = ˙⃗𝑥0

�⃗�(�⃗�, �⃗�, 𝑡) = ˙⃗𝑥
(3.54)

The system can be rewritten into a state-space description with the following
denotation.

𝜕𝑓

𝜕�⃗�

⃒⃒⃒
0

= A =

⎡⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

. . . 𝜕𝑓1
𝜕𝑥𝑛... . . .

𝜕𝑓𝑛

𝜕𝑥1
. . . 𝜕𝑓𝑛

𝜕𝑥𝑛

⎤⎥⎥⎥⎦
�⃗�=�⃗�0

𝜕𝑓

𝜕�⃗�

⃒⃒⃒
0

= B =

⎡⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑢1

. . . 𝜕𝑓1
𝜕𝑢𝑛... . . .

𝜕𝑓𝑛

𝜕𝑥1
. . . 𝜕𝑓𝑛

𝜕𝑥𝑛

⎤⎥⎥⎥⎦
�⃗�=�⃗�0

(3.55)

72

˙⃗𝑥− ˙⃗𝑥0 = A(�⃗�− 𝑥0) + B(�⃗�− 𝑢0) (3.56)

The new system state 𝛿�⃗� and input 𝛿�⃗� are the difference between the future and
the actual state and input, respectively.

𝛿�⃗� = �⃗�− 𝑥0

𝛿�⃗� = �⃗�− 𝑢0
(3.57)

The equation 3.58 shows the linearized dynamic system describing the behavior
in the robot’s state vicinity.

˙𝛿�⃗� = A𝛿�⃗� + B𝛿�⃗� (3.58)

The continuous-time state-space model is discretized with the following approx-
imation named Euler method.

𝑒A𝑡 ≈ I + A𝑑𝑡 (3.59)

The linear quadratic regulator is based on the resulting linearized discrete state-
space model 3.60.

𝛿 ⃗𝑥𝑘+1 = (I + A𝑑𝑡)𝛿𝑥𝑘 + 𝑑𝑡B𝛿𝑢𝑘 (3.60)

The behavior of feedback systems 3.25 is affected by different settings Q and R.
The matrix Q penalizes the deviations of states, and the R matrix penalizes the
control input energy. The criterion of LQR shows the following equation.

𝐽 =
𝑁∑︁

𝑘=0
(�⃗�ᵀQ�⃗� + �⃗�ᵀR�⃗�) (3.61)

Fig. 3.25: Feedback loop with LQR

73

Control input is computed according to the equation, where 𝛿𝑢𝑘 = 𝑢𝑘−𝑢0
𝑘 is the

change of input control and 𝑥𝑑
𝑘 is desired state.

⃗𝛿𝑢𝑘 = −K ⃗𝛿𝑥𝑘 = −K(𝑥𝑑
𝑘 − 𝑥0

𝑘) (3.62)

Time invariant K is defined as

K = (R + BᵀPB)−1BᵀPA (3.63)

and P solves the discrete algebraic Riccati equation (DARE) [64].

P = AᵀPA− (AᵀPB)(R + BᵀPB)−1(BᵀPA) + Q; (3.64)

The computing matrix K is an iterative process.
The velocity step response and the process of the applied force are shown in the

following pictures 3.26. The forces are much different from the PI controller. The
linear velocity has a slower transient than the PI controller, but the angular velocity
reaches the desired value faster than PI. The angular velocity step response has an
overshoot, but it can be permitted with respect to fast transient.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

[m
s

-1
]
[r

a
d
s

-1
]

Linear and Angular Velocity

Angular Actual

Linear Actual

Angular Desired

Linear Desired

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

-200

-100

0

100

200

300

400

500

600

700

800

F
 [
N

]

Forces

Left

Right

(b)

Fig. 3.26: The graphs show linear and angular velocity responses and applied force
to the wheels - LQR

3.5.4 Trajectory Tracking

The trajectory tracking problem is supposed to ensure the movement robot on the
trajectory. It combines the Velocity Controller as the inner loop and the Trajectory
Controller as the outer loop. This section presents three combinations of controllers,
T-PI, LQ-PI, and LQ-LQ.

74

T-PI

T-PI is a trajectory tracking controller which combines the trajectory controller
described in the section 3.5.2 and PI 3.5.3 for velocity control. The diagrams 3.27
3.29 3.31 of all three combinations is similar and differs only in controller types.
In the Simulink diagram 3.27, the Cubic Spline Trajectory block computes desired
trajectory, which is input to the trajectory controller.

Fig. 3.27: Simulink diagram of T-PI trajectory tracking controller

Trajectory controller based on hyperbolic tangent 3.5.2 has a similar property
as P controller 3.5.3 in small desired and actual differences. The hyperbolic tangent
controller with proportional action and the slow response of the PI controller 3.5.3
to change angular velocity causes the oscillation of angular velocity 3.28b.

0 1 2 3 4 5 6

x [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
 [
m

]

Trajectory

Desired

Actual

(a)

0 2 4 6 8 10 12 14 16 18 20

time [s]

-4

-3

-2

-1

0

1

2

3

4

[m
s

-1
]
[r

a
d
s

-1
]

Linear and Angular Velocity

Angular Actual

Linear Actual

Angular Desired

Linear Desired

(b)

Fig. 3.28: T-PI: Desired and actual (true) trajectory and linear and angular velocity

By joining a PI controller with a slow angular velocity transient, the robot over-
shoots the desired trajectory when the angular velocity is changed highly. The
overshoot is visible in the graph 3.28a.

75

LQ-PI

LQ-PI trajectory tracking controller differs from the previous controller 3.5.4 in the
trajectory controller part. The hyperbolic tangent controller is replaced with LQR
3.5.3, which is based on the kinematic part 3.50 of the system described in the
section Velocity Controller.

Fig. 3.29: Simulink diagram of LQ-PI trajectory tracking controller

The oscillation of angular velocity is stopped 3.30b. The controller is less ag-
gressive, but the overshoots have remained. The oscillation of angular velocity is
stopped 3.30b. The controller is less aggressive, which causes the slower transition
to steady-state value 3.30a, but the overshoots have remained.

0 1 2 3 4 5 6

x [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
 [
m

]

Trajectory

Desired

Actual

(a)

0 2 4 6 8 10 12 14 16 18 20

time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[m
s

-1
]
[r

a
d
s

-1
]

Linear and Angular Velocity

Angular Actual

Linear Actual

Angular Desired

Linear Desired

(b)

Fig. 3.30: LQ-PI: Desired and actual (true) trajectory and linear and angular ve-
locity

76

LQ-LQ

The last trajectory tracking controller consists of two LQRs. The diagram is shown
in the following picture 3.31.

Fig. 3.31: Simulink diagram of LQ-LQ trajectory tracking controller

The velocity LQ controller has a fast angular velocity response 3.26 that solves
the problem with trajectory overshoots. The picture 3.32a shows precise trajectory
tracking, but linear velocity response is slower 3.32b than the previous two con-
trollers. Therefore the shape of desired and actual trajectory is significantly similar,
but the timed difference between the actual and desired position is greater than the
previous two controllers.

0 1 2 3 4 5 6

x [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
 [
m

]

Trajectory

Desired

Actual

(a)

0 2 4 6 8 10 12 14 16 18 20

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

[m
s

-1
]
[r

a
d
s

-1
]

Linear and Angular Velocity

Angular Actual

Linear Actual

Angular Desired

Linear Desired

(b)

Fig. 3.32: LQ-LQ: Desired and actual (true) trajectory and linear and angular ve-
locity

77

3.6 Coordinate System
A coordinate system is a set of reference frames that determines the position and
orientation of dynamic systems, mobile or flying robots, usually. The references
frame can be defined in many ways; therefore, the need is formed to define the
standard called REP 105 3.6.1.

3.6.1 REP 105

REP105 is a coordinate system convention used in ROS applications. It uses three
main types of frames summarized in the following list.

• base-link
• odom
• map
Base-link is a frame joined with a robot body. It can be placed everywhere in

the robot, but it is recommended to fulfill other conventions REP1037.
Odom is a world-fixed frame with the beginning on the spawn/started place of

the robot. The robot, base-link, moves in the odom frame without any bounds but
must change continuously without discrete jumps. Therefore is used for odometry
based on wheels encoder or inertial measurement unit.

The map is a world-fixed frame placed on the coordinate frame origin. The
Z-axis is pointing upward. This frame cannot be continuously changed, unlike the
odom frame, and can be used GPS measurement with discrete jumps measurement,
or use updating algorithm to estimate global long term position.

The following image 3.33 shows the mutual relationship above mentioned frames.

Fig. 3.33: Multi-robot relationship between frames in ECEF [20]

7http://www.ros.org/reps/rep-0103.html

78

http://www.ros.org/reps/rep-0103.html

The first frame, earth, is used when multiple robots are used in different map
frames. It defines the position of the robot in the ECEF (Earth-centered, Earth-
f ixed) coordinate frame in the vicinity of the Earth. The following 3.6.2 section
describes transferring geodetic coordinates to the local tangent plane ENU coordi-
nate.

3.6.2 Conversion of Geographic Coordinate System

The map is an abstract local tangent plane coordinate, which can be set at a
given/reference point in ECEF, as the picture 3.33 from the previous chapter 3.6.1
shows. This section describes the transformation between geodetic coordinates from
GPS to position on the map.

The problem shows the picture 3.34.

Fig. 3.34: ECEF - Earth-centered, Earth-fixed coordinate system [20]

The following equation determines the transformation from geodetic coordinates
to ECEF, where 𝜑 is latitude, 𝜆 is longitude, and ℎ is height. [58]

𝑋 =
⎛⎝ 𝑎√︁

1− 𝑒2 sin2 𝜑
+ ℎ

⎞⎠ cos 𝜑 cos 𝜆

𝑌 =
⎛⎝ 𝑎√︁

1− 𝑒2 sin2 𝜑
+ ℎ

⎞⎠ cos 𝜑 sin 𝜆

𝑍 =
⎛⎝ 𝑏2

𝑎2
𝑎√︁

1− 𝑒2 sin2 𝜑
+ ℎ

⎞⎠ sin 𝜑

(3.65)

79

The constant 𝑎 = 6378100𝑚, 𝑏 = 6356800𝑚 is an equatorial radius (semi-major
axis) and polar radius (semi-minor axis), respectively. The constant 𝑒2, which results
from the aforementioned radius, is the square of the eccentricity of the ellipsoid.

𝑒2 = 1− 𝑏2

𝑎2 (3.66)

The map frame has its origin in a reference point 𝑋𝑚, 𝑌𝑚, 𝑍𝑚 in the ECEF
coordinates. The body link is denoted as 𝑋, 𝑌 and 𝑍. The local coordinates 𝑥, 𝑦

and 𝑧 in the map frame are computed according to the equation 3.67.

⎛⎜⎜⎝
𝑥

𝑦

𝑧

⎞⎟⎟⎠ =

⎛⎜⎜⎝
− sin 𝜆𝑚 𝑐𝑜𝑠𝜆𝑚 0

− sin 𝜑𝑚 cos 𝜆𝑚 − sin 𝜑𝑚 sin 𝜆𝑚 cos 𝜑𝑚

cos 𝜑𝑚 cos 𝜆𝑚 cos 𝜑𝑚 sin 𝜆𝑚 sin 𝜑𝑚

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑋 −𝑋𝑚

𝑌 − 𝑌𝑚

𝑍 − 𝑍𝑚

⎞⎟⎟⎠ (3.67)

80

4 Radioactivity Simulation
The testing algorithm on real hardware in the real world is challenging and expensive,
as mentioned in the Robotic Simulators chapter. In addition, the experiments with
radiation sources must fulfill all legislative conditions, which extends and complicates
the experiment’s preparation. Therefore, the simulator is again suitable for this task.
This thesis used the gazebo_radiation_plugin1 described in Simulating Ionising
Radiation in Gazebo for Robotic Nuclear Inspection Challenges [5]. This package is
coded for ROS1. Therefore the package was recoded for use with ROS2.

4.1 Radiation Gazebo Plugin
According to [5], the radiation source is described in Cartesian space with an activity
value in Becquerels (Bq). This assumption applies if all radiation decay transmits
only the gamma radiation from the source. Without these assumptions, the source
can be described with sensor counts per second (CPS) in one meter from the source.
The physical model is based on the inverse square relationship 1.26 regarding the
sensor dimensions (fixed value r = 1× 10−2𝑚).

𝐶𝑃𝑆𝑑 = 𝐶𝑃𝑆0

2 (1− 𝑑√
𝑟2 + 𝑑2

) (4.1)

𝐶𝑃𝑆𝑑 is the estimated value of the radiation sensor in the distance 𝑑 from the
source. If the distance 𝑑 → 0 the 𝐶𝑃𝑆𝑑→0 goes to the initial activity value 𝐶𝑃𝑆0

divided by two. It is a better reflection of physical reality than inverse square law
1.26.

The above equation 4.1 is valid if the source was defined as the activity value
𝐶𝑃𝑆0 with the aforementioned assumptions (𝐶𝑃𝑆0 is the theoretical sensor’s value
that captures all of the gamma rays from the source). If the 𝐶𝑃𝑆1 value is known,
the equation is corrected 4.2. 𝐶𝑃𝑆1 is estimated from the equation 4.1.

𝐶𝑃𝑆𝑑 = 𝐶𝑃𝑆1

1− 1√
𝑟2+12

(1− 𝑑√
𝑟2 + 𝑑2

) (4.2)

The intensity of radiation is strongly correlated by distance from the source.
But the intensity is also affected by attenuation when gamma rays pass through the
medium. The equation describes attenuation behavior. In gazebo_radiation_plugin
is linear attenuation coefficient 𝛼 are entered with unit 𝑚−1. The sensor may not
scan values uniformly or can be collimated. The arbitrary sensitivity function 𝜂(𝜃)
with the angle 𝜃 parameter between the source and the sensor returns the value

1https://github.com/EEEManchester/gazebo_radiation_plugin

81

https://github.com/EEEManchester/gazebo_radiation_plugin

between zero and one. This sensitivity function guarantees a directional character-
istic. The final value 4.3 on the sensor is given by the sum of contributions from all
sources [5].

𝐶𝑃𝑆 =
∞∑︁
𝑖

(𝜂𝑖
𝐶𝑃𝑆1

1− 1√
𝑟2+12

(1− 𝑑𝑖√︁
𝑟2 + 𝑑𝑖

2
)

∞∏︁
𝑗

𝑒−𝛼𝑗𝑧𝑗) (4.3)

The 𝑧𝑗 value is the distance which gamma radiation travels through the 𝑗 mate-
rial.

One of the largest disadvantages of modeling radiation sources and sensors by
an approach described in this is the lack of energy spectrum of the radiation source
and its effect on the linear attenuation coefficient 1.27. The next large disadvantage
is the absence of death time and nonlinear characteristics of the radiation sensor.
The two following experiments show the functionality of the sensor in two cases.
The sensor does not have a dead time in the first case, and the robot doesn’t have
an attenuation coefficient. The second experiment is simulated with a dead time
of sensor and robot have nonzero attenuation experiment. The goal of the second
experiment is approximate the behavior of a real scintillation detector 2x2"NaI(Tl).

4.1.1 Gazebo Experiment

The first experiment was performed to verify the features of the Radiation Gazebo
Plugin. The experiment consists of one radiation source, Co-60, whose radiation
decay scheme is shown in the picture below 4.1.

Fig. 4.1: The decay scheme of Cobalt-60 [49]

The energy of gamma rays is important to choose the right linear attenuation
coefficient. The most emitted gamma radiation is chosen from the radiation decay
scheme with energy 1.1732𝑀𝑒𝑉 , and the simulated source has 10000 counts per
second in a 1𝑚 distance value. The obstacles are from ordinary concrete2 with

2https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/concrete.html

82

https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/concrete.html

density 2.4𝑔𝑚−3, and its linear attenuation coefficient was obtained and recalculated
from mass attenuation coefficient in web page[50]. The barrier and the experiment
layout is shown in the picture 4.2a. The barrier has in order right, left, down, up
the value 40cm, 20cm, 10cm, 1cm. All of them are from the concrete with the same
linear attenuation coefficient (𝜇 = 13.937𝑚−1). Inside the square from barriers is a
radiation source represented by a red cube.

The sensor is attached to teleoperated Orpheus X4 robot model4.2b. The sensor
does not have some directional characteristics. Therefore the sensitive function is
disabled. Trajectory covers the entire space with a distance 0.5𝑚 between parallel
roads.

(a) (b)

Fig. 4.2: The layout of the experiment. On the left picture are four obstacles from
concrete (1cm, 10cm, 20cm, 40cm) and in the center is a red cube radiation sensor.
The right picture shows Orpheus X4 with Velodyne Lidar and a radiation sensor.

Data from the radiation sensor was recorded with command-line tool ros2 bag3

and interpolated with scatteredInterpolant4 Matlab [51] function. The picture 4.3
show interpolated data from the radiation sensor with a resolution 0.01𝑚, and the
axis orientation is the same as in the picture above. The sensor is in height 0.19.
Therefore the circle with 10000𝑐𝑝𝑠 is closer than a circle about a one-meter radius
from the start. The picture 4.3 shows an ideal sensor’s theoretical values capture
all passing particles or the true radiation intensity.

3https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.
html

4https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html#
bvkmyb8-ExtrapolationMethod

83

https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html
https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html#bvkmyb8-ExtrapolationMethod
https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html#bvkmyb8-ExtrapolationMethod

Fig. 4.3: The heat map of radiation created from data obtained from aforementioned
experiment with the ideal sensor.

The knowledge of ideal radiation intensity is the next advantage of simulation.
The robot can be mounted with a model of a real sensor (the next experiment), and
with the hidden sensor measures the true radiation intensity.

The following graph 4.4 shows the results from the experiments mentioned above
with a model of a real 2x2"NaI(Tl) scintillation detector. The sensor has a period
of measurement set to 1𝐻𝑧. The robot has set a linear attenuation coefficient to
a nonzero small value, and random noise was increased to 10% from the measured
value. The dead time affecting real measurement is approximated with function
𝑓(𝑥)5.

𝑓(𝑥) = 𝑥𝑒−0.0000197𝑥 (4.4)
5Thanks, Tomáš Lázna, for help with setting the sensor.

84

Fig. 4.4: The heat map of radiation created from data obtained from aforementioned
experiment with the real sensor.

The measured value is most affected by the dead time of the sensor near the
around of source, where the radiation reaches the highest values, and by the robot’s
orientation due to nonzero linear attenuation of the robot body. A comparison of
the sensor in the simulation and the real world is shown in chapter Searching Lost
Radioactive Source where the real experiment is simulated in the Gazebo simulator.

85

5 Searching Lost Radioactive Source
More than 120 years have passed since Henri Becquerel, Pierre Curie, and Marie
Curie-Skłodowska discovered and described radioactivity. Subsequently, the first
nuclear reactor was launched in 1942 in Chicago, USA. Furthermore, three years
later, the first test (Trinity) of a nuclear bomb was executed. Nowadays, radioactiv-
ity is widely used in industries, medical care, national defense, agriculture, scientific
research, and others. With the increasing use of radioactivity, the safe search of
radiation sources becomes more necessary.

The thesis deals with two approaches to searching radiation sources. The first is
based on an exhausting mapping approach when the robot’s trajectory is planned
before, and the trajectory covers the whole searched area. The robot measures
radioactivity during the experiment. The second more active algorithm creates the
robot’s trajectory based on the measurement and actively searches the radiation
source location.

5.1 Mapping Based Approach
The mapping-based approach is a method for searching and locating the radiation
source. In a known environment (map), the path is predefined and covers the region
of interest. The robot measures radiation along the entire length of the trajectory,
and the output is a radiation intensity map from which the position of the radiation
source is calculated. An example of this trajectory is shown in following picture 5.1.

Fig. 5.1: The picture shows the terrestrial radiation mapping with a planned tra-
jectory in a real-world experiment

86

The trajectory depicted in the picture 5.1 above is obtained from the Boustro-
phedon cell decomposition and the whole terrestrial radiation mapping experiment
described in the article An automated heterogeneous robotic system for radiation
surveys: Design and field testing [44].

The two following pictures show the real-world measured data 5.2a and its in-
terpolation map 5.2b.

(a) (b)

Fig. 5.2: The left picture shows the real sensor’s measurement and on the right is
the interpolated radiation intensity map

The maximum forward speed of the robot is 0.6𝑚𝑠−1 and 0.4𝑚𝑠−1 while turning.
The experiment and measurement took 15 minutes and 10 seconds.

(a) (b)

Fig. 5.3: The simulated radiation measurement and desired trajectory are depicted
on the left picture, and on the right is interpolated radiation map

87

The same experiments have been done with radiation sensor mode mounted on
Orpheus X4 in the Gazebo simulator. The simulated experiment lasted 15 minutes
and 6 seconds, and the simulated time took 21 minutes and 38 seconds with an
average real-time factor 0.69.

The trajectory in the simulation slightly differs from the real trajectory because
the environment model does not show all the details. Therefore, the robot cannot
reach all positions like in the real-world experiment.

The source position can be obtained as the global maximum of intensity radiation
map or averaging position of two peaks in the intensity map. The next methods to
locate sources are mentioned in this articles [44] [65].

The presented method is convenient for detailed mapping of an area. The output
intensity map provides a comprehensive view of the area in which one or more
radiation sources are located. For larger areas, the mapping task becomes very time-
consuming. More complex and complicated terrain can be unavailable for mobile
ground robots. This case solves the use of a flying robot. The robot can discover the
weak radiation sources in a large area, unlike the active search algorithm presented
in the following section 5.2.

88

5.2 Particle Filter
A particle filter [67] [68] [69] is a group of algorithms belonging to the family of
the Monte Carlo algorithms. Particle filters are used to estimate the state of the
dynamic system. The goal is to estimate the radiation source position (assume 2D
space; therefore, x and y coordinates are estimated), its activity, and the radiation
background. The particle filter consists of five steps, usually repeated from steps 2.
to 5.

1. Generate a set of particles randomly
Each particle represents a possible solution to a state-estimation problem, and
the weight indicates how much the solution matches the actual system state.
The first step is to initialize each particle weight to the same value (the sum
of weights is one).

2. Predict
Predict the new particle state based on the real system model

3. Update
Particles’ states are evaluated based on the sensor measurement, and their
weight is adjusted. Particles that match closely with measurement are rated
higher.

4. Resample
Replace the improbable particles with high probability particles (copies with
slight noise) Estimate the state

5. Compute estimation

This section presents the specific form of a particle filter because the estimated
system state is unchanging. Therefore the second step can be omitted. The rest
of the section will deal with the particle filter to search lost radiation sources and
estimate its parameter.

The first step is generating 𝑁 particles,

𝑃 = (𝑥𝑖, 𝑦𝑖, 𝑎𝑖, 𝑏𝑖, 𝑤𝑖)𝑖=0...𝑁−1 (5.1)

where 𝑥 and 𝑦 define the position, 𝑎 is activity, and 𝑏 denotes the background of
the radiation source. Parameters 𝑥,𝑦, and 𝑏 are randomly generated with uniform
distribution, and parameter 𝑎 is generated with gamma distribution Γ(𝛼 = 2, 𝛽 =
4000). Weight 𝑤𝑖 is initialized as 1/𝑁 .

After the measure �⃗� = (𝑐𝑝𝑠, 𝑥𝑠, 𝑦𝑠) is available, for each particle 𝑃𝑖 is the com-
puted theoretical value 𝜆𝑖 that the sensor would measure if the source 𝑎𝑖 was placed

89

at particle position [𝑥𝑖, 𝑦𝑖].

𝜆𝑖 = 𝑎𝑖

(𝑥𝑟 − 𝑥𝑖)2 + (𝑦𝑟 − 𝑦𝑖)2 + ℎ2 + 𝑏𝑖 (5.2)

The constant ℎ is the distance of the sensor from the ground. The weight 𝑤𝑖 is
updated according to normal distribution with probability density function

𝑓(𝑐𝑝𝑠, 𝜇 = 𝜆𝑖, 𝜎2 = 152𝜆𝑖) = 1
𝜎
√

2𝜋
𝑒− 1

2(𝑐𝑝𝑠−𝜇
𝜎)2

(5.3)

and

𝑤𝑖 = 𝑓(𝑐𝑝𝑠, 𝜇 = 𝜆𝑖, 𝜎 = 152𝜆2
𝑖)∑︀𝑁−1

𝑖=0 𝑤𝑖

(5.4)

The resample step is fulfilled with a low variance resampling [66] algorithm 1.

Algorithm 1 Low Variance Resampling
Require: 𝑃

𝑃𝑛𝑒𝑤

𝑟 = 𝑟𝑎𝑛𝑑(0, 𝑁−1)
𝑐 = 𝑤0

𝑖 = 1
𝑛 = 1
while 𝑛 < 𝑁 do

𝑢 = 𝑟 + 𝑛 ·𝑁−1

while 𝑢 > 𝑐 do
𝑖 = 𝑖 + 1
𝑐 = 𝑐 + 𝑤𝑖

end while
𝑃𝑛𝑒𝑤 ← 𝑃𝑖

𝑛 = 𝑛 + 1
end while

The low variance resampling algorithm picks the identical particles with higher
weights repeatedly. It is inappropriate to exist the same particles, which do not
bring new information to estimate the dynamic state. Therefore these particles are
added to the new set of particles with small noise near the original point.

The particle filter is an iterative algorithm, and the three following experiments
5.4 5.5 5.7 are presented as six pictures from the beginning to find the goal. The
experiments were performed with the Gazebo simulator, and pictures were obtained

90

from Rviz1 visualization. The radiation source was placed in a squared area of
400𝑚2. The summary of these experiments is shown in the table 5.1.

Tab. 5.1: Particle filter experiment overview

Order 1 2 3
x y x y x y

Source Position [m] 3 3 -3 -8 -1 -2
Estimation Position [m] 3.07 3.42 -3.86 -7.19 -0.33 -0.89

Δ [m] 0.43 1.18 1.30
CPS [-] 10000 20000 30000

Estimate CPS 6563 7078 10673
Background 200 200 200

Estimate Background 196 199 205

(a) (b) (c)

(d) (e) (f)

Fig. 5.4: Particle filter - first experiment

1https://github.com/ros2/rviz

91

https://github.com/ros2/rviz

The most significant advantage of the particle filter is the fast and direct radiation
source search compared to the mapping-based approach. Step 5. computes the
state estimate - red dot - as a weighted average from all particles. For this reason,
computed estimation (in a few iterations) is placed near the center of the area. The
robot always follows the red dot, i.e., the state’s estimate. The fast and direct
searching is balanced with lower accuracy and the possibility of non-convergence.

(a) (b) (c)

(d) (e) (f)

Fig. 5.5: Particle filter - second experiment

The images 5.5e 5.7c show cases where the particles cluster into two or three
groups, and the weighted average computes a possible solution between the clusters.
The non-convergence becomes 5.6 when the robot moves closer to an estimated
solution, and none of the clusters outweighs.

92

Fig. 5.6: The example of non-convergence of particle filter

The particle filter ends when the particles have the desired standard deviation
𝜎𝑑. √︁

𝜎2
𝑥 + 𝜎2

𝑦 ≤ 𝜎𝑑 (5.5)

(a) (b) (c)

(d) (e) (f)

Fig. 5.7: Particle filter - third experiment

93

The table 5.1 shows the results of experiments with particle filter. The algorithm
estimates the radiation source’s position with a precision of around one meter, and
the radiation background is estimated very well, with an error of up to 5%. The
biggest problem is estimating the source activity, respectively, its CPS in one meter
from the source. The model to compute the 𝜆𝑖 does not count with the nonlinear
behavior of the radiation sensor near the sensor and high theoretical values of 𝜆𝑖.

Future work on the particle filter will improve the convergence and better esti-
mation of activity.

94

Conclusion
The thesis aims to create a robotic system based on ROS2 and a robotic simulator,
which allows simulating mobile ground robots in outdoor and indoor environments.
In this system are simulated algorithms for searching a lost radiation source. To
fulfill these goals of the master thesis is necessary to design robot controllers for
movement by trajectory and design radioactivity simulation.

The thesis first deals with a theoretical description 1of ionizing radiation, and
simulators’ possibilities are mentioned and compared. For the use has been preferred
the Gazebo simulator before the Ignition because of the more significant variability.
But the Ignition is a successor of Gazebo and will be used more in the future.
The chapter with the name Environment mentions some methods to create the
environment, which one is based on creating a model from point clouds. In the
same chapter, the computing power requirements depend more on the number of
simulated robots than on the environment’s complexity. The four-wheel skid steering
mobile robot was chosen to use in the outdoor environment. The chapter 3 deals
with creating the model in the Gazebo simulator, and the thesis describes and
visualizes the circumstances of the most significant parameters affecting the robot’s
behavior. Thesis describes kinematic and dynamic analysis of the SSMR, and it
is compared with the robot’s behavior in the simulator. The trajectory tracking
problem must be solved for successful work with the robot. The thesis suggests a
cubic spline for generating trajectory with continuous first two position’s derivatives
in waypoints. The nonlinear model of the skid steering mobile robot was linearized,
and the two methods for robot motion’s controller were designed. The first is based
on the simple proportional-integral (PI) controller, and the next method allows to
control of a continuously linearized dynamic system. The gazebo_radiation_plugin
is used for simulating ionizing radiation 4 in the Gazebo. This package is modified
for use in ROS2 and for simulating multiple sources with various attenuation factors
for the same obstacles. The revised package is tested for ideal and real sensors
with dead time, radiation background, and noise. Two methods for searching lost
radiation sources were discussed and compared 5. The map-based approach provides
a detailed map of radiation intensity from the whole region of interest. But for a
large area, the task becomes very time-consuming. Therefore, the particle filter
was implemented, which searches radiation sources directly and quickly, but its
disadvantages are less accuracy and convergence problems.

Future work will focus on developing better control, path planning, navigation,
localization, and more algorithms that ensure the use of robots in real-world exper-
iments, together with the development and simulation of flying robots.

95

Bibliography
[1] TAKAYA Kenta, Toshinori ASAI, Valeri KROUMOV a Florentin SMARAN-

DACHE. Simulation environment for mobile robots testing using ROS and
Gazebo. In: 2016 20th International Conference on System Theory, Control
and Computing (ICSTCC) [online]. IEEE, 2016, 2016, s. 96-101 [cit. 2021-12-
04]. ISBN 978-1-5090-2720-0. DOI: 10.1109/ICSTCC.2016.7790647

[2] LAVRENOV Roman a Aufar ZAKIEV. Tool for 3D Gazebo Map Construction
from Arbitrary Images and Laser Scans. In: 2017 10th International Conference
on Developments in eSystems Engineering (DeSE) [online]. IEEE, 2017, 2017, s.
256-261 [cit. 2021-12-27]. ISBN 978-1-5386-1721-2. DOI:10.1109/DeSE.2017.33

[3] ABBYASOV Bulat, Roman LAVRENOV, Aufar ZAKIEV, Konstantin
YAKOVLEV, Mikhail SVININ a Evgeni MAGID. Automatic tool for Gazebo
world construction: from a grayscale image to a 3D solid model. In: 2020
IEEE International Conference on Robotics and Automation (ICRA) [online].
IEEE, 2020, 2020, s. 7226-7232 [cit. 2021-12-27]. ISBN 978-1-7281-7395-5. DOI:
10.1109/ICRA40945.2020.9196621

[4] STIBINGER Petr, Tomas BACA a Martin SASKA. Localization of Ionizing
Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors
in Real-Time. IEEE Robotics and Automation Letters [online]. 2020, 5(2), 3634-
3641 [cit. 2022-01-02]. ISSN 2377-3766. DOI: 10.1109/LRA.2020.2978456

[5] WRIGHT Thomas, Andrew WEST, Mauro LICATA, Nick HAWES a Barry
LENNOX. Simulating Ionising Radiation in Gazebo for Robotic Nuclear Inspec-
tion Challenges. Robotics [online]. 2021, 10(3) [cit. 2021-12-29]. ISSN 2218-6581.
DOI: 10.3390/robotics10030086

[6] Gazebo: Robot simulation made easy. [online]. Open Source Robotics Founda-
tion, 2014 [cit. 2021-10-17]. URL: http://gazebosim.org/

[7] Non-ionizing radiation. Wikipedia: The Free Encyclopedia [online]. [cit. 2021-
10-29]. URL: https://en.wikipedia.org/wiki/Non-ionizing_radiation

[8] F. KNOLL Glenn. Radiation Detection and Measurement. Third edition. Wiley
India Pvt., 2009. ISBN 8126522607.

[9] Types of ionising radiation. Nuclear safety: An information por-
tal of the Federal government and the Länder [online]. [cit. 2021-
10-30]. URL: https://www.nuklearesicherheit.de/en/science/physics/ionising-
radiation/types-of-ionising-radiation/

96

10.1109/ICSTCC.2016.7790647
http://gazebosim.org/
https://en.wikipedia.org/wiki/Non-ionizing_radiation

[10] HALLIDAY David, RESNICK Robert, WALKER Jearl. Fundamentals of
Physics. 2010. [cit. 2021-10-30]. John Wiley & Sons Canada.

[11] Table of nuclides. Wikipedia: The Free Enciclopedia [online]. [cit. 2021-10-30].
URL: https://en.wikipedia.org/wiki/Table_of_nuclides

[12] AUGUSTYN Adam, ed. Half-life. Britannica [online]. [cit. 2021-10-31]. URL:
https://www.britannica.com/science/half-life-radioactivity

[13] DE MARCILLAC Pierre, Noël CORON, Gérard DAMBIER, Jacques
LEBLANC a Jean-Pierre MOALIC. Experimental detection of 𝛼-particles from
the radioactive decay of natural bismuth [online]. 2003 [cit. 2021-10-31]. DOI:
https://doi.org/10.1038/nature01541

[14] KRANE, Kenneth S. MODERN PHYSICS [online]. THIRD EDITION. DE-
PARTMENT OF PHYSICS OREGON STATE UNIVERSITY: JOHN WILEY
& SONS, 2012 [cit. 2021-10-31]. ISBN ISBN 978-1-118-06114-5.

[15] Intensity (physics). Wikipedia: The Free Encyclopedia [online]. [cit. 2021-11-
13]. URL: https://en.wikipedia.org/wiki/Intensity_(physics)

[16] AHMED, Syed Naeem. Physics and Engineering of Radiation Detection [online].
Queen’s University, Kingston, Ontario: ELSEVIER [cit. 2021-11-13]. ISBN
ISBN–13: 978-0-12-045581-2.

[17] Obecné informace o radioaktivitě a radiační ochraně. FN MOTOL [online].
[cit. 2021-11-13]. URL: https://www.fnmotol.cz/kliniky-a-oddeleni/cast-
pro-dospele/klinika-nuklearni-mediciny-a-endokrinologie-uk-2-l/oddeleni-
radiologicke-fyziky/obecne-informace-o-radioaktivite-a-radiacni-ochran/

[18] Internal and External Exposure. Ministry of the Environment: Government
of Japan [online]. [cit. 2021-11-17]. URL: https://www.env.go.jp/en/chemi/
rhm/basic-info/1st/02-01-01.html

[19] ROS: Robot Operating System [online]. [cit. 2021-11-20]. URL: https://www.
ros.org/

[20] ROS wiki: Documentation [online]. [cit. 2021-11-20]. URL: https://www.ros.
org/

[21] QUIGLEY Morgan, Brian GERKEY a William SMART. Programming Robots
with ROS: A PRACTICAL INTRODUCTION TO THE ROBOT OPERAT-
ING SYSTEM [online]. Sebastopol, California: O’Reilly Media, 2015 [cit. 2021-
11-20]. ISBN 978-1-449-32389-9.

97

https://en.wikipedia.org/wiki/Table_of_nuclides
https://www.britannica.com/science/half-life-radioactivity
https://doi.org/10.1038/nature01541
https://en.wikipedia.org/wiki/Intensity_(physics)
https://www.env.go.jp/en/chemi/rhm/basic-info/1st/02-01-01.html
https://www.env.go.jp/en/chemi/rhm/basic-info/1st/02-01-01.html
https://www.ros.org/
https://www.ros.org/
https://www.ros.org/
https://www.ros.org/

[22] BOREN Jonathan a Steve COUSINS. Exponential Growth of ROS [ROS Top-
ics]. IEEE Robotics & Automation Magazine [online]. 2011, 18(1), 19-20 [cit.
2021-11-20]. ISSN 1070-9932. DOI: 10.1109/MRA.2010.940147

[23] Willow Garage. Wikipedia: The free Encyclopedia [online]. [cit. 2021-11-20].
URL: https://en.wikipedia.org/wiki/Willow_Garage

[24] Open Robotics [online]. [cit. 2021-11-20]. URL: https://www.openrobotics.
org/

[25] GERKEY Brian. ROS 2 Design: Why ROS 2? [online]. 2015-07 [cit. 2021-11-
20]. URL: https://design.ros2.org/articles/why_ros2.html

[26] DIRK Thomas. ROS 2 Design: ROS 2 middleware interface [online].
2017-09 [cit. 2021-11-20]. URL: http://design.ros2.org/articles/ros_
middleware_interface.html

[27] ROS.org: nodelet. ROS.org: Documentation [online]. [cit. 2021-11-20]. URL:
http://wiki.ros.org/nodelet

[28] MARUYAMA Yuya, Shinpei KATO a Takuya AZUMI. Exploring the perfor-
mance of ROS2. In: Proceedings of the 13th International Conference on Em-
bedded Software [online]. New York, NY, USA: ACM, 2016, 2016, s. 1-10 [cit.
2021-11-20]. ISBN 9781450344852. DOI: 10.1145/2968478.2968502

[29] INGALLS, Ricki G. Introduction to simulation. In: Proceedings of the 2011
Winter Simulation Conference (WSC) [online]. IEEE, 2011, 2011, s. 1374-1388
[cit. 2021-12-04]. ISBN 978-1-4577-2109-0. DOI: 10.1109/WSC.2011.6147858

[30] SANTOS PESSOA DE MELO, Mirella, Jose GOMES DA SILVA NETO, Pe-
dro JORGE LIMA DA SILVA, Joao Marcelo Xavier NATARIO TEIXEIRA a
Veronica TEICHRIEB. Analysis and Comparison of Robotics 3D Simulators.
In: 2019 21st Symposium on Virtual and Augmented Reality (SVR) [online].
IEEE, 2019, 2019, s. 242-251 [cit. 2021-12-04]. ISBN 978-1-7281-5434-3. DOI:
10.1109/SVR.2019.00049

[31] COLLINS Jack, Shelvin CHAND, Anthony VANDERKOP a David HOWARD.
A Review of Physics Simulators for Robotic Applications. IEEE Access [on-
line]. 2021, 9, 51416-51431 [cit. 2021-12-04]. ISSN 2169-3536. DOI: 10.1109/AC-
CESS.2021.3068769

[32] AFZAL Afsoon, Deborah S. KATZ, Claire Le GOUES a Christo-
pher S. TIMPERLEY. A Study on the Challenges of Using Robotics

98

https://en.wikipedia.org/wiki/Willow_Garage
https://www.openrobotics.org/
https://www.openrobotics.org/
https://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/ros_middleware_interface.html
http://design.ros2.org/articles/ros_middleware_interface.html
http://wiki.ros.org/nodelet

Simulators for Testing [online]. 2020-15-5 [cit. 2021-12-04]. URL:
https://www.researchgate.net/publication/340683351_A_Study_on_
the_Challenges_of_Using_Robotics_Simulators_for_Testing

[33] AirSim [online]. Microsoft Research [cit. 2021-12-06]. URL: https://
microsoft.github.io/AirSim/

[34] COPPELIA ROBOTICS: Coppelia Sim [online]. [cit. 2021-12-06]. URL: https:
//www.coppeliarobotics.com/

[35] MuJoCo: Advanced physics simulation [online]. [cit. 2021-12-06]. URL: https:
//mujoco.org/

[36] CARLA: Open-source simulator for autonomous driving research. [online]. [cit.
2021-12-06]. URL: https://carla.org/

[37] Webots: Open Source Robot Simulator [online]. [cit. 2021-12-06]. URL: https:
//cyberbotics.com/

[38] SDFormat: Describe your world. [online]. Open Source Robotics Foundation
[cit. 2021-12-18]. URL: http://sdformat.org/

[39] ROS.org: Urdf/Tutorials [online]. [cit. 2021-12-06]. URL: http://wiki.ros.
org/urdf/Tutorials

[40] Ignition: Simulate before you build [online]. Open Robotics. [cit. 2021-12-06].
URL: https://ignitionrobotics.org/home

[41] Open Robotics: osfr/gazebo_models [online]. Open Source Robotics Founda-
tion, Mountain View, CA [cit. 2021-10-17]. URL: https://github.com/osrf/
gazebo_models

[42] Blender - a 3D modelling and rendering package [online]. Blender Foundation,
2018 [cit. 2021-12-25]. URL: http://www.blender.org

[43] Digital elevation model. Wikipedia: the free encyclopedia [online]. San Fran-
cisco (CA): Wikimedia Foundation, 2001- [cit. 2021-12-27]. URL: https://en.
wikipedia.org/wiki/Digital_elevation_model

[44] GABRLIK Petr, Tomas LAZNA, Tomas JILEK, Petr SLADEK a Ludek ZA-
LUD. An automated heterogeneous robotic system for radiation surveys: De-
sign and field testing. Journal of Field Robotics [online]. 2021, 38(5), 657-683
[cit. 2021-12-27]. ISSN 1556-4959. DOI: 10.1002/rob.22010

99

https://www.researchgate.net/publication/340683351_A_Study_on_the_Challenges_of_Using_Robotics_Simulators_for_Testing
https://www.researchgate.net/publication/340683351_A_Study_on_the_Challenges_of_Using_Robotics_Simulators_for_Testing
https://microsoft.github.io/AirSim/
https://microsoft.github.io/AirSim/
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://mujoco.org/
https://mujoco.org/
https://carla.org/
https://cyberbotics.com/
https://cyberbotics.com/
http://sdformat.org/
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/urdf/Tutorials
https://ignitionrobotics.org/home
https://github.com/osrf/gazebo_models
https://github.com/osrf/gazebo_models
http://www.blender.org
https://en.wikipedia.org/wiki/Digital_elevation_model
https://en.wikipedia.org/wiki/Digital_elevation_model

[45] QGIS_software: QGIS Geographic Information System [online]. QGIS Associ-
ation, 2021 [cit. 2021-12-27]. URL: https://www.qgis.org

[46] CloudCompare: 3D point cloud and mesh processing software Open Source
Project [online]. [cit. 2021-12-27]. URL: https://www.cloudcompare.org/

[47] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool, Sixth Eurographics Italian
Chapter Conference, page 129-136, 2008, [cit. 2021-12-27]. URL: https://www.
meshlab.net

[48] KAZHDAN Misha, Ming CHUANG, Szymon RUSINKIEWICZ a Hugues
HOPPE. Poisson Surface Reconstruction with Envelope Constraints. Computer
Graphics Forum [online]. 2020, 39(5), 173-182 [cit. 2021-12-27]. ISSN 0167-7055.
DOI: 10.1111/cgf.14077

[49] Cobalt-60. Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wiki-
media Foundation, 2001- [cit. 2021-12-29]. URL: https://en.wikipedia.org/
wiki/Cobalt-60

[50] NIST: PHYSICAL MEASUREMENT LABORATORY. : X-Ray Mass Atten-
uation Coefficients [online]. 2004 [cit. 2021-12-29]. URL: https://www.nist.
gov/pml/x-ray-mass-attenuation-coefficients

[51] MATLAB, 2019. version R2019b, Natick, Massachusetts: The MathWorks Inc.

[52] TROJNACKI, Maciej. Dynamics Model of a Four-Wheeled Mobile Robot for
Control Applications – A Three-Case Study. FILEV, D., J. JABŁKOWSKI,
J. KACPRZYK, et al., ed. Intelligent Systems’2014 [online]. Cham: Springer
International Publishing, 2015, 2015, s. 99-116 [cit. 2022-03-27]. Advances in In-
telligent Systems and Computing. ISBN 978-3-319-11309-8. DOI: 10.1007/978-
3-319-11310-4_10

[53] KOZŁOWSKI, KRZYSZTOF and DARIUSZ PAZDERSKI. MODELING AND
CONTROL OF A 4-WHEEL SKID-STEERING MOBILE ROBOT. Interna-
tional Journal of Applied Mathematics and Computer Science [online]. 2004,
2004, 14(4), 477–496 [cit. 2022-03-28]. URL: http://matwbn.icm.edu.pl/
ksiazki/amc/amc14/amc1445.pdf

[54] CARACCIOLO, L., A. DE LUCA and S. IANNITTI. Trajectory track-
ing control of a four-wheel differentially driven mobile robot. In: Proceed-
ings 1999 IEEE International Conference on Robotics and Automation (Cat.

100

https://www.qgis.org
https://www.cloudcompare.org/
https://www.meshlab.net
https://www.meshlab.net
https://en.wikipedia.org/wiki/Cobalt-60
https://en.wikipedia.org/wiki/Cobalt-60
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1445.pdf
http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1445.pdf

No.99CH36288C) [online]. IEEE, 1999, s. 2632-2638 [cit. 2022-03-28]. ISBN 0-
7803-5180-0. DOI: 10.1109/ROBOT.1999.773994

[55] ARSLAN, Sercan and Hakan TEMELTAŞ. Robust motion control of a four
wheel drive skid-steered mobile robot. 7th International Conference on Electri-
cal and Electronics Engineering (ELECO) [online]. 2011, 394-398 [cit. 2022-03-
28].

[56] PACEJKA, Hans B. Tyre and Vehicle Dynamics [online]. Delft Uni-
versity of Technology, 2012 [cit. 2022-03-28]. ISBN 9780080970172.
URL: http://www.engineering108.com/Data/Engineering/Automobile/
tyre-and-vehicle-dynamics.pdf

[57] VIRGALA, Ivan a Michal KELEMEN. Experimental Friction Iden-
tification of a DC Motor [online]. 2013 [cit. 2022-04-21]. URL:
https://www.researchgate.net/publication/253241458_Experimental_
Friction_Identification_of_a_DC_Motor

[58] Geographic coordinate conversion. In: Wikipedia: the free encyclopedia [on-
line]. San Francisco (CA): Wikimedia Foundation, 2022 [cit. 2022-04-26]. URL:
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion

[59] CHING-LONG, Shih a Lin LI-CHEN. Trajectory Planning and Tracking Con-
trol of a Differential-Drive Mobile Robot in a Picture Drawing Application [on-
line]. 2017 [cit. 2022-05-03]. URL: https://www.mdpi.com/2218-6581/6/3/17

[60] LEENA, N a K. K SAJU. Modelling and trajectory tracking of wheeled
mobile robots. International Conference on Emerging Trends in Engineer-
ing [online]. 2016 [cit. 2022-05-03]. URL: https://www.sciencedirect.com/
science/article/pii/S2212017316301839

[61] MURRAY, R. M. Lecture 2 – LQR Control [online]. CALIFORNIA IN-
STITUTE OF TECHNOLOGY: Control and Dynamical Systems, 2016
[cit. 2022-05-07]. URL: https://www.cds.caltech.edu/~murray/courses/
cds110/wi06/lqr.pdf

[62] PRASAD, Lal Bahadur, Barjeev TYAGI a Hari Om GUPTA. Optimal Con-
trol of Nonlinear Inverted Pendulum System Using PID Controller and LQR:
Performance Analysis Without and With Disturbance Input. International
Journal of Automation and Computing [online]. 2016 [cit. 2022-05-07]. DOI:
0.1007/s11633-014-0818-1

101

http://www.engineering108.com/Data/Engineering/Automobile/tyre-and-vehicle-dynamics.pdf
http://www.engineering108.com/Data/Engineering/Automobile/tyre-and-vehicle-dynamics.pdf
https://www.researchgate.net/publication/253241458_Experimental_Friction_Identification_of_a_DC_Motor
https://www.researchgate.net/publication/253241458_Experimental_Friction_Identification_of_a_DC_Motor
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion
https://www.mdpi.com/2218-6581/6/3/17
https://www.sciencedirect.com/science/article/pii/S2212017316301839
https://www.sciencedirect.com/science/article/pii/S2212017316301839
https://www.cds.caltech.edu/~murray/courses/cds110/wi06/lqr.pdf
https://www.cds.caltech.edu/~murray/courses/cds110/wi06/lqr.pdf

[63] ZHAKATAYEV, Altay, Bexultan RAKHIM, Olzhas ADIYATOV, Almaskhan
BAIMYSHEV a Huseyin Atakan VAROL. Successive linearization based model
predictive control of variable stiffness actuated robots. In: 2017 IEEE In-
ternational Conference on Advanced Intelligent Mechatronics (AIM) [online].
IEEE, 2017, 2017, s. 1774-1779 [cit. 2022-05-07]. ISBN 978-1-5090-5998-0. DOI:
10.1109/AIM.2017.8014275

[64] SKAF, Joëlle. Solving the LQR Problem by Block Elimination [on-
line]. [cit. 2022-05-07]. URL: https://stanford.edu/class/ee363/notes/
riccati-derivation.pdf

[65] LAZNA, Tomas. Optimizing the localization of gamma radiation point sources
using a UGV. In: 2018 ELEKTRO [online]. IEEE, 2018, 2018, s. 1-6 [cit. 2022-
05-12]. ISBN 978-1-5386-4759-2. DOI: 10.1109/ELEKTRO.2018.8398368

[66] THRUN, Sebastian, Wolfram BURGARD a Dieter FOX. Probabilistic robotics.
Massachusetts: MIT Press, c2006. ISBN 978-0262201629.

[67] LABBE JR, Roger R. Kalman and Bayesian Filters in Python [on-
line]. May 23, 2020 [cit. 2022-05-10]. URL: https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python

[68] PINKAM, Nantawat, Armagan ELIBOL a Nak Young CHONG. Informative
Mobile Robot Exploration for Radiation Source Localization with a Particle
Filter. In: 2020 Fourth IEEE International Conference on Robotic Computing
(IRC) [online]. IEEE, 2020, 2020, s. 107-112 [cit. 2022-05-10]. ISBN 978-1-7281-
5237-0. DOI: 10.1109/IRC.2020.00024

[69] ELFRING, Jos, Elena TORTA a René van de MOLENGRAFT. Particle Filters:
A Hands-On Tutorial. Sensors [online]. 2021 [cit. 2022-05-10]. DOI: https:
//doi.org/10.3390/s21020438

102

https://stanford.edu/class/ee363/notes/riccati-derivation.pdf
https://stanford.edu/class/ee363/notes/riccati-derivation.pdf
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://doi.org/10.3390/s21020438
https://doi.org/10.3390/s21020438

	Introduction
	Preliminaries
	Source of Radiation
	Isotopes
	Radioactivity
	Units of Radioactivity
	Dosimetry
	Health Risks
	Radiation Protection

	ROS and ROS2
	Robotic Simulators
	Robotic Simulators Overview
	Gazebo
	Ignition Gazebo

	Environment
	Environment from Model Database
	Generation of Random Environment
	Building Editor
	Environment from Real Data
	Digital Elevation Model
	Point Cloud

	Robot Models
	Orpheus X4
	Robot Model in Gazebo
	Methods for Defining Models
	Physical Properties

	Motion Analysis
	Dynamic Model
	Dissipative Forces
	Comparing with Gazebo

	Controllers
	Trajectory Generator
	Trajectory Controller
	Velocity Controller
	Trajectory Tracking

	Coordinate System
	REP 105
	Conversion of Geographic Coordinate System

	Radioactivity Simulation
	Radiation Gazebo Plugin
	Gazebo Experiment

	Searching Lost Radioactive Source
	Mapping Based Approach
	Particle Filter

	Conclusion
	Bibliography

