
RADIOENGINEERING, VOL. 27, NO. 2, JUNE 2018 475

DOI: 10.13164/re.2018.0475 APPLICATIONS OF WIRELESS COMMUNICATIONS

Real-Time Generation
of Standard-Compliant DVB-T Signals

Giuseppe BARUFFA, Luca RUGINI, Fabrizio FRESCURA, Paolo BANELLI

Dept. of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

{giuseppe.baruffa, luca.rugini, fabrizio.frescura, paolo.banelli}@unipg.it

Submitted July 27, 2017 / Accepted December 6, 2017

Abstract. This paper proposes and discusses two software
implementations of the DVB-T modulator, using C++ and
MATLAB, respectively. All the key features of the DVB-T
standard are included. The C++ DVB-T modulator, incor-
porated into the Iris framework developed by Trinity Col-
lege of Dublin, works in real time on an Intel Core i7
2.4 GHz CPU with the Iris testbed. The MATLAB-based
DVB-T modulator is coupled with a receiver implementa-
tion with channel estimation, equalization, soft-output
demapping, and channel decoding. The validation step
demonstrates that the proposed DVB-T software imple-
mentations generate standard-compliant DVB-T signals
that are correctly received by commercially available TV
sets and USB dongles. The software code for the Iris-based
C++ modulator, and for the MATLAB-based modulator
and receiver, has been made publicly available under the
GNU license.

Keywords
Digital Video Broadcasting-Terrestrial (DVB-T),
OFDM, software-defined radio (SDR), C++,
MATLAB

1. Introduction

Digital Video Broadcasting-Terrestrial (DVB-T) is
a popular broadcasting standard used in Europe and
worldwide [1], [2], [3]. Traditionally, DVB–T transmitters
make use of hardware-based architectures, either custom-
ized or reprogrammable. However, software-defined radio
(SDR) solutions are becoming attractive in order to incor-
porate many software-defined communication standards
into a single device, which can be driven by a low-cost
personal computer (PC) with multicore central processing
units (CPUs) [4], [5], [6].

In the last fifteen years, SDR solutions for DVB-T
systems have been investigated by many researchers, using
different software languages, mainly C++ and MATLAB.
For what concerns the C++ language, [7] proposed a mixed
SDR digital signal processor (DSP) platform that uses

a host PC and an MDS TM-13 IREF DSP board. A com-
plete DVB-H transmitter and receiver chain that runs in
real time on a multithreaded DSP was described in [8]. In
2008, [9] proposed a GNU Radio-based DVB-T modulator
that integrates a hybrid C++/Python code with a universal
software radio peripheral (USRP) front-end. A C++ re-
ceiver was then proposed in [10] to reduce the computa-
tional cost with respect to [9]. By means of accurate opti-
mization strategies and a memory-based acceleration tech-
nique [11], real-time reception and decoding of TV signals
can be achieved. A memory-efficient DVB-T/H receiver
has been proposed in [12], using a DSP-based and acceler-
ator-assisted SDR architecture together with multithreading
and a parallelized version of the C language. A software-
defined C receiver implementation for ISDB-T is described
in [13]: this receiver can operate on a single frequency
segment of the ISDB-T signal, thus allowing to receive
a standard definition TV signal in real time. C++ software
for DVB-T signal reception has been proposed in [14],
[15], [16], [17], which demonstrate the real-time feasibility
for the whole receiving chain. In [18], the most time-con-
suming processing stages (Viterbi decoder and FFT) have
been implemented using a graphic processing unit, whereas
the remaining stages still run on the CPU and are imple-
mented in C; however, the Reed-Solomon (RS) decoder
has not been considered in the reception chain. In 2014, we
proposed an USRP-based C DVB-T transmitter that works
in real time and makes use of parallelization strategies such
as multithreading and vectorization [19]. The Brazilian
version of ISDB-T has been implemented in [20] at the
transmission side on a regular PC, using GNU radio and
C++, achieving real-time processing.

MATLAB software for digital video broadcasting
systems has been proposed as well. For instance, [21] de-
velops DVB-T transmission and reception chains, with
a subsequent SIMD-oriented pre-compilation step that
provides optimized assembly code for specialized repro-
grammable processors. Some portions of the DVB-T re-
ception chain have been implemented in MATLAB in [22]
for the purpose of localization of GNSS systems: due to the
low complexity of the synchronization algorithm, real-time
processing was achieved. A MATLAB-based implementa-
tion of DVB-T transmitter and receiver is proposed in [23]
and simulated in [24], focusing on channel coding and

476 G. BARUFFA, L. RUGINI, F. FRESCURA, ET AL., REAL-TIME GENERATION OF STANDARD-COMPLIANT DVB-T SIGNALS

decoding operations. A MATLAB DVB-T receiver is de-
scribed in [19], including mode detection and time and
frequency synchronization.

This paper presents and describes a new software im-
plementation of the DVB-T modulator using C++. Differ-
ently from previous literature (e.g., [9] and [19]), the de-
signed C++ code is integrated into the Iris SDR testbed
developed by Trinity College of Dublin (TCD) [25]. Actu-
ally, the Iris testbed and the associated software enclose
several features (e.g., runtime reconfiguration, network
stack support, embedded systems support, component-
based architecture [25]) and also provide implicit multi-
threading capabilities. This way, differently from [19],
real-time transmission can be achieved without applying
specific parallelization strategies to the designed DVB-T
C++ code. For the purpose of validation of the designed
DVB-T C++ software, we also include the implementation
of a MATLAB-based DVB-T modulator: the validation
procedure compares the output of the C++ DVB-T modu-
lator with the output of the MATLAB DVB-T modulator.
The correctness of the validation has been further con-
firmed by the correct reception, on regular TV sets and
USB dongles, of the DVB-T signal transmitted on-air in
a laboratory environment.

In addition to a standard-compliant DVB-T modula-
tor, the designed MATLAB code also includes a DVB-T
receiver with channel estimation, equalization, soft-output
demapping, Viterbi decoding, deinterleaving, Reed-Solo-
mon (RS) decoding, and descrambling. Differently from
most of the previous SDR-based DVB-T systems proposed
in the literature so far, an important feature of the designed
C++ and MATLAB code is the public availability under
the GNU license (at https://github.com/wishful-
project/module_iris/tree/master/dvb-tx-iris), to enable reuse
by other researchers and practitioners.

The remainder of this paper is organized as follows.
Section 2 presents a brief overview of the DVB-T standard.
Section 3 describes the implementation and the validation
of the C++ DVB-T modulator, while Section 4 illustrates
the MATLAB implementation of DVB-T. Section 5 dis-
cusses the impact of the proposed software, while Sec-
tion 6 concludes the paper.

2. Overview of the DVB-T Standard
The DVB-T modulator can be summarized as in

Fig. 1 [1]. The data to be transmitted are MPEG-2

Transport Stream (TS) packets, each with 188 data bytes
containing compressed video and audio. Groups of eight
TS packets are scrambled using a pseudo-random binary
sequence that produces a scrambled sequence with 1503
bytes. The obtained sequence is then parsed and encoded
using a nonbinary shortened RS code with 188 input bytes
and 204 output bytes (the additional 51 zero bytes are not
transmitted) [1]. These output bytes are convolutionally
interleaved using I = 12 delay paths and memory cells with
MI = 204/I = 17 bytes. Then, the interleaved bits are
convolutionally encoded using a rate rc = 1/2 and a con-
straint length L = 7. The code rate can be increased up to
rc  {2/3, 3/4, 5/6, 7/8} by puncturing (nonequispaced bit
decimation) [1]. Successively, bit interleaving and  -bits
symbol interleaving is performed using a RAM whose size
depends on the DVB-T mode (6048 cells for 8K, 1512
cells for 2K). Afterward, the mapper uses Gray encoding
and square quadrature-amplitude modulation (QAM) with
M = 2. The obtained QAM data cells are inserted into
a frame adapter that includes signaling information, such as
boosted pilots for channel estimation and transmission
parameter signaling (TPS). The whole frame is then con-
verted in orthogonal frequency-division multiplexing
(OFDM) symbols, with cyclic prefix (CP): one frame con-
tains NF = 68 OFDM symbols, and one superframe contains
four frames. The OFDM modulator is detailed in Sec. 2.1.
If necessary, the DVB-T modulator can include an inter-
polator that adjusts the sample rate and a spectrum emis-
sion mask (SEM) filter. Interpolation and SEM filtering is
described in Sec. 2.2.

2.1 OFDM

Each OFDM symbol contains K active carriers and
NFFT – K virtual carriers as guard frequency bands. NFFT is
the FFT size. OFDM performs an inverse FFT that con-
verts the assembled data from the frequency domain to the
time domain. A CP (with NG samples) is also prepended to
each OFDM symbol. The OFDM baseband signal []s n can

be expressed by

F F1 1 1

, , , , ,
0 0 0 0 0

[] [] []
N N K

m l m l k k m l k
m l m l k

s n z n c G n
   

    

    (1)

where m is the frame index, l is the OFDM symbol index, k
is the subcarrier index, cm,l,k is the QAM data cell, Gk is
a weighting factor that pre-compensates linear distortions
caused by following stages (Gk = 1 if no distortion), and
zm,l[n] is the OFDM symbol in the time domain.

Input data
(bytes)

Convolutional
encoder

Convolutional
interleaver

Reed-Solomon
encoderScrambler Puncturer Bit

interleaver

Symbol
interleaverMapperFrame

adapter
OFDM

modulatorInterpolatorSpectrum emission
mask filter

DVB-T signal
(samples)

Fig. 1. Block diagram of the DVB-T modulator.

RADIOENGINEERING, VOL. 27, NO. 2, JUNE 2018 477

The orthogonal carriers , , []m l k n are expressed by

 

 
S

2
, , G F S

FFT

F S

[] exp j2 ()

()

m l k

N

k K
n n N l mN N

N

n l mN N

 
 

    
 

  

 (2)

where K2 = (K – 1)/2, NS = NFFT + NG, and NS[n] is equal to
one for n = 0, 1,…, NS – 1 and to zero elsewhere. There are
3 possible modes for OFDM: NFFT  {2048, 4096, 8192}
for 2K, 4K (in DVB-H only), and 8K, respectively, which
correspond to K  {1705, 3409, 6817} active carriers. The
CP ratio NG/NFFT is selected in the set {1/32, 1/16, 1/8, 1/4}.

2.2 Interpolation and SEM Filter

The interpolator is not part of the DVB-T standard [1]
and is required only when the digital-to-analog converter
(DAC) sample rate fs,DAC is different than the DVB-T sam-
pling rate fs,DVB-T = 64/7 MHz. When fs,DAC > fs,DVB-T, the
oversampling ratio is Ro = fs,DAC / fs,DVB-T = Lo/Mo, where Lo
and Mo are coprime. The sampling rate conversion can be
done by an interpolating filter with impulse response hI(t),
producing as output [19]

  
2

1

I s,DVB-T[] [] ()
P

n n
i P

y n s p i h i T


    (3)

where pn = nTs,DAC / Ts,DVB-T = n/Ro , n = n/Ro – pn,
Ts,DVB-T = 1/fs,DVB-T, and Ts,DAC = 1/fs,DAC . The interpolator
distortion can be pre-compensated by choosing
Gk = 1/HI((k – K2) fs,DVB-T/NFFT) in (1), where HI(f), is the
Fourier transform of hI(t).

The SEM filter (not in the DVB-T standard [1]) is re-
quired only when the SEM has to be imposed at the base-
band level. This filter also reduces the IF images caused by
interpolation [19]. The number of taps depends on the
required stopband attenuation and transition bandwidth,
and should be low for real-time operation.

3. C++ DVB-T Modulator
The implemented C++ DVB-T modulator is struc-

tured with a modular design that makes the designed soft-
ware easily embeddable into existing SDR frameworks.

3.1 Overview of the Iris Framework

The Iris SDR framework [25], developed by the Tele-
communications Research Centre at TCD, is primarily
employed to perform cognitive-radio experiments and
enable dynamic spectrum access [26], so it is highly suita-
ble for real-time signal processing operations. The Iris
framework, written in C++, is intended to run on general-
purpose processors and can be configured to perform many
different radio structures. A radio structure is built on basic
blocks called components, which perform a particular pro-
cess of the radio chain. A data buffer is positioned between

adjacent components by the framework, thus allowing data
to be exchanged between the components. Metadata are
passed among components to specify particular infor-
mation data, such as a time stamp or a data rate. The Iris
framework has also the task to perform data safety, that is,
one component cannot use data while another component
is still producing them, and vice versa. A useful feature of
the Iris framework is its capability of parallelization of
sequential tasks: as explained in Sec. 3.1, parallelization
can be achieved by assigning group of components (whose
tasks can proceed sequentially) to an engine, i.e., an Iris
framework environment that has its own data buffers and
can run in a thread separate from that of the other engines.

During a typical call to the Iris framework, the host
application reads a configuration file and assembles a radio
structure through the Iris application programmer interface
(API). A component manager is accessed to select the
requested components from a library of precompiled com-
ponents that include the designed DVB-T software. All the
selected components are then instantiated and executed by
the radio engine, to perform the designed task.

3.2 Design of the C++ Code Structure

Each DVB-T basic building block has been assigned
to a single serial task that runs inside a unique Iris compo-
nent. This way, parallelization can be achieved by instanti-
ating different components to separate engines. To achieve
the highest degree of parallelization, we choose to fit every
component inside its own engine: indeed, this design
philosophy permits a pipeline-like execution of the instruc-
tions of consecutive engines, thereby minimizing the pro-
cessing latencies. Hence, we discarded the alternative
philosophy that fits all components inside a single engine:
indeed, this way the DVB-T data flow would be executed
serially and would introduce large latencies in the pro-
cessing of consecutive data blocks, because the engine
would have to wait for the end of the processing of the last
component before reactivating the first component. To
maximize the number of engines, we split the DVB-T
modulator in 12 functional components, i.e., the 12 blocks
of Fig. 1. Next, we separately designed each block, as
explained in Sec. 3.3. As verified in Sec. 3.4, this design
method enables real-time operation of the DVB-T modu-
lator. Clearly, this highly parallel design increases the us-
age of computing resources, such as RAM and threads,
with respect to a slower solution that uses a unique engine
shared by all the components.

3.3 Design of the C++ Blocks

Every block is designed according to the Iris API in
C++ language. Each block is instantiated as a single com-
ponent in a derived base class of the Iris API specifications
[25], thus inheriting all the methods needed for the proper
management of that component. Component data pro-
cessing methods are implemented as specified by the Iris
API [25]. Thus, a generic component requests a data buffer

478 G. BARUFFA, L. RUGINI, F. FRESCURA, ET AL., REAL-TIME GENERATION OF STANDARD-COMPLIANT DVB-T SIGNALS

to process, waiting in idle mode until input data are pro-
vided. The designed blocks are generally unable to request
a particular number of input samples or data. All the
blocks, except the scrambler and the SEM filter, have their
own private internal data buffer, where multiple data input
bursts can be stored, until a sufficient number of samples is
collected in order to trigger the designed signal processing
operation.

The C++ code of the first 10 blocks has been
designed by translating the DVB-T standard specifications
[1] into lines of code, avoiding the use of existing libraries:
this way, we have maximum control of the specific opera-
tion of each block. The only exception to this general rule
is the use of the FFTW library [27] inside the OFDM
block, for maximum performance and portability. The
interpolator and the SEM filter have been designed [19]
assuming an Ettus USRP N210, whose sample frequency is
fs,DAC = 100/nDAC MHz (nDAC is a positive integer). The
designed SEM filter uses a Kaiser window with passband
bandwidth W = (K + 1) fs,DVB-T /NFFT  7.6 MHz, transition
bandwidths of 700 kHz, and stopband attenuation of
25 dB.

3.4 Validation of the C++ Code

The code has been validated using the automated
testing provided within the Iris framework building step.
The command cmake with ctest [28] automatically per-
forms several tests on both code sanity and expected out-
puts. Concerning the code sanity tests, we performed the
following validation actions: (a) smoke tests to verify that
the code compiles and links correctly into an executable;
(b) crash-proof tests to verify that the produced executable
runs without crashes; (c) black-box tests to verify that the
number and data types of inputs and outputs match the
expected ones, without knowledge of the implementation
of the block; (d) white-box tests to verify that the number
and data types of inputs and outputs match the expected
ones, with knowledge of the implementation of the block.

Concerning the tests on the expected outputs of the
DVB-T modulator, we have compared the output data of
the C++ modulator to a reference output, for a predefined
set of input data. To obtain the reference outputs, we have
implemented the first 10 blocks of Fig. 1 in a high-level
interpreted language, i.e., MATLAB. For those blocks
operating on fixed point data (i.e., the first seven blocks of
Fig. 1), we required that the output data samples of the two
different implementations (C++ design and MATLAB
reference) are bit-by-bit equal. Differently, for those blocks
operating on floating-point data (i.e., mapper, framer, and
OFDM), we required that the output data samples of the
two implementations have a maximum difference below
a preselected tolerance. This tolerance depends on the
expected quantization step Q, which in turn depends on
the characteristics of the adopted DAC. For instance,
assuming that the real and the imaginary parts of the signal
are in the range [1, 1]  , a DAC with NDAC = 14 bits gives

Fig. 2. PSD of the generated DVB-T signal.

Q = 2/2N
DAC  1.210–4. Thus, for validation purposes,

two floating point values are considered equal when their
difference is below a tolerance value , where  is chosen
such as  < Q. In this case, the two floating point values
will produce samples that either are equal or differ at
maximum by one quantization level Q only. In our tests,
 = 10–4.

Note that the last two optional blocks of the DVB-T
modulator of Fig. 1 have not been implemented in
MATLAB. Concerning the SEM filter output, Figure 2
shows the power spectrum density (PSD) of the generated
DVB-T signal, at a carrier frequency fc = 666 MHz, using
two Ettus USRP N210 (one as transmitter and another one
as spectrum analyzer). Note the flat PSD in the passband
and the total attenuation of 35 dB in the stopband. The
spike at 671 MHz is generated by the local oscillator car-
rier, using a frequency offset for near-zero IF configuration
(fIF = 5 MHz): this spike can be filtered out with an analog
filter during the final amplification stage. If a final analog
filter is absent (such as in USRP devices), this spike can be
moved into the transition band to avoid adjacent channel
interference (e.g., by using fIF = 3.9 MHz).

Summarizing, all the different tests performed for
every block of the DVB-T modulator chain have been
completely successful, including all the code sanity tests
and all the expected output tests. In addition, we have also
verified that the generated DVB-T signal, when transmitted
in real time by an Ettus USRP (such as N210, B205, B210)
in a laboratory environment, is correctly received by both
commercial TV sets and USB dongles.

3.5 Time Performance

To enable real-time operation of the designed DVB-T
modulator, every block should be able to achieve a pro-
cessing speed higher than the speed (specified in [1]) re-
quired to perform the block task. Iris contains dedicated
steps for the benchmarking of single processing compo-
nents, which in our case coincide with the DVB-T blocks.

RADIOENGINEERING, VOL. 27, NO. 2, JUNE 2018 479

This benchmarking suite provides the speed of the block,
to be compared with the time requirement. For every block,
the maximum input data rate Rst,max is constrained by [1]
and by the input sample rate of the SDR device. For the
USRP, we used fs,DAC = 10 MHz (fs,DAC = 12.5 MHz), which
leads to Ro = 35/32 (Ro = 175/128) and to a SEM filter with
19 taps (23 taps). By comparing Rst,max with the actual data
rate Ract measured by the suite, we obtain the speed-up
factor Fsu = Ract / Rst,max of each block. We assume that
real-time operation is possible when, for all the blocks,
Fsu > 1.2, where the 20% margin accounts for additional
latencies due to the data exchange among blocks (operated
by the engines) and overall thread execution scheduling.

Table 1 reports the achieved performance Ract, the re-
quired maximum data rate Rst,max, and the speed-up factor
Fsu of all the blocks. The benchmarks are run on an Intel
Core i7-3630QM CPU at 2.4 GHz with 8 GB DDR3 RAM
and Ubuntu 16.04 OS, and the programs have been com-
piled with the GNU C++ compiler v. 5.4.0. Benchmarking
is performed adopting input data of large size, thus mini-
mizing the impact of the Iris engine overhead on data
buffer management. All the speed-up factors are above the
threshold value 1.2: in Tab. 1, the fastest blocks are the
scrambler and the convolutional interleaver, while the
slowest blocks are the SEM filter and the RS encoder.

Table 2 reports the achieved time performance for
the whole chain. The different configurations of Tab. 2 con-

Block Ract Rst,max Fsu

Scrambler 4158.5 31.7 131.3

RS encoder 211.8 31.7 6.7

Convolutional interleaver 4016.4 34.4 116.8

Convolutional encoder 409.0 34.4 11.9

Puncturer

1/2 552.0 68.7 8.0

2/3 612.7 68.7 8.9

3/4 627.0 68.7 9.1

5/6 616.6 68.7 9.0

7/8 604.7 68.7 8.8

Bit interleaver

4QAM 357.3 39.3 9.1

16QAM 374.5 39.3 9.5

64QAM 379.1 39.3 9.6

Symbol interleaver

2K 317.3 6.5 48.8

4K 313.0 6.5 48.2

8K 314.7 6.5 48.4

Mapper

4QAM 485.1 6.5 74.6

16QAM 480.0 6.5 73.8

64QAM 449.1 6.5 69.1

Frame Adapter

2K 197.5 6.5 30.4

4K 191.2 6.5 29.4

8K 178.4 6.5 27.4

OFDM
2K 1/32 122.0 7.4 16.5

8K 1/4 96.4 6.1 15.8

Interpolator
35/32 120.8 9.1 13.2

175/128 103.2 9.1 11.3

SEM filter
19 taps 52.6 10.0 5.3

23 taps 45.7 12.5 3.7

Tab. 1. Input data rates and speed-up factor for the compiled
C++ blocks. Data rates are in Mb/s for the first six
blocks and in Msample/s for the last six blocks.

Configuration SEM filter Ract Rst,max Fsu

8K, 1/4, 4QAM, 1/2 No 12.85 4.98 2.6

8K, 1/4, 4QAM, 1/2 23 taps 9.38 4.98 1.9

8K, 1/4, 4QAM, 2/3 No 17.17 6.64 2.6

8K, 1/8, 4QAM, 5/6 No 23.63 9.22 2.6

8K, 1/32, 16QAM, 1/2 No 30.75 12.06 2.5

8K, 1/16, 16QAM, 2/3 No 39.48 15.61 2.5

8K, 1/16, 16QAM, 5/6 No 49.37 19.52 2.5

8K, 1/4, 64QAM, 3/4 No 57.15 22.39 2.6

8K, 1/4, 64QAM, 3/4 23 taps 40.72 22.39 1.8

8K, 1/8, 64QAM, 5/6 No 70.10 27.65 2.5

8K, 1/32, 64QAM, 7/8 No 80.03 31.67 2.5

8K, 1/32, 64QAM, 7/8 23 taps 57.58 31.67 1.8

2K, 1/32, 64QAM, 7/8 No 80.32 31.67 2.5

Tab. 2. Input data rates and speed-up factor for the whole
DVB-T modulator. Data rates are expressed in Mb/s.

sider the different DVB-T parameters (number of carriers,
CP length, modulation, and code rate) and the absence or
presence of the optional blocks in Fig. 1, i.e., the interpo-
lator and the SEM filter. The output of the last block in the
chain (either the OFDM modulator or the SEM filter) has
been forwarded to a virtual dummy load (the /dev/null
device of the Ubuntu file system). In all cases, we obtained
a typical speed-up factor of Fsu = 2.5 in the absence of
interpolation and SEM filtering, and of Fsu = 1.8 in the
presence of interpolation and SEM filtering. Since the
obtained speed-up factors are greater than 1.2 in all cases,
we assume that our C++ DVB-T software can work in real
time without problems. This is confirmed by all the real-
time experiments we have performed. Note that the speed-
up factors of Tab. 2 for the aggregate system are signifi-
cantly lower than the speed-up factors of the slowest
blocks in Tab. 1. This means that the latencies due to the
data exchange among blocks and the thread execution
scheduling times cannot be neglected.

When the software runs in real time, typically the
overall CPU load is about 16%. Therefore, the remaining
computational resources are sufficient for performing other
tasks, such as retrieving or building the transport stream
from a local disk, or receiving the transport stream by
a remote network connection. The used memory typically
amounts to roughly 100 MB and is almost constant for all
the configurations. Such computational loads could allow
a single modern CPU to run several instances of the DVB-
T modulator in parallel, each one allocated to a different
TV channel, with the only bottleneck consisting in the
limited bandwidth of the communication channel used to
convey the generated waveform samples towards the SDR
devices.

4. MATLAB DVB-T Software

4.1 Modulator

As explained in Sec. 3.4, the first 10 blocks of Fig. 1
have been implemented also in MATLAB, for the purpose

480 G. BARUFFA, L. RUGINI, F. FRESCURA, ET AL., REAL-TIME GENERATION OF STANDARD-COMPLIANT DVB-T SIGNALS

of validation of the designed C++ blocks. These MATLAB
scripts have been designed independently from the C++
blocks, starting from the DVB-T standard [1]. These
scripts have been further validated by comparing their
outputs with other MATLAB implementations, such as
[23]. This comparison has revealed a minor typo in the RS
encoder of [23] (the code generator polynomial in [1] is
different from the MATLAB default one used in [23]).

4.2 Demodulation and Decoding

The block diagram of a DVB-T receiver is shown in
Fig. 3. We assume that a previous subsystem has already
detected the DVB-T operating parameters (OFDM mode,
CP, and code rate) and has properly synchronized the re-
ceived OFDM symbols, both in time and frequency. For
instance, parameter detection and synchronization could be
performed as in [19]. Thus, the MATLAB receiver re-
moves the CP from the received signal, and subsequently
performs the FFT. After the FFT processing, the noisy
received signal R[k] on the k-th carrier can be expressed by

 [] [] [] []R k C k S k W k  (4)

where C[k] is the channel transfer function, S[k] is the data
(or pilot, or TPS) signal, and W[k] is the additive white
Gaussian noise (AWGN), on the k-th carrier, and k =

0, …, K – 1 represents the active carrier index. Then, the
data carrier samples are separated from the pilot carrier
samples: the information conveyed by the pilot carriers is
instrumental to estimate the channel transfer function C[k]
on the k-th carrier, for equalization purposes. The channel
estimator performs a least-squares interpolation based on
the FFT, as in [2]. In practice, the estimated channel Ĉ[k] is
a noisy copy of the real channel, as expressed by

 C
ˆ[] [] []C k C k W k  (5)

where WC[k] is the channel estimation error, mainly due to
receiver AWGN. The data carriers are then equalized using
the zero-forcing criterion, as

[]

[]
ˆ[]

R k
Y k

C k
 (6)

where Y[k] is the noise-affected equalized constellation
point and R[k] is the received constellation point expressed
by (4). The equalized data form the basis for the estimation
of the log-likelihood ratios (LLRs), which enable the soft-
input decoding of the convolutional code. These LLRs can

be computed using different techniques: in our case, we
have adopted a Log-max approximation [29], [30], to
achieve a good trade-off between decoding accuracy and
computational complexity. For the generic m-th bit carried
by the k-th QAM symbol, the Log-max LLR Λ(bk,m) is
expressed as

0 1

2
2 2

,

ˆ| [] |
() min [] min []

4 m m
k m

S S

C k
b Y k Y k

 
 

 

       
 (7)

where Sm
0 is the subset of constellation points where the

m-th bit is 0, and Sm
1 is the subset of constellation points

where the m-th bit is 1.

The outputs of the LLR block are then forwarded to
the symbol and bit deinterleavers, and then to the depunc-
turer. Depuncturing assigns a null value to the LLR of
erased bits, such that the subsequent Viterbi decoder will
not consider the contribution of erased bits in the computa-
tion of branch and path metrics. The Viterbi decoder uses
soft inputs with block truncation, and should use a trace-
back length lTB several times larger than the code constraint
length, in order to take into account the effects of punc-
tured bits. The chosen Viterbi algorithm has a hard-decided
output, thus the decoded bits are sent to the convolutional
deinterleaver and to the RS decoder. The RS decoder pads
with zeroes the input words and follows the usual decoding
procedure (syndrome computation, error location, error
evaluation, and error correction). The decoded message
words are then descrambled and the original TS data are
recovered.

4.3 Performance Results

Figure 4 shows the results obtained by simulations on
the AWGN and P1 channel [1], represented in terms of bit
error rate (BER) after soft Viterbi decoding versus the
carrier-to-noise ratio (C/N). The C/N is defined as

1
2

0R
12

2 2W

0

{| [] [] | }

{| [] | } {| [] | }

K

k
K

k

E C k S k
PC

N
E W k E C k










 



 (8)

where
1 12 2

R 0 0
{| [] [] | } {| [] | }

K K

k k
P E C k S k E C k

 

 
   is the

average power of the received signal, σW
2 = E{W [

 k] 2} is the
AWGN variance, and E{} is the expectation operator.
The P1 multipath channel (static, non-line-of-sight) leads to

CP removal
and FFT

Pilot-data
separation

Channel
estimation Equalization LLR

computation
Symbol

deinterleaver

Bit
deinterleaverDepuncturerViterbi

decoder
Convolutional
deinterleaver

Reed-Solomon
decoderDescrambler

DVB-T signal
(samples)

Output data
(bytes)

Fig. 3. Block diagram of the MATLAB DVB-T receiver.

RADIOENGINEERING, VOL. 27, NO. 2, JUNE 2018 481

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

C/N (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

4QAM 1/2

4QAM 2/3

4QAM 3/4

4QAM 5/6

4QAM 7/8

16QAM 1/2

16QAM 2/3

16QAM 3/4

16QAM 5/6

16QAM 7/8

64QAM 1/2

64QAM 2/3

64QAM 3/4

64QAM 5/6

64QAM 7/8

(a)

5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

C/N (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

4QAM 1/2

4QAM 2/3

4QAM 3/4

4QAM 5/6

4QAM 7/8

16QAM 1/2

16QAM 2/3

16QAM 3/4

16QAM 5/6

16QAM 7/8

64QAM 1/2

64QAM 2/3

64QAM 3/4

64QAM 5/6

64QAM 7/8

(b)

Fig. 4. Simulated performance of DVB-T using the MATLAB
code: (a) AWGN channel; (b) P1 channel.

Rayleigh fading. We assume perfect channel knowledge,
and soft Viterbi decoding with unquantized inputs and
a trace-back length of lTB = 128.

According to [1], the performance should be meas-
ured at the quasi error-free (QEF) condition (not more than
a single uncorrected error per hour). QEF corresponds to
a BER after the RS decoder of 110–11, and to a BER after
the Viterbi decoder of 210–4. Table 3 reports the values of
C/N (in dB) for QEF, for different modulation sizes M
and coding rates (CRs). The C/N values obtained using the
MATLAB modulator and receiver are in good agreement
with the C/N values provided by the DVB-T specifications
[1]. Note that perfect agreement is virtually impossible,
since the DVB-T specifications do not disclose all the
decoding parameters, such as the trace-back length. Ta-
ble 4 shows the BER after the Viterbi decoder, simulated at
the QEF C/N value, for different DVB-T configurations
and for different channels, such as AWGN, F1, and P1 [1].
The F1 multipath channel (static, line-of-sight) leads to
Rice fading. Table 4 explains that the simulated BER is
either close to the QEF BER of 210–4 or lower, thus con-
firming that the decoding parameters have been selected
properly.

M CR C/N (AWGN) C/N (P1)

[1] Sim. [1] Sim.

4

1/2 3.5 3.6 5.9 5.9

2/3 5.3 5.3 9.6 9.2

3/4 6.3 6.2 12.4 11.6

5/6 7.3 7.2 15.6 14.6

7/8 7.9 7.9 17.5 15.9

16

1/2 9.3 9.3 11.8 11.7

2/3 11.4 11.4 15.3 15.0

3/4 12.6 12.6 18.1 17.3

5/6 13.8 13.8 21.3 20.1

7/8 14.4 14.4 23.6 22.1

64

1/2 13.8 13.8 16.4 16.2

2/3 16.7 16.7 20.3 20.0

3/4 18.2 18.2 23.0 22.4

5/6 19.4 19.4 26.2 25.2

7/8 20.2 20.2 28.6 27.2

Tab. 3. Simulated QEF C/N (in dB) of the DVB-T standard.

M CR
AWGN F1 channel P1 channel

QEF BER QEF BER QEF BER

4

1/2 3.5 2.010-4 4.1 1.510-4 5.9 2.010-4
2/3 5.3 2.010-4 6.1 1.410-4 9.6 1.010-4
3/4 6.3 1.910-4 7.2 1.910-4 12.4 7.310-5
5/6 7.3 1.910-4 8.5 1.410-4 15.6 7.810-5
7/8 7.9 1.910-4 9.2 2.310-4 17.5 3.610-5

16

1/2 9.3 1.810-4 9.8 1.710-4 11.8 1.510-4
2/3 11.4 2.010-4 12.1 1.610-4 15.3 1.310-4
3/4 12.6 1.910-4 13.4 2.010-4 18.1 7.110-5
5/6 13.8 2.010-4 14.8 1.910-4 21.3 5.210-5
7/8 14.4 2.110-4 15.7 1.610-4 23.6 3.610-5

64

1/2 13.8 1.910-4 14.3 1.710-4 16.4 1.410-4
2/3 16.7 2.010-4 17.3 1.910-4 20.3 1.310-4
3/4 18.2 1.910-4 18.9 2.010-4 23.0 1.110-4
5/6 19.4 2.110-4 20.4 1.910-4 26.2 5.810-5
7/8 20.2 2.110-4 21.3 2.410-4 28.6 3.410-5

Tab. 4. Simulated BER of DVB-T at the QEF C/N.

5. Discussion
We discuss the impact of the proposed SDR DVB-T

modulator, and we compare the proposed DVB-T software
with DVB-T software designs available in the literature.

5.1 Impact

First, we explain the advantages of SDR-based
DVB-T transmitters with respect to conventional DVB-T
transmitters, and successively we list and discuss some
useful applications of the proposed DVB-T software.

In the upcoming future, some TV channels located in
the upper UHF band will be switched off, since that spec-
trum will be reallocated to cellular networks for extending
their 4G (or upcoming 5G) services [31], [32]. This spec-
trum reallocation pushes the broadcasting players (opera-
tors and equipment companies) to move their technologies
towards SDR-based ones. The reason for this change is
twofold. First, the profitability of hardware-based broad-

482 G. BARUFFA, L. RUGINI, F. FRESCURA, ET AL., REAL-TIME GENERATION OF STANDARD-COMPLIANT DVB-T SIGNALS

casting transmitters will be reduced, because there will be
less market opportunities to catch. However, SDR trans-
mitters, due to their easier re-programmability and lower
development costs (at least in their digital segment), will
allow to accommodate the market uncertainties. Second,
broadcasting operators could use many low-power small-
coverage transmitters co-located with cellular network base
stations, instead of using few high-power large-coverage
transmitters. In this case, SDR systems can be shared be-
tween broadcasting and cellular technologies.

Our software can be used for different applications
related to DVB-T, such as signal analysis, interference
estimation, power resource allocation, coverage issues, and
so on. For instance, the designed software permits a statis-
tical evaluation of the peak-to-average power ratio of true
DVB-T signal waveforms. As a second example, adjacent
channel interference estimation can be performed too, to
assess the coexistence with nearby DVB-T (or LTE) chan-
nels [33]. In addition, power allocation algorithms can be
exploited without changing the DVB-T receiver. Another
possibility is the investigation of the effect of impulsive
noise [34], non-Gaussian channels, and quantization errors
[35], on the DVB-T received signal. Furthermore, by
means of our SDR-based design, the DVB-T signal can
first be received by a custom DVB-T receiver and then
retransmitted to a single destination by a regenerative re-
lay, nearby to the receiver. Coverage issues may be inves-
tigated by incorporating the designed software into
a transmitting device for trial experiments. The proposed
software could be used also jointly with cognitive radio
systems that try to exploit the TV white spaces: for in-
stance, in [36], the authors introduce a spectrum-sensing-
based system where HDTV signals received via a satellite
link can be redistributed in home environments over unoc-
cupied DVB-T channels, using a DVB-T transmitter. Ob-
viously, this mentioned list of possible applications is only
exemplificative and non-exhaustive.

5.2 Comparison with Other DVB-T Software

Herein we detail the main differences between the
proposed DVB-T software and the existing literature. We
focus on those DVB-T designs that are closely related to
our proposed design: about C++, we consider the solutions
proposed in [9] and [19]; with reference to MATLAB de-
signs, we compare with [19] and [23].

With respect to the Soft-DVB in [9], there are 4 main
differences. First, our C++ code is publicly available (https:
//github.com/wishful-project/module_iris/tree/master/dvb-
tx-iris/components/gpp/phy). Second, [9] is based on GNU
Radio, while our C++ code is based on the Iris framework,
which requires less memory. Third, [9] employs a hybrid
Python/C++ language, while our software uses the C++
language only. Fourth, [9] produces RF signals with
7 MHz channel bandwidth only (due to throughput limita-
tions of the USB-based interface towards the USRP in [9]),
while our software can employ different channel band-
widths, including the 8 MHz one. With respect to the C++

DVB-T in [19], there are two main differences. First, the
C++ code of [19] is not publicly available. Second, the
C++ code of [19] uses vectorization and multithreading,
while the designed C++ code uses the intrinsic paralleliza-
tion provided by the Iris framework. Therefore, although
both transmitters work in real time, our non-parallelized
C++ code is simpler and more easily understandable than
[19]: this facilitates code modification and code reuse by
other researchers.

With respect to the MATLAB DVB-T of [19], there
are three main differences. First, the designed MATLAB
code is publicly available (at https:
//github.com/wishful-project/module_iris/tree/master/dvb-
tx-iris/scripts/dvbt/MATLAB). Second, the designed code
also includes a validated DVB-T modulator and (F1 and
P1) channel generation functions. Third, although [19]
includes synchronization, the designed MATLAB code has
some improved features not present in [19], such as LLR-
based soft-output demapping and FFT-based channel esti-
mation. With respect to the MATLAB DVB-T modulator
of [23], there are two main differences. First, [23] does not
include frame adaptation, and hence pilots and TPS are not
included. Second, in [23], OFDM is not implemented.

6. Conclusion
We have proposed two software implementations of

DVB-T, using C++ and MATLAB, publicly available
under the GNU license. The generated DVB-T signal has
been validated by the equivalence between C++ and
MATLAB outputs and by the correct reception by TV sets
and USB dongles. When incorporated into the Iris SDR
framework, the C++ DVB-T modulator works in real time.
The proposed code can be useful for many applications and
can be easily modified. Future work could include DVB-
T2 [37], DVB-T2-Lite [38], and DVB-C2 [39].

Acknowledgments

The research leading to these results has received
funding from the European Horizon 2020 Programme
under grant agreement no. 645274 (WiSHFUL project,
Open Call 1, DVB-TX-IRIS Extension). The authors thank
Nicholas Kaminski, Maicon Kist, Alextian Liberato, Diar-
muid Collins, Pedro Alvarez, and Francisco Paisana of
TCD for all the help in using the Iris software and testbed.
The authors also thank Gianluca Reali and Mauro
Femminella for the USRP hardware. We also thank the
anonymous reviewers for their constructive comments.

References

[1] DIGITAL VIDEO BROADCASTING (DVB). Framing structure,
channel coding and modulation for digital terrestrial television,

RADIOENGINEERING, VOL. 27, NO. 2, JUNE 2018 483

ETSI EN 300 744 V1.6.1 (2009-01). ETSI.

[2] POGGIONI, M., RUGINI, L., BANELLI, P. DVB-T/H and
T-DMB: Physical layer performance comparison in fast mobile
channels. IEEE Transactions on Broadcasting, 2009, vol. 55,
no. 4, p. 719–730. DOI: 10.1109/TBC.2009.2034418

[3] REIMERS, U. H. DVB - The family of international standards for
digital video broadcasting. Proceedings of the IEEE, 2006, vol. 94,
no. 1, p. 173–182. DOI: 10.1109/JPROC.2005.861004

[4] ULVERSØY, T. Software defined radio: Challenges and opportu-
nities. IEEE Communications Surveys and Tutorials, 2010, vol. 12,
no. 4, p. 531–550. DOI: 10.1109/SURV.2010.032910.00019

[5] PALKOVIC, M., RAGHAYAN, P., LI, M., et al. Future software-
defined radio platforms and mapping flows. IEEE Signal
Processing Magazine, 2010, vol. 27, no. 2, p. 22–33. DOI:
10.1109/MSP.2009.935386

[6] BLAKE, G., DRESLINSKI, R. G., MUDGE, T. A survey of
multicore processors. IEEE Signal Processing Magazine, 2009,
vol. 26, no. 6, p. 26–37. DOI: 10.1109/MSP.2009.934110

[7] KRATOCHVÍL, T., SLANINA, M. The DVB channel coding
application using the DSP development board MDS TM-13 IREF.
Radioengineering, 2004, vol. 13, no. 4, p. 14–17.

[8] IANCU, D., YE, H., GLOSSNER, J., et al. Software-only
implementation of DBV-H. In Proceedings of SPIE Multimedia on
Mobile Devices, 2008, 8 p. DOI: 10.1117/12.763800

[9] PELLEGRINI, V., BACCI, G., LUISE, M. Soft-DVB: A fully-
software GNU Radio-based ETSI DVB-T modulator. In
Proceedings of the 5th Karlsruhe Workshop on Software Radios,
2008.

[10] PELLEGRINI, V., LUISE, M. Fully software OFDM modulation
in vehicular, highly time-variant channels: An implemented
technology and its results. In Proceedings of IEEE International
Symposium on Wireless Communication Systems. Tuscany (Italy),
2009. DOI: 10.1109/ISWCS.2009.5285237

[11] PELLEGRINI, V., DI DIO, M., ROSE, L., LUISE, M. On the
computation/memory trade-off in software defined radios. In
Proceedings of IEEE Global Telecommunication Conference
(GLOBECOM). Miami (FL, USA), 2010. DOI:
10.1109/GLOCOM.2010.5683494

[12] JIANG, Y., XU, W., GRASSMANN, C. Implementing a DVB-T/H
receiver on a software-defined radio platform. International
Journal of Digital Multimedia Broadcasting, 2009, 7 p. DOI:
10.1155/2009/937848

[13] SUGANO, H., MIYAMOTO, R., OKADA, M. Fully software-
based real-time ISDB-T 1 segment receiver. In Proceedings of
IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting (BMSB). Nuremberg (Germany), 2011, 5 p.
DOI: 10.1109/BMSB.2011.5954956

[14] YU, J.-C., SHIH, J.-Z., HSU, Y.-T., TSENG, S.-M. Reed-Solomon
decoder optimization for PC-based DVB-T software radio
receiver. In Proceedings of IEEE International Conference on
Consumer Electronics (ICCE). Las Vegas (USA), 2011, 2 p.
DOI: 10.1109/ICCE.2011.5722645

[15] TSENG, S.-M., HSU, Y.-T., LIN, H.-K. Iterative channel decoding
for PC-based software radio DVB-T receiver. Wireless Personal
Communications, 2013, vol. 69, no. 1, p. 403–411.
DOI: 10.1007/s11277-012-0580-z

[16] TSENG, S.-M., HSU, Y.-T., CHANG, Y.-Y., LEE, T.-C. Software
baseband optimization except channel decoding for PC-based
DVB-T software radio receiver. Lecture Notes in Electrical
Engineering, 2014, vol. 260, p. 319–327. DOI: 10.1007/978-94-
007-7262-5_37

[17] TSENG, S.-M., CHANG, T.-K., HSU, Y.-T. A/D USB dongle
implementation for NB/PC-based software radio DVB-T receiver.

In Proceedings of IEEE International Conference on Advanced
Technologies for Communication (ATC). Hanoi (Vietnam), 2012,
5 p. DOI: 10.1109/ATC.2012.6404278

[18] LEE, K.-H., HEO, S. W. GPU based software DVB-T receiver
design. In Proceedings of IEEE International Conference on
Consumer Electronics (ICCE). Las Vegas (USA), 2013, 5 p. DOI:
10.1109/ICCE.2013.6487027

[19] BARUFFA, G., RUGINI, L., BANELLI, P. Design and validation
of a software defined radio testbed for DVB-T transmission.
Radioengineering, 2014, vol. 23, no. 1, p. 387–398.

[20] MACIEL, Y. P., AKAMINE, C., BEDICKS, JR. G., LOPES, P. B.
ISDB-TB transmission in software-defined radio. In Proceedings of
the 7th IEEE Latin-American Conference on Communications
(LATINCOM). Arequipa, (Peru), 2015, 6 p. DOI:
10.1109/LATINCOM.2015.7430122

[21] CICHON, G., FETTWEIS, G., MOUSE: A shortcut from Matlab
source to SIMD DSP assembly code. In Proceedings of
International Workshop on Embedded Computer Systems. Samos
(Greece), 2004, p. 159–167. DOI: 10.1007/978-3-540-27776-7_17

[22] VEJRAŽKA, F., KOVAR, P., ESKA, M., PURICER, P. Software
navigation receivers for GNSS and DVB. TransNav International
Journal on Marine Navigation and Safety of Sea Transportation,
2007, vol. 1, no. 2, p. 137–141.

[23] HÜTTL, A., KRATOCHVÍL, T. DVB-T channel coding
implementation in MATLAB. In Proceedings of MATLAB
Conference. Prague (Czech Republic), 2009.

[24] POLÁK, L., KRATOCHVÍL, T. Simulation of the DVB-H
channel coding and transmission in MATLAB. In Proceedings of
IEEE International Conference Radioelektronika. Brno (Czech
Republic), 2010, 4 p. DOI: 10.1109/RADIOELEK.2010.5478591

[25] SUTTON, P., LOTZE, J., LAHLOU, H., et al. Iris: an architecture
for cognitive radio networking testbeds. IEEE Communications
Magazine, 2010, vol. 48, no. 9, p. 114–122. DOI:
10.1109/MCOM.2010.5560595

[26] DOYLE, L. E., SUTTON, P. D., NOLAN, K E., et al. Experiences
from the Iris testbed in dynamic spectrum access and cognitive
radio experimentation. In Proceedings of IEEE Symposium on New
Frontiers in Dynamic Spectrum (DySPAN). Singapore, 2010, 8 p.
DOI: 10.1109/DYSPAN.2010.5457835

[27] FRIGO, M., JOHNSON, S. G. FFTW: An adaptive software
architecture for the FFT. In Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
Seattle (USA), 1998, p. 1381–1384. DOI:
10.1109/ICASSP.1998.681704

[28] MARTIN, K., HOFFMAN, B. An open source approach to
developing software in a small organization. IEEE Software, 2007,
vol. 24, no. 1, p. 46–53. DOI: 10.1109/MS.2007.5

[29] TOSATO, F., BISAGLIA, P. Simplified soft-output demapper for
binary interleaved COFDM with application to HIPERLAN/2. In
Proceedings of IEEE International Conference on Communication
(ICC). New York (USA), 2002. DOI: 10.1109/ICC.2002.996940

[30] BARUFFA, G., RUGINI, L. Soft-output demapper with
approximated LLR for DVB-T2 systems. In Proc. IEEE Global
Communication Conference (GLOBECOM). San Diego (USA),
2015. DOI: 10.1109/GLOCOM.2015.7417395

[31] GOMEZ-BARQUERO, D., WINSTON CALDWELL, M.
Broadcast television spectrum incentive auctions in the U.S.:
Trends, challenges, and opportunities. IEEE Communications
Magazine, 2015, vol. 53, no. 7, p. 50–56. DOI:
10.1109/MCOM.2015.7158265

[32] ALA-FOSSI, M., BONET, M. Clearing the skies: European
spectrum policy and future challenges of DTT in Finland and
Spain. International Journal of Digital Television, 2016, vol. 7,
no. 3, p. 363–377. DOI: 10.1386/jdtv.7.3.363_1

484 G. BARUFFA, L. RUGINI, F. FRESCURA, ET AL., REAL-TIME GENERATION OF STANDARD-COMPLIANT DVB-T SIGNALS

[33] BARUFFA, G., FEMMINELLA, M., MARIANI, F., REALI, G.
Protection ratio and antenna separation for DVB-T/LTE
coexistence issues. IEEE Communications Letters, 2013, vol. 17,
no. 8, p. 1588–1591. DOI: 10.1109/LCOMM.2013.070113.130887

[34] BANELLI, P. Bayesian estimation of a Gaussian source in
Middleton’s class-A impulsive noise. IEEE Signal Processing
Letters, 2013, vol. 20, no. 10, p. 956–959. DOI:
10.1109/LSP.2013.2274774

[35] RUGINI, L., BANELLI, P. On the equivalence of maximum SNR
and MMSE estimation: applications to additive non-Gaussian
channels and quantized observations. IEEE Transactions on Signal
Processing, 2016, vol. 64, no. 23, p. 6190–6199.
DOI: 10.1109/TSP.2016.2607152

[36] FADDA, M., MURRONI, M., POPESCU, V. An unlicensed
indoor HDTV multi-vision system in the DTT bands. IEEE
Transactions on Broadcasting, 2012, vol. 58, no. 3, p. 338–346.
DOI: 10.1109/TBC.2012.2201559

[37] GRÖNROOS, S., NYBOM, K., BJÖRKVIST, J. Complexity
analysis of software defined DVB-T2 physical layer. Analog
Integrated Circuits and Signal Processing, 2011, vol. 69, no. 2-3,
p. 131–142. DOI: 10.1007/s10470-011-9724-4

[38] SAMO, D. A., SLIMANI, M., BARUFFA, G., RUGINI, L. A per-
formance study of DVB-T2 and DVB-T2-Lite for mobile recep-
tion. Digital Signal Processing, 2015, vol. 37, p. 35–42. DOI:
10.1016/j.dsp.2014.11.002

[39] HASSE, P., ROBERT, J. A software-based real-time DVB-C2
receiver. In Proceedings of IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB).
Nuremberg (Germany), 2011. DOI: 10.1109/BMSB.2011.5954935

About the Authors ...
Giuseppe BARUFFA (corresponding author) was born in
Perugia, Italy, in 1970. He received the Laurea degree in
Electronic Engineering and the Ph.D. degree in Telecom-
munications from the University of Perugia in 1996 and
2001, respectively. In 2005, he visited Swiss Federal Pol-
ytechnic of Lausanne (EPFL), Switzerland. Since 2005, he
has been an Assistant Professor of Telecommunications
with the Department of Engineering at the University of
Perugia. He is the author of about 60 scientific papers. His
main research interests include digital television broad-
casting techniques, joint source/channel coding for video,
analysis of intermodulations in nonlinear systems, and
GNSS /Cellular hybrid positioning techniques.

Luca RUGINI was born in Perugia, Italy, in 1975. He
received the Laurea degree (cum laude) in Electronic Engi-
neering in 2000 and the Ph. D. degree in Telecommunica-
tions in 2003 from the University of Perugia, Perugia,
Italy. In 2007, he visited Delft University of Technology,
Delft, The Netherlands. He is currently an Assistant Pro-
fessor with the Department of Engineering at the Univer-
sity of Perugia. His research interests lie in the area of

signal processing for communications, with emphasis on
multicarrier and cognitive radio techniques. He serves as
an Associate Editor of the IEEE Signal Processing Letters,
Digital Signal Processing, and the EURASIP Journal on
Advances in Signal Processing.

Fabrizio FRESCURA is an Assistant Professor at the
Department of Engineering of the University of Perugia
since January 2005, where he is the lecturer of digital sig-
nal processing courses. He received the Laurea degree
(cum laude) in Electronic Engineering from the University
of Perugia in 1992, and the Ph.D. degree in Telecommuni-
cations in 1997. He was the advising professor of the win-
ning team of the Texas Instruments 1997 DSP Solution
Challenge. From 1999 to 2000 he has been working in
Texas Instruments France. In 2000, he was co-founder of
the university spin-off company Digilab2000. Since 2001
he coordinates the research activity of DSPLAB of Univer-
sity of Perugia. The main activities are related to DSP for
Image/Video processing and transmission, and DSP im-
plementation. In 2004, he was co-founder of the university
spin-off company Mediatech. Since 2002 he joined the
standardization committee ISO/IEC JTC 1/SC 29/WG 1.
He has been co-editor and co-chair of the JPWL (JPEG
2000 Wireless) AHG (Ad Hoc Group) and co-editor of D-
Cinema AHG. The scientific activity is proven by about 80
papers published on peer-reviewed international journals,
proceedings of international conferences, and contributions
to international organization standards.

Paolo BANELLI received the Laurea degree (cum laude)
in Electronics Engineering and the Ph.D. degree in Tele-
communications from the University of Perugia, Italy, in
1993 and 1998, respectively. In 2005, he was appointed as
Associate Professor in the Department of Electronic and
Information Engineering, University of Perugia, where he
has been an Assistant Professor since 1998. In 2001, he
joined the SpinComm group, as a Visiting Researcher, in
the Electrical and Computer Engineering Department,
University of Minnesota, Minneapolis. His research inter-
ests include signal processing for wireless communica-
tions, with emphasis on multicarrier transmissions, signal
processing for biomedical applications, spectrum sensing
for cognitive radio, waveform design for 5G communica-
tions, and graph signal processing. He was a Member
(2011–2013) of the IEEE Signal Processing Society’s
Signal Processing for Communications and Networking
Technical Committee. In 2009, he was a General Co-chair
of the IEEE International Symposium on Signal Processing
Advances for Wireless Communications. He currently
serves as an Associate Editor of the IEEE Transactions on
Signal Processing and the EURASIP Journal on Advances
in Signal Processing.

