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Abstract: Solution of both laminar and turbulent flow with consideration of hydrophobic surface is 
based on the original Navier assumption that the shear stress on the hydrophobic surface is directly 
proportional to the slipping velocity. In the previous work a laminar flow analysis with different 
boundary conditions was performed. The shear stress value on the tube walls directly depends on the 
pressure gradient. In the solution of the turbulent flow by the k-ε model, the occurrence of the fluctuation 
components of velocity on the hydrophobic surface is considered. The fluctuation components of the 
velocity affect the size of the adhesive forces. We assume that the boundary condition for ε depending 
on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero 
fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the 
turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of 
the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for 
turbulent flow on the hydrophobic surface. 

1 Introduction 
Solution of both laminar and turbulent flow with 
consideration of hydrophobic surface is based on the 
original Navier assumption that the shear stress on the 
hydrophobic surface is directly proportional to the slipping 
velocity 1. This condition is supplemented by Tesk's 
assumption that the slip will occur after a certain shear 
stress threshold has been exceeded. To solve more 
complicated liquid flow tasks over a curved surface 2, the 
mentioned boundary condition is supplemented by other 
terms. Generally on the surface S for the shear stress 
vector 𝞽𝞽 applies: 

𝑐𝑐 = 0 |𝝉𝝉| ≤ |𝝉𝝉|𝑲𝑲 𝑐𝑐 ≠ 0 𝝉𝝉 = 𝑘𝑘𝑐𝑐 (1) 

This boundary condition is also advantageous because 
it determines the zero normal component of the velocity to 
the surface that must be met if the boundary is not porous. 

In previous work, a laminar flow analysis with 
different boundary conditions was performed, depending 
on the shear stress characterizing the slip of the liquid 

(water in this case) on the hydrophobic surface with the 
following conclusions:  
- The fluid slip on the surface is subject of a low surface 

energy.  
- The surface energy can be judged by the value of the 

contact angle of the liquid droplet on the surface 8.  
Θ < 80∘ - hydrophilic surface (wettable surface). 
Θ > 80∘ - hydrophobic surface (surface is non 

wettable). 
- Surface energy fundamentally affects the shear stress 

value on the solid-liquid interphase 3. The shear stress 
value on the tube walls directly depends on the 
pressure gradient. At low surface energy the fluid 
slips on the surface. The hydrophobic surface is 
characterized by adhesive forces dependent on 
adhesion coefficient 𝛼𝛼. For α = 100, the surface 
already behaves as hydrophilic.  

Based on experiments, it has been found that the 
hydrophobic surface has the ability to bind air molecules 
4, 5, 6. It retains this property even during the laminar flow 
of the water in pipes. The air layer adjacent to the surface 
changes the viscosity in this area 7.  
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Fig. 1. Velocity profile shape Δp = 0.015Pa, 𝜏𝜏0 = 0,05379𝜏𝜏𝐾𝐾𝐾𝐾, 𝜒𝜒 = 3,752457. 1091/Pas𝑚𝑚2 

 

2 Turbulent Flow 
It is supposed that the viscosity in the interval varies 
according to:  

𝜂𝜂0 = 𝜂𝜂
1 + 𝜒𝜒𝜂𝜂(ℎ − 𝑦𝑦)2 (2) 

The viscosity value depends on the constant 𝜒𝜒 that 
represents the degree of saturation by gas: 

For 𝜒𝜒 > 0 ,        𝜂𝜂0 on the surface decreases 
For 𝜒𝜒 < 0 ,        𝜂𝜂0 on the surface increases 

this value also depends on the shear stresses on the 
surface. In terms of qualitative analysis, it is particularly 
interesting to see Fig.1, which shows the laminar velocity 
profile of the flow in two layers of different viscosity (on 
the left side there is  𝜂𝜂0 and on the right side 𝜂𝜂 > 𝜂𝜂0).  

From Fig. 1, a steep increase of the velocity profile at 
low viscosity is evident. The velocity profile is 
characteristic especially for the air layer adhering to the 
surface of the tube (𝑐𝑐 = 0). When evaluating experiments 
using the PIV method (which cannot measure the velocity 
profile near the wall), it could be incorrectly judged from 
the figure, that the liquid slips along the wall of the tube. 
This is because we would have the last measured point 
where the first layer ends (the end of the blue color). That 
is why certain caution should be applied when evaluating 
results of the PIV experiments 6. 

The experiment also shows that the thickness of the air 
layer decreases as the Reynolds number increases and in 
turbulent flow, at higher Reynolds number values it is 
completely flushed.  

When the air plastron is flushed, the adhesion forces 
act on the liquid at the surface. Adhesion forces are 
characterized by the adhesion coefficient k or its non-
dimensional variant γ. Coefficient k and γ correlate as 
follows: 

𝑘𝑘 = 𝛾𝛾𝛾𝛾𝑐𝑐𝑡𝑡 (3) 
The coefficient k was determined based on surface 

energy, when a drop of liquid slides over an inclined plane 
8 However, when the fluid flows in the tube near the 
surface, the adhesive forces will be influenced by the 
pressure gradient, so it can be assumed that they will 
change depending on the fluid velocity in the vicinity of 
the wall. 

To explain the effect of the flowing liquid on the value 
of the adhesion forces in the turbulent flow, let us proceed 
from a simple example of liquid flow between two parallel 
walls, as shown in Fig. 2. 

By the integration of the centered Navier-Stokes 
equations for steady flow between two parallel plates a 
relationship can be derived for shear stresses at a selected 
point of the surface induced by the effects of adhesive 
forces: 

𝜏𝜏(0) + 𝜏𝜏(𝐻𝐻) = −𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (4) 
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It is clear from expression (4) that the shear stress at 
one point on the boundary will depend on the pressure 
gradient, so it can be assumed that the pressure gradient 
value here will affect the value of adhesive forces. We 
suppose that the surface 𝑦𝑦 = 0 is hydrophobic and the 
surface 𝑦𝑦 = 𝐻𝐻 is hydrophilic. 

Therefore, the stresses on the surfaces 𝑦𝑦 = 0 and 𝑦𝑦 =
𝐻𝐻 will qualitatively vary depending on the turbulent 
velocity fluctuations. Turbulent fluctuations can be 
described by different models. Let us speak about the K-ε 
model 9,4, where K and ε are defined by the relations: 

𝐾𝐾 = 1
𝑇𝑇 ∫ 𝑐𝑐𝑖𝑖

,

𝑡𝑡+𝑇𝑇
2

𝑡𝑡−𝑇𝑇
2

𝑐𝑐𝑖𝑖
, 𝑑𝑑𝑑𝑑 ; (5) 

  ℰ = 𝜈𝜈 1
𝑇𝑇 ∫ 𝜕𝜕𝑐𝑐𝑖𝑖

,

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑐𝑐𝑖𝑖
,

𝜕𝜕𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑

𝑡𝑡+𝑇𝑇
2

𝑡𝑡−𝑇𝑇
2

(6) (7) 

Based on K and ε, the turbulent viscosity 𝜂𝜂𝑇𝑇  is 
determined, for which holds: 

𝜂𝜂𝑇𝑇 = 𝜌𝜌𝜌𝜌𝜌𝜌 𝐾𝐾2

𝜀𝜀
(7) 

From the above mentioned definitions, it is 
understandable that at the hydrophilic surface to which the 
fluid adheres the fluctuation components of the velocity 𝑐𝑐𝑖𝑖

,  
will be zero. Therefore, for 𝑦𝑦 = 𝐻𝐻: 

𝑦𝑦 = 𝐻𝐻 ∶        𝑐𝑐𝑖𝑖
, = 0 ;        𝜕𝜕𝑐𝑐𝑖𝑖

,

𝜕𝜕𝑥𝑥𝑗𝑗
≠ 0

𝐾𝐾 = 0 ;        𝜀𝜀 ≠ 0 ;        𝜂𝜂𝑇𝑇 = 0
(8) 

𝑑𝑑(𝐻𝐻) = 𝜂𝜂 𝜕𝜕𝑐𝑐(𝐻𝐻)
𝜕𝜕𝑦𝑦

(9) 

Another situation occurs in the case of the hydrophobic 
surface 𝑦𝑦 = 0. If we consider a liquid slip, the following 
holds: 

𝑦𝑦 = 0 ∶        𝑐𝑐𝑖𝑖
, ≠ 0 ;        𝜕𝜕𝑐𝑐𝑖𝑖

,

𝜕𝜕𝑥𝑥𝑗𝑗
≠ 0

𝐾𝐾 ≠ 0 ;        𝜀𝜀 ≠ 0 ;        𝜂𝜂𝑇𝑇 ≠ 0
(10) 

𝑑𝑑(0) = (𝜂𝜂 + 𝜂𝜂𝑇𝑇) 𝜕𝜕𝑐𝑐(0)
𝜕𝜕𝑦𝑦

(11) 

 
If both surfaces are hydrophobic, equation (4) can be 

written in the form: 

𝑑𝑑(0) = − 𝐻𝐻
2 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑔𝑔 (12) 

Hence, the adhesive stress is a linear function of the 
pressure gradient. After fitting from (10) and considering 
the assumption that the adhesive force is a linear function 
of the slip velocity 𝑐𝑐𝑠𝑠, it can also be written: 

𝑑𝑑(0) = (𝜂𝜂 + 𝜂𝜂𝑇𝑇) 𝜕𝜕𝑐𝑐(0)
𝜕𝜕𝑦𝑦 = − 𝐻𝐻

2 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑔𝑔 = 𝑘𝑘𝑐𝑐𝑠𝑠 (13) 

From the foregoing idea it is important to note that in 
the boundary condition on the hydrophobic surface in the 
turbulent flow, it is no longer possible to only consider the 
molecular viscosity , but the turbulent viscosity 𝜂𝜂𝑇𝑇 as well. 

In order to perform a qualitative analysis of laminar 
and turbulent flow for hydrophilic and hydrophobic 
surfaces, it is necessary to express the stress tensor by a 
single, resilient simplified model. For this case we will 
unfold from the following power model of turbulence. 

For stress tensor: 

𝜎𝜎𝑖𝑖𝑗𝑗 =  −𝛿𝛿 𝑖𝑖𝑗𝑗  𝑔𝑔 +   𝑑𝑑𝑖𝑖𝑗𝑗       

    𝑑𝑑𝑖𝑖𝑗𝑗  =   2𝛼𝛼𝑛𝑛2
𝑛𝑛−1

2 (𝑐𝑐𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗)
𝑛𝑛−1

2 𝑐𝑐𝑖𝑖𝑗𝑗

(14) 

 

from (14) for the turbulent viscosity applies: 

𝜂𝜂 + 𝜂𝜂𝑇𝑇 = 2𝛼𝛼𝑛𝑛2
𝑛𝑛−1

2 (𝑐𝑐𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗)
𝑛𝑛−1

2 = 𝜂𝜂𝑠𝑠
(15) 

𝜂𝜂𝑠𝑠  represents the sum of molecular and turbulent 
viscosities. Based on this model, we are now dealing with 
the problem of stationary flow of incompressible liquid in 
a circular cross section tube as is shown in Fig. 3. 

In the solution of the turbulent flow by the k-epsilon 
model, the occurrence of the fluctuation components of 
velocity on the hydrophobic surface is considered. The 
fluctuation components of the velocity affect the size of 
the adhesive forces. This fact must also be taken into 
account when defining the coefficient of adhesion. We 
assume that the boundary condition for ε depending on the 
velocity gradients will not need to be changed. 

By analyzing the simplified model of turbulence, it is 
possible to assess differences in laminar and turbulent 
flow with consideration of surface hydrophobicity. When 
the liquid slips over the surface, non-zero fluctuation 
velocity components occur in the turbulent flow. These 
determine the non-zero value of the turbulent kinetic 
energy K. This results in a non-zero value of the turbulent 
viscosity of the liquid on the surface. In addition, the 
fluctuation velocity components also influence the value 

 
Fig. 2. Coordination system 
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of the adhesive forces, so it is necessary to include these 
in the formulation of new boundary conditions for 
turbulent flow on the hydrophobic surface 11. 

3 Velocity profiles for laminar and 
turbulent flow 

Considering the coordinate system of Fig. 2 and the 
following assumptions, 

𝒄𝒄 = (0, 𝑐𝑐, 0), 𝑐𝑐 = 𝑐𝑐(𝑟𝑟) (16) 

on the basis of this simplification, considering (14) and 
by the integration of the Navier-Stokes equation, we 
obtain the relationship for the velocity gradient: 

𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = − (𝑝𝑝1 − 𝑝𝑝2

2𝐿𝐿𝛼𝛼𝑛𝑛
)

1
𝑛𝑛 𝑟𝑟

1
𝑛𝑛     

Δ𝑝𝑝 = 𝑝𝑝1 − 𝑃𝑃2

(17) 

When we mark 

𝑍𝑍𝑛𝑛 = ( Δ𝑝𝑝
2𝐿𝐿𝛼𝛼𝑛𝑛

)
1
𝑛𝑛

 (18)  

By the solution of equations (17) we obtain the relation 
for velocity component c: 

𝑐𝑐 = 𝐴𝐴 − 𝑍𝑍𝑛𝑛
𝑛𝑛

𝑛𝑛 + 1 𝑟𝑟
𝑛𝑛+1

𝑛𝑛  (19)  

We define the integration constant A from the 
condition on the boundary of the hydrophobic surface, for 
which, considering (13), holds: 

𝑟𝑟 = 𝑅𝑅:  𝜂𝜂𝑠𝑠
𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = −𝑘𝑘𝑐𝑐 

(20)  

                        𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = −𝑍𝑍𝑟𝑟

𝑛𝑛+1
𝑛𝑛         

𝑟𝑟 = 𝑅𝑅: 𝜕𝜕𝑐𝑐(𝑅𝑅)
𝜕𝜕𝑟𝑟 = −𝑍𝑍𝑅𝑅

1
𝑛𝑛 

(21)  

From the combination of equations (19) - (21) for 𝐴𝐴 
holds: 

𝐴𝐴 = (𝜂𝜂𝑠𝑠
𝑘𝑘 𝑍𝑍𝑛𝑛𝑅𝑅

1
𝑛𝑛) + 𝑍𝑍 𝑛𝑛

𝑛𝑛 + 1 𝑅𝑅
𝑛𝑛+1

𝑛𝑛  (22)  

When the surface is hydrophilic 

𝛼𝛼𝑛𝑛 = 𝜂𝜂 (23)  

If the surface is hydrophobic 

𝛼𝛼𝑛𝑛 = 𝜂𝜂𝑠𝑠 |𝜕𝜕𝑐𝑐2(𝑅𝑅)
𝜕𝜕𝑟𝑟 |

1−𝑛𝑛
 (24)  

Considering these assumptions, it holds: 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

[1 − (𝑟𝑟
𝑅𝑅)

𝑛𝑛+1
𝑛𝑛 ]} (25)  

For the average velocity, it can be written: 

𝑐𝑐𝑆𝑆𝑆𝑆 = Δ𝑝𝑝
2

𝑅𝑅
𝐿𝐿 [1

𝑘𝑘 + 𝑛𝑛
3𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

] (26)  

The velocity on the hydrophobic surface: 

𝑐𝑐𝑠𝑠 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

1
𝑘𝑘 (27)  

The following conclusions follow from this solution. 
The relationship (25) is general and applies to both laminar 
and turbulent flows. For laminar flow n = 1, so it will be 
for: 

Hydrophobic surface - laminar flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 1
2

𝑅𝑅
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
2

]} (28)  

𝑐𝑐𝑠𝑠 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

1
𝑘𝑘 (29)  

Hydrophilic surface - laminar flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅2

4𝐿𝐿
1
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
2

] (30)  

Hydrophobic surface - turbulent flow 

The n value depends on the Reynolds number, 𝑛𝑛 < 1 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

[1 − (𝑟𝑟
𝑅𝑅)

𝑛𝑛+1
𝑛𝑛 ]} (31)  

Δ𝑝𝑝 = 2 𝐿𝐿
𝑅𝑅2

(3𝑛𝑛 + 1)
1

𝑘𝑘𝑅𝑅
3𝑛𝑛 + 1

𝑛𝑛 + 1
𝜂𝜂𝑠𝑠

𝑐𝑐𝑆𝑆𝑆𝑆
𝑛𝑛  (32)  

Hydrophilic surface - turbulent flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
𝑛𝑛+1

𝑛𝑛 ] (33)  

Δ𝑝𝑝 = 2 𝐿𝐿
𝑅𝑅2 𝜂𝜂(3𝑛𝑛 + 1) 𝑐𝑐𝑆𝑆𝑆𝑆

𝑛𝑛  (34)  

𝑐𝑐𝑠𝑠 = 0 (35)  

From the above mentioned results, the following 
statements arise: 

- The sliding velocity in both laminar and turbulent 
flows is formally the same. Compare (28) and (33). 
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𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = − (𝑝𝑝1 − 𝑝𝑝2

2𝐿𝐿𝛼𝛼𝑛𝑛
)

1
𝑛𝑛 𝑟𝑟

1
𝑛𝑛     

Δ𝑝𝑝 = 𝑝𝑝1 − 𝑃𝑃2

(17) 

When we mark 

𝑍𝑍𝑛𝑛 = ( Δ𝑝𝑝
2𝐿𝐿𝛼𝛼𝑛𝑛

)
1
𝑛𝑛

 (18)  

By the solution of equations (17) we obtain the relation 
for velocity component c: 

𝑐𝑐 = 𝐴𝐴 − 𝑍𝑍𝑛𝑛
𝑛𝑛

𝑛𝑛 + 1 𝑟𝑟
𝑛𝑛+1

𝑛𝑛  (19)  

We define the integration constant A from the 
condition on the boundary of the hydrophobic surface, for 
which, considering (13), holds: 

𝑟𝑟 = 𝑅𝑅:  𝜂𝜂𝑠𝑠
𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = −𝑘𝑘𝑐𝑐 

(20)  

                        𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = −𝑍𝑍𝑟𝑟

𝑛𝑛+1
𝑛𝑛         

𝑟𝑟 = 𝑅𝑅: 𝜕𝜕𝑐𝑐(𝑅𝑅)
𝜕𝜕𝑟𝑟 = −𝑍𝑍𝑅𝑅

1
𝑛𝑛 

(21)  

From the combination of equations (19) - (21) for 𝐴𝐴 
holds: 

𝐴𝐴 = (𝜂𝜂𝑠𝑠
𝑘𝑘 𝑍𝑍𝑛𝑛𝑅𝑅

1
𝑛𝑛) + 𝑍𝑍 𝑛𝑛

𝑛𝑛 + 1 𝑅𝑅
𝑛𝑛+1

𝑛𝑛  (22)  

When the surface is hydrophilic 

𝛼𝛼𝑛𝑛 = 𝜂𝜂 (23)  

If the surface is hydrophobic 

𝛼𝛼𝑛𝑛 = 𝜂𝜂𝑠𝑠 |𝜕𝜕𝑐𝑐2(𝑅𝑅)
𝜕𝜕𝑟𝑟 |

1−𝑛𝑛
 (24)  

Considering these assumptions, it holds: 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

[1 − (𝑟𝑟
𝑅𝑅)

𝑛𝑛+1
𝑛𝑛 ]} (25)  

For the average velocity, it can be written: 

𝑐𝑐𝑆𝑆𝑆𝑆 = Δ𝑝𝑝
2

𝑅𝑅
𝐿𝐿 [1

𝑘𝑘 + 𝑛𝑛
3𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

] (26)  

The velocity on the hydrophobic surface: 

𝑐𝑐𝑠𝑠 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

1
𝑘𝑘 (27)  

The following conclusions follow from this solution. 
The relationship (25) is general and applies to both laminar 
and turbulent flows. For laminar flow n = 1, so it will be 
for: 

Hydrophobic surface - laminar flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 1
2

𝑅𝑅
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
2

]} (28)  

𝑐𝑐𝑠𝑠 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

1
𝑘𝑘 (29)  

Hydrophilic surface - laminar flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅2

4𝐿𝐿
1
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
2

] (30)  

Hydrophobic surface - turbulent flow 

The n value depends on the Reynolds number, 𝑛𝑛 < 1 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿 {1

𝑘𝑘 + 𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠

[1 − (𝑟𝑟
𝑅𝑅)

𝑛𝑛+1
𝑛𝑛 ]} (31)  

Δ𝑝𝑝 = 2 𝐿𝐿
𝑅𝑅2

(3𝑛𝑛 + 1)
1

𝑘𝑘𝑅𝑅
3𝑛𝑛 + 1

𝑛𝑛 + 1
𝜂𝜂𝑠𝑠

𝑐𝑐𝑆𝑆𝑆𝑆
𝑛𝑛  (32)  

Hydrophilic surface - turbulent flow 

𝑐𝑐 = Δ𝑝𝑝 𝑅𝑅
2𝐿𝐿

𝑛𝑛
𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂 [1 − (𝑟𝑟

𝑅𝑅)
𝑛𝑛+1

𝑛𝑛 ] (33)  

Δ𝑝𝑝 = 2 𝐿𝐿
𝑅𝑅2 𝜂𝜂(3𝑛𝑛 + 1) 𝑐𝑐𝑆𝑆𝑆𝑆

𝑛𝑛  (34)  

𝑐𝑐𝑠𝑠 = 0 (35)  

From the above mentioned results, the following 
statements arise: 

- The sliding velocity in both laminar and turbulent 
flows is formally the same. Compare (28) and (33). 

 
 

- From relation (32), it is obvious that the coefficient of 
adhesion k and the viscosity on the surface of the pipe 
𝜂𝜂𝑠𝑠 = 𝜂𝜂 + 𝜂𝜂𝑇𝑇 have qualitatively the same effect on the 
differential pressure. For constant 𝑘𝑘 an increase of 𝜂𝜂𝑠𝑠 
will lead to an increase of the differential pressure. 

- It follows from relation (31) that at low values k there 
will be high values of steady velocity on and near the 
surface. However, these values generate high 
fluctuation velocities 𝑐𝑐𝑖𝑖, , and increase K and 𝜂𝜂𝑇𝑇. This, 
however, causes the velocity to decrease both near the 
surface and on the surface itself, so that also k will be 
inversely affected. However, this does not affect the 
mathematical model because constant k and 𝜂𝜂𝑇𝑇 are 
considered.  
Therefore, the model boundary condition (20) must be 
modified so that k and also 𝜂𝜂𝑇𝑇 is dependent on n. For 
the K-ε model, it will be necessary to adjust the 
boundary condition for K at the hydrophobic surface. 
Since now the boundary condition for the K relation is 
in the form of 

𝐾𝐾 = 0 (36)  

4 The specification of boundary 
conditions 

The value of the kinetic turbulent energy density K (36) on 
the hydrophobic surface will depend on the velocity slip 
rate. In this sense, it is necessary to formulate a new 
boundary condition. 

4.1 K – 𝜺𝜺 turbulence model  

Due to the occurrence of the fluctuation components of 
velocity 𝑐𝑐𝑖𝑖,  on the hydrophobic surface and assuming that 
the fluctuation components of velocity also affect the size 
of the adhesive forces, it can be assumed: 

𝐾𝐾 = 𝛽𝛽𝑐𝑐𝑡𝑡𝑐𝑐 (37)  

where β is a dimensionless constant, and 𝑐𝑐 is the value 
of velocity slip of the fluid on the hydrophobic surface, in 
the tangent direction to the surface. The turbulent viscosity 
can be determined from definition (3). 

The fluctuation velocity components of the liquid on 
the hydrophobic surface will affect the size of the adhesive 
forces. Assuming that, it must be taken into account when 
defining the coefficient of adhesion: 

𝑘𝑘 = 𝜌𝜌𝑐𝑐𝑡𝑡(𝛼𝛼 + 𝛽𝛽) (38)  

We assume that the boundary condition for 𝜀𝜀, 
depending on the velocity gradients, will not need to be 
changed. 

4.2 Simplified turbulence model for a tube of 
circular cross section  

The effect of the fluctuation components of velocity will 
depend on the Reynolds number and will influence the 
value of the adhesive forces characterized by the adhesion 
coefficient k 12. The value of the exponent n is dependent 
on the Reynolds number. Therefore, for k the following 
relationship can be proposed, expressing the interaction of 
the adhesive forces and the force effect of the fluctuation 
velocity components represented by the kinetic energy of 
turbulence K. 

𝑘𝑘 = 𝜌𝜌𝑐𝑐𝑡𝑡 (𝛼𝛼 + 𝛽𝛽
1 − 𝑛𝑛
𝑛𝑛 ) (38a) 

According to the simplified model (11) applied to the 
liquid flow in a circular cross-section tube, the relationship 
for turbulent viscosity can be derived. On the basis of the 
definition of the mixing length l, we can say: 

l = ψ(1 − 𝑛𝑛)𝑟𝑟, 𝜂𝜂𝑇𝑇 = −𝜌𝜌𝑙𝑙2 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

From here and from (31) we get an expression for the 
resulting viscosity of the liquid on the hydrophobic 
surface: 

𝜂𝜂𝑠𝑠 =
𝜂𝜂
2 +

1
2√𝜂𝜂

2 + 4𝜌𝜌 (Δ𝑝𝑝2𝐿𝐿)ψ
2(1 − 𝑛𝑛)2 𝑅𝑅3 (39)  

The new boundary condition expressing the slip of the 
velocity on the hydrophobic surface will take the form: 

𝜂𝜂𝑠𝑠
𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 = 𝜌𝜌𝑐𝑐𝑡𝑡 (𝛼𝛼 + 𝛽𝛽

1 − 𝑛𝑛
𝑛𝑛 ) 𝑐𝑐 (40)  

𝛼𝛼, 𝛽𝛽, Υ are dimensionless constants. The relationship 
for the velocity profile (31) will be as follows: 

𝑐𝑐 = Δ𝑝𝑝
2
𝑅𝑅
𝐿𝐿
{ 
 
  

𝑛𝑛
𝜌𝜌𝑐𝑐𝑡𝑡[𝛼𝛼𝑛𝑛 + 𝛽𝛽(1 − 𝑛𝑛)]

+

+ 𝑛𝑛𝑅𝑅
𝜂𝜂𝑠𝑠(𝑛𝑛 + 1)

[1 − (𝑟𝑟𝑅𝑅)
𝑛𝑛+1
𝑛𝑛 ]
} 
 
  

 (41)  

𝑐𝑐𝑆𝑆𝑇𝑇 =
Δ𝑝𝑝
2
𝑅𝑅
𝐿𝐿
[
 
 
 

𝑛𝑛
𝜌𝜌𝑐𝑐𝑡𝑡[𝛼𝛼𝑛𝑛 + 𝛽𝛽(1 − 𝑛𝑛)]

+

+ 𝑛𝑛
3𝑛𝑛 + 1

𝑅𝑅
𝜂𝜂𝑠𝑠 ]

 
 
 
 (42)  

𝑐𝑐𝑆𝑆 =
Δ𝑝𝑝
2
𝑅𝑅
𝐿𝐿 [

𝑛𝑛
𝜌𝜌𝑐𝑐𝑡𝑡[𝛼𝛼𝑛𝑛 + 𝛽𝛽(1 − 𝑛𝑛)]

] (43)  

 
From expression (43), which represents the liquid slip 

on the hydrophobic surface, the influence of turbulent  
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fluctuations on the adhesive forces effect is already 
evident. Figure 3 shows velocity profiles for different 
adhesion coefficient values. From this, it is clear that the 
simplified turbulence model for a circular cross-section 
tube is a good illustration of the shape of the turbulent 
velocity profile. Note that Δ𝑝𝑝, 𝑐𝑐𝑆𝑆𝑆𝑆 corresponds to an 
experiment carried out on a 4m length tube. 

The new boundary conditions for turbulent flow on the 
hydrophobic surface can be for the turbulence model (K - 
ε) written in the form: 

𝑐𝑐 = 0 |𝜏𝜏| ≤ |𝜏𝜏|𝐾𝐾
𝑐𝑐 ≠ 0 𝜏𝜏 = 𝜌𝜌𝑐𝑐𝑡𝑡(𝛼𝛼 + 𝛽𝛽)𝑐𝑐

(44) 

𝐾𝐾 = 𝛽𝛽𝑐𝑐𝑡𝑡𝑐𝑐 (45) 

5 Conclusion 
By analyzing the simplified model of turbulence, it was 
possible to assess differences in laminar and turbulent 
flow with consideration of surface hydrophobicity. If there 
is a fluid slip on the surface, a non-zero fluctuation 
component of the velocity occurs in the turbulent flow. 
These are determining the non-zero value of the turbulent 
kinetic energy K. This results in a non-zero value of the 
turbulent viscosity of the liquid on the surface. In addition, 
the fluctuation components of velocity influence the value 
of the adhesive forces, so it is necessary to include these 
facts in the formulation of new boundary conditions (44), 
(45) for turbulent flow on the hydrophobic surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Grant Agency of the Czech Republic, within the 
projects GA101/15-06621S, GA101/17-19444S is 
gratefully acknowledged for support of this work. 

 

References 
1. Navier C. L. M. H., “Memoire Surles du Movement 

des.” Mem Acad. Sci. Inst. France, vol. 1, No. 6, pp. 
414-416. (1823) 

2. Grunceli BRK, Sandham ND and McHale G. 
Simulation of laminar flow past a superhydrophobic 
sqhere with drag reduction and separation delay. 
Phys Fluids 2013; 25: 043601.  

3. Thomas Young: An Essay on the Cohesion of Fluids. 
Philosophical Transactions of the Royal Society of 
London. Vol. 95 (1805), 65-87.  

4. Vakarelski I. U., Chan D. Y. C., Marston J. O., 
Thoroddsen S. T.: Dynamic Air Layer on Textured 
Superhydrophobic Surfaces, Langmuir, 2013, 29 
(35), pp 11074–11081  

5. Jašíková, D., Němcová, L., Kopecký V., The 
Methodic for Study of Smart Surfaces Using PIV 
Technique. AIP Conf. Proc. vol. 80, nr. 8. pp. 80 – 
87 (2014)  

 
Fig. 3. Turbulent velocity profiles for a constant pressure drop and a constant mean velocity. 𝛽𝛽 = 0,1 

 

6

EPJ Web of Conferences 180, 02084 (2018) https://doi.org/10.1051/epjconf/201818002084
EFM 2017



 
 

 

fluctuations on the adhesive forces effect is already 
evident. Figure 3 shows velocity profiles for different 
adhesion coefficient values. From this, it is clear that the 
simplified turbulence model for a circular cross-section 
tube is a good illustration of the shape of the turbulent 
velocity profile. Note that Δ𝑝𝑝, 𝑐𝑐𝑆𝑆𝑆𝑆 corresponds to an 
experiment carried out on a 4m length tube. 

The new boundary conditions for turbulent flow on the 
hydrophobic surface can be for the turbulence model (K - 
ε) written in the form: 

𝑐𝑐 = 0 |𝜏𝜏| ≤ |𝜏𝜏|𝐾𝐾
𝑐𝑐 ≠ 0 𝜏𝜏 = 𝜌𝜌𝑐𝑐𝑡𝑡(𝛼𝛼 + 𝛽𝛽)𝑐𝑐

(44) 

𝐾𝐾 = 𝛽𝛽𝑐𝑐𝑡𝑡𝑐𝑐 (45) 

5 Conclusion 
By analyzing the simplified model of turbulence, it was 
possible to assess differences in laminar and turbulent 
flow with consideration of surface hydrophobicity. If there 
is a fluid slip on the surface, a non-zero fluctuation 
component of the velocity occurs in the turbulent flow. 
These are determining the non-zero value of the turbulent 
kinetic energy K. This results in a non-zero value of the 
turbulent viscosity of the liquid on the surface. In addition, 
the fluctuation components of velocity influence the value 
of the adhesive forces, so it is necessary to include these 
facts in the formulation of new boundary conditions (44), 
(45) for turbulent flow on the hydrophobic surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Grant Agency of the Czech Republic, within the 
projects GA101/15-06621S, GA101/17-19444S is 
gratefully acknowledged for support of this work. 

 

References 
1. Navier C. L. M. H., “Memoire Surles du Movement 

des.” Mem Acad. Sci. Inst. France, vol. 1, No. 6, pp. 
414-416. (1823) 

2. Grunceli BRK, Sandham ND and McHale G. 
Simulation of laminar flow past a superhydrophobic 
sqhere with drag reduction and separation delay. 
Phys Fluids 2013; 25: 043601.  

3. Thomas Young: An Essay on the Cohesion of Fluids. 
Philosophical Transactions of the Royal Society of 
London. Vol. 95 (1805), 65-87.  

4. Vakarelski I. U., Chan D. Y. C., Marston J. O., 
Thoroddsen S. T.: Dynamic Air Layer on Textured 
Superhydrophobic Surfaces, Langmuir, 2013, 29 
(35), pp 11074–11081  

5. Jašíková, D., Němcová, L., Kopecký V., The 
Methodic for Study of Smart Surfaces Using PIV 
Technique. AIP Conf. Proc. vol. 80, nr. 8. pp. 80 – 
87 (2014)  

 
Fig. 3. Turbulent velocity profiles for a constant pressure drop and a constant mean velocity. 𝛽𝛽 = 0,1 

 

 
 

6. Fialová, S.; Pochylý, F.; Kotek, M; Jašíková, D.: 
Velocity profiles of fluid flow close to a hydrophobic 
surface, EPJ Web of Conferences 143, 02023 (2017) 
DOI: 10.1051/epjconf/201714302023  

7. Fialová, S., Pochylý, F., Havlásek, M., Malík, J.: 
Influence of boundary conditions on fluid flow on 
hydrophobic surfaces, AIP Conf. Proc - 36th 
Meeting of Departments of Fluid Mechanics and 
Thermodynamics (2017)  

8. Fialová, S.; Pochylý, F.: Identification and 
Experimental verification of the adhesive coefficient 
of hydrophobic materials, Wasserwirtschaft Extra, 
1/2015, ISSN 0043 0978, pp. 125-129  

9. Mohammadi, B., & Pironneau, O. (1993). Analysis 
of the K-epsilon turbulence model. France: Editions 
MASSON.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10. Mansour, N. N.; Kim, J.; Moin, P. Near-wall k-
epsilon turbulence modeling, 6th Symposium on 
Turbulent Shear Flows, France, Proceedings (A88-
38951 15-34). University Park, PA, Pennsylvania 
(1987), p. 17-4-1 to 17-4-6.  

11. Kučera, R.; Šátek, V.; Haslinger, J.; Fialová, S.; 
Pochylý, F. Modelling of Hydrophobic Surfaces by 
the Stokes Problem with the Stick- Slip Boundary 
Conditions. Journal of Fluids Engineering-
Transactions of the ASME, 2017, vol. 139, no. 1, p. 
0112021-0112029. ISSN: 0098-2202.  

12. Volkov AV, Parygin AG, Lukin MV, et al. Analysis 
of the effect of hydrophobic properties of surfaces in 
the flow part of centrifugal pumps on their 
operational performance. Therm Eng 2015; 62: 817–
824.  

 
 
 
 
 

7

EPJ Web of Conferences 180, 02084 (2018) https://doi.org/10.1051/epjconf/201818002084
EFM 2017


