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Abstract. The high dependency of the Brain Computer In-
terface (BCI) system performance on the BCI user is a well-
known issue of many BCI devices. This contribution presents
a new way to overcome this problem using a synergy between
a BCI device and an EEG-based biometric algorithm. Using
the biometric algorithm, the BCI device automatically iden-
tifies its current user and adapts parameters of the classifi-
cation process and of the BCI protocol to maximize the BCI
performance. In addition to this we present an algorithm for
EEG-based identification designed to be resistant to vari-
ations in EEG recordings between sessions, which is also
demonstrated by an experiment with an EEG database con-
taining two sessions recorded one year apart. Further, our
algorithm is designed to be compatible with our movement-
related BCI device and the evaluation of the algorithm per-
formance took place under conditions of a standard BCI ex-
periment. Estimation of the µ rhythm fundamental frequency
using the Frequency Zooming AR modeling is used for EEG
feature extraction followed by a classifier based on the regu-
larized Mahalanobis distance. An average subject identifi-
cation score of 96 % is achieved.

Keywords
Brain computer interface, subject identification, fre-
quency zooming AR modeling, EEG classification.

1. Introduction
The large inter-subject variability of EEG signal pa-

rameters is known as a problem from the beginnings of BCI
research [1]. Basically, a mental-state classifier trained on
one subject’s EEG used to classify EEG of a different sub-
ject achieves only a low classification score. This will pose
an issue with BCIs used in the field of entertainment where
a larger group of individuals can operate one BCI device.
Also already published results (e.g., [2, 3, 4, 5, 6]) indicate
that it can be advantageous to setup the BCI system (user in-
terface appearance, BCI protocol, EEG filtering parameters,

classifier parameters, and knowledge base for recognition)
individually.

In this article we suggest a novel concept: combina-
tion of a BCI device with EEG-based subject identification.
In this way the issue of large variability of EEG between
subjects can be overcome by the BCI device being able to
identify its user and switch its operating setup automatically
to adapt to the current user instead of setting up the BCI
manually. Since only one subject from just a small pool of
device users is selected, there is no need for high identifi-
cation accuracy in contrast to large-scale biometric applica-
tions. The practical application of the EEG biometry is thus
presented in this article. Since the parameters of the EEG
recording slightly changes in each session (e.g., impedances
of electrodes, placement of electrodes), we present an EEG-
based identification algorithm which is resistant to variations
in EEG recordings between recordings sessions.

This contribution is organized as follows: Section 2
deals with the current state of the art; Section 3 describes the
suggested method. The results are summarized in Section 4
and some conclusions are given afterwards.

2. EEG-Based Identification
A lot of papers support the idea of EEG-based sub-

ject identification. The EEG is partially linked to a subject’s
genes; about 30 % of all the genes are activated only in the
brain [7]. Vogel [7] studied the interpersonal EEG differ-
ences and found many genetically-conditioned traits in the
human resting EEG, and proved their genetic dependency
and individuality. Review paper [8] summarizes a large num-
ber of results and claims that the EEG tends to be a stable
individual characteristic varying considerably between sub-
jects; these variations are attributed to the genetic predispo-
sition. Paper [9] links the extroversion-introversion of the
given subject with its frontal lobes 8 – 13 Hz rhythm charac-
teristics. Similar findings are presented in [10]; it is shown
that it is possible to discriminate between chronic alcoholics
and healthy subjects based on the EEG traits. All the papers
agree on the fact that the spectral features of EEG rhythms
(central frequency, amplitude, and bandwidth) are geneti-
cally conditioned.
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Fig. 1. A block diagram of the BCI interface (white boxes on the left side) equipped with user identification (grey box).

2.1 Experimental Evidence
Poulos et al. [11, 12] used Fourier transform and bili-

near modeling for α band analysis and feature extraction of
the 8 – 30 Hz EEG frequency band; 180 second segments
were used for the classification in [11], 30 second segments
in [12]. Recordings from one signal source were used. SVM,
LVQ networks were used for the classification. Average clas-
sification scores of 95% with FFT and 78% with bilinear pa-
rameterization were reported.

Authors of [13, 14] utilized the 40 Hz EEG oscilla-
tions related to the visual processing for subject identifica-
tion. Visual Evoked Potentials (VEPs) were recorded from
20 subjects while they were looking at a picture. Principal
Component Analysis (PCA) was applied, fuzzy ARTMAP,
k-nearest neighbor, and backpropagation network classifiers
were used attaining performance of up to 95 % with 61 elec-
trode EEG recordings.

Paper [15] applied maximum a posteriori trained Gaus-
sian models on the EEG classification. Band 8 – 30 Hz was
parametrized by means of PSD estimation, total energy was
normalized. Eight sources from the centro-parietal scalp area
were used; data were preprocessed by a spline Laplacian fil-
ter prior to the PSD computation. Authentication possibili-
ties were tested, identification scores in the range of 60 % –
100 % were achieved. Interestingly, the authors observed
a degradation of the identification performance over days.

A more recent paper [16] presents a biometric iden-
tification with EEG recorded over 14 electrodes placed
over the whole scalp; EEG is parametrized using a 1358 –
dimensional feature vector composed of autoregressive co-
efficients, power spectral density, integrated spectral power,
interhemispheric power differences, and interhemispheric
linear complexity. SVM is used for EEG data classifica-
tion. Classification scores in the range of 97 % – 100 % were
achieved.

However, none of the cited papers except [15] takes
into account the variations in EEG recordings between ex-
perimental sessions separated by some period of time. Mar-
cel et al. in [15] observe the performance degradation of
the identification over days, and performance improvement
if data from several days are used for training.

3. Methods
Fig. 1 shows a basic block diagram of the suggested

BCI device extended with the identification algorithm. Prior
to any use of the extended BCI, the BCI system shall be
trained to correctly recognize mental activities of all its po-
tential users. A set of knowledge bases (containing setups
of the trained classifiers, instructions on how to organize
the graphical user interface, etc.), one knowledge base per
user, will be created as a result of this training. We propose
the following operating protocol for the extended BCI sys-
tem:

1. The control block of the BCI device detects that elec-
trodes are mounted on the user’s scalp; among others,
measurements of electrode impedances can be used to
accomplish this task.

2. The output of the identification algorithm is the esti-
mated user’s identity. The appropriate knowledge base
(containing classifier setup, user interface setup, and
other personalized settings) for the BCI is then cho-
sen from the pool of the available ones according to the
user’s identity.

3. The BCI device continues to operate normally using the
selected knowledge base until the control block detects
that the electrode array was dismounted from the user’s
scalp. After this, the operation returns to step 1.
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Trait Suitability for identification
Frequency of character-
istic rhythms

Suitable for identification, [8, 19].

Topology of rhythms
on the scalp

Suitable for identification – the sensomotoric µ rhythm is composed of various topologically
localized movement-related rhythms [32]. There are also other individual differences [33].

Amplitude of the rhyth-
mical activity

While the amplitudes of the rhythmical activities are individual characteristics [9, 8, 19], they
are modulated by the induced responses to external events, movements, movement imagery
[18], and change with age [20]. The amplitudes of rhythmical activities are also not stable over
time during the recording session [20].

Tab. 1. Summary of the individual EEG features.

The proposed mode of operation leads to the following
identification algorithm requirements:

1. The changes in EEG recordings between sessions shall
have no influence on the identification performance.
The method should be also robust to artifacts.

2. The feature extraction stage of the proposed identifica-
tion method shall extract EEG features which are ge-
netically influenced. On the other hand, features which
are task-related (see Tab. 1) shall be avoided.

3. The identification method shall use similar signal fea-
tures to the ones the BCI uses.

4. Fast identification is favorable in order not to introduce
delays to the initial BCI setup. The method should also
be simple and able to operate in real time.

3.1 Oscillatory Activity Selection
Since we recently developed a movement-related

activity-based BCI system [17], we suggest an identifica-
tion method based on the sensomotoric µ rhythm (8 – 13 Hz
band, [18]). This choice has the following advantages: µ
rhythm does not depend on eyes closing/opening [18], thus
there is no need to close eyes during recording; µ rhythm is
also present in about 95 % of the population. Finally, the α

and µ rhythm frequencies are claimed to be genetically con-
ditioned [8, 19]; our own observations [3] also indicate large
inter-subject variability of this trait.

Based on the genetic properties of the EEG described
above (see Tab. 1) we use frequencies f µ

1..p of the p dominant
components of µ rhythm for subject identification. Since
more electrodes are used for EEG recording and the feature
vector is composed of f µ

1..p estimated from all the electrodes,
the distribution of f µ over the scalp gives additional informa-
tion for subject identification. It is evident that usage of the
f µ has the advantage of not being dependent on the changes
of EEG rhythms amplitude, subsequent EEG signal post-
processing, and induced activity in the EEG. Furthermore,
frequency features rather than power spectrum features are
suggested for classification as dominant frequencies of EEG
rhythms can be estimated more precisely from shorter EEG
segments than signal band powers [20].

3.2 Frequency Zooming AR Modeling
AR modeling is a widely used technique in the field of

the EEG processing as it attains a good frequency resolution,
requires only a moderate number of signal samples, and has
low computational cost. We assume that an EEG signal sam-
ple x[n] is a linear combination of previous samples x[n− i]
and the zero mean white noise v[n]

x[n] =
p

∑
i=1

aix[n− i]+ v[n] (1)

where p is the AR model order. The ai coefficients can be
computed in many ways; the most frequently used one giv-
ing satisfactory results with EEG signals [21] is the autocor-
relation method. The ai filter coefficients are set to attain
a minimal power of prediction error e[n]

J = E[e[n]2] = E[(x[n]−
p

∑
i=1

aix[n− i])2]. (2)

This can easily lead to an AR modeling filter describing
some parasitic signals in the processed EEG (slowly vary-
ing EEG components with frequencies below 5 Hz, super-
posed 50 Hz power network harmonic, etc.); this is one of
the main AR modeling drawbacks. To mitigate this issue we
use Frequency Zooming AR (FZ-AR) modeling originally
developed for applications in the field of audio processing
[22, 23]. The whole FZ-AR algorithm is performed in the
following steps:

Step 1 : Modulation of the analyzed EEG x[n] signal down;
the desired frequency band of interest is centered at
0 Hz

xm[n] = e jΩmnx[n] (3)

where Ωm = 2π fm/ fs; fm is the modulation frequency,
xm[n] is the modulated signal, and fs the sampling rate.

Step 2 : Decimation of the modulated signal xm[n] by the
Kzoom factor giving a new low-pass filtered and down-
sampled signal xd [n].

Step 3 : Application of the autocorrelation AR modeling
method on the new signal xd [n].

As we analyzed µ band (8 Hz – 13 Hz), we chose fm =
10.5 Hz [24]. The µ band bandwidth is 5 Hz, so the theo-
retical maximal Kzoom value is Kzoom = 256 Hz/5 Hz ≈ 51.
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Subject 1 2 3 4 5 6 7 8
Resting EEG [secs] 961 925 780 1021 997 1220 1248 1355

Total EEG [secs] 3327 4045 3762 3872 3755 3802 3818 4386

Tab. 2. Length of the available EEG recordings.

We finally used Kzoom = 28. The final analyzed frequency
band in the original EEG signal is < 5.92 Hz;15.07 Hz >;
applied frequency filtering suppresses any parasitic compo-
nents lying outside of the µ band (e.g., low frequency arti-
factual component).

The second drawback of AR modeling is the model or-
der selection ambiguity. Improper selection of p leads to
either having an overly smoothed or too noisy spectral en-
velope, which affects the subsequent processing, see results
below.

3.3 Tested Features for Classification
We tested the following features in our system:

FZ-AR coefficients (FZAR): we ran all the classifica-
tion experiments using FZ-AR model coefficients. As these
are complex-valued, real and imaginary parts were used to
form a feature vector of 2× p elements per electrode. The
disadvantages of the model coefficients are twofold. First,
they do not have the Euclidean metric. This degrades the
classification score when a distance-based classifier is used.
Second, the FZ-AR coefficients also non-linearly depend on
the short-time fluctuations of amplitude of periodic EEG os-
cillations, making the classification more susceptible to in-
duced changes of EEG rhythm amplitudes.

Fundamental frequencies of µ rhythm (FREQ): To
avoid both disadvantages of the FZ-AR coefficients, we pro-
pose using f µ

1..p as the EEG features for classification. To do
this we compute the positions of the FZ-AR modeling filter
poles; we get p frequencies1 (pole angular positions) for the
FZ-AR model of model order p. Obtaining more than one
frequency makes sense as the human arch-shaped µ rhythm
is composed of several rhythms [25] and is a broad-band pro-
cess in the µ band.

PSD estimation (PSD): PSD estimation is often used
by EEG biometric papers; thus as the third type of tested fea-
tures we interpolated the computed FZ-AR spectrum back
to the original frequency band of 5.92 – 15.07 Hz and com-
puted spectral envelope sampled in 16 points. This 16 point
PSD estimation was used as a signal feature for the classifi-
cation.

3.4 Classifier
A regularized Mahalanobis distance-based classifier

[26] is used in our experiments. Mahalanobis distance is
chosen as it takes into account the internal variance of the

classified groups, and is simple to compute with lower re-
quired numerical load yet robust [27].

Before the classification, all available segments are di-
vided between non-overlapping training Mtr (75 % of all
segments) and testing set Mte. Classification is repeated 10×
with random divisions of data between both sets, and aver-
age classification scores were computed, see Fig. 4a.

Let us assume that fµ[s,m] is the (Nele × p,1) vector of
µ rhythm frequencies estimated for all Nele electrodes of the
EEG recording, subject s, segment no. m = 1, . . . ,Nseg. Then
the mean value and covariance matrix estimations f̄µ[s] and
Sµ[s] are computed from the Mtr data set,

f̄µ[s] =
1

Nseg

Nseg

∑
n=1

fµ[s,n], (4)

Sµ[s] = (Mtr −E f̄µ[s])× (Mtr −E f̄µ[s])T (5)

where E is the unity matrix. The Mte segments are classified
by means of the regularized Mahalanobis distance [26]

ds = (fµ − f̄µ[s])((1−λ)(Sµ[s]+ εE)−1 +λE)×
×(fµ − f̄µ[s])T ,s = 1, . . . ,Nsub j (6)

where fµ is the classified pattern. The pattern is assigned to
the subject which centroid is the nearest one in the Maha-
lanobis distance sense. Parameter ε controls the regulariza-
tion and stabilizes the learning process when an inverse co-
variance matrix cannot be estimated reliably [26]. Parameter
λ controls the trade-off between hyperspherical and hyperel-
lipsoidal components of the distance (6) and its value shall
be carefully selected.

4. Results

4.1 Simple Experiment
An EEG database originally recorded for our BCI ex-

periments [3] is used for this study. 8 subjects took part
in the experiment – 7 men and 1 woman, average age of
24.5 years (σ = 3.59). EEG was recorded with 41 unipolar
scalp Ag/AgCl electrodes placed symmetrically and equidis-
tantly with 2.5 cm spacing over both sensorimotor areas
of the experimental subject, see Fig. 2. Sampling rate was
256 Hz.

1As the sequence of poles obtained by Matlab root function is each time permuted differently, the final frequencies f µ
1..p were always sorted in ascending

order.
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Fig. 2. Scalp electrode placement diagram. The 10 – 20 elec-
trode positions C3, C4 and CZ are denoted and central
sulcus is roughly localized.

The EEG was recorded during one session, in four
blocks of about 20 minutes. The subjects were perform-
ing a self-paced, voluntary brisk flexion of the right thumb
and the right little finger during the first three blocks, and
were resting during the fourth block. The total lengths of
the recorded EEG segments are summarized in Tab. 2. The
lengths of recordings differ between subjects since the pri-
mary goal of recording was to obtain 100 realizations of
each type of movement per subject. As the movements were
performed at the subjects’ own rate, the intervals between
movements varied and hence the recordings are of different
length for each subject. To test the algorithm in an environ-
ment as similar as possible to the real application, we kept
EEG with artifacts and EEG with movement-related activity
in the database. Since our BCI experiments are performed
with EEG filtered with a discrete Laplacian filter [3], we
used the same filtered EEG for identification experiments.
For a detailed description of the experiment, see [3].

ε/λ 0.05 0.1 0.2 0.4 0.8
0.01 84.8 % 85.2 % 87.1 % 89.7 % 93.7 %
0.1 89.1 % 90.0 % 91.2 % 93.0 % 93.2 %
0.2 90.5 % 91.2 % 92.4 % 96.2 % 92.2 %
0.4 91.8 % 92.4 % 93.2 % 93.4 % 90.8 %
0.8 92.8 % 93.1 % 93.4 % 92.5 % 89.2 %

Tab. 3. Average classification score as a function of ε and λ.

For the first set of experiments, only resting EEG
(block 4) was used. First we estimated the appropriate model
order p. The EEG was segmented into 1 minute segments
with an overlap of 45 seconds. Because the shape of the
AIC criterion curve did not exhibit any clear minimum, we
did a set of experiments with varying model order p.

Then we had to find the optimal values of the ε and λ

parameters in (6). Classification experiments with varying
FZ-AR model order (p = 1,2,3) and segment length (60, 30,
15, 7.5, and 3.75 sec) were executed for all pairs of (ε,λ),
with ε going through 0.01, 0.1, 0.2, 0.4, 0.8, and λ attaining
values of 0.05, 0.1, 0.2, 0.4, and 0.8. This gave us 15 values
of classification score for each (ε,λ) pair; these were aver-
aged to obtain the final results, see Tab. 3. Based on this ε

was set to 0.2 and λ to 0.4 for the next experiments.

We also analyzed the dependency of the classification
score on the segment length because it defines the latency of
the identification process. The shorter the segment, the bet-
ter it is for the subject. On the other hand, with shortening
segment the frequency estimation becomes more noisy and
the classification score drops as well, see Fig. 3.

The final dependencies of the classification score on
both model order and segment length, and the used feature
vectors computed for the resting EEG are drawn in Fig. 3.
The best reached result is 99.9 % for p = 7 and a segment
of 30 sec, FREQ features used. The results for all the sub-
jects with this configuration are listed in Tab. 4; note that
the variations of the classification scores due to the cross-
validation are rather low, the classification is stable and re-
sistant to overlearning. Even for p = 1, segment of 15 sec,
FREQ features, the achieved classification score is still 97 %;
this configuration is a good trade-off between computational
cost and identification accuracy. The computation of the pole
frequency is simple and fast for p= 1 (linear analytical equa-
tion, no need for numerical methods).

The whole set of experiments was repeated with the
complete EEG database (all blocks, including movement-
related EEG) for segments of 60, 30, and 15 seconds to
see how stable the process is with respect to the movement-
related EEG changes. The achieved classification scores
were within 2 % of the scores depicted in Fig. 3, p= 1 . . .10;
only minor degradation in performance is observed. This is
important from the BCI point of view.

To have a comparison with results achieved by other
authors, we repeated the experiment of [11] with our data.
The method published in [11] obtained an average identifica-
tion score of 74%. Comparison with other papers is not fea-
sible since they either use a completely different paradigm
(mental activities), or aim to authenticate instead of identify
the user.

Finally, an experiment with a reduced set of electrodes
was performed to emulate operation in a BCI interface with
lower number of electrodes. As signal sources we used four
differential channels: 1 – 9, 7 – 15, 19 – 28, and 23 – 32, see
Fig. 2. These channels were chosen since they are suitable
for movement imagery BCI, see [3]. With this configura-
tion the best classification score obtained was 91 % (p = 2,
segment length of 60 seconds, FREQ features used).

4.2 Sensitivity to Variations Between Sessions
To show that the algorithm is insensitive to variations

in EEG recordings between different BCI sessions, we per-
formed an experiment with a new database recorded in
two sessions, one year apart. Originally, the database was
recorded for our BCI experiment [28] to evaluate the stabil-
ity of our BCI algorithms. Nine test subjects took part in the
experiment. Data were obtained from 53 unipolar electrodes
placed in the 10-10 system with referential ground electrodes
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Fig. 3. Mean classification score as a function of segment length and FZ-AR model order. Only resting EEG used, classification scores computed
from PSD estimations are not shown (they were in the range of 12 % – 74 %). Also the results for segments of 3.75 secs are not shown as
they were mostly below 90 % of the classification score.

placed on both ears with sampling frequency of 1024 Hz
decimated down to 256 Hz. Subjects performed voluntary
movements (extension or flexion of right or left index finger)
during recording [28]. Four 20-minute blocks of EEG were
obtained for each subject and session – three blocks contain-
ing the movements and the fourth block containing only rest-
ing EEG. Only blocks 2 and 3 of both sessions are used for
the experiment since our preliminary database analysis [29]
showed they give the best results. The most likely explana-
tion of this is that blocks 1 and 4 contain far more artifacts
than blocks 2 and 3; while in the beginning of the block 1
the subject (previously unexperienced with BCI) was get-
ting used to EEG recording equipment, in the end of block
4 recording subject was already tired of the long recording.
The experimental protocol emulates the real world usage of
the BCI system: data from the first session is used for system
training (user used the system for the first time) and the data
from the second session are used for testing (user returned to
the BCI after some time), see Fig. 4b.

First, we showed that the differences between EEG
recordings in both sessions are significant. To show this
we compared EEG band powers between both recording ses-
sions. EEG was filtered to 5 – 40 Hz band (linear phase FIR
filter used, order of 256) to suppress DC component, low fre-
quency components, and also high frequency parasitic com-
ponents (e.g., AC line noise). Blocks 2 and 3 were used,
the first and last minutes of each recording were discarded
to avoid transients in the beginning and end of recordings.
Data were segmented to 7.5 sec long segments with no over-
lap and signal power was computed for each segment, elec-
trode, subject, and session. Then we removed 5 % of the
maximal values for each electrode, subject, and session to

suppress influence of outliers on the statistical test. Tool-
box [30] was used to implement these computations. After
this we applied Mann-Whitney non-parametric [31] U test to
compare medians of signal powers between sessions for each
electrode and subject; we realized that we can deny the hy-
pothesis of the same mean power values in both sessions for
422 out of 477 electrode sets (9 subjects per 53 electrodes) at
the 5 % significance level. The same test was repeated with
EEG filtered to 8 – 14 Hz band, in this case powers in both
sessions significantly differed in 416 out of 477 electrodes.
The achieved results show that there are statistically signif-
icant differences between powers of EEG between sessions.
These findings also comply to the fact that it is not possi-
ble to successfully classify movement-related EEG in both
sessions merged together without the specific EEG prepro-
cessing merging method [28].

Then we performed identification experiments using all
the three types of features, see Tab. 5. While all the types
of features failed to properly identify subjects 6 and 7, the
results for the remaining subjects are conclusive. The FREQ
parameterization provides the best results and is the most re-
sistant to both variations in EEG recordings and task-related
EEG changes; the PSD and FZAR features are more sensi-
tive to either variations in EEG recordings or to the induced
changes of the EEG activity. This is in compliance with the
reasoning in Section 3.3. The degradation of performance
when PSD features are used is in compliance with the find-
ings presented in [15]. The low identification performance
with subjects 6 and 7 is attributed to specific EEG patterns
of these subjects (subject 7 would not even be able to use
a movement-related BCI device, so it does not matter a lot
that the system does not recognize him properly).
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Subject 1 2 3 4 5 6 7 8
Score 99.4 % 97.5 % 96.2 % 92.6 % 94.5 % 98.0 % 96.7 % 100.0 %

σ ±0.8 % ±1.8 % ±1.8 % ±3.5 % ±2.5 % ±1.4 % ±2.2 % ±0.0 %

Tab. 4. The best classification results we achieved per subject.

1st session

1 session

b)

a)

2nd session

One year pause

Fig. 4. Distribution of training and testing realizations, each box is one EEG realization, red designates use for training, green for testing, blank
is not used. a) Training-testing scheme used by the simple experiment. b) The training-testing scheme used in the experiment with two
sessions.

Interestingly, we cannot rule out that the induced
movement-related activity in the EEG improves identifica-
tion performance with FREQ parameters [29]. However, this
hypothesis has yet to be further examined.

All subjects All subjects Subjects
Feature except 6,7 6,7

PSD 39.6 % 49.3 % 40.9 %
FZAR 70.5 % 85.7 % 51.2 %
FREQ 87.1 % 96.0 % 50.5 %

Tab. 5. Performance of the identification algorithm, experiment
with two sessions.

5. Conclusions and Next Steps
The article presents a novel approach to solving the

problems arising from the inter-subject variability in the BCI
field – the extension of the BCI device to include a subject
identification block. Using the biometric algorithm, the BCI
device automatically identifies its current user and adapts pa-
rameters of the classification process and of the BCI proto-
col to maximize the BCI performance. Along with this we
present an algorithm for EEG-based identification designed
to be robust to variations between EEG recordings. The ro-
bustness is achieved by using extracted frequencies of the
fundamental components of the µ rhythm and demonstrated
using real life BCI EEG database recorded in two sessions
one year apart. Because we analyze only frequency features,
the gradual band power changes reported in [20] cannot in-
fluence classification performance. The frequency extraction
is robust in resisting artifacts and induced EEG activity and
the identification procedure works without the subject’s in-
teraction. Since the µ rhythm does not depend on eyes clos-
ing/opening, there is no need to close eyes during recording,
and also no visual stimulation is needed with our method.
And because it is intended to be used in the field of brain
computer interfacing for simple user identification and not
for large-scale reliable biometric application, the achieved
classification score is satisfactory.

The proposed algorithm can easily be implemented in
real time; actually, our current work aims at integration of the
presented method into our BCI prototype [17]. The first tests
of the real-time implementation demonstrate performance in
line with the results presented in this paper. The architec-
ture of the extended BCI is protected in Czechia by a utility
model and a patent application [34].
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Milan KOSTÍLEK was born in Ostrov, the Czech Republic
in 1987. He received M.S. degree in Biomedical Engineer-
ing from the Faculty of Electrical Engineering of the Czech
Technical University (FEE CTU) in Prague in 2011. His cur-
rent research interests include biosignal processing, brain-
computer interface and EEG classification techniques.


