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Abstract. The Automatic Modulation Classification (AMC) 
performance depends on the selected features. Conven-
tionally, Higher-Order Cumulants (HOCs) are the well-
known features due to their discrimination ability under 
different channel conditions. HOCs have good perfor-
mance under the Additive white Gaussian noise (AWGN) 
channel, but their performance degrades under fading 
channel. This paper proposes an Advanced Features Gen-
eration Algorithm (AFGA) that generates mathematical 
forms of new features based on the maximum discrimina-
tion between the digital modulation types to overcome this 
performance limitation. These features have similar com-
plexity to HOCs but better performance accuracy. The 
simulation results show that the proposed AFGA improves 
the performance accuracy up to 4.5% for a Signal-to-noise 
ratio (SNR) value of 10 dB under fading channel condi-
tions with respect to conventional methods. 
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1. Introduction 
Automatic Modulation Classification (AMC) is 

an important task in modern digital receivers. Two general 
types of AMC algorithms are Likelihood-Based (LB) and 
Feature-Based (FB) algorithms. Theoretically, LB algo-
rithms have better performance than FB algorithms, but 
practically, FB algorithms were used due to their less com-
putational complexity compared to LB. 

Various studies were done to find good discriminative 
features for modulation classification like instantaneous, 
transformations, and Higher-Order Statistics [1–3]. Com-
parisons are made among them in [1, 3–5]. It was shown 
that HOCs have the greatest performance for classifying 
various digital modulation types under various channel 
characteristics, such as fading channels. 

Various studies were done for AMC under fading 

channel conditions using HOCs. In [6], the author shows 
that the performance accuracy of M-array Phase Shift 
Keying (MPSK) and M-array Quadrature Amplitude shift 
Modulation (MQAM) classification by using HOMs and 
HOCs is 84.37%, for SNR value of 10 dB. In [7], the au-
thor shows that the performance accuracy of 4-Amplitude-
Shift Keying (4-ASK), 8-ASK, Binary Phase-Shift Keying 
(BPSK), Quadrature Phase-Shift Keying (QPSK), 8-Phase-
Shift Keying (8-PSK), 16-PSK, 16-Quadrature Amplitude 
Modulation (16-QAM), 32-QAM, and 64-QAM classifica-
tion by using cyclic cumulants is 80%, for SNR value of 10 dB.  

The performance accuracy worsens as the SNR value 
drops, as illustrated in [6], [7]. As a result, alternative fea-
tures that perform better than cumulants under fading 
channel circumstances must be discovered. Our study fo-
cuses on MPSK (BPSK, QPSK, 8PSK, and 16PSK) and 
MQAM (8QAM, 16QAM, 32QAM, and 64QAM) digital 
modulation types. Since the cumulants have the best per-
formance, our simulation results show that C40, C61 and C80 
cumulants have the best performance accuracy for the 
selected modulations under fading channel conditions. 

Based on this opinion, our study proposes an Ad-
vanced Features Generation Algorithm (AFGA) that gen-
erates the mathematical forms of three features alternatives 
to C40, C61 and C80. Unlike the cumulants which have 
mathematical forms according to (2), the mathematical 
representations of the features are generated by AFGA 
using the maximum discrimination rule between the speci-
fied digital modulation types. As a result, they increase 
performance accuracy. To do this task, feature extraction 
and feature selection algorithms have been used. AGFA 
takes into account that the computational complexities of 
these new features are similar to the computational com-
plexities of C40, C61 and C80. The three generated features 
have better classification accuracy than C40, C61 and C80. 
They could improve the performance accuracy up to 4.5% 
for SNR value of 10 dB with respect to conventional 
methods. 

2. System Model 
For eight selected digital modulation types in Sec. 1, 

the baseband waveform of the received signal under flat 
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fading conditions can be written as: 

       , 1,...,8j l jy n h x n g n j    (1) 

where xj(n) is the transmitted symbol of the j digital mod-
ulation type, hl is the complex fading coefficient of the 
channel and is considered as hl  CN(0,h

2), and g(n) is 
a complex AWGN and is considered as g(n)  CN(0,n

2). 
The general mathematical form of HOCs is[8]: 

 * *
1 - - 1Cum ,..., , ,...,p q p q pC s s s s

pq      (2) 

where * denotes the complex conjugate, p is the order of 
the cumulant and q is the complex conjugate order of the 
cumulant and the Cum function is defined as [13]: 

     
1

1

1Cum ,..., 1 1 ! .......
q

q

n j j
j V j V

v

s s q E s E s


 


             (3) 

where the summation is being performed on all partitions 
V = (V1,V2,…,Vq) for the set of indexes (1,2,…,n). 
According to (2) and (3), the mathematical forms of C40, 
C61 and C80 are shown in Tab. 1 [9] where Mpq = 
E[y(k)p–qy*(k)q] is the moment of the received signal y(k), * 
denotes the complex conjugate, p is the order of the mo-
ment, and q is the complex conjugate order of the moment. 
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40 40 203C M M   

2
61 61 21 40 20 41 20 215 10 30C M M M M M M M     

2 2 4
80 80 40 60 20 20 40 2035 28 420 630C M M M M M M M      

Tab. 1.  Mathematical forms of the selected HOCs. 

3. Optimization Problem Definition 
By closely examining the mathematical forms of the 

chosen cumulants in Tab. 1, it is discovered that each cu-
mulant is made up of a sum of terms, with each term being 
a multiplication of moments of various powers. It has the 
following general mathematical form: 
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where ALi
, BLi

, …, CLi
 are the orders of moments, kLi

, lLi
, …, 

mLi
 are the orders of the conjugate of the moments,  TALi

, 

TBLi
, …, TCLi

 are the powers of the moments, and UL is  
the number of terms of the feature fL. We suppose the all 
unknowns are: 
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with its variables summarized in Tab. 2. 
 

1 A1 k1 TA1 TB1,…, TC1  
1 4 0 1 0 
2 A2 k2 TA2 TB2,…, TC2  
–3 2 0 2 0 

Tab. 2.  Disassembly of  C40 according to (4). 

Hence, we define a mathematical optimization prob-
lem of finding new optimal mathematical forms of three 
features (4) {f̑4, f̑6, f̑8}, which are alternatives to C40, C61, 
C80, based on maximum of the all minimum discrimination 
measurements among selected digital modulations as 
shown in (5): 
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where z is the number of classes, i all possible solutions. 
The discrimination function in (5) is the summation of all 
the statistical distances (Mahalanobis distances (MD)) 
between each two different classes as shown in Sec. 4.3 
(18). It contains square root function, the covariance 
matrices, and the means vectors of the classes, which they 
are calculated for the generated features (4): 
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This makes it ultra-high complicated function. Optimiza-
tion problem (5) means of calculating all optimum un-
knowns (4) for the three features as:  
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This issue is a nonconvex general optimization prob-
lem with an extremely sophisticated discriminating func-
tion and a large number of unknown parameters. There is 
no mathematical solution. It is unrealistic to search for the 
best features by testing all conceivable solutions since it 
takes a long period. To solve this optimization problem, we 
propose an Advanced Feature Generation Algorithm 
(AFGA) that finds these optimum values of the unknown’s 
parameters of each feature in (4) in which maximizes the 
discrimination ability, and generates their mathematical 
forms. 
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4. Mathematical Concepts for Study 

4.1 Features Selection Algorithms (FSA) 

In classification problems, when the feature space di-
mension increases, computational complexity increases, 
too. To overcome this challenge, we must minimize the 
feature space dimension by picking the best discrimination 
features and rejecting the rest in such a manner that as 
much class discrimination as feasible is preserved. For this 
reason, Feature Selection Algorithms (FSA) were studied 
[10]. Using FSA, we speed up the learning process, reduce 
the storage size and improve the learning performance. 

Filter methods in feature selection techniques [11] are 
independent of any learning and classification algorithms, 
computationally inexpensive, simple, and faster than the 
other techniques. Hence, these methods were focused on in 
our study. Filter methods evaluate the score of each feature 
according to its discrimination ability and choose the fea-
tures which have the highest scores. Here we mention some 
of the important filter methods and their mathematical 
score form: 

Fisher Score (FS) [12]: It is calculated as the ratio of 

between scatter (  2

,
1

l l

z

j x j x
j

n  


 , where z is the number of 

classes, nj is the dataset size of class j, μxl
 is the total mean 

of the feature fl, and μxl,j is the mean of the feature fl and 

class j), and within scatter ( 2
,

1
l

z

j x j
j

n 

 , where 2

xl,j is the 

variance of feature fl and class j) as follows: 

 
 2

,
1

2
,

1

FS( ) , 1
l l

l

z

j x j x
j

l z

j x j
j

n

l d
n

 








  



f  (8) 

where d is the number of features. 

Relief-F (RF) [10, 13]: It is an iterative approach that 
estimates the score of each feature according to the differ-
entiation of data samples which are near to each other. For 
each point i of class l, i.e. xi,l, we define NH(i) are the near-
est data of xi in the same class with size hi, NM(i,k) are the 
nearest data of xi in class k (k  ki) with size hik and proba-
bility p(k). The Relief-F Score can be calculated as [10]: 
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where dm is defined as [10]: 
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and u is data instances that are randomly selected among 
all m instances. 

Pearson Correlation Coefficient (PCC) [14]: It 
measures the similarity between data samples and its 
labels. PCC score can be calculated as: 
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where μxl
 is the mean value of the feature l and 2

xl
 its 

variance, and μyl
 is the mean value of labels of feature l and 

2
yl
 its variance. 

Laplacian Score (LS) [15]: It selects features which 
can better preserve the manifold structure of the data 
(which is a set of points, along with a set of neighborhoods 
for each point). For each i-th feature, LS score can be 
calculated as: 
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Term Variance (TV) [16]: It calculates the variance of 
each feature as: 

    T
TV( ) * .

l ll l l  f f f   (13) 

4.2 Optimum Features Weights Calculation 

The weights that optimize discrimination across 
classes are known as optimal weights. The projection vec-
tor that optimizes discrimination between various classes is 
calculated via Fisher Discriminant Analysis (FDA) [17], 
and the values of this vector represent the optimal weights 
of the related features. Suppose the input features of p–
instance of the j-class as xj,p = {xj,p,l}

d
l=1. By the assumption 

that w is the projection vector, the output feature can be 
calculated as: 

 ' T
, ,j p j px w x . (14) 

Fisher criterion function is defined as [17]: 
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where μj̛ is the mean of the output feature of class j, μ̛ is the 
total mean of the output features of all classes, and  ̛j 2 is 
the variance of the output features of class j. By using (14), 
(15) can be written as[17] : 
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the p-instance of class j, μj  is the mean of features of class 
j, and μ is the total mean. The problem here is to find the 
optimum projection vector w which maximizes Fisher 
criterion function (16). One of the solutions for this 
problem is using the Lagrange multiplier where the 
solution is [17]:   

  -1eig .W Bw S S  (17) 

4.3 Statistical Distance Calculation 

One of the main criterion to calculate the statistical 
distance between two multivariate random variables is 
Mahalanobis distance (MD) which is defined as [18]: 

      T -1

1 2 1 2 1 2 1 2MD( , )     u u S S      (18) 

where μ1, μ2 are the means vectors of the first and the 
second random variables, and S1, S2 are their covariance’s 
matrices, respectively. MD is used as a discrimination 
measurement between each two classes. 

5. Advanced Features Generation 
Algorithm (AFGA) 
The new features must have similar complexity to 

C40, C61, C80 cumulants (have the same number of 
elements, terms, and maximum power of the C40, C61, C80) 
as shown in Tab. 3. 
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Tab. 3.  Disassembly of the selected HOCs. 

To find three features alternative to C40, C61, C80 
cumulants, AFGA has four main steps: 

1- Determine the most discriminative elements 
(moments) of each feature. 

2- Determine the most discriminative terms based on 
the selected elements in the previous step. 

3- Determine the most optimum weights of the 
selected terms in the previous step. 

4- Extract the final mathematical form. 

We apply these steps as the following:  

First step: Selection of moments 
, ,,

L L L Li i i i
A k B lM M  

,,..,
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C mM in (4). In this step, we have to search about the 

most discriminative moments. To simplify the calculations, 
the absolute values of the moments can be used. They 
should have the same number of the elements of selected 
cumulants as follows:  

- To find the elements of the first feature alternative to 
C40, we have to search about the most two discriminative 
moments (according to Tab. 3) within 
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- To find the elements of the second feature alterna-
tive to C61, we have to search about the most five discri-
minative moments (according to Tab. 3) within M6
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- To find the elements of the third feature alternative 
to C80, we have to search about the most four 
discriminative moments (according to Tab. 3) within 
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Searching about the most discriminative moments for 
each new feature is done by using feature selection 
algorithms (FSA) in Sec. 4.1 (FS, RF, PCC, LS, and TV) 
for the 8 selected digital modulation types in Sec. 1. First, 
we apply the five FSA-mentioned algorithms in Sec. 4.1 
(FS, RF, PCC, LS, and TV) ( , 1..5kFSA k  ) and select the 

moments that have the highest scores grouped in 
( , , 4,6,8, 1,..,5

k

th
L FSA LM L k  χ ). Then we choose the 

moments that have the maximum of the minimum 
Mahalanobis Distances (MD) (among the different digital 
modulation classes) among the different feature selection 
algorithms as: 
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as shown in Fig. 1. 
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Fig. 1.  Most discriminative moments/terms search algorithm.
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(4). To do this step, first, we have to calculate all possible 
terms for the three alternative features according to its 
maximum power as shown in Tab. 3, and using the selected 
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- To find the terms of the second feature alternative to 
C61, we have to calculate all terms of form 

6 6,1 6,2 6,3 6,4 6,5
0 , , , , integers 0 3

th i j k l t

i j k l t i j k l t

T m m m m m
      

    
  
 . Here we have 55 terms. 

Within these terms, we have to search about the most four 
discriminative terms (h = 4) (according to Tab. 3). The 

vector of the selected terms is  '''
6 6,1 6,2 6,3 6,4, , ,t t t tχ  where 

'''
6 6

thTχ . 

- To find the terms of the third feature alternative to 
C80, we have to calculate all terms of the form 

8 8,1 8,2 8,3 8,4
0 , , , i ntegers 0 4

th i j k l

i j k l i j k l

T m m m m
     

    
  
 . Here we have 69 terms. 

Within these terms, we have to search about the most five 
discriminative terms (h = 5) (according to Tab. 3). The 

vector of the selected terms is  '''
8 8,1 8,2 8,3 8,4 8,5, , , ,t t t t tχ  

where '''
8 8

thTχ . 

As previously, searching about the most 
discriminative terms for each new feature is done using 

feature selection algorithms (FSA) in Sec. 4.1 (FS, RF, 
PCC, LS, and TV) as shown in Fig. 1. First, we apply the 
five FSA-mentioned algorithms in Sec. 4.1 (FS, RF, PCC, 
LS, and TV) ( , 1..5kFSA k  ) and select the terms that have 

h highest scores ( ''
, k

th
L FSA LTχ , 4,6,8, 1,..5L k  ). Then, 

we choose the one that gives the maximum of minimum 
Mahalanobis Distances (MD) among the different FSA 
algorithms like (19): 

   ''' '' ''
, , , ,

1,..,54,6,8 ,classes , 1,...,8

argmax min MD ,
k k

k
L L FSA i L FSA jFSAkL i j i j

  

 
  

 
 

χ χ χ . (20) 

Third step: Calculate the optimum weights 

 
1

L

i

T

L L i



w , 4,6,8L  , 4 6 82, 4, 5T T T    of the 

selected terms in previous step for each new feature using 
(17). According to [17], 2 1L w , this means 

1 1,
iL i    , to make it integer like cumulants as 

shown in Tab. 1, mathematical round operation is neces-
sary as: 
  round *L L w w  (21) 

where β is any number under the condition of nonzero wL 
elements (as a result of mathematical round operation). 

Fourth step: Extract the mathematical form as: 

 T ''' , 4,6,8L L Lf L w χ


. (22) 

The flowchart of the proposed AFGA is shown in Fig. 2. 

6. AFGA Implementation 
AFGA algorithm generates new features according to 

the desired SNR region. 

Table 4 shows the steps results of applying AFGA for 
high-SNR values as shown in Fig. 2 which are called here 
as features-group1 (FG-I). 
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For each feature L=4,6,8 
Moments space

th
LM

Calculate all terms space th
LT

Calculate the weights        (17),(21)
iL

Generate the mathematical form (22)

End

Start

Select most discriminative moments       (19)
according to algorithm in Fig. 1.

'
Lχ

Select the most discriminative terms       (20)
according to algorithm in Fig. 1.

'''
Lχ

 
Fig. 2.  Flowchart of AFGA. 
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3 3

6 6

h hf M M M M

M M M M

   

 
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
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feature 
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3 2 2

84 80 84 83

4 6

6 4

h hf M M M M M

M M M M

   

 

w χ


Tab. 4.  New generated features for high SNR values. 

Table 5 shows the steps results of applying AFGA 
algorithm for all-SNR values as shown in Fig. 2 which are 
called here as features-group2 (FG-II). 

When comparing Tabs. 4 and 5, it can be seen that 
FG-I and FG-II share the identical components, terms, and 
weights. This indicates that by substituting FG-II weights 
with their weights, the mathematical forms of high SNR 
(FG-I) may be deduced from the mathematical form of the 
general case (all SNR range, i.e. FG-II). 
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Tab. 5.  New generated features for all SNR values. 

7. Performance Improvement of the 
New Features 

The classification of chosen digital modulation types 
in Sec. 1 using the selected cumulants in Sec. 1 and the 
new generated alternatives features in Tabs. 4 and 5 is 
done. Performance accuracy and its improvement (subtract 
the first accuracy (using the selected cumulants) of the 
second accuracy (using the new features) are shown in 
Figs. 3 and 4. 

As shown in Fig. 3, the new generated features could 
improve the performance accuracy up to 4.5% for SNR 
value of 10 dB. The improvement is in the case of SNR 
values of larger than 4 dB. No accuracy improvement is for 
SNR values larger than 16 dB because of the accuracy by 
using the selected cumulants and the new generated 
features is 100%, as shown in Fig. 3. 

Another comparison should be done with some refer-
ences in Sec. 1. In [6], it was shown that average perfor-
mance accuracy is 84.37%, for SNR value of 10 dB. While 
our work shows that the performance accuracy using our 
new generated features is 98.78% as shown in Fig. 3. As 
a result, our improvement compared to [6] is 14.41%. In 
[7], it has been shown that the performance accuracy is 
80%, for SNR value of 10 dB. As a result, our improve-
ment compared to [7] is 18.78%. 
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Fig. 3.  Classification accuracy and improvements of the new 

features FG-I compared with the selected cumulants. 

 
Fig. 4.  Classification accuracy and improvements of the new 

features FG-II compared with the selected cumulants. 

As shown in Fig. 4, the new generated features could 
improve the performance accuracy up to 3.428% for SNR 
value of 10 dB. Unlike the performance of the FG-I, it 
could improve the performance accuracy for all SNR 
values up to 16 dB. 

8. Conclusion 
New algorithm to generate more discriminative fea-

tures than the cumulants, for MPSK and MQAM classifi-
cation was proposed. Mathematical features forms have 
been generated. The new generated features could effec-
tively improve the performance accuracy compared to the 
selected cumulants as summarized in Tab. 6. 

AFGA is a very powerful algorithm and can be used 
for other classification tasks. 
 

New features Improvement range Maximum Improvement 
FG-I 5 dB–16 dB 4.5% 
FG-II 0 dB–16 dB 3.428% 

Tab. 6.  Performance comparison between the new features. 
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