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Abstract
The goal of this thesis is to propose a static analyser that detects atomicity violations.
The proposed analyser—Atomer —is implemented as a module of Facebook Infer, which
is an open-source and extendable static analysis framework that promotes efficient modular
and incremental analysis. The analyser works on the level of sequences of function calls.
The proposed solution is based on the assumption that sequences executed atomically once
should probably be executed always atomically. The implemented analyser has been suc-
cessfully verified and evaluated on both smaller programs created for testing purposes as
well as publicly available benchmarks derived from real-life low-level programs.

Abstrakt
Cílem této práce je navrhnout statický analyzátor, který bude sloužit pro detekci porušení
atomicity. Navržený analyzátor—Atomer —je implementován jako modul pro Facebook
Infer, což je volně šířený a snadno rozšířitelný nástroj, který umožňuje efektivní modulární
a inkrementální analýzu. Analyzátor pracuje na úrovni sekvencí volání funkcí. Navržené
řešení je založeno na předpokladu, že sekvence, které jsou zavolány atomicky jednou, by
měly být pravděpodobně volány atomicky vždy. Implementovaný analyzátor byl úspěšně
ověřen a vyhodnocen jak na malých programech, vytvořených pro testovací účely, tak na
veřejně dostupných testovacích programech, které vznikly ze skutečných nízkoúrovňových
programů.
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Rozšířený abstrakt
Softwarové chyby jsou nedílnou součástí počítačových programů od samotného vzniku pro-
gramování. Naneštěstí jsou často ukryty na nečekaných místech a můžou vést k nečekanému
chování, které může způsobit značné škody. Dnes existuje mnoho způsobů, jak mohou vývo-
jáři odhalovat tyto chyby již při vývoji. Často se používají dynamické analyzátory nebo
nástroje pro automatizované testování, které jsou v mnoha případech dostačující, nicméně
stále mohou zanechat spoustu chyb neodhalených, protože jsou schopny analyzovat pouze
určité toky běhu programu na základě vstupních dat. Alternativním řešením je statická
analýza, která má však také svoje nedostatky, kde nejčastějším problémem je škálovatel-
nost při analýze rozsáhlých projektů nebo značně vysoká míra nesprávně hlášených chyb
(často se používá anglický výraz ”false alarm“).

Firma Facebook nedávno představila Facebook Infer : nástroj pro tvorbu vysoce škálovatel-
ných, kompozičních, inkrementálních a interprocedurálních statických analyzátorů. Face-
book Infer značně rozšířil své možnosti, ale je stále aktivně vyvíjen mnoha týmy po celém
světě. Je používaný dennodenně nejen v samotné firmě Facebook, ale také v jiných fir-
mách jako např. Spotify, Uber, Mozilla nebo Amazon. Momentálně Facebook Infer nabízí
několik analyzátorů, které detekují celou řadu typů softwarových chyb, jako např. chyby
typu ”buffer overflow“ (přetečení vyrovnávací paměti), ”data race“ a různé druhy uváznutí
(”deadlock“) a stárnutí (”starvation“), ”null-dereferencing“ (dereference prázdného ukaza-
tele) nebo ”memory leak“ (únik paměti). Ale především je Facebook Infer aplikační rámec
pro rychlou a jednoduchou tvorbu nových analyzátorů. V aktuální verzi nástroje Face-
book Infer naneštěstí stále chybí lepší podpora pro detekci chyb v paralelních programech.
Přestože Facebook Infer nabízí docela pokročilé analyzátory na detekci chyb typu ”data
race“, jsou tyto analyzátory limitovány pouze na programy napsané v jazycích Java a C++
a nejsou navrženy na programy napsané v jazyce C, které manipulují se zámky na nižší
úrovni.

V paralelních programech se často vyžaduje, aby určité sekvence instrukcí byly prove-
deny atomicky. Porušení těchto požadavků pak může způsobit různé problémy, jako např.
neočekávané chování, výjimky, nepovolené přístupy do paměti (”segmentation fault“) nebo
jiné selhání. Porušení atomicity obvykle není ověřováno překladačem, na rozdíl od syn-
taktických nebo některých druhů sémantických pravidel. Požadavky na atomicitu navíc
většinou ani vůbec nejsou dokumentovány. Takže v konečném důsledku musí samotní
programátoři dbát na jejich dodržení, a to obvykle bez jakýchkoliv podpůrných nástrojů.
Obecně je náročné vyvarovat se těchto chyb v atomicky závislých programech, obzvlášť ve
velkých projektech, a ještě těžší a časově náročnější je hledání a opravování těchto chyb.

V této práci je navržen statický analyzátor—Atomer —pro hledání chyb určitého typu
porušení atomicity, který je implementován jako modul nástroje Facebook Infer. Návrh se
konkrétně zaměřuje na atomické provádění sekvencí volání funkcí, což je často vyžadováno,
např. při použití určitých knihovních volání. Navržený princip je založen na předpokladu,
že sekvence provedené atomicky jednou, by pravděpodobně měly být provedeny atomicky
vždy. Návrh je dále založen na konceptu kontraktů pro souběžnost (anglicky ”contracts for
concurrency“). Navržená analýza je rozdělena do dvou částí (fáze analýzy). Fáze 1: detekce
atomických sekvencí, tj. detekce volání funkcí, které se volají atomicky. Fáze 2: detekce
porušení atomicity, tj. porušení atomické sekvence získané z první fáze.



Analyzátor je implementován v jazyce OCaml, což je implementační jazyk nástroje Face-
book Infer. Implementace se konkrétně zaměřuje na programy napsané v jazycích C/C++
s použitím zámků typu PThread.

Funkčnost analyzátoru byla úspěšně ověřena na menších ručně vytvořených programech.
Navíc byl analyzátor experimentálně vyhodnocen na veřejně dostupných testovacích pro-
gramech odvozených od nízkoúrovňových programů používaných v praxi. Analýza byla
provedena na 9 vybraných nízkoúrovňových programech, které obsahují několik tisíc řádků
kódu. Bylo zjištěno, že Atomer je schopný analyzovat i takhle rozsáhlé programy z praxe,
ale v těchto případech je nesprávně hlášeno mnoho chyb. Každopádně výsledek této analýzy
může být použit jako vstup pro dynamickou analýzu, která může být schopna zjistit, jestli
tato nahlášená porušení atomicity jsou skutečné chyby.

Atomer má potenciál pro další vylepšování. Budoucí práce se bude zaměřovat především na
zlepšování přesnosti použitých metod například tak, že se budou uvažovat vnořené zámky,
různé instance použitých zámků, parametry funkcí atd. Budoucí práce se bude dále za-
měřovat na zlepšování škálovatelnosti, protože Atomer není schopen analyzovat rozsáhlejší
a komplexnější programy. Dále by bylo zajímavé rozšířit analyzátor o další typy zámků
pro synchronizaci souběžných vláken/procesů a otestovat analýzu na dalších v praxi použí-
vaných programech.

Vývoj analyzátoru byl diskutován s vývojáři nástroje Facebook Infer a je součástí projektu
Aquas (H2020 ECSEL). Zdrojové kódy implementovaného analyzátoru jsou volně dostupné
v repositáři na serveru GitHub. Předběžné výsledky práce byly publikovány a prezen-
továny v článku na studentské konferenci Excel@FIT, kde tento článek vyhrál cenu ve dvou
kategoriích.
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Chapter 1

Introduction

Bugs are an integral part of computer programs ever since the inception of the programming
discipline. Unfortunately, they are often hidden in unexpected places, and they can lead
to unexpected behaviour, which may cause significant damage. Nowadays developers have
many possibilities of catching bugs in the early development process. Dynamic analysers
or tools for automated testing are often used and they are satisfactory in many cases,
nevertheless, they can still leave too many bugs undetected, because they are able to analyse
only certain program flows dependent on the input data. An alternative solution is static
analysis that has its own shortcomings as well, such as the scalability on extensive codebases
or considerably high rate of incorrectly reported errors (so-called false positives or false
alarms).

Recently, Facebook introduced Facebook Infer : a tool for creating highly scalable, com-
positional, incremental, and interprocedural static analysers. Facebook Infer has grown
considerably, but it is still under active development by many teams across the globe. It
is employed every day not only in Facebook itself, but also in other companies, such as
Spotify, Uber, Mozilla, or Amazon. Currently, Facebook Infer provides several analysers
that check for various types of bugs, such as buffer overflows, data races and some forms
of deadlocks and starvation, null-dereferencing, or memory leaks. But most importantly
Facebook Infer is a framework for building new analysers quickly and easily. Unfortunately,
the current version of Facebook Infer still lacks better support for concurrency bugs. While
it provides a fairly advanced data race analyser, it is limited to Java and C++ programs
only and fails for C programs, which use a more low-level lock manipulation.

In concurrent programs, there are often atomicity requirements for execution of specific
sequences of instructions. Violating these requirements may cause many kinds of problems,
such as unexpected behaviour, exceptions, segmentation faults, or other failures. Atomicity
violations are usually not verified by compilers, unlike syntactic or some sorts of semantic
rules. Moreover, atomicity requirements, in most cases, are not even documented at all. So
in the end, programmers themselves must abide by these requirements and usually lack any
tool support. And in general, it is difficult to avoid errors in atomicity-dependent programs,
especially in large projects, and even harder and time-consuming is finding and fixing them.

In this thesis, there is proposed the Atomer —a static analyser for finding some forms of
atomicity violations—which is implemented as a module of Facebook Infer. In particular,
the stress is put on the atomic execution of sequences of function calls, which is often
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required, e.g., when using certain library calls. In fact, the idea of checking atomicity of
certain sequences of function calls is inspired by the work of contracts for concurrency [11].
In the terminology of [11], atomicity of certain sequences of calls is the simplest (yet very
useful in practice) kind of contracts for concurrency. The implementation particularly
targets C/C++ programs that use PThread locks.

The development of Atomer has been discussed with developers of Facebook Infer, and it is
a part of the H2020 ECSEL project Aquas. Parts of this thesis and preliminary results are
taken from the paper [13], which was written in collaboration with Vladimír Marcin and
Ondřej Pavela.

The rest of the thesis is organised as follows. In Chapter 2 there are described all the topics
which are necessary to understand before reading the rest of the thesis. In particular,
Section 2.1 deals with static analysis based on abstract interpretation. Facebook Infer,
which uses abstract interpretation, is described in Section 2.2. Finally, in Section 2.3 there
is described the concept of contracts for concurrency. A proposal of a static analyser
for detection of atomicity violations, based on this concept, is described in Chapter 3
together with a description of existing analysers of a similar kind. An implementation of
the analyser is presented in Chapter 4. Subsequently, Chapter 5 discusses the experimental
evaluation of the analyser. Finally, Chapter 6 concludes the thesis. In addition, there are
three appendices. Appendix A provides more details of experimental verification results.
Appendix B lists contents of the attached memory media, and Appendix C serves as an
installation and user manual.
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Chapter 2

Preliminaries

This chapter explains the theoretical background that the thesis builds on. It also explains
and describes the existing tools used in the thesis. Lastly, the chapter deals with principles
which this thesis got inspired by.

In particular, in Section 2.1, there is a brief explanation of static analysis itself, and then
an explanation of abstract interpretation that is used in Facebook Infer, i.e., the tool that
is extended in this thesis. Facebook Infer, its principles and features are illustrated in
Section 2.2. The concept of contracts for concurrency that the thesis gets inspired by is
discussed and defined in Section 2.3.

2.1 Static Analysis by Abstract Interpretation

According to [19], static analysis of programs is reasoning about the behaviour of computer
programs without actually executing them. It has been used since the 1970s in optimis-
ing compilers for generating efficient code. More recently, it has proven valuable also for
automatic error detection, verification of correctness of programs, and it is used in other
tools that can help programmers. Intuitively, a static program analyser is a program that
reasons about the behaviour of other programs, in other words, a static program analyser
is a program that reasons about another programs by looking for some syntactic patterns
in the code and/or by assigning the program statements some abstract semantics and then
deriving a characterisation of the behaviour in terms of the abstract semantics. Nowa-
days, static analysis is one of the fundamental concepts of formal verification. It aims to
automatically answer questions about a given program, such as, e.g., [19]:

∙ Are certain operations executed atomically?

∙ Does the program terminate on every input?

∙ Can the program deadlock?

∙ Does there exist an input that leads to a null-pointer dereference, a division-by-zero,
or an arithmetic overflow?

∙ Are all variables initialised before they are used?
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∙ Are arrays always accessed within their bound?

∙ Does the program contain dead code?

∙ Are all resources correctly released after their last use?

It is well-known that testing, i.e., executing programs with some input data and examining
the output, may expose errors, but it cannot prove their absence. (It was also famously
stated by Edsger W. Dijkstra: “Program testing can be used to show the presence of bugs, but
never to show their absence!”.) However, static program analysis can prove their absence—
with some approximation —it can check all possible executions of the programs and provide
guarantees about their properties. Another advantage of static analysis is that the analysis
can be performed during the development process, so the program does not have to be
executable yet and it already can be analysed. The biggest disadvantage of static analysis is
that it can produce many false alarms1, which is often resolved by accepting unsoundness2.
Another major issue is that of ensuring sufficient scalability of static analysis: in fact,
typically, the more precise the analysis is, the less scalable it becomes.

Various forms of static analysis of programs have been invented, for instance [24]: bug
pattern searching, data-flow analysis, constraint-based analysis, type analysis, or symbolic
execution. One of the most widely used approaches— abstract interpretation —is detailed
in Section 2.1.1.

There exist numerous tools for static analysis (often proprietary and difficult to openly
evaluate or extend), e.g.: Coverity, Klockwork, CodeSonar, Frama-C, PHPStan, or Facebook
Infer (described in Section 2.2).

2.1.1 Abstract Interpretation

This section explains and defines the basics of abstract interpretation. The description is
based on [8, 9, 6, 7, 15, 16, 10, 20, 19, 25]. In these works, there can be found more detailed
and more formal explanation.

Abstract interpretation was introduced and formalised by a French computer scientist
Patrick Cousot and his wife Radhia Cousot in the year 1977 at POPL (symposium on
Principles of Programming Languages) [9]. It is a generic framework for static analyses. It
allows one to create particular analyses by providing specific components (described later)
to the framework. The obtained analysis is guaranteed to be sound if certain properties of
the components are met. [15, 16]

In general, in the set theory, which is independent of the application setting, abstract
interpretation is considered a theory for approximating sets and set operations. A more re-
stricted formulation of abstract interpretation is to interpret it as a theory of approximation
of the behaviour of the formal semantics of programs. Those behaviours may be charac-
terised by fixpoints (defined below), which is why a primary part of the theory provides
efficient techniques for fixpoint approximation [20]. So, for a standard semantics, abstract
interpretation is used to derive the approximate abstract semantics over an abstract domain

1False alarms – incorrectly reported an error. Also called false positives.
2Soundness – if a verification method claims that a system is correct according to a given specification,

it is truly correct [24].
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(defined below). The abstract semantics obtained as a result of program analysis can then
be used for verification, optimisation, code generation or transformation, etc. [8]

Patrick Cousot intuitively and informally illustrates abstract interpretation in [6] as follows.
Figure 2.1a shows the concrete semantics of a program by a set of curves, which represents
the set of all possible executions of the program in all possible execution environments.
Each curve shows the evolution of the vector 𝑥(𝑡) of input values, state, and output values
of the program as a function of the time 𝑡. Forbidden zones on this figure represent a set
of erroneous states of the program execution. Proving that the intersection of the concrete
semantics of the program with the forbidden zone is empty may be undecidable because the
program concrete semantics is, in general, not computable. As demonstrates Figure 2.1b,
abstract interpretation deals with an abstract semantics, i.e., the superset of the concrete
program semantics. The abstract semantics includes all possible executions. That implies
that if the abstract semantics is safe (i.e. it does not intersect the forbidden zone), the
concrete semantics is safe as well. However, the over-approximation of the possible program
executions causes that inexisting program executions are considered, which may lead to false
alarms. It is the case when the abstract semantics intersects the forbidden zone, whereas
the concrete semantics does not intersect it.

(a) Concrete semantics of programs with for-
bidden zones

(b) Abstract semantics of programs with im-
precise trajectory abstraction

Figure 2.1: Abstract interpretation demonstration [6]. Horizontal axes: time 𝑡. Vertical
axes: vector 𝑥(𝑡) of input, state, and output values of the considered program

Components of Abstract Interpretation

In accordance with [15, 16], the basic components of abstract interpretation are as follows:

∙ An Abstract Domain [7]:

– An abstraction of the possible concrete program states (or their parts) in the
form of abstract properties3 and abstract operations4 [8].

– Sets of program states at certain locations are represented using abstract states.

∙ Abstract Transformers:

– There is a transform function for each program operation (instruction) that
represents the impact of the operation executed on an abstract state.

3Abstract properties approximating concrete properties behaviours.
4Abstract operations include abstractions of the concrete approximation, an approximation of the

concrete fixpoint transform function, etc.
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∙ The Join Operator ∘:

– Joins abstract states from individual program branches into a single one.

∙ The Widening Operator O [20, 10, 15]:

– Enforces termination of the abstract interpretation.
– It is used to approximate the least fixed points of program semantics (it is per-

formed on a sequence of abstract states at a certain location).
– Usually, the later in the analysis this operator is used, the more accurate the

result is (but the analysis takes more time).

∙ The Narrowing Operator M [20, 10, 15]:

– Using this operator, the approximation obtained by widening can be refined, i.e.,
it may be used to refine the result of widening.

– This operator is used when a fixpoint is approximated using widening.

Fixpoints and Fixpoint Approximation

A fixpoint of a function 𝑓 : 𝐴→ 𝐴 is an element 𝑎 ∈ 𝐴 if and only if 𝑓(𝑎) = 𝑎 [25].

Computation of the most precise abstract fixpoint is not generally guaranteed to terminate,
in particular, when a given program contains a loop or recursion. The solution is to ap-
proximate the fixpoint using widening (over-approximation of a fixpoint) and narrowing
(improves the approximation of the fixpoint) [15, 16]. Most program properties can be
represented as fixpoints. This reduces program analysis to the fixpoint approximation [7].
Further information about fixpoint approximation can be found, e.g., in [20, 10].

Formal Definition of Abstract Interpretation

According to [9, 15], abstract interpretation 𝐼 of a program 𝑃 with the instruction
set 𝑆 is a tuple

𝐼 = (𝑄, ∘,⊑,⊤,⊥, 𝜏 )

where

∙ 𝑄 is the abstract domain (domain of abstract states),

∙ ∘ : 𝑄×𝑄→ 𝑄 is the join operator for accumulation of abstract states,

∙ ( ⊑ ) ⊆ 𝑄×𝑄 is an ordering defined as 𝑥 ⊑ 𝑦 ⇔ 𝑥 ∘ 𝑦 = 𝑦 in (𝑄, ∘,⊤),

∙ ⊤ ∈ 𝑄 is the supremum of 𝑄,

∙ ⊥ ∈ 𝑄 is the infimum of 𝑄,

∙ 𝜏 : 𝑆 ×𝑄→ 𝑄 defines abstract transformers for specific instructions,

∙ (𝑄, ∘,⊤) is a complete semilattice [25, 15].

Using so-called Galois connections [20, 10, 15, 7], one can guarantee the soundness of
abstract interpretation.
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2.2 Facebook Infer — A Static Analysis Framework

This section describes the principles and features of Facebook Infer. The description is
based on information provided at the Facebook Infer website5 and in [2, 16]. Parts of this
section are taken from the paper [13].

Facebook Infer is an open-source6 static analysis framework, which is able to discover var-
ious kinds of software bugs of a given program, with the stress put on scalability. The
basic usage of Facebook Infer is illustrated in Figure 2.2. A more detailed explanation
of its architecture is shown below. Facebook Infer is implemented in OCaml7 – functional
programming language, also supporting imperative and object-oriented paradigms. Further
details about OCaml can be found in [18] or in official documentation8, tutorials9. Face-
book Infer was originally a standalone tool focused on sound verification of the absence of
memory safety violations, which was first published in the well-known paper [5].

⊢ BugsC/C++,	Java	or
Objective-C	Code

Build	System

Figure 2.2: Static analysis in Facebook Infer (http://www.codeandyou.com/2015/06/
infer-static-analyzer-for-java-c-and.html)

Facebook Infer is able to analyse programs written in several languages. In particular,
it supports languages C, C++, Java, and Objective-C. Moreover, it is possible to extend
Facebook Infer’s frontend for supporting other languages. Currently, Facebook Infer con-
tains many analyses focusing on various kinds of bugs, e.g., Inferbo (buffer overruns) [26];
RacerD (data races) [3, 4, 12]; and other analyses that check for buffer overflows, some
forms of deadlocks and starvation, null-dereferencing, memory leaks, resource leaks, etc.

2.2.1 Abstract Interpretation in Facebook Infer

Facebook Infer is a general framework for static analysis of programs, it is based on abstract
interpretation. Despite the original approach taken from [5], Facebook Infer aims to find
bugs rather than formal verification. It can be used to quickly develop new sorts of com-
positional and incremental analysers (intraprocedural or interprocedural [20]) based on the
concept of function summaries. In general, a summary is a representation of preconditions
and postconditions of a function. However, in practice, a summary is a custom data struc-

5Facebook Infer website – https://fbinfer.com.
6Open-source repository of Facebook Infer on GitHub – https://github.com/facebook/infer.
7OCaml website – https://ocaml.org.
8OCaml documentation – http://caml.inria.fr/pub/docs/manual-ocaml.
9OCaml tutorials – https://ocaml.org/learn/tutorials.
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ture that may be used for storing any information resulting from the analysis of particular
functions. Facebook Infer generally does not compute the summaries in the course of the
analysis along the Control Flow Graph (CFG)10 as it is done in classical analyses based
on the concepts from [21, 22]. Instead, Facebook Infer performs the analysis of a program
function-by-function along the call tree, starting from its leafs (demonstrated later). There-
fore, a function is analysed and a summary is computed without knowledge of the call
context. Then, the summary of a function is used at all of its call sites. Since summaries
do not differ for different contexts, the analysis becomes more scalable, but it can lead to
a loss of accuracy. In order to create a new intraprocedural analyser in Facebook Infer, it
is needed to define the following (listed items are described in more detail in Section 2.1.1):

1. The abstract domain 𝑄, i.e., a type of an abstract state.

2. Operator ⊑, i.e., an ordering of abstract states.

3. The join operator ∘, i.e., the way of joining two abstract states.

4. The widening operator O, i.e., the way how to enforce termination of the abstract
interpretation of an iteration.

5. Transfer functions 𝜏 , i.e., a transformer that takes an abstract state as an input and
produces an abstract state as an output.

Further, in order to create an interprocedural analyser, it is required to additionally define:

1. The type of function summaries.

2. The logic for using summaries in transfer functions, and the logic for transforming an
intraprocedural abstract state to a summary.

An important feature of Facebook Infer improving its scalability is incrementality of the
analysis, it allows one to analyse separate code changes only, instead of analysing the whole
codebase. It is more suitable for extensive and variable projects, where ordinary analysis
is not feasible. The incrementality is based on re-using summaries of functions for which
there is no change in them neither in the functions transitively invoked from them.

The Architecture of the Abstract Interpretation Framework in Facebook Infer

The architecture of the abstract interpretation framework of Facebook Infer (Infer.AI)
may be split into three major parts, as demonstrated in Figure 2.3: a frontend, an analysis
scheduler (and a results database), and a set of analyser plugins.

The frontend compiles input programs into the Smallfoot Intermediate Language (SIL)
and represents them as a CFG. There is a separate CFG representation for each analysed
function. Nodes of this CFG are formed as instructions of SIL. The SIL language consists
of the following underlying instructions:

10A control flow graph (CFG) is a directed graph in which the nodes represent basic blocks and the
edges represent control flow paths [1].
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∙ LOAD: reading into a temporary variable.

∙ STORE: writing to a program variable, a field of a structure, or an array.

∙ PRUNE e (often called ASSUME): evaluation of a condition e.

∙ CALL: a function call.

The frontend allows one to propose language-independent analyses (to a certain extent)
because it supports input programs to be written in multiple languages.

JAVA

C

C++

OBJ-C

Frontend

Scheduler	+	Results	Database

Analyser	Plugins

0101001
0000001
1111011
0010000

Function	Summary

Figure 2.3: The architecture of Facebook Infer’s abstract interpretation framework [2, 16]

F1

F3

F2

F4

F5 F6

FMAIN

Figure 2.4: A call graph for an illus-
tration of Facebook Infer’s analysis pro-
cess [2, 13, 16]

The next part of the architecture is the sched-
uler, which defines the order of the analysis of
single functions according to the appropriate call
graph11. The scheduler also checks if it is pos-
sible to analyse some functions simultaneously,
which allows Facebook Infer to run the analysis
in parallel.

Example 2.2.1. For demonstrating the order
of the analysis in Facebook Infer and its incre-
mentality, assume a call graph in Figure 2.4. At
first, leaf functions F5 and F6 are analysed. Fur-
ther, the analysis goes on towards the root of
the call graph – FMAIN, while taking into consid-
eration the dependencies denoted by the edges.
This order ensures that a summary is available
once a nested function call is abstractly interpreted within the analysis. When there is

11A call graph is a directed graph describing call dependencies among functions.

10



a subsequent code change, only directly changed functions and all the functions up the
call path are re-analysed. For instance, if there is a change of source code of function F4,
Facebook Infer triggers re-analysis of functions F4, F2, and FMAIN only.

The last part of the architecture consists of a set of analyser plugins. Each plugin performs
some analysis by interpreting of SIL instructions. The result of the analysis of each function
(function summary) is stored to the results database. The interpretation of SIL instructions
(commands) is done using an abstract interpreter (also called a control interpreter) and
transfer functions (also called a command interpreter). The transfer functions take an
actual abstract state of an analysed function as an input, and by applying the interpreting
command, produce a new abstract state. The abstract interpreter interprets the command
in an abstract domain according to the CFG. This workflow is shown in a simplified form
in Figure 2.5.

Transfer	Functions
(Command	Interpreter)

0101001
0000001
1111011
0010000
StateOUT

Domain

0101001
0000001
1111011
0010000

StateIN

Domain Command

Abstract	Interpreter
(Control	Interpreter)

Control	Flow	Graph

Figure 2.5: Facebook Infer’s abstract interpretation process [2, 16]

2.3 Contracts for Concurrency

This section introduces the concept of contracts for concurrency described in [23, 11]. Parts
of this section are taken from the paper [13]. Listings in this section are pieces of programs
written in ANSI C.

Respecting the protocol of a software module—defines which sequences of functions are
legal to invoke— is one of the requirements for the correct behaviour of the module. For
example, a module that deals with a file system typically requires that a programmer using
this module should call function open at first, followed by an optional number of functions
read and write, and at last, call function close. A program utilising such a module that
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does not follow this protocol is erroneous. The methodology of design by contract (described
in [17]) requires programs to meet such well-defined behaviours. [23]

In concurrent programs, contracts for concurrency allow one— in the simplest case— to
specify sequences of functions that are needed to be executed atomically in order to avoid
atomicity violations. In general, contracts for concurrency specify sets of sequences of calls
that are called spoilers and sets of sequences of calls that are called targets, and it is then
required that no target overlaps fully with any spoiler. Such contracts may be manually
specified by a developer or they may be automatically generated by a program (analyser).
These contracts can be used to verify the correctness of programs as well as they can serve
as helpful documentation.

Section 2.3.1 defines the notion of basic contracts for concurrency. Further, Section 2.3.2
defines contracts extended to consider the data flow between functions (where a sequence
of function calls must be atomic only if they handle the same data). The above mentioned
more general contracts for concurrency with spoilers and targets, which essentially extend
the basic contracts with some contextual information, are not presented here in detail (they
are explained in the paper [11]). The reason is that the proposed analyser—Atomer —so
far concentrates on the basic contracts.

2.3.1 Basic Contracts

In [11, 23], a basic contract is formally defined as follows. Let ΣM be a set of all function
names of a software module. A contract is a set R of clauses where each clause 𝜚 ∈ R is
a star-free regular expression12 over ΣM. A contract violation occurs if any of the sequences
expressed by the contract clauses are interleaved with the execution of functions from ΣM, in
other words, each sequence specified by any clause 𝜚must be executed atomically, otherwise,
there is a violation of the contract. The number of sequences defined by a contract is finite
since the contract is the union of star-free languages.

Example 2.3.1. Consider the following example from [11, 23]. Assume that there is
a module implementing a resizable array implementing the following interface functions:

𝑓1: void add(char *array, char element)

𝑓2: bool contains(char *array, char element)

𝑓3: int index_of(char *array, char element)

𝑓4: char get(char *array, int index)

𝑓5: void set(char *array, int index, char element)

𝑓6: void remove(char *array, int index)

𝑓7: int size(char *array)

12Star-free regular expressions are regular expressions using only the concatenation operators and the
alternative operators (|), without the Kleene star operator (*).
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The module’s contract contains the following clauses:

(𝜚1) contains index_of

The execution of contains followed by the execution of index_of should be
atomic. Otherwise, the program may fail to get the index, because after veri-
fication of the presence of an element in an array, it can be removed by some
concurrently running process.

(𝜚2) index_of (get | set | remove)

The execution of index_of followed by the execution of get, set, or remove
should be atomic. Otherwise, the received index may be outdated when it is
applied to the address of an element, because a concurrent modification of an
array may shift the position of the element.

(𝜚3) size (get | set | remove)

The execution of size followed by the execution of get, set, or remove should
be atomic. Otherwise, the size of an array may be void when accessing an array,
because of a concurrent change of the array. This can be an issue since a given
index is not in a valid range anymore (e.g., testing index < size).

(𝜚4) add (get | index_of)

The execution of add followed by the execution of get or index_of should be
atomic. Otherwise, the added element needs no longer exist or its position in an
array can be changed, when the program tries to obtain information about it.

2.3.2 Contracts with Parameters

The above definition of basic contracts is quite limited in some circumstances and can
consider valid programs as erroneous (reports false alarms). Hence, in this section, there
is defined an extension of basic contracts— contracts with parameters —which takes into
consideration the data flow within function calls.

Example 2.3.2. Consider the following example from [11, 23], given Listing 2.1. There is
a function replace that replaces item a in an array by item b. The implementation of this
function comprises two atomicity violations:

(i) when index_of is invoked, item a does not need to be in the array anymore;

(ii) the acquired index can be obsolete when set is invoked.

A basic contract could cover this scenario by the clause 𝜚5:

(𝜚5) contains index_of set

Nevertheless, this definition is too restrictive because the functions are required to be ex-
ecuted atomically only if contains and index_of have the same arguments array and
element, index_of and set have the same argument array, and the returned value of
index_of is used as the argument index of the function set.
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1 void replace(char *array, char a, char b)
2 {
3 if (contains(array, a))
4 {
5 int index = index_of(array, a);
6 set(array, index, b);
7 }
8 }

Listing 2.1: An example of an atomicity violation with data dependencies [11]

In order to respect function call parameters and return values of functions in contracts,
the basic contracts are extended by dependencies among functions in [11, 23] as follows.
Function call parameters and return values are expressed as meta-variables. Further, if
a contract should be required to be observed exclusively if the same object emerges as an
argument or as the return value of multiple calls in a given call sequence, it may be denoted
by using the same meta-variable at the position of all these occurrences of parameters and
return values.

Clause 𝜚5 can be extended as follows (repeated application of meta-variables X/Y/Z requiring
the same objects o1/o2/o3 to be used at the positions of X/Y/Z):

(𝜚′5) contains(X,Y) Z=index_of(X,Y) set(X,Z,_)

The underscore indicates a free meta-variable that does not restrict the contract clause.

With the extension described above, it is possible to extend the contract from Section 2.3.1
as follows:

(𝜚′1) contains(X,Y) index_of(X,Y)

(𝜚′2) Y=index_of(X,_) (get(X,Y) | set(X,Y,_) | remove(X,Y))

14



Chapter 3

Atomicity Violations Detector

In this chapter, there are described principles behind the static analyser Atomer that have
been proposed as a module of Facebook Infer (introduced in Section 2.2) for detection of
atomicity violations. In particular, the Atomer concentrates on checking atomicity of exe-
cution of certain sequences of function calls that is often required for a correct functioning
of concurrent programs. The proposed principle is based on the assumption that sequences
executed atomically once should probably be executed always atomically. The chapter also
discusses already existing solutions in this area.

At first, Section 3.1 deals with existing approaches and tools for finding atomicity violations,
their advantages, disadvantages, features, availability, and so on. Then, the proposed anal-
ysis algorithm that is behind Atomer is introduced in Section 3.2. Parts of this chapter are
taken from the paper [13]. Listings in this chapter are pieces of exemplary programs written
in ANSI C (assuming PThread locks and the existence of an initialised global variable lock
of a type pthread_mutex_t).

3.1 Related Work

The proposed solution is slightly inspired by ideas from [11, 23]. In these papers, there is
described a proposal and implementation of a static validation for finding some forms of
atomicity violations, which is based on grammars and parsing trees. In the paper [11], there
is also described and implemented a dynamic approach for the validation. The authors
of [11, 23] implemented a stand-alone prototype tool1 for analysing programs written in
Java. It led to some promising experimental results but the scalability of the tool was still
limited. Moreover, the tool from [11, 23] is no more developed. This fact inspired the
decision that eventually led to this thesis, namely, to get inspired by the ideas of [11, 23],
but reimplement them in Facebook Infer redesigning it in accordance with the principles
of Facebook Infer (described in Section 2.2), which should make the resulting tool more
scalable. In the end, however, due to adapting the analysis for the context of Facebook Infer,
the implementation of the analysis within this thesis is significantly different from [11, 23],
as it is presented in Chapter 4. Furthermore, unlike [11, 23], the implementation aims

1Gluon — a tool for static verification of contracts for concurrency (see Section 2.3) in Java programs —
https://github.com/trxsys/gluon.
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at programs written in the C/C++ languages using POSIX Thread (PThread) locks for
synchronisation of concurrent threads.

In Facebook Infer, there is already implemented an analysis called Lock Consistency Vi-
olation2. It is a part of RacerD [3, 4, 12]. This analysis finds atomicity violations for
writes/reads on single variables that are required to be executed atomically. Atomer is
different, it finds atomicity violations for sequences of functions that are required to be ex-
ecuted atomically, i.e., it checks whether contracts for concurrency (see Section 2.3) hold.
Moreover, it is trying to automatically find out which of the sequence should indeed be
executed atomically (hence, to automatically derive the contracts).

3.2 Analysis and Design

As it has been already said, the proposal of the analyser is based on the concept of con-
tracts for concurrency described in Section 2.3. In particular, the proposal considers basic
contracts described in Section 2.3.1. Neither the contracts extended to spoilers and targets
nor contracts extended by parameters (see Section 2.3.2) are so far taken into account.

In general, basic contracts for concurrency allow one to define sequences of functions that
are required to be executed atomically, as it is explained in more detail in Section 2.3.
Atomer is able to automatically derive candidates for such contracts, and then to verify
whether the contracts are fulfilled. Both of these steps are done statically. The proposed
analysis is divided into two parts (phases of the analysis):

Phase 1: Detection of (likely) atomic sequences, which is described in Section 3.2.1.

Phase 2: Detection of atomicity violations (violations of the atomic sequences), which
is described in Section 3.2.2.

These phases of the analysis and its workflow are illustrated in Figure 3.1.

This section describes the proposal in general. The concrete types of the abstract states and
the summaries, along with the implementation of all the necessary abstract interpretation
operators are described in Chapter 4. But in general, the abstract states of both phases
of the analysis are proposed as sets. So, in fact, the ordering operator is implemented
using testing for a subset, the join operator is implemented as the union, and the widening
operator is implemented using the join operator. Implementation of the abstract domain is
detailed in Chapter 4.

Function summaries are in below sections reduced to the output parts only. The input
parts of summaries are in case of the proposed analysis always empty, because, so far, it is
not necessary to have any preconditions for analysed functions.

2Lock Consistency Violation — atomicity violations analysis in Facebook Infer — https://
fbinfer.com/docs/checkers-bug-types.html#LOCK_CONSISTENCY_VIOLATION.
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Figure 3.1: Phases of the proposed analyser

3.2.1 Phase 1: Detection of Atomic Sequences

Before the detection of atomicity violations may begin, it is required to have contracts
introduced in Section 2.3. Phase 1 of Atomer is able to produce such contracts, i.e., it
detects sequences of functions that should be executed atomically. Intuitively, the detection
is based on looking for sequences of functions that are executed atomically on some path
through a program. The assumption is that if it is once needed to execute a sequence
atomically, it should probably be always executed atomically.

To be able to describe the analysis, it is first needed to introduce a notion of a reduced
sequence of function calls. Such a sequence denotes a sequence in which the first appearance
of each function is recorded only. The reason is to ensure finiteness of the sequences derived
by the analysis and hence termination of the analysis. The detection of sequences of calls
to be executed atomically is based on analysing all paths through the CFG of a function
and generating all pairs (A, B) of sets of function calls such that: Here, A is a reduced
sequence of function calls that appear between the beginning of the function being analysed
and the first lock, between an unlock and a subsequent lock, or between an unlock and the
end of the function being analysed. B is a reduced sequence of function calls that follow
the calls from A and that appear between a lock and an unlock (or between a lock and the
end of the function being analysed).

It would be more precise to generate longer sequences of the type A1B1A2B2. . . , instead of
the sets of the sequences (A, B). But it would be more difficult to ensure the finiteness of the
above longer sequences and the finiteness of sets of these sequences. Moreover, there would
be a significantly larger state explosion problem. So, the proposed representation of the sets
of pairs of sequences has been chosen as a compromise between accuracy and efficiency.
But the experiments (described in Chapter 5) show that for appropriate scalability will be
(in future) needed more pronounced abstraction.
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Example 3.2.1. For explanation of the computation of the sets of the sequences (A, B),
assume that a state of the analysis of the program 𝑃 is the following sequence of function
calls: f1 f2; and a state of the analysis of the program 𝑃 ′ is the following sequence of
function calls: f1 f2 (g1 g2. The parentheses are used to indicate an atomic sequence
(closing parenthesis is missing in the second case, which means that the program state is
currently inside an atomic block). The computed set for the program 𝑃 is 𝑃𝑠 = {[f1 f2; ␣]},
and for the program 𝑃 ′, it is 𝑃 ′

𝑠 = {[f1 f2; g1 g2]}. Now, if the next instruction is a call
of the function x, in the case of the program 𝑃 , the call will be added to the A sequence,
and in the case of the program 𝑃 ′, the call will be added to the B sequence as follows:
𝑃𝑠 = {[f1 f2 x; ␣]}, 𝑃 ′

𝑠 = {[f1 f2; g1 g2 x]}. Subsequently, if the next step in the
program 𝑃 is a lock call, the next function calls will be added to the B sequence of the set 𝑃𝑠.
And if the next step in the program 𝑃 ′ is an unlock call, it will be created a new element
of the set 𝑃 ′

𝑠 and the next function call will be added to the A sequence of this element.
Finally, if the function y is called, the resulting sets will look like follows: 𝑃𝑠 = {[f1 f2 x; y]},
𝑃 ′
𝑠 = {[f1 f2; g1 g2 x], [y; ␣}.

The summary of a function then consists of:

(i) The set of all the B sequences that appear on program paths through the function.

(ii) The concatenation of all the A and B sequences with removed duplicates of func-
tion calls. In particular, assume that there is the following computed set of the
sequences (A, B): {(𝐴1;𝐵1), (𝐴2;𝐵2), . . . , (𝐴𝑛;𝐵𝑛)}, then the result of the concate-
nation is the sequence 𝐴1·𝐵1·𝐴2·𝐵2· . . . ·𝐴𝑛·𝐵𝑛. Intuitively, in this component of the
summary, it is gathered occurrences of all called functions within an analysed function,
which is obtained by concatenation of all the A and B sequences.

The latter is recorded for the purpose of analysing functions higher in the call hierarchy
since locks/unlocks can appear in such a higher-level function.

Example 3.2.2. For instance, the analysis of the function g from Listing 3.1 produces the
following sequences:

A1⏞  ⏟  
f1 f1

B1⏞  ⏟  
(f1 f1 f2) |

A2⏞  ⏟  
f1 f1

B2⏞  ⏟  
(f1 f3) |

A3⏞ ⏟ 
f1

B3⏞  ⏟  
(f1 f3 f3)

The functions f1, f2, f3 are not deeper analysed because it is assumed that these functions
are leaf nodes of the call graph. The strikethrough of the functions f1 and f3 denotes the
removal of already recorded function calls in the A and B sequences. The strikethrough
of the entire sequence f1 (f1 f3 f3) means discarding sequences already seen before. The
derived summary components for the function g are then as follows:

(i) {(f1 f2), (f1 f3)}, i.e., B1 and B2;

(ii) f1 f2 f3, i.e., the concatenation of A1, B1, A2, and B2 from which duplicate function
calls were removed.
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1 void g(void)
2 {
3 f1(); f1();
4
5 pthread_mutex_lock(&lock);
6 f1(); f1(); f2();
7 pthread_mutex_unlock(&lock);
8
9 f1(); f1();

10
11 pthread_mutex_lock(&lock);
12 f1(); f3();
13 pthread_mutex_unlock(&lock);
14
15 f1();
16
17 pthread_mutex_lock(&lock);
18 f1(); f3(); f3();
19 pthread_mutex_unlock(&lock);
20 }

Listing 3.1: A code snippet used for illustration of the derivation of sequences of functions
called atomically

Further, it is demonstrated how the results of the analysis of nested functions are used
during the detection of atomic sequences. The result of the analysis of a nested function is
used as follows. When calling an already analysed function, one plugs the sequence from the
second component of its summary into the current A or B sequence. In particular, assume
that (𝐴,𝐵) is the current pair of sequences of the actual state of the analysis. Subsequently,
it is called the function f with non-empty summary, where 𝑆 is the second component of its
summary. If the current state of an analysed function is inside an atomic block, the result
of this step of the analysis will be (𝐴,𝐵 · f·𝑆), otherwise, the result will be (𝐴 · f·𝑆,𝐵). In
such cases where a summary is empty, i.e., an analysed function is a leaf node of the call
graph, it is appended just the function name to the current pair of sequences of the actual
state of the analysis.

Example 3.2.3. This example shows how the function h from Listing 3.2 would be analysed
using the result of the analysis of the function g from Listing 3.1. So the analysis of the
function h produces the following sequence:

f1 g f1 f2 f3 (g f1 f2 f3)

The derived summary components for the function h are then as follows:

(i) {(g f1 f2 f3)};

(ii) f1 g f2 f3.
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1 void h(void)
2 {
3 f1(); g();
4
5 pthread_mutex_lock(&lock);
6 g();
7 pthread_mutex_unlock(&lock);
8 }

Listing 3.2: A code snippet used for illustration of the derivation of sequences of functions
called atomically with a nested function call (function g is defined in Listing 3.1)

Cases Where Lock/Unlock Calls Are Not Paired in a Function

For treating cases where lock/unlock calls are not paired in a function—as demonstrated
Listing 3.3— two solutions have been proposed:

1. At the end of a function, everything is unlocked, i.e., one virtually appends an unlock
to the end of the function if it is necessary. Then for the function x from Listing 3.3,
the first component of its summary (i.e., atomic sequences) would be {(a)}. Subse-
quently, all unlock calls not preceded by a lock are ignored. So the first component
of a summary of the function y from Listing 3.3 would be the empty set.

2. Addition of two further items to the summaries:

(a) function calls missing an unlock call,
(b) function calls missing a lock call.

For the example from Listing 3.3, this would give:

∙ for x: {(f1},
∙ for y: {f2)}.

The above sequences would have to be glued to the sequences captured higher in
the call hierarchy. Calls of the functions f1 and f2 will also appear in the second
component of the function summaries (i.e., the sequences of all functions called).

In the end, the first approach of treating such cases described above has been chosen. The
reason is that it is much easier for implementation. However, in future, the analysis can be
improved by implementing the second approach.
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1 void x(void)
2 {
3 pthread_mutex_lock(&lock);
4 f1();
5 }
6
7 void y(void)
8 {
9 f2();

10 pthread_mutex_unlock(&lock);
11 }
12
13 void main(void)
14 {
15 x(); y();
16 }

Listing 3.3: A code snippet used for illustration of treating cases where lock/unlock calls
are not paired in a function

Summary of the Detection of Atomic Sequences and Future Work

The above detection of atomic sequences has been implemented, as it is described in Sec-
tion 4.1. Furthermore, it has been successfully verified on a set of sample programs created
for testing purposes. The verification is presented in Chapter 5 and in Section A.1. The
derived sequences of calls assumed to execute atomically, i.e., the B sequences, from the
summaries of all analysed functions are stored into a file, which is used during Phase 2,
described below in Section 3.2.2. There are some possibilities for further extending and
improving Phase 1, e.g., working with nested locks; distinguishing the different locks used
(currently, it is not distinguished between the locks at all); considering contracts for con-
currency with parameters defined in Section 2.3.2 or other extensions of contracts for con-
currency discussed in Section 2.3; or extending the detection for other types of locks for
synchronisation of concurrent threads/processes. On the other hand, to further enhance
the scalability, it seems promising to replace working with the A and B sequences by
working with sets of calls: sacrificing some precision but gaining the speed.
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3.2.2 Phase 2: Detection of Atomicity Violations

In the second phase of the analysis, i.e., when detecting violations of the atomic sequences
obtained from Phase 1, the analysis looks for pairs of functions that should be called
atomically (or just for single functions if there is only one function call in an atomic se-
quence) while this is not the case on some path through the CFG. The pairs of a function
whose calls are to be checked for atomicity are obtained as follows: For each function in
a given program, it is taken the first component of its summary {𝐵1, 𝐵2, . . . , 𝐵𝑙} and it is
taken every pair of functions f1 f2 that appears as a substring in some of the 𝐵𝑖 sequences,
i.e., 𝐵𝑖 = 𝑤1f1f2𝑤2 for some sequences 𝑤1 and 𝑤2. Moreover, if some 𝐵𝑖 consists of a single
function, it is checked that this function is always called under a lock. The implementation
of an algorithm for this detection is described in Section 4.2, particularly, in Algorithm 4.4.

Example 3.2.4. For example, assume that the result of the first phase is the following set
of functions called atomically (all the atomic sequences from all functions in an analysed
program):

{(f1 f2 f3), (f1 f3 f4)}

Then the analysis will look for the following pairs of functions that are not called atomically:

∙ f1 f2

∙ f2 f3

∙ f1 f3

∙ f3 f4

The analysis of functions with nested function calls and cases where lock/unlock calls are
not paired in a function are handled analogically as in Phase 1. For detailed examples see
verification experiments in Section A.2.

Example 3.2.5. For a demonstration of the detection of an atomicity violation, assume
the functions a and b from Listing 3.4. The set of atomic sequences of the function a is
{(f2 f3)}. In the function b, an atomicity violation is detected because the functions f2
and f3 are not called atomically (under a lock).

Summary of the Detection of Atomicity Violations and Future Work

Like in the first phase of the analysis, Phase 2 has been implemented, as it is described
in Section 4.2. The implementation has been also successfully verified on a set of sample
purposeful programs as discussed in Chapter 5 and in Section A.2. Phase 2 also has the
potential for further enhancing. It is possible to extend this phase with all the improvements
discussed in Section 3.2.1. The next idea is to consider atomic sequences from the first phase
only if they appear in an atomic block more than, e.g., three times. It would strengthen
the certainty that such a sequence should be called atomically.
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1 void a(void)
2 {
3 f1();
4
5 pthread_mutex_lock(&lock);
6 f2(); f3();
7 pthread_mutex_unlock(&lock);
8
9 f4();

10 }
11
12 void b(void)
13 {
14 f1(); f2(); f3(); f4();
15 }

Listing 3.4: Example of an atomicity violation
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Chapter 4

Implementation

This chapter describes the implementation of the static analyser —Atomer —proposed in
Chapter 3. The analyser is implemented as a module of Facebook Infer introduced in
Section 2.2. The implementation is demonstrated using algorithms in pseudocode and using
listings with codes written in OCaml, which is an implementation language of Facebook
Infer. Sections 4.1 and 4.2 describes the implementation of the detection of atomic sequences
defined in Section 3.2.1 and an implementation of the detection of atomicity violations
defined in Section 3.2.2, respectively.

The implementation of the analyser can be found publicly on GitHub1. The implemen-
tation is done in OCaml and it exploits both functional and imperative paradigm. Face-
book Infer supports analysis of programs written in Java, C, C++, and Objective-C. How-
ever, the implementation aims at programs written in the C/C++ languages using POSIX
Thread (PThread) locks, which is a low-level mechanism for synchronisation of concurrent
threads. So, the analyser understands the pthread_mutex_lock as the lock function and
the pthread_mutex_unlock as the unlock function. It is also possible to run the analysis
on programs written in Java or Objective-C languages but the result of the analysis would
be likely wrong since these languages use a different mechanism for synchronisation.

Phase 1, i.e., the detection of atomic sequences and Phase 2, i.e., the detection of atom-
icity violations are implemented as separate analysers in Facebook Infer. The output of the
first phase is the input of the second phase (as shown in Figure 3.1). Both of these analysers
are registered as modules of Facebook Infer in a file infer/src/checkers/registerCheck-
ers.ml. These analyses run only if a particular command line argument of Facebook Infer
is specified. Implementations of individual phases are discussed below (Section 4.1 and
Section 4.2).

In order to make the analysis interprocedural, it is necessary to define a type of function
summaries for each phase. The types of summaries are defined in abstract domains of each
phase. However, the summaries are stored and accessed using the module Payloads (called
as the summary payload). Fields of the payload that refer to the summaries of the analysis
are defined in the file infer/src/backend/Payloads.ml[i].

1The implementation of the analyser in a GitHub repository, which is a fork of the official repository
of Facebook Infer, in a branch atomicity – https://github.com/harmim/infer/tree/atomicity.

24

https://github.com/harmim/infer/tree/atomicity


For both phases of the analysis, the analyser is implemented as an abstract interpreter using
the LowerHilmodule which transforms SIL instructions into HIL instructions. HIL instruc-
tions just wrap SIL instructions, mentioned in Section 2.2.1, and simplify their utilisation.
For representing functions, forward CFGs with no exceptional control-flow are used. This
type of the CFG corresponds to the ProcCfg.Normal module in Facebook Infer. Transfer
functions of both phases are implemented using the same interface of an abstract domain,
as illustrated in Listing 4.1. In general, a transfer function takes an abstract state as its
input and produces an abstract state as the output executing the appropriate instruction.
In this case, the transfer function (defined on line 1 in Listing 4.1) modifies the abstract
state only if a function is called (line 3) (CALL instruction). When the called function is
a lock or an unlock (lines 6, 8), the abstract state is appropriately updated in the abstract
domain of the analysis (lines 7, 9), which is detailed later. Otherwise, the abstract state
is updated by appending the called function (line 13) and then, if the called function has
already been analysed (line 16), its summary is used to update the abstract state (line 18).

1 let exec_instr astate procData _ instr =
2 match instr with
3 | Call (_, Direct procName, _, _, _) ->
4 let procNameS = Procname.to_string procName in
5
6 if is_lock procNameS then
7 Domain.update_astate_on_lock astate
8 else if is_unlock procNameS then
9 Domain.update_astate_on_unlock astate

10 else
11 (
12 let astate =
13 Domain.update_astate_on_function_call astate procNameS
14 in
15
16 match Payload.read procData.pdesc procName with
17 | Some summary ->
18 Domain.update_astate_on_function_call_with_summary astate summary
19 | None -> astate
20 )
21 | _ -> astate

Listing 4.1: Transfer functions of the analysers
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The abstract domains of both phases are quite different. However, the essential operators
of the abstract domains are practically the same, because for both phases the abstract state
is a type of a set. The implementation of these operators is shown in Listing 4.2, where
TSet is a module representing a set of structures, where the fields of these structures are
defined differently in each phase. So, each phase of the analysis defines its own TSet. The
abstract state is then of a type of TSet. So particular operators are defined as follows (see
also Listing 4.2):

∙ The ordering operator ⊑ (in Facebook Infer, it is denoted <=) is defined as follows.
Let lhs be the left-hand side of this operator and rhs the right-hand side of this
operator. Then, lhs <= rhs (lhs is less or equal to rhs) if and only if lhs is a subset
of rhs.

∙ The join operator ∘ (in Facebook infer, it is denoted join) is defined simply as the
union of two abstract states.

∙ The widening operator O (in Facebook Infer, it is denoted widen) is defined as join of
the previous and next abstract states. Hence, there is no acceleration of the compu-
tation currently. Note, however, that due to the working with the reduced sequences
and due to having only pairs of sequences of calls with/without locks (instead of
longer sequences of alternating calls with/without locks), it is guaranteed that the
computation will terminate.

1 let ( <= ) ~lhs:leftSide ~rhs:rightSide =
2 TSet.is_subset leftSide ~of_:rightSide
3
4 let join astate1 astate2 =
5 TSet.union astate1 astate2
6
7 let widen ~prev:prevAstate ~next:nextAstate ~num_iters:_ =
8 join prevAstate nextAstate

Listing 4.2: Essential operators of the abstract domains of the analysers

4.1 Implementation of the Detection of Atomic Sequences

The main ideas behind the detection of sequences of calls that are likely to be required to
execute atomically have been presented in Section 3.2.1. The first phase of the analysis is
started using the command line argument --atomic-sequences. The detected sequences
that are expected to execute atomically are printed into a file, as explained in Section 4.1.2.

The main function of the analyser of this phase is analyse_procedure, which is shown in
Listing 4.3. Facebook Infer invokes this function for every function in an analysed program.
It produces a summary for the given function. The analyse_procedure function computes
an abstract state for the analysed function using the created abstract interpreter Analyser
on an abstract domain. As the precondition, the initial abstract state initialAstate from
the abstract domain is used. If the computation succeeds, the abstract state is appropriately
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updated and converted to the function summary by applying functions in the abstract
domain. In the end, the summary payload is updated with the resulting summary.

1 let analyse_procedure args =
2 let procData = ProcData.make_default args.proc_desc args.tenv in
3
4 match Analyser.compute_post procData ~initial:Domain.initialAstate with
5 | Some astate ->
6 let summary =
7 let astate = Domain.update_astate_at_the_end_of_function astate in
8 Domain.convert_astate_to_summary astate
9 in

10
11 Payload.update_summary summary args.summary
12 | None -> Logging.(die InternalError) "Analysis failed."

Listing 4.3: The analysis of a function in the analyser of Phase 1

The abstract domain of Phase 1 of the analysis is described in Section 4.1.1. It includes the
definition of an abstract state, summary, and functions working with them. The ordering
of abstract states, the join operator, and the widening operator were already defined above.

4.1.1 The Abstract Domain for the Detection of Atomic Sequences

In this section, it is first described how abstract states of the abstract domain used in
Phase 1 of the analysis look like. Also there are described the functions used to work with
these abstract states. Furthermore, there are described summaries of functions used in this
phase of the analysis together with functions designed for dealing with these summaries.

Abstract States Used for the Detection of Atomic Sequences

The abstract state is of the type TSet. TSet is a module representing a set of structures.
The structure have the following fields:

∙ firstOccurrences: a list of strings that captures the first occurrences of function
calls in the A or B sequences defined in Section 3.2.1. In other words, it captures the
first occurrences of function calls inside or outside atomic blocks.

∙ callSequence: a list of strings that is used for storing the A sequences followed
by the B sequences. In other words, it stores function calls outside atomic blocks
followed by function calls inside atomic blocks. For instance, f1 f2 (f3).

∙ finalCalls: a set of lists of strings that is used for storing a set of sequences of
calls callSequence. For instance, {f1 f2 (f3), f2 (f1 f3)}.

∙ isInLock: a boolean that determines whether the current state of a function is
inside or outside an atomic block, i.e., it is or it is not under a lock.
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The initial abstract state is then a set with a single empty element. The empty element is
an element where firstOccurrences and callSequence are empty strings, finalCalls is
the empty set, and isInLock is false.

In the code of the analysis shown in Listings 4.1 and 4.3, several functions designed for
dealing with the abstract states are used. The functions are described below (all of these
functions modify all elements of the abstract state):

∙ update_astate_on_function_call: this function is invoked when any function (ex-
cept a lock or an unlock) is called. It captures the first occurrence of the called
function.

∙ update_astate_on_lock: this function is invoked when the locking function is called.
When the state is not under a lock, it sets the flag indicating the start of an atomic
sequence. Moreover, capturing the first occurrences of function calls inside the atomic
sequence begins.

∙ update_astate_on_unlock: this function is invoked when the unlocking function is
called. When the state is under a lock, it unsets the flag indicating the start of
an atomic sequence. Moreover, capturing of the first occurrences of function calls
followed this unlock call begins, and the last captured function calls, i.e., the last
captured A and B sequences, are moved into the set of all such captured sequences
within an analysed function.

∙ update_astate_at_the_end_of_function: this function is invoked at the end of
the analysis of a function. It moves the last captured function calls, i.e., the last
captured A and B sequences, into the set of all such captured sequences within an
analysed function.

Function Summaries of the Domain used for the Detection of Atomic Sequences

The summary is a structure with the following fields:

∙ atomicSequences: a list of lists of strings that contains all captured atomic se-
quences within an analysed function, for instance, (f3) (f1 f3). This field accumulates
the derived sequences assumed to be executed atomically, which will be a part of the
output of the analysis.

∙ allOccurrences: a list of strings that contains all functions called within an anal-
ysed function. It is used for the purpose of analysing functions higher in the call
hierarchy.
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In the code of the analysis shown in Listings 4.1 and 4.3, several functions designed for
dealing with the summaries are used. In particular, the following functions are used there:

∙ update_astate_on_function_call_with_summary: this function is invoked when
the called function f has already been analysed so that the abstract state can be
updated with its summary. Therefore, occurrences of all functions called from f are
appended to the first occurrences of an analysed function. As shown in Algorithm 4.1.

∙ convert_astate_to_summary: this function is invoked at the end of the analysis of
a function. It transforms the abstract state of the given function to the summary. In
particular, it derives all atomic sequences and all called functions within the analysed
function from the abstract state, as shown in Algorithm 4.2.

Algorithm 4.1: Updating abstract state with the summary of a called function
1 def update_astate_on_function_call_with_summary(astate, sum):
2 if 𝑠𝑢𝑚.𝑎𝑙𝑙𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 ̸= [ ] then
3 for 𝑒 ∈ 𝑎𝑠𝑡𝑎𝑡𝑒 do
4 for 𝑜 ∈ 𝑠𝑢𝑚.𝑎𝑙𝑙𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 do
5 𝑒.𝑓𝑖𝑟𝑠𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠← AddUniq(𝑒.𝑓𝑖𝑟𝑠𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠, 𝑜);
6 end
7 end
8 end
9 return astate;

10 end

Algorithm 4.2: Converting an abstract state to the function summary
1 def convert_astate_to_summary(astate):
2 𝑎𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑞 ← [ ];
3 𝑎𝑙𝑙𝑂𝑐𝑐𝑢𝑟 ← [ ];
4 for 𝑒 ∈ 𝑎𝑠𝑡𝑎𝑡𝑒 do
5 for 𝑐 ∈ 𝑒.𝑓𝑖𝑛𝑎𝑙𝐶𝑎𝑙𝑙𝑠 do
6 𝑎𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑞 ← AddUniq(𝑎𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑞, GetAtomicSeq(𝑐));
7 𝑎𝑙𝑙𝑂𝑐𝑐𝑢𝑟 ← AddUniq(𝑎𝑙𝑙𝑂𝑐𝑐𝑢𝑟, GetAllCalls(𝑐));
8 end
9 end

10 return (atomicSeq, allOccur);
11 end
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4.1.2 Output of the Detection of Atomic Sequences

The output of Phase 1 are sequences of functions that were identified as those that are
likely to be executed always atomically. These sequences are given separately for each
function in which they were identified. These sequences are derived from the summaries of
all analysed functions. At the end of the entire analysis, the sequences are printed into the
file infer-atomicity-out/atomic-sequences in the following format. Each line of the
file contains a list of the detected atomic sequences within a particular function. It starts
by the name of a function followed by a colon and a whitespace. Then, there are listed
the atomic sequences (function names separated by a whitespace) that were derived in the
given function, separated by a whitespace. Here is example of the output:

functionA:␣(f1␣f2)␣(f3␣f1)

functionB:␣

functionC:␣(f3␣f4)␣(f6)

The derivation of the atomic sequences and their printing is described on Algorithm 4.3.
The atomic sequences are then further processed in the second phase of the analysis, see
Section 4.2.

Algorithm 4.3: Printing atomic sequences from the summaries of all analysed func-
tions

Input: A set 𝐹 of all analysed functions
1 for 𝑓 ∈ 𝐹 do
2 printf(’%s:␣’, GetFunName(𝑓));
3 𝑆 ← ReadSummary(𝑓);
4 for 𝑞 ∈ 𝑆.𝑎𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 do
5 printf(’(%s)␣’, SeqToString(𝑞));
6 end
7 end

4.2 Implementation of the Detection of Atomicity Violations

The main ideas of this phase are described in Section 3.2.2. It is started by the command
line argument --atomicity-violations. It detects atomicity violations, i.e., violations of
the atomic sequences obtained from Phase 1. The atomic sequences are read from the file
infer-atomicity-out/atomic-sequences (see Section 4.1.2). If this file does not exist,
i.e., the previous phase of the analysis has not run yet, Phase 2 will fail.

As in the first phase of the analysis, the main function of the analyser of this phase is
the function analyse_procedure, which is shown in Listing 4.4. Facebook Infer invokes
this function for every single function in an analysed program. The analyse_procedure
function then produces a summary for the analysed function. The function first initialises
the abstract domain of this phase, and then it computes the abstract state that the analysed
function reaches at the end of its execution. For that, it uses the abstract interpreter
Analyser running on the abstract domain designed for the second phase of the analysis.
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As the precondition of each analysed function, the initial abstract state initialAstate
from the abstract domain is used. If the computation succeeds, the final abstract state
is converted to the function summary. Further, atomicity violations within the analysed
function are reported based on the abstract state. This reporting is in more detail described
in Section 4.2.2. At the end, the summary payload is updated with the resulting summary.

1 let analyse_procedure args =
2 Domain.initialise true;
3 let procData = ProcData.make_default args.proc_desc args.tenv in
4
5 match Analyser.compute_post procData ~initial:Domain.initialAstate with
6 | Some astate ->
7 let summary = Domain.convert_astate_to_summary astate in
8
9 Domain.report_atomicity_violations astate ( fun loc msg ->

10 Reporting.log_error
11 args.summary ~loc:loc IssueType.atomicity_violation msg );
12
13 Payload.update_summary summary args.summary
14 | None -> Logging.(die InternalError) "Analysis failed."

Listing 4.4: The analysis of a function in the analyser of Phase 2

The abstract domain of this phase is described in Section 4.2.1. The description includes the
initialisation of the domain, the definition of an abstract state, summaries, and functions
working with them. The ordering of abstract states, the join operator, and the widening
operator are defined at the beginning of Chapter 4.

4.2.1 The Abstract Domain for the Detection of Atomicity Violations

In this section, at first, it is explained how the abstract domain of this phase is initialised.
Then it is described the definition of an abstract state along with functions working with
it. At the end, it is explained how the summaries of functions look like in this phase of the
analysis together with functions working with the summaries.

Initialisation of the Domain of the Detection of Atomicity Violations

Before analysing each function, i.e., at the beginning of the function analyse_procedure,
the abstract domain is initialised. The initialisation servers for processing the input file
with atomic sequences and storing these sequences into the internal data structures in the
appropriate format. In the abstract domain, there is a reference to a global data structure
globalData. The structure contains the following fields:

∙ initialised: this is a boolean value used for determining whether the input file
has already been processed.

∙ atomicPairs: a set of pairs of strings that stores pairs of functions that should
be called atomically, for instance, {(f1 f2), (f2 f3)}.
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The initialisation process is then done in the following way. The input file with atomic
sequences is read and parsed. Each pair of functions that should be called atomically, i.e.,
any pair of functions in any of the atomic sequences from the input file, is stored into the
field atomicPairs of the structure globalData. Single functions may also be stored into
this structure when the atomic sequence contains just one function call. This structure is
globally accessible throughout the analysis.

Abstract States Used for the Detection of Atomicity Violations

The abstract state is of the type TSet. TSet is a module representing a set of structures.
The structure have the following fields:

∙ firstCall: the value of this field is a string that captures the first function call
within an analysed function. It is used for detection of an atomicity violation due to
a pair (𝑎, 𝑏) of calls, where 𝑎 is the last call of a function higher in the call hierarchy
when calling the analysed function and 𝑏 is the first function call of the analysed
function.

∙ lastPair: the value of this field is a pair of strings that captures last two function
calls. And it is used for detecting whether this pair violates atomicity. For instance,
(f1 f2).

∙ nastedLastCalls: a list of strings that captures the possible last function calls
of the last nested function. It is used for detection of atomicity violation of pair
(𝑎, 𝑏), where 𝑎 is one of the last calls of the last nested function and 𝑏 is the analysed
function.

∙ atomicityViolations: a set of pairs of strings that is used to record pairs of
function calls that violate atomicity so that the violations can be reported at the end
of the analysis of a function, for instance, {(f1 f2), (f2 f3)}.

∙ isInLock: a boolean that determines whether the current state of a function is
inside or outside an atomic block, i.e., whether it is or it is not under a lock.

The initial abstract state is then a set with a single empty element. The empty element is
an element where firstCall is the empty string, lastPair is a pair of two empty strings,
nastedLastCalls is the empty list, atomicityViolations is the empty set, and isInLock
is false.
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According to Listing 4.1, there are several functions working with the abstract state of
Phase 2. The functions are described below (all of these functions modify all elements of
the abstract state):

∙ update_astate_on_function_call: this function is invoked when any function (ex-
cept a lock or an unlock) is called. When the state is not under a lock, the current pair
of the last two function calls is updated, and it is checked whether this pair (or any
pair created from nastedLastCalls) violates atomicity. A simplified implementation
of the function is shown in Algorithm 4.4.

∙ update_astate_on_lock: this function is invoked when the locking function is called.
It sets the flag indicating the start of an atomic sequence and it clears the stored last
function calls.

∙ update_astate_on_unlock: this function is invoked when the unlocking function is
called. It unsets the flag indicating the start of an atomic sequence and it clears the
stored last function calls.

Algorithm 4.4: A simplified algorithm of updating the abstract state by the called
function and a check for atomicity violations

Require: An initialised global data structure 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎 with the field
𝑎𝑡𝑜𝑚𝑖𝑐𝑃𝑎𝑖𝑟𝑠 containing pairs of functions that should be called
atomically

1 def update_astate_on_function_call(astate, f):
2 for 𝑒 ∈ 𝑎𝑠𝑡𝑎𝑡𝑒 do
3 if ¬(𝑒.𝑖𝑠𝐼𝑛𝐿𝑜𝑐𝑘) then
4 (𝑥, 𝑦)← 𝑒.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟;
5 𝑒.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟 ← (𝑦, 𝑓);
6 if 𝑒.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟 ∈ 𝑔𝑙𝑜𝑏𝑎𝑙𝐷𝑎𝑡𝑎.𝑎𝑡𝑜𝑚𝑖𝑐𝑃𝑎𝑖𝑟𝑠 then
7 𝑒.𝑎𝑡𝑜𝑚𝑖𝑐𝑖𝑡𝑦𝑉 𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠← Add(𝑒.𝑎𝑡𝑜𝑚𝑖𝑐𝑖𝑡𝑦𝑉 𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑒.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟);
8 end
9 end

10 end
11 return astate;
12 end

Function Summaries of the Domain for the Detection of Atomicity Violations

The summary is a structure containing the following fields:

∙ firstCalls: a list of strings that contains all possible first function calls within the
analysed function.

∙ lastCalls: a list of strings that contains all possible last function calls within the
analysed function.
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Both of the summary fields are used for the purpose of detecting atomicity violating pairs
across nested function calls.

In the code of the analysis shown in Listings 4.1 and 4.4, several functions designed for
dealing with the summaries are used. In particular, the following functions are used there:

∙ update_astate_on_function_call_with_summary: this function is invoked when
the called function has already been analysed. It performs checks for an atomicity
violation of pairs across nested function calls.

∙ convert_astate_to_summary: this function is invoked at the end of the analysis of
an analysed function. It transforms the abstract state of the given function to the
summary. In particular, it derives all the first function calls and all the last function
calls within the analysed function from the abstract state.

4.2.2 Reporting Atomicity Violations

As shown in Listing 4.4, at the end of the analysis of a function, atomicity violations within
the function are reported. The reporting is implemented by the Reportingmodule provided
by Facebook Infer. For reporting errors using this module, it is necessary to assign an error
to the function summary along with a location of the error (a file and a line). It is also
required to specify the type of the error through the IssueType module. The error is then
printed to the command line as well as logged to logging files.

Reported atomicity violations are deduced from the abstract state of the analysed function.
A simplified reporting process is illustrated in Algorithm 4.5.

Algorithm 4.5: Reporting atomicity violations from the abstract state of an anal-
ysed function

Input: The abstract state 𝑎𝑠𝑡𝑎𝑡𝑒 of an analysed function
1 for 𝑒 ∈ 𝑎𝑠𝑡𝑎𝑡𝑒 do
2 for (𝑎, 𝑏) ∈ 𝑒.𝑎𝑡𝑜𝑚𝑖𝑐𝑖𝑡𝑦𝑉 𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
3 LogError(’”%s“ and ”%s“ should be called atomically.’, 𝑎, 𝑏);
4 end
5 end
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Chapter 5

Experimental Evaluation

This chapter is devoted to testing and an experimental evaluation of the Atomer analyser.
Atomer has been tested continuously during its development. As soon as a part of the
analyser has been implemented, it has been tested on suitable simple programs created for
testing purposes. In the end, the whole analyser has been successfully tested on smaller,
specifically created programs, as described in Section 5.1. Furthermore, Section 5.2 shows
an experimental evaluation of the analyser on publicly available benchmarks derived from
real-life low-level programs. Section 5.3 concludes the experimental evaluation and discusses
future work.

All the experiments presented in this section are available on the attached memory media,
see Appendix B. The way how to run the experiments is described in Appendix C.

5.1 Testing on Smaller Hand-Crafted Examples

Both phases of the analyser were verified separately on simple programs written in ANSI C
with PThread locks.

For Phase 1 of the analyser, i.e., the detection of atomic sequences, it was created several
specifically designed functions. These functions contain sequences of function calls inside
and outside atomic blocks, not paired lock/unlock calls, iteration, selection, and nested func-
tion calls. The functions were designed in order to check whether the various parts of
the abstract domain work well (i.e., they correspond to the proposal from Chapter 3). In
particular, the design aims at testing of the ordering operator, the join operator, and the
widening operator. Further, it aims at verification of working with all components of the
abstract state and the summary. It was checked that the result of the analysis of these
functions (atomic sequences) is correct, with respect to the proposal from Chapter 3. The
analysed functions and the result of Phase 1 can be seen in Section A.1.

In the case of Phase 2, i.e., the detection of atomicity violations, the verification process
is an analogy of the process for Phase 1. However, there is also checked that reported
atomicity violations are reported correctly (based on the atomic sequences from Phase 1),
with respect to the proposal from Section 3.2.2. The analysed function and the result of
Phase 2 can be seen in Section A.2.
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For all the mentioned testing programs, it was proven the correct behaviour of the analysis
of Atomer (with respect to the proposal).

5.2 Evaluation on Real-Life Programs

To find out whether the analyser is able to analyse real programs, at first, it was tested on
a set of slightly more complex student projects from the Advanced Operating Systems course.
These projects work with threads and synchronise using PThreads. From the beginning,
the analysis of some of these student programs was failing due to implementation errors
that were thanks to this testing fixed.

Later, Atomer was applied on a subset of real-life low-level concurrent C programs from
a publicly available benchmark. These programs were derived from the Debian GNU Linux
distribution. The entire benchmark was originally used for an experimental evaluation
of Daniel Kroening’s static deadlock analyser for C/PThreads [14] implemented in the
CPROVER framework. For the evaluation, it was selected 9 deadlock-free programs. The
experiments were run on MacBook Pro 2015 with a 2.7GHz Intel Core i5 processor and
8GB RAM running the macOS Mojave 10.14.4 operating system. However, the running
time of the experiments is not relevant because all the experiments were done in less than
a few seconds. The results of the experiments are listed in Table 5.1. The table states the
number of lines of code of an analysed program, the number of detected atomic sequences,
and the number of detected atomicity violations.

Program Lines of Code Atomic Sequences Atomicity Violations
alsa-utils 1.1.0 7,735 1 1
c-icap 0.4.2 24,923 11 174
glfw 2.7.9 10,230 9 13
libgroove 4.3.0 7,307 34 294
npth 1.2 1,593 1 26
qrencode 3.4.4 7,006 6 88
rt-tests 0.96 1,795 1 0
signing-party 2.2 1,023 1 1
sslsplit 0.4.11 22,457 18 344

Table 5.1: Experimental results of the analyser on real-life low-level programs

As one can see in Table 5.1, in larger real-life programs, quite some atomicity violations
were reported. Many of them are probably false alarms. But, a proper classification
whether these reported atomicity violations are real errors is quite challenging and it goes
beyond the scope of this thesis. However, the results of the analyser can be used as an
input for dynamic analysis, which can be able to check whether the atomicity violations
are real errors. For example, one could use the ANaConDA1 dynamic analyser which uses
noise-based testing with extrapolated checking for violations of contracts for concurrency.
ANaConDA could be instructed to concentrate its analysis and noise injection to those
sequences whose atomicity was found broken.

1ANaConDA Framework website – http://www.fit.vutbr.cz/research/groups/verifit/tools/
anaconda.
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5.3 Summary of the Evaluation and Future Work

The correctness of the analyser was successfully verified on smaller hand-crafted
example programs. However, when analysing larger real-life programs, many false alarms
are usually reported. To reduce the number of false alarms, it seems promising to work
with nested locks, distinguish between the different locks used, or consider extensions for
contracts for concurrency introduced in Section 2.3, i.e., consider function parameters and
contextual information of function calls. The considerable number of false alarms is caused
by atomic sequences that contain only one function call and by atomic sequences which
do not have to be called atomically always. The solution could be ignoring atomic blocks
where there is just one function call, and consider atomic sequences only if they appear in
an atomic block more than, e.g., three times.

Another issue is that analysing of more complex programs with extensive control structures
and a lot of function calls inside atomic blocks is time and memory consuming and the
analysis either fails or it runs for an extremely long time. The solution could be to replace
working with the A and B sequences in Phase 1 of the analysis by working with sets.
However, this speed gain would be received at the cost of precision.
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Chapter 6

Conclusion

This thesis started by discussing principles of static analysis and abstract interpretation.
Further, it described a concrete static analysis framework that uses abstract interpreta-
tion—Facebook Infer —its features, architecture, and existing analysers implemented in
this tool. Furthermore, it introduced the concept of contracts for concurrency. The major
part of the thesis then aimed at the proposal of a static analyser for detecting atomicity
violations —Atomer —and its implementation as a module of Facebook Infer. Lastly, it is
described the experimental evaluation of the implemented analyser and discussed possible
future work.

The proposed analyser works on the level of sequences of function calls. The proposed so-
lution is based on the assumption that sequences executed atomically once should probably
be executed always atomically. It is also inspired by the concept of contracts for concur-
rency. Atomer is divided into two phases of the analysis: Phase 1—detection of function
calls executed atomically; and Phase 2—detection of violations of the atomic sequences
obtained from the first phase.

Atomer has been successfully tested on smaller hand-crafted programs. Moreover, it has
been experimentally evaluated on publicly available benchmarks derived from real-life low-
level programs from the Debian distribution. It has been found out that Atomer is able to
analyse such extensive real-life programs, however, at the cost of quite high false alarms
ratio. Anyway, a result of the analyser can be used as an input for dynamic analysis which
can determine whether the reported atomicity violations are real errors.

Atomer shows a potential for further improvements. The future work will focus mainly on
increasing the accuracy of the methods used by, e.g., considering nested locks, different locks
used, function parameters, etc. The future work will also focus on enhancing the scalability
because Atomer still fails to analyse more extensive and complex programs. Further, it
would be interesting to extend the analysis for other types of locks for synchronisation of
concurrent threads/processes and testing the analysis on other real-world programs.

The code of Atomer is available on GitHub as an open-source repository. The Pull Request
to the master branch of Facebook Infer’s repository is currently the work under progress.
The preliminary results of the thesis were published and presented in the Excel@FIT’19
paper [13], where the paper won an award in two categories.
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Appendix A

Experimental Verification Results

This appendix illustrates results of experimental verification of the implemented analyser.
The verification process and the results, in general, are in more detail discussed in Chapter 5.
Section A.1 shows experimental results of Phase 1 of the analyser, i.e., the detection
of atomic sequences. Section A.2 then shows experimental results of Phase 2, i.e., the
detection of atomicity violations.

Both sections demonstrate the analysis on programs written in ANSI C and assume PThread
locks and the existence of an initialised global variable lock of a type pthread_mutex_t.

Moreover, the below experiments are available on the attached memory media, see Ap-
pendix B. Instructions how to run these experiments can be found in Appendix C.

A.1 Detection of Atomic Sequences

For the verification of the detection of atomic sequences are used functions defined in
Listing A.1. The result of this detection, i.e., sequences of function that should be called
atomically, is shown in Listing A.2.

1 void f1(void) {}
2 void f2(void) {}
3 void f3(void) {}
4 void f4(void) {}
5 void f5(void) {}
6 void ff(void) { f1(); f2(); }
7
8 void test1(void)
9 {

10 f1(); f1();
11
12 pthread_mutex_lock(&lock);
13 f1(); f1(); f2();
14 pthread_mutex_unlock(&lock);
15
16 f1(); f1();
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17
18 pthread_mutex_lock(&lock);
19 f1(); f3();
20 pthread_mutex_unlock(&lock);
21
22 f1();
23
24 pthread_mutex_lock(&lock);
25 f1(); f3(); f3();
26 pthread_mutex_unlock(&lock);
27 }
28
29 void test2(void)
30 {
31 f1(); f1();
32
33 pthread_mutex_lock(&lock);
34 f1(); f1(); f2();
35 pthread_mutex_unlock(&lock);
36
37 f3(); f3();
38
39 pthread_mutex_lock(&lock);
40 f1(); f4(); f4();
41 pthread_mutex_unlock(&lock);
42 }
43
44 void test_only_lock(void)
45 {
46 pthread_mutex_lock(&lock);
47 f1();
48 }
49
50 void test_only_unlock(void)
51 {
52 f2();
53 pthread_mutex_unlock(&lock);
54 }
55
56 void test_iteration(void)
57 {
58 int c;
59 f1(); f2();
60 while (c > 0) { f3(); f5(); }
61
62 pthread_mutex_lock(&lock);
63 f1(); f2();
64 pthread_mutex_unlock(&lock);
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65
66 pthread_mutex_lock(&lock);
67 while (c > 0) f3();
68 pthread_mutex_unlock(&lock);
69
70 f4();
71 }
72
73 void test_selection(void)
74 {
75 int c;
76 f1(); f2();
77 if (c > 0) { f3(); f5(); }
78 else
79 {
80 pthread_mutex_lock(&lock);
81 f1();
82 pthread_mutex_unlock(&lock);
83 }
84
85 pthread_mutex_lock(&lock);
86 f2();
87 if (c > 42) f3();
88 else if (c > 0) f4();
89 pthread_mutex_unlock(&lock);
90
91 f4();
92 }
93
94 void test_nested(void)
95 {
96 pthread_mutex_lock(&lock);
97 ff(); f3();
98 pthread_mutex_unlock(&lock);
99

100 pthread_mutex_lock(&lock);
101 f4(); f5(); ff();
102 pthread_mutex_unlock(&lock);
103 }

Listing A.1: Functions to be analysed for the detection of atomic sequences

f1:␣
f2:␣
f3:␣
f4:␣
f5:␣
ff:␣
test1:␣(f1␣f2)␣(f1␣f3)
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test2:␣(f1␣f2)␣(f1␣f4)
test_only_lock:␣(f1)
test_only_unlock:␣
test_iteration:␣(f1␣f2)␣(f3)
test_selection:␣(f1)␣(f2)␣(f2␣f3)␣(f2␣f4)
test_nested:␣(ff␣f1␣f2␣f3)␣(f4␣f5␣ff␣f1␣f2)

Listing A.2: The result of Phase 1 (atomic sequences) of the analysis of functions from
Listing A.1

A.2 Detection of Atomicity Violations

For the verification of the detection of atomicity violations are used functions defined in
Listing A.3. The result of the detection of atomic sequences is shown in Listing A.4. The
result of the detection of atomicity violations, i.e., functions that should be called atomically
but they are not, is stated in Listing A.3 using comments.

1 void f1(void) {}
2 void f2(void) {}
3 void f3(void) {}
4 void f4(void) {}
5 void g(void) {}
6 void ff(void) { f3(); f1(); f4(); } // (f3 f1) (f1 f4)
7
8 void atomic_sequences(void)
9 {

10 pthread_mutex_lock(&lock);
11 f1(); f2(); f3();
12 pthread_mutex_unlock(&lock);
13
14 pthread_mutex_lock(&lock);
15 f4(); f2();
16 pthread_mutex_unlock(&lock);
17
18 pthread_mutex_lock(&lock);
19 f1(); f3();
20 pthread_mutex_unlock(&lock);
21
22 pthread_mutex_lock(&lock);
23 ff(); f3();
24 pthread_mutex_unlock(&lock);
25 }
26
27 void test1(void)
28 {
29 f1(); f2(); g(); // (f1 f2)
30 f1(); g(); f2(); g();

45



31 f1(); f1(); f2(); g(); // (f1 f2)
32 f1(); f2(); f3(); g(); // (f1 f2) (f2 f3)
33 f1(); g(); f2(); g(); f3();
34 }
35
36 void test2(void)
37 {
38 f4(); f2(); g(); // (f4 f2)
39 f2(); f4(); g();
40
41 f4();
42 pthread_mutex_lock(&lock);
43 pthread_mutex_unlock(&lock);
44 f2();
45 g();
46
47 f3(); f4();
48 }
49
50 void test_only_lock(void)
51 {
52 pthread_mutex_lock(&lock);
53 f1(); f2();
54 }
55
56 void test_only_unlock(void)
57 {
58 f1(); f2(); // (f1 f2)
59 pthread_mutex_unlock(&lock);
60 }
61
62 void test_iteration(void)
63 {
64 int c;
65 while (c > 0) { f1(); f2(); } // (f1 f2)
66
67 f1();
68 while (c > 0) f2(); // (f1 f2)
69 f3(); // (f1 f3) (f2 f3)
70
71 for (; c > 0; f1()) f3(); // (f3 f1) (f1 f3)
72
73 pthread_mutex_lock(&lock);
74 f1(); f2();
75 while (c > 0) { f2(); f3(); }
76 pthread_mutex_unlock(&lock);
77 }
78
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79 void test_selection(void)
80 {
81 int c;
82 f1();
83 if (c > 0) f2(); // (f1 f2)
84 else f3(); // (f1 f3)
85 f3(); // (f2 f3)
86
87 g();
88
89 f4();
90 if (c > 42) f4();
91 else if (c > 0) f2(); // (f4 f2)
92 f2(); // (f4 f2)
93 }
94
95 void test_nested(void)
96 {
97 pthread_mutex_lock(&lock);
98 ff();
99 pthread_mutex_unlock(&lock);

100
101 ff(); g(); // (ff f3)
102 ff(); f2(); // (ff f3) (f4 f2)
103 }

Listing A.3: Functions to be analysed for the detection of atomic sequences and for the
subsequent detection of atomicity violations (detected atomicity violations are stated in
comments)

f1:␣
f2:␣
f3:␣
f4:␣
g:␣
ff:␣
atomic_sequences:␣(f1␣f2␣f3)␣(f4␣f2)␣(f1␣f3)␣(ff␣f3␣f1␣f4)
test1:␣
test2:␣
test_only_lock:␣(f1␣f2)
test_only_unlock:␣
test_iteration:␣(f1␣f2)␣(f1␣f2␣f3)
test_selection:␣
test_nested:␣(ff␣f3␣f1␣f4)

Listing A.4: The result of Phase 1 (atomic sequences) of the analysis of functions from
Listing A.3
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Appendix B

Contents of the Attached Memory
Media

This appendix lists contents of the attached memory media.

The attached memory media particularly contains the following:

∙ /experiments/

– The results of the experimental evaluation and experimental programs to analyse.

∙ /infer/

– Source codes of Facebook Infer.
– The created source files of the implemented analyser are located mainly in a sub-

directory infer/src/checkers.
– In this directory, there are .md files with the official instructions on how to install

and build this tool. But such information is primarily provided in Appendix C.

∙ /text/

– LATEX source codes of this thesis.
– It can be compiled into the PDF using pdflatex with the command make.

∙ xharmi00.pdf

– This thesis in the PDF.
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Appendix C

Installation and User Manual

This appendix serves as an installation and user manual.

Further, it is assumed that the working directory contains all the files from the attached
memory media, see Appendix B.

Installation Manual

The whole installation process may be time-consuming.

At first, it is required to install Facebook Infer’s dependencies and then to compile Facebook
Infer. Here are the prerequisites to be able to compile Facebook Infer on Linux:

∙ opam >= 2.0.0

∙ python 2.7

∙ pkg-config

∙ gcc >= 5.X or clang >= 3.4

∙ autoconf >= 2.63

∙ automake >= 1.11.1

Installation of Facebook Infer can be done using the following commands:

cd infer
./build-infer.sh clang
sudo make install

The official installation manual can be found in https://github.com/harmim/infer/blob/
master/INSTALL.md.

Furthermore, it is needed to build Facebook Infer using these commands:

cd infer
make -j BUILD_MODE=default
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The official building manual can be found in https://github.com/harmim/infer/blob/
master/CONTRIBUTING.md.

Facebook Infer now should be installed and executable by the command infer. It is
installed in infer/infer/bin.

User Manual

In general, to analyse a C/C++ program with Facebook Infer, it can be done using the
following command (for a single file):

infer run -- gcc -c sourc_file.c

Another option is to analyse the entire project with Makefile using the following:

infer run -- make <target>

Many other build systems may be used, see https://fbinfer.com/docs/analyzing-apps-
or-projects.html.

The implemented atomicity violations analyser is deactivated by default. The analysis
have to be executed twice (it has two phases). Each phase runs with a different com-
mand line option. The first phase derives sequences of functions that should be executed
atomically into the file infer-atomicity-out/atomic-sequences. The second phase then
detects atomicity violations according to this file. So, the analysis can be triggered using
the following commands:

infer run --atomic-sequences-only -- gcc -c sourc_file.c
infer run --atomicity-violations-only -- gcc -c sourc_file.c

Or it can be triggered along with other analyses that Facebook Infer provides:

infer run --atomic-sequences -- gcc -c sourc_file.c
infer run --atomicity-violations -- gcc -c sourc_file.c
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