
341

JUNIORSTAV 20224. Stavební mechanika

http://dx.doi.org/10.13164/juniorstav.2022.341

   
 

 
 

ČTYŘUZLOVÝ KONEČNÝ PRVEK ZALOŽENÝ NA 
HELLINGER-REISSNER VARIAČNÍM PRINCIPU 

HELLINGER-REISSNER VARIATIONAL PRINCIPLE BASED 
QUADRILATERAL FINITE ELEMENT 

Monika Středulová*,1, Jan Eliáš1 
 

*stredulova.m@fce.vutbr.cz 
1Vysoké učení technické v Brně, Fakulta stavební, Veveří 331/95, 602 00 Brno-střed 

Abstrakt 
Metoda konečných prvků je bezpochyby jedna z nejrozšířenějších metod pro řešení úloh mechaniky pevných těles.  
Nicméně, jedná se o metodu aproximační a její výsledky jsou závislé na definici prvku použitého pro výpočet.    
Nejjednodušší prvky s jedním primárním polem často trpí takzvaným „zamykáním“, tedy přílišnou tuhostí 
při ohybovém namáhání nebo pokud je těleso tvořeno nestlačitelným materiálem. V takovém případě je 
alternativou použití prvku o více neznámých polích. Článek představuje jeden z prvků o dvou neznámých polích 
formulovaný na základě Hellinger-Reissner variačního principu a na příkladech porovnává jeho robustnost 
s ostatními metodami, které byly v minulosti použity pro odstranění zamykání. Úlohy jsou řešeny v rámci lineární 
elasticity. 
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Abstract 
The Finite Element Method is without a doubt one of the most prominent tools in solving the equations governing 
mechanics of solids. It is an approximative method and, as such, its performance largely depends on the definition 
of the finite element used in a computation. The simplest elements, based on one primary field, tend to suffer 
from “locking”, that is excessive stiffness when an element is subjected to bending or the material is nearing 
the limit of incompressibility. One of the alternatives is the use of an element based on multiple primary fields. 
The present article aims to describe one such element (based on mixed-field Hellinger-Reissner variational 
principle) and analyze its robustness in comparison to other methods which were used in the past to mitigate 
locking. The analysis will be done in the framework of linear elastostatics. 
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1 INTRODUCTION 

The Finite Element Method is one of the most widely used methods to approximate differential equations 
describing the behavior of solid materials. In its most basic form, the elements which are used for computation are 
based on the principle of virtual work. Such formulations have one primary field of variables (usually 
displacements or stresses) and for that are also called irreducible formulations. The simplest elements used 
in the framework are then elements using linear shape functions, mapping the displacements between nodes 
linearly. The appeal of such formulation in the design process lies primarily in straightforward implementation 
and low computational demands. In two-dimensional idealization, an example of such an element is the Q4 element 
(displacement-based bilinear quadrilateral) [1]. 

Although being adequate in many cases, there are situations in which the irreducible formulation and linear 
shape functions are not sufficient in providing appropriate results [2], [3]. The lack of robustness is commonly 
referred to as locking and is demonstrated by excessive stiffness of the structure, resulting in largely 
underestimated or zero displacements. It is prominent in two particular situations: (i) when a body undergoes 
bending-dominated deformation or (ii) when the material is nearly incompressible [3]. 
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The results may be typically improved by refinement of the mesh, however, such intervention results inevitably 
in larger computational demands. The possibility of using coarse mesh, without any potentially dangerous bias 
to the solution in terms of underestimated results, has thus been sought after and alternatives were suggested 
in the literature throughout the years. One such alternative is the use of an element based on mixed-field variational 
principles [4]. Such element then solves in the computational procedure more than one primary field, providing 
the element with more degrees of freedom and offering more precise results while only minimally increasing 
computational costs. 

The present article aims to analyze one such mixed-field element, based on the Hellinger-Reissner variational 
principle, developed by Pian and Sumihara [5] (PS element). In the first part of the article, a short description 
of locking along with an overview of the alternative methods is provided, which were used to overcome 
the phenomena. It is followed by a brief description of the mixed-field element. Finally, a validation procedure 
of the implemented element is described, followed by an analysis of an example that is prone to both forms 
of locking and thus is commonly used to evaluate the performance of alternative finite elements (FE). The same 
example was previously used in the literature to evaluate the performance of other elements, which also offers 
the possibility of assessing the PS element performance in a wider context. 

2 THEORETICAL BACKGROUND 

The following section discusses the origin of locking behavior in elements based on the irreducible formulation 
and possible remedies. Subsequently, the Pian-Sumihara (PS) element is introduced with emphasis on the matrix 
form of equations which allows straightforward implementation. 

 

Locking behavior 

According to Babuška and Suri [6], locking is in mathematical terms a parameter-dependent problem. 
When a parameter value approaches a certain limit, locking occurs. The meaning of the parameter is physical, with 
clear interpretation. Two distinct locking situations are recognized based on the parameter meaning: (i) shear 
locking occurs when beam depth or a membrane thickness t → 0 and (ii) volumetric locking occurs when Poisson's 
ratio ν → 0.5. 

In the first case, spurious transverse shear strains develop, rendering the element incapable of representing 
bending dominated or other shear-free behavior [7]. The bilinear quadrilateral may serve as an example. When 
subjected to bending the element is not capable of approximating the exact displacements and the wrong shape 
of deformation is compensated by spurious stresses. As a result, the element is stiffer and the results are 
underestimated. The situation is described in Fig. 1 [8]. 

 
Fig. 1 Shear locking of the bilinear quadrilateral. a) geometry and normal stresses, b) exact deformation, c)  
approximation by the bilinear quadrilateral, d) spurious shear stresses, e) spurious stresses in y direction. 

Figure is taken from [8]. 

In contrast, volumetric locking occurs when the material is nearing the limit of incompressibility, that is when 
the volume of an element is defined as constant throughout deformation and no volumetric strain occurs. 
Mathematically, it is a constraint to the vector of displacements u, which limits the space of admissible solutions 
to the subspace of incompressible solutions [4] as: 

𝛁𝛁𝛁𝛁 ⋅ 𝐮𝐮𝐮𝐮 = 𝟎𝟎𝟎𝟎 (1) 

The goal in developing mathematical formulations to solve the problems is then to formulate a robust method, 
such that the stability of the method and, subsequently, the results as well, are independent of the parameter [6]. 

The behavior is prominent when using a coarse mesh and will eventually disappear using finer mesh (h-
refinement). However, such “brute force” as described by Babuška in [6], may not always be available given 
the ever-present limit to the computational resources at hand and so alternative approaches are sought-after. 

One possibility is to increase the polynomial order of shape functions, called p-refinement [9]. One 
of the appeals of the FEM is the straightforward implementation of such an approach, however, increasing 

   
 

 
 

the polynomial order inevitably increases the number of degrees of freedom (DOFs), leading to a computationally 
more expensive procedure. 

Selective reduced integration (SRI) has been successfully used in the past. It is based on the notion that one may 
divide the constitutive matrix E into multiple parts, each describing a different part of a deformation [4]. 
Subsequently, the stiffness matrix integral may be also divided and reduced integration may be used 
to the parameter-dependent part. In the case of shear locking, the parameter-dependent part describes shear 
stiffness, while in the case of volumetric locking it is the deviatoric term. 

Alternatively, the displacement field may be enhanced by internal degrees of freedom, which are incompatible 
between elements and allow better approximation of displacements [8]. The elements are referred 
to as incompatible modes elements. 

Last but possibly the largest group of methods is based on mixed-field variational principles. The common 
foundation encompasses multiple methods. One example is the B-bar method, which extends the B matrix 
(a displacement-strain) operator by exchanging terms related to the parameter-dependent part of deformation 
to its approximation based on a mixed-field principle [4]. Enhanced strain elements are commonly based 
on the three-field Hu-Washizu variational principle [10], incorporating enhanced strains that may be eliminated 
at an element level [11]. The use of mixed field variational principles also allows approximating multiple unknown 
fields independently. Commonly, such a procedure is applied to two primary fields. In such a case the second field 
acts as a Lagrange multiplier, incorporating a constraint. One example of such an approach is the u-p hybrid 
element, which is popular for incompressibility problems [1]. It uses displacements as the internal unknown field 
and pressure in an element as the external unknown field, which acts as a constraint ensuring incompressibility. 
A detailed account of the element formulation may be found in [1]. 

The mixed-field Pian-Sumihara element [5] which is central to the present article uses two unknown internal 
fields as primary fields: stresses and displacements. The element is described in detail in the subsequent paragraph. 

Pian-Sumihara element 

The Pian-Sumihara (PS) element [5] is a four-node quadrilateral element that uses stress and displacement 
fields as primary unknown fields, based on the Hellinger-Reissner variational principle. The principle will not be 
derived in the present article but may be found for example in [1] or [12]. The relationships between variables 
of the model may be conveniently described by Tonti's diagram (Fig. 2). In the figure, a solid line represents 
a strong form of an equation to be satisfied in every point of a domain, while a dashed line stands for a weak link, 
which is to be satisfied in an integral sense. The diagram contains two strain variables, ɛu produced 
by displacements and ɛσ produced by independent stresses. The difference between the two is equal to zero, and 
the relationship is expressed by an equation in a weak form, summed over the volume of an element. 

 
Fig. 2 Tonti‘s diagram of the model. 

As in the case of any FE, there are unknown parameters to the state of an element. The stresses 
in the PS element σ are approximated by five independent parameters collected in vector α = {α1 α2 α3 α4 α5}T. 
The displacement field contains eight degrees of freedom, two per node, collected in vector 
u = {u1 v1 u2 v2 u3 v3 u4 v4}T. Elaborating on the matrix notation commonly used for the formulation of FEM 
(see for example [1]), primary boundary conditions are given by prescribed displacements û = u on surface Su. 
Displacements are linearly interpolated in an element using linear shape functions associated in matrix H. 
The functions are C0 continuous, returning displacements continuous over elements [1]. The kinematic equation 
is given by ɛu = Bu, where B is the matrix of shape functions derivatives and ɛu are the strains of displacements. 
Strains produced by independent stresses are calculated by inverting the constitutive equation as ɛσ = E-1σ, where 
matrix E is the constitutive matrix. Stresses are expressed as σ = J(0,0)αJ(0,0)

T, alternatively with the help of matrix 
G describing the transformation as σ = Gα. 
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The results may be typically improved by refinement of the mesh, however, such intervention results inevitably 
in larger computational demands. The possibility of using coarse mesh, without any potentially dangerous bias 
to the solution in terms of underestimated results, has thus been sought after and alternatives were suggested 
in the literature throughout the years. One such alternative is the use of an element based on mixed-field variational 
principles [4]. Such element then solves in the computational procedure more than one primary field, providing 
the element with more degrees of freedom and offering more precise results while only minimally increasing 
computational costs. 

The present article aims to analyze one such mixed-field element, based on the Hellinger-Reissner variational 
principle, developed by Pian and Sumihara [5] (PS element). In the first part of the article, a short description 
of locking along with an overview of the alternative methods is provided, which were used to overcome 
the phenomena. It is followed by a brief description of the mixed-field element. Finally, a validation procedure 
of the implemented element is described, followed by an analysis of an example that is prone to both forms 
of locking and thus is commonly used to evaluate the performance of alternative finite elements (FE). The same 
example was previously used in the literature to evaluate the performance of other elements, which also offers 
the possibility of assessing the PS element performance in a wider context. 

2 THEORETICAL BACKGROUND 

The following section discusses the origin of locking behavior in elements based on the irreducible formulation 
and possible remedies. Subsequently, the Pian-Sumihara (PS) element is introduced with emphasis on the matrix 
form of equations which allows straightforward implementation. 
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According to Babuška and Suri [6], locking is in mathematical terms a parameter-dependent problem. 
When a parameter value approaches a certain limit, locking occurs. The meaning of the parameter is physical, with 
clear interpretation. Two distinct locking situations are recognized based on the parameter meaning: (i) shear 
locking occurs when beam depth or a membrane thickness t → 0 and (ii) volumetric locking occurs when Poisson's 
ratio ν → 0.5. 

In the first case, spurious transverse shear strains develop, rendering the element incapable of representing 
bending dominated or other shear-free behavior [7]. The bilinear quadrilateral may serve as an example. When 
subjected to bending the element is not capable of approximating the exact displacements and the wrong shape 
of deformation is compensated by spurious stresses. As a result, the element is stiffer and the results are 
underestimated. The situation is described in Fig. 1 [8]. 

 
Fig. 1 Shear locking of the bilinear quadrilateral. a) geometry and normal stresses, b) exact deformation, c)  
approximation by the bilinear quadrilateral, d) spurious shear stresses, e) spurious stresses in y direction. 

Figure is taken from [8]. 

In contrast, volumetric locking occurs when the material is nearing the limit of incompressibility, that is when 
the volume of an element is defined as constant throughout deformation and no volumetric strain occurs. 
Mathematically, it is a constraint to the vector of displacements u, which limits the space of admissible solutions 
to the subspace of incompressible solutions [4] as: 

𝛁𝛁𝛁𝛁 ⋅ 𝐮𝐮𝐮𝐮 = 𝟎𝟎𝟎𝟎 (1) 

The goal in developing mathematical formulations to solve the problems is then to formulate a robust method, 
such that the stability of the method and, subsequently, the results as well, are independent of the parameter [6]. 

The behavior is prominent when using a coarse mesh and will eventually disappear using finer mesh (h-
refinement). However, such “brute force” as described by Babuška in [6], may not always be available given 
the ever-present limit to the computational resources at hand and so alternative approaches are sought-after. 

One possibility is to increase the polynomial order of shape functions, called p-refinement [9]. One 
of the appeals of the FEM is the straightforward implementation of such an approach, however, increasing 

   
 

 
 

the polynomial order inevitably increases the number of degrees of freedom (DOFs), leading to a computationally 
more expensive procedure. 

Selective reduced integration (SRI) has been successfully used in the past. It is based on the notion that one may 
divide the constitutive matrix E into multiple parts, each describing a different part of a deformation [4]. 
Subsequently, the stiffness matrix integral may be also divided and reduced integration may be used 
to the parameter-dependent part. In the case of shear locking, the parameter-dependent part describes shear 
stiffness, while in the case of volumetric locking it is the deviatoric term. 

Alternatively, the displacement field may be enhanced by internal degrees of freedom, which are incompatible 
between elements and allow better approximation of displacements [8]. The elements are referred 
to as incompatible modes elements. 

Last but possibly the largest group of methods is based on mixed-field variational principles. The common 
foundation encompasses multiple methods. One example is the B-bar method, which extends the B matrix 
(a displacement-strain) operator by exchanging terms related to the parameter-dependent part of deformation 
to its approximation based on a mixed-field principle [4]. Enhanced strain elements are commonly based 
on the three-field Hu-Washizu variational principle [10], incorporating enhanced strains that may be eliminated 
at an element level [11]. The use of mixed field variational principles also allows approximating multiple unknown 
fields independently. Commonly, such a procedure is applied to two primary fields. In such a case the second field 
acts as a Lagrange multiplier, incorporating a constraint. One example of such an approach is the u-p hybrid 
element, which is popular for incompressibility problems [1]. It uses displacements as the internal unknown field 
and pressure in an element as the external unknown field, which acts as a constraint ensuring incompressibility. 
A detailed account of the element formulation may be found in [1]. 

The mixed-field Pian-Sumihara element [5] which is central to the present article uses two unknown internal 
fields as primary fields: stresses and displacements. The element is described in detail in the subsequent paragraph. 
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fields as primary unknown fields, based on the Hellinger-Reissner variational principle. The principle will not be 
derived in the present article but may be found for example in [1] or [12]. The relationships between variables 
of the model may be conveniently described by Tonti's diagram (Fig. 2). In the figure, a solid line represents 
a strong form of an equation to be satisfied in every point of a domain, while a dashed line stands for a weak link, 
which is to be satisfied in an integral sense. The diagram contains two strain variables, ɛu produced 
by displacements and ɛσ produced by independent stresses. The difference between the two is equal to zero, and 
the relationship is expressed by an equation in a weak form, summed over the volume of an element. 

 
Fig. 2 Tonti‘s diagram of the model. 

As in the case of any FE, there are unknown parameters to the state of an element. The stresses 
in the PS element σ are approximated by five independent parameters collected in vector α = {α1 α2 α3 α4 α5}T. 
The displacement field contains eight degrees of freedom, two per node, collected in vector 
u = {u1 v1 u2 v2 u3 v3 u4 v4}T. Elaborating on the matrix notation commonly used for the formulation of FEM 
(see for example [1]), primary boundary conditions are given by prescribed displacements û = u on surface Su. 
Displacements are linearly interpolated in an element using linear shape functions associated in matrix H. 
The functions are C0 continuous, returning displacements continuous over elements [1]. The kinematic equation 
is given by ɛu = Bu, where B is the matrix of shape functions derivatives and ɛu are the strains of displacements. 
Strains produced by independent stresses are calculated by inverting the constitutive equation as ɛσ = E-1σ, where 
matrix E is the constitutive matrix. Stresses are expressed as σ = J(0,0)αJ(0,0)
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Unknown parameters to the stress state α approximate effective stresses at the element level. Normal stresses 
have a constant and linear term while shear stress is constant. The effective stresses are transformed to cartesian 
(global) coordinates with the help of a Jacobi matrix, evaluated at the center of an element J(0,0). Stresses 
do not fulfill continuity requirement [5]. Given traction and body forces are used to obtain a vector of the right 
side ( Eq. (4)). 

Substituting the matrix form of the equations given in the previous paragraph into the variational form 
of HR functional [10], one obtains the following system of linear equations: 

�𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟎𝟎𝟎𝟎 � �𝛂𝛂𝛂𝛂𝐮𝐮𝐮𝐮� = �𝟎𝟎𝟎𝟎𝐟𝐟𝐟𝐟� (3) 

whose entries are evaluated as separate volume and surface integrals. 

𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = �𝐆𝐆𝐆𝐆𝐓𝐓𝐓𝐓𝐄𝐄𝐄𝐄−𝟏𝟏𝟏𝟏𝐆𝐆𝐆𝐆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑉𝑉

, 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = �𝐆𝐆𝐆𝐆𝐓𝐓𝐓𝐓𝐁𝐁𝐁𝐁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑉𝑉

= 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 , 𝐟𝐟𝐟𝐟 = � 𝐇𝐇𝐇𝐇𝐓𝐓𝐓𝐓𝐭̂𝐭𝐭𝐭 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
+ �𝐇𝐇𝐇𝐇𝐓𝐓𝐓𝐓𝐁𝐁𝐁𝐁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉
 (4) 

The system of equations Eq. (3) allows for the separation of the two vectors of unknown parameters 
with the use of static condensation [13]. The first expression is used to obtain the global stiffness matrix and to 
compute the (continuous) displacements, while the stress parameters are calculated separately at an element level. 
Effectively, only u degrees of freedom are solved at the global level: 

 −𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

−1𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐮𝐮𝐮𝐮 = 𝐟𝐟𝐟𝐟, 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 𝛂𝛂𝛂𝛂 = 𝐟𝐟𝐟𝐟 (5) 

3 VALIDATION 

To analyze the performance of the Pian-Sumihara element, it was implemented in an FEM algorithm. A necessary 
step is the validation of the implementation via a patch test. It provides both validation of a formulation 
and verification of its implementation by solving a problem with a known solution and comparing the results. 

Based on [1], a simple rectangular structure of width b and depth h was chosen to be tested in uniaxial tension 
by prescribed displacements ux=0 = 0 and non-zero displacement ux=b and to be solved as a plane stress problem. 
The structure is discretized into a mesh of 10 by 10 elements and two cases are tested using the implemented 
PS element: (i) regular mesh and (ii) randomly disturbed mesh. The exact values of internal nodal displacements 
and displacements obtained by the algorithm are compared for both cases. The exact nodal displacements are 
given as: 

𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 =
𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥=𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏

𝑥𝑥𝑥𝑥n, 𝑢𝑢𝑢𝑢n = −
𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝑥𝑥𝑥𝑥=𝑏𝑏𝑏𝑏
ℎ

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 (6) 

A relative error er between the exact solution u and the computed solution ū is calculated separately for each 
direction (subscript n denotes individual node, N denotes the number of degrees of freedom, i labels either u or v): 

𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 = �
∑ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛�𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

∑ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛2𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

 (6) 

Tab. 1 Results obtained by the patch test. 

 regular 
mesh 

disturbed 
mesh 

er,u 2,391-15 6,473-15 

er,v 1,4-13 6,149-14 

 
The results show excellent agreement between the exact solution and the one obtained using the PS element. 

The errors are due to limited machine precision. 

4 ANALYSIS OF ELEMENT BEHAVIOR 

Cook‘s membrane, a test case chosen from literature, was used in the past to test the performance of elements 
specifically developed for situations prone to locking. Its previous use allows the comparison to other elements, 
namely: (i) SRI element with reduced integration of volumetric term [4], QM6 incompatible element developed 

   
 

 
 

by Simo & Rafai [11], assumed strain element Qi5 developed by César de Sá & Natal [4] and B-bar element 
as described in [14]. Furthermore, standard bilinear quadrilateral Q4 [1] is also included to illustrate the locking 
behavior. 

Cook‘s membrane is a classical problem of a clamped tapered panel loaded by traction, commonly solved 
by both non-linear and linear solvers [4]. The latter will be used in the present analysis. The problem combines 
bending and near incompressible material of ν = 0.4999999. Further material parameters (in consistent system 
of units) are: modulus of elasticity E = 240.565, thickness t = 1 and traction q = 100. Vertical displacement 
of the top right corner (node A[48, 60]) is recorded and its convergence with increasing the number of elements is 
analyzed. The following discretizations were tested: 1 element, 2 elements per side (4 elements), 4 elements per 
side (8 elements), 8 elements per side (64 elements), 16 elements per side (256 elements) and 32 elements per side 
(1024 elements). Both the geometry and results of the analysis are shown below. 

 
Fig. 3 Geometry of the Cook‘s membrane (left) and results of the convergence analysis (right). 

The resulting graph shows convergence analysis of the tested PS element as well as other elements described 
in literature. Additionally, the results obtained by the standard bilinear element (Q4) are shown. As expected, 
the results obtained by the Q4 element are affected by locking. The element shows much higher stiffness and 
displacements of about 80% lower compared to the other elements are obtained. Contrary to the theory of h-
refinement, the element does not show improvement for the increased number of elements. 

As expected, the PS element shows excellent results and largely exceeds the performance of the Q4 element 
even in the case of the coarsest mesh (geometry discretized into 1 element). Clearly, the performance 
of the element is neither affected by the incompressibility, nor by bending. In the context of other elements, the PS 
element also shows good results. A difference is visible especially in the first two tested cases, that is a mesh 
of 1 element and 4 elements, where the PS element shows better results than the other elements, except 
for the QM6 incompatible modes element. Subsequently, the results for the higher number of elements are similar 
and no clear distinction between performances of individual elements can be observed as the results converge 
to the same, presumably exact solution. 

5 CONCLUSIONS 

The article aimed to describe the mixed-field quadrilateral finite element developed by Pian & Sumihara [5] 
as a remedy to both volumetric and shear locking, i.e. phenomena demonstrated by excessive stiffness of affected 
elements. 

Firstly the origin and the mechanisms of both shear and volumetric locking were described. It was demonstrated 
that the simplest irreducible linear elements are mostly affected, because of their inability to approximate the shape 
of a deformation that is required to fulfill the constraint. An overview of methods previously used in literature 
to avoid the phenomena at low computational costs has been given, providing a context of the Pian-Sumihara 
element. Subsequently, the element itself was described. 

To analyze the performance of the element, it was implemented into a FEM script, which was validated via 
patch test. The test compared solutions obtained by the algorithm with the exact solution for a simple plane stress 
problem in uniaxial tension. The resulting errors between the two were at the level of machine precision. 

The behavior of the element was observed on an example commonly used to test locking tendencies 
of elements: the Cook's membrane. The problem combines both the nearly incompressible material and bending 
and as it is a common benchmark problem, results obtained by other elements are available in the literature, 
offering wider comparison. 
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Unknown parameters to the stress state α approximate effective stresses at the element level. Normal stresses 
have a constant and linear term while shear stress is constant. The effective stresses are transformed to cartesian 
(global) coordinates with the help of a Jacobi matrix, evaluated at the center of an element J(0,0). Stresses 
do not fulfill continuity requirement [5]. Given traction and body forces are used to obtain a vector of the right 
side ( Eq. (4)). 

Substituting the matrix form of the equations given in the previous paragraph into the variational form 
of HR functional [10], one obtains the following system of linear equations: 

�𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟎𝟎𝟎𝟎 � �𝛂𝛂𝛂𝛂𝐮𝐮𝐮𝐮� = �𝟎𝟎𝟎𝟎𝐟𝐟𝐟𝐟� (3) 

whose entries are evaluated as separate volume and surface integrals. 

𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = �𝐆𝐆𝐆𝐆𝐓𝐓𝐓𝐓𝐄𝐄𝐄𝐄−𝟏𝟏𝟏𝟏𝐆𝐆𝐆𝐆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑉𝑉

, 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = �𝐆𝐆𝐆𝐆𝐓𝐓𝐓𝐓𝐁𝐁𝐁𝐁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑉𝑉

= 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 , 𝐟𝐟𝐟𝐟 = � 𝐇𝐇𝐇𝐇𝐓𝐓𝐓𝐓𝐭̂𝐭𝐭𝐭 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
+ �𝐇𝐇𝐇𝐇𝐓𝐓𝐓𝐓𝐁𝐁𝐁𝐁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉
 (4) 

The system of equations Eq. (3) allows for the separation of the two vectors of unknown parameters 
with the use of static condensation [13]. The first expression is used to obtain the global stiffness matrix and to 
compute the (continuous) displacements, while the stress parameters are calculated separately at an element level. 
Effectively, only u degrees of freedom are solved at the global level: 

 −𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

−1𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐮𝐮𝐮𝐮 = 𝐟𝐟𝐟𝐟, 𝐊𝐊𝐊𝐊𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑻𝑻𝑻𝑻 𝛂𝛂𝛂𝛂 = 𝐟𝐟𝐟𝐟 (5) 

3 VALIDATION 

To analyze the performance of the Pian-Sumihara element, it was implemented in an FEM algorithm. A necessary 
step is the validation of the implementation via a patch test. It provides both validation of a formulation 
and verification of its implementation by solving a problem with a known solution and comparing the results. 

Based on [1], a simple rectangular structure of width b and depth h was chosen to be tested in uniaxial tension 
by prescribed displacements ux=0 = 0 and non-zero displacement ux=b and to be solved as a plane stress problem. 
The structure is discretized into a mesh of 10 by 10 elements and two cases are tested using the implemented 
PS element: (i) regular mesh and (ii) randomly disturbed mesh. The exact values of internal nodal displacements 
and displacements obtained by the algorithm are compared for both cases. The exact nodal displacements are 
given as: 

𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 =
𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥=𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏

𝑥𝑥𝑥𝑥n, 𝑢𝑢𝑢𝑢n = −
𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝑥𝑥𝑥𝑥=𝑏𝑏𝑏𝑏
ℎ

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 (6) 

A relative error er between the exact solution u and the computed solution ū is calculated separately for each 
direction (subscript n denotes individual node, N denotes the number of degrees of freedom, i labels either u or v): 

𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 = �
∑ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛�𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

∑ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛2𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1
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Tab. 1 Results obtained by the patch test. 

 regular 
mesh 

disturbed 
mesh 

er,u 2,391-15 6,473-15 

er,v 1,4-13 6,149-14 

 
The results show excellent agreement between the exact solution and the one obtained using the PS element. 

The errors are due to limited machine precision. 

4 ANALYSIS OF ELEMENT BEHAVIOR 

Cook‘s membrane, a test case chosen from literature, was used in the past to test the performance of elements 
specifically developed for situations prone to locking. Its previous use allows the comparison to other elements, 
namely: (i) SRI element with reduced integration of volumetric term [4], QM6 incompatible element developed 

   
 

 
 

by Simo & Rafai [11], assumed strain element Qi5 developed by César de Sá & Natal [4] and B-bar element 
as described in [14]. Furthermore, standard bilinear quadrilateral Q4 [1] is also included to illustrate the locking 
behavior. 

Cook‘s membrane is a classical problem of a clamped tapered panel loaded by traction, commonly solved 
by both non-linear and linear solvers [4]. The latter will be used in the present analysis. The problem combines 
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Fig. 3 Geometry of the Cook‘s membrane (left) and results of the convergence analysis (right). 

The resulting graph shows convergence analysis of the tested PS element as well as other elements described 
in literature. Additionally, the results obtained by the standard bilinear element (Q4) are shown. As expected, 
the results obtained by the Q4 element are affected by locking. The element shows much higher stiffness and 
displacements of about 80% lower compared to the other elements are obtained. Contrary to the theory of h-
refinement, the element does not show improvement for the increased number of elements. 

As expected, the PS element shows excellent results and largely exceeds the performance of the Q4 element 
even in the case of the coarsest mesh (geometry discretized into 1 element). Clearly, the performance 
of the element is neither affected by the incompressibility, nor by bending. In the context of other elements, the PS 
element also shows good results. A difference is visible especially in the first two tested cases, that is a mesh 
of 1 element and 4 elements, where the PS element shows better results than the other elements, except 
for the QM6 incompatible modes element. Subsequently, the results for the higher number of elements are similar 
and no clear distinction between performances of individual elements can be observed as the results converge 
to the same, presumably exact solution. 
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The article aimed to describe the mixed-field quadrilateral finite element developed by Pian & Sumihara [5] 
as a remedy to both volumetric and shear locking, i.e. phenomena demonstrated by excessive stiffness of affected 
elements. 

Firstly the origin and the mechanisms of both shear and volumetric locking were described. It was demonstrated 
that the simplest irreducible linear elements are mostly affected, because of their inability to approximate the shape 
of a deformation that is required to fulfill the constraint. An overview of methods previously used in literature 
to avoid the phenomena at low computational costs has been given, providing a context of the Pian-Sumihara 
element. Subsequently, the element itself was described. 

To analyze the performance of the element, it was implemented into a FEM script, which was validated via 
patch test. The test compared solutions obtained by the algorithm with the exact solution for a simple plane stress 
problem in uniaxial tension. The resulting errors between the two were at the level of machine precision. 

The behavior of the element was observed on an example commonly used to test locking tendencies 
of elements: the Cook's membrane. The problem combines both the nearly incompressible material and bending 
and as it is a common benchmark problem, results obtained by other elements are available in the literature, 
offering wider comparison. 



346

JUNIORSTAV 2022 4. Structural Mechanics

http://dx.doi.org/10.13164/juniorstav.2022.341

   
 

 
 

In the convergence analysis, the performance of the PS element was comparable or even superior 
to other elements, developed with the same motivation.  Only the incompatible modes element developed by Simo 
and Rafai [11] showed better performance in the Cook‘s membrane problem. 

The bilinear quadrilateral element was included in the analysis to demonstrate the locking behavior. 
Interestingly, the element showed constant results. It was not possible to test a mesh finer than 1024 elements 
due to limited computational power available, however, the recorded trend suggests no improvement vis-à-vis 
mesh refinement, supporting the necessity of elements dedicated to locking prone situations. 

However, the present analysis was limited to the framework of linear elasticity, assuming small displacements, 
small rotations, and linear stress-strain relationship, which restricts the interpretation of results to very specific 
problems. The element showed excellent results, however, the analysis is limited by the assumptions of linear 
elasticity, restricting the interpretation of the results. 
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VLIV NELOKÁLNÍCH PARAMETRŮ MICROPLANE 
MODELU NA SIMULOVANOU ODEZVU TRÁMCE 
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Abstrakt 
Příspěvek se zabývá analýzou vlivu nelokálních parametrů Microplane modelu na simulovanou odezvu trámce 
z cementového kompozitu. Vliv těchto parametrů je analyzován u těles o rozměrech 40×40×160 mm se zářezem 
délky 12 mm a tloušťky 1 mm zkoušených v konfiguraci tříbodového ohybu. Cílem práce je poukázat na vliv 
nelokálních parametrů microplane modelu na simulovanou lomovou odezvu i přes to, že jejich experimentální 
stanovení je v podstatě nemožné. Výsledky podrobné numerické analýzy ukazují, že vliv nelokálních parametrů 
je nezanedbatelný a obecně lze říct, že čím vyšší jejich hodnota je, tím vyšší simulovaná únosnost těles je dosažena. 

Klíčová slova 
Lomová zkouška, metoda konečných prvků, microplane model, nelokální parametry 

Abstract 
In this work, the influence of non-local parameters of microplane model for the case of specimens with nominal 
dimensions 40×40×160 mm with central edge notch with a depth of 12 mm and thickness of 1 mm, which are 
tested in three-point bending configuration, is analysed. The aim of this work is analysis of the influence of these 
parameters on the simulated behaviour of cement composite despite the fact that their experimental determination 
is basically impossible. The results of detailed numerical analysis show that the influence of non-local parameters 
is not negligible. In general, one can say that the higher their value is, the higher the simulated load bearing capacity 
of the specimens is achieved. 

Key words 
Fracture test, finite element method, microplane material model, non-local parameters 

1 ÚVOD 

Cementové kompozity, mezi které dozajista patří i beton, jakožto jejich nejznámější a nejpoužívanější zástupce, 
patří k široce používaným stavebním materiálům. Betonové konstrukce, jako jsou dálniční mosty, tunely, 
přehrady, chladící věže jaderných elektráren, jsou součástí páteřní infrastruktury a měly by sloužit po mnoho 
generací. Při působícím zatížení vykazují tyto konstrukce mnohdy nelineární, přesněji kvazikřehké, chování – 
schopnost přenosu zatížení pokračuje i po překonání meze pružnosti až do meze pevnosti, po níž následuje pokles 
zatížení až do porušení, tzv. tahové změkčení [1]. Tradičně jsou betonové konstrukce navrhovány dle norem 
a předpisů (např. ČSN EN 1992-1-1 [2], fib Model Code 2010 [3] apod.), které jsou založeny na experimentálních 
a empirických vztazích vycházejících z teorie elasticity. Tento přístup je nicméně neudržitelný a v případě 
komplexních konstrukcí (např. složitá geometrie, nelineární kontaktní úlohy) může být i nebezpečný. Za tímto 
účelem je vhodné návrh ověřit výpočty pomocí metody konečných prvků s odpovídajícími materiálovými modely, 
které se snaží popsat materiálové chování výstižněji. Tyto modely ovšem kladou zvýšené nároky na materiálové 
parametry, které nejsou obsaženy v normách a jsou v mnoha případech obtížně stanovitelné i experimentálně. 

Tento příspěvek se zabývá numerickou analýzou lomového chování betonového tělesa o rozměrech 
40×40×160 mm se zářezem s využitím Microplane materiálového modelu [4], [5], resp. vlivu nelokálních 
parametrů tohoto modelu. Za tímto účelem byl analyzován 3D model vytvořený v SW Ansys, Inc [6]. 


