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MULTIFOCAL IMAGE PROCESSING

DALIBOR MARTIŠEK and HANA DRUCKMÜLLEROVÁ

Abstract. In this paper, we present a processing method for digital images from

an optical microscope. High-pass type filters are generally used for image focusing.
They enhance the high spatial frequencies. These filters are not appropriate if the

lack of sharpness is caused by other factors. On the other hand, the (un)sharpness

can be taken as an advantage and can be used for studies of the spatial distribution
of structures in the observed scene. In many cases, it is possible to construct a three-

dimensional model of the observed object by analyzing image sharpness. Interesting

two-dimensional images and a three-dimensional model can be obtained by applying
the theory for multifocal image processing described in this paper. We improve the

quality of the results compared to the previous methods using the Fourier transform
for the analysis of local sharpness in the images.

1. Introduction

Three-dimensional reconstructions of object surfaces play an important role in
many branches. As an example, morphological analysis of fracture surfaces reveals
information on mechanical properties of construction materials (see [4–6]). The
confocal microscope is a standard tool for imaging three-dimensional surfaces,
however, after some post-processing using mathematical tools described in this
paper, an optical microscope can be used as well.

In our paper, we will deal with partially focused images. High-pass type filters
are generally used for image sharpening. They enhance the high spatial frequen-
cies. They are, however, efficient only in cases when the picture is not sharp
because of the low contrast on high frequencies (for example in a TV picture).
These filters, are not appropriate if the lack of sharpness is caused by other factors
such as the object being out of focus. In many cases, it is possible to construct
a three-dimensional model of the observed object using more images with different
focusing, as described below.

The current state of knowledge is summarized in Section 2. A broader discussion
of the properties of projection in optical microscopes crucial for multifocal imaging
can be found in Section 3.1, the notion of the multifocal image is introduced in
Section 3.2, followed with Sections 3.3 and 3.4 that are devoted to the 2D and 3D
processing with some improvements proposed in this paper.
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2. Current state of knowledge

2.1. Terminology for images and image sensors

In computer graphics, data are stored at discrete points. Points are viewed as
nondimensional objects conforming to the traditional Euclidean geometry. How-
ever, the display surface of an output device is a physical object and cannot display
dimensionless points. For this reason, the notion of a “pixel” rather than point is
used, standing for the smallest viewable formation.

In mathematical modeling, the output device is thought of as a set of isolated
Euclidean points. Therefore, a color image is modeled as the vector function
f(i, j) : M → R where M = {0, 1, . . . , w − 1} × {0, 1, . . . , h − 1}, R ⊂ R3, i.e.,
f(i, j) = (r(i, j), g(i, j), b(i, j)). Functions r, g, b are called the color components
of image f . Numbers w and h are called the image width and image height
respectively. The set M is called the logical plane, its elements are called logical
pixels and the value f(i, j) of function f in pixel [i, j] is called the pixel value.

An image taken with a digital camera usually has square sensors arranged in
a rectangular grid, let x, y be the size of its cells. We assume an image to take
values at discrete points only, keeping in mind that the pixel values originated
from integrals of the intensity of the light recorded over rectangle areas. We can
assume that the pixel value f(i, j) is integrated over
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The set P (i, j) is called the physical pixel and the set P of all physical pixels is
called the physical plane.

This idea is applicable to conventional optical devices such as microscopes, too.

2.2. Current methods and 2D and 3D reconstruction

For an image of an object to be sharp, the object must be placed exactly in the
plane to which the microscope or camera is focused [7], [8]. This plane is called
a sharpness plane. However, in many cases, we cannot take the observed object to
be a plane, and therefore this condition cannot be fulfilled. The sharpness plane
intersects the 3-D object in a contour line. The points of this contour line will be
displayed with maximum possible sharpness. Due to the wave properties of light
and due to the finite resolution of the output device the image can be considered
as sharp not only on this contour line, but also in a certain interval of height, the
zone of sharpness. The image of the zone of sharpness is called the optical cut.
In Figure 1, we can see a fracture surface of cement paste at different focal planes
where the focused parts of the image are well discernible. The data for this image
as well as the data for images in Figures 2 and 10 are courtesy of Prof. Tomáš
Ficker (Faculty of Civil Engineering, Brno University of Technology).

To create a sharp 2D image, it is necessary to obtain a series of images of the
same object, each of them with different focusing, and each point on the object
focused in at least one of the images. The optical cuts are identified and the sharp
parts are composed in a new image. There is also a simple method for constructing
a rough 3D model of the object, where all points belonging to the same optical cut
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Figure 1. Different optical cuts of a 3D object (fracture surface of cement paste). Four images

out of twelve were are displayed.

have the same height – the height of the corresponding zone of sharpness. This
method of reconstruction is called the Method of Constant High Cuts.

Nowadays, sharp images of 3D objects and their 3D models can be obtained by
means of confocal microscopes. These instruments do not show points out of the
sharpness zone due to their construction and, therefore, no software identification
(briefly described above) of optical cuts is necessary. The pixel height and thus
also the optical cut to which the pixel belongs are identified by the hardware.
Figure 2 shows a 3D reconstruction of the specimen from Figure 1 from a confocal
microscope constructed from twelve optical cuts.

3. New methods of 2D processing and 3D reconstruction

To achieve better results than those of Section 2.2, it is necessary to analyze the
properties and limits of optical instruments. The first attempt was published
in [11]. Statistical tools such as the variance and range of pixel values were used
for the analysis of image sharpness in the original method. It will be generalized
and made more precise in what follows. We will present new results, mostly the
methods based on the Fourier transform. Sections 3.1 and 3.2 are based on [11],
Sections 3.3 and 3.4 are completely new.
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Figure 2. 3D reconstruction of the specimen from Figure 1 from a confocal microscope con-

structed from twelve optical cuts.

3.1. Limits of real optical instruments

In geometrical optics, the terms such as object space and image space are used. In
what follows, we will use a relation that conforms to the postulates of geometrical
optics and call it a geometrical projection. The relation (it is not a mapping in
general) is implemented by direct rays that pass through the point P that is to be
displayed. These rays are transformed by the optical system into conjugated rays
that pass through the image space and meet at a point P ′. However, the mapping
as implemented by a real device (a microscope or a camera) does not conform
exactly to the postulates of geometrical optics. A list of some of the reasons for
this difference follows:

The limited width of the beam of rays. The mapping of point P is carried
out by a beam of rays. If we denote by A the set of the values assumed by the
angles formed by the rays of the bunch, then supA = π. Although the beam of
rays that goes through a camera is very broad, we have always supA < π.

The wave nature of light. Geometric optics presumes that light propagates
along straight lines. However, this presumption, is valid only if light goes through
a homogeneous and isotropic environment (which, in a microscope or camera,
can be presumed), and further if light passes obstacles that are larger than its
wavelength by orders of magnitude. This, however, is not the case of microscopes
and cameras. When a microscopic preparation is observed, light is always inflected
by a small obstacle – the preparation itself (see [1]).
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The optical system of the microscope as such also produces flexural phenomena,
namely, on the input pupil. Thus, to give a mathematical description of an optical
instrument we must also take into account the wave nature of these phenomena.
This means that the geometrical projection G ⊂ O×O′ cannot be used and has to
be replaced with a more general correspondence between the object space O and
image space O′ and between the sharpness plane ω and the focal plane ϕ, too.

A relation M(V ) ⊂ ω × ϕ such that

[P,Q] ∈M(V ) ⇔ Q ∈ S(V )
P =

{
X ∈ ϕ

∣∣∣∣|XQ| ≤ λ0

4A
∧ [P,Q] ∈ G

}
is called wave scanning. The set S(V )

P is called the wave trace of the point P in

wave scanning M(V ), the number

d
(
S(V )
P

)
= sup

X,Y ∈S(V )
P

{a ∈ R|a = |X,Y |} =
λ0

2A

is called its diameter, A is the so-called numerical aperture of the microscope, λ0

the wavelength of the light used. The wave trace of the point is illustrated in
Figure 3a.

Nonplanarity of the preparation. As indicated above, it is impossible to
focus the microscope so that it displays every point as a point. When observing
a nonplanar preparation, further problems are encountered. As mentioned above,
a sharp image can only be obtained in the sharpness plane. However, in many
cases it is impossible to place the whole object in the sharpness plane, the object
is only sharp in a contour line.

(a) Wave trace of point P (b) Euclidean trace of point P

Figure 3. Wave and Euclidean trace of point P .
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A relation M(E) ⊂ ω × ϕ such that

[P,Q] ∈M(E) ⇐⇒ Q ∈ S(E)
P = {X ∈ ϕ|[P,X] ∈ G}

is called the Euclidean scanning. The set S(E)
P is called the Euclidean trace of the

point P , the number

d
(
S

(E)
P

)
= sup {a ∈ R|a = |X,Y |}

is called its diameter.
Scanner resolution. In all the above considerations of the properties of a mic-

roscope or a camera, we assumed that all the deviations from the geometrical
projection originate in the microscope during the projection itself. However, these
deviations are also caused by the scanner. Assuming the straight propagation of
light, let the preparation be placed flush with the microscope sharpness plane,
then the geometrical projection takes every point P to point P ′. Despite this, the
point cannot be mapped to a point. A scanner is a physical object and, therefore,
it cannot represent the point as a dimensionless object. According to Section 1,
every point is displayed as a physical pixel with nonzero dimensions.

The image acquired by a particular instrument is the result of intricate inter-
actions of the phenomena described above. An accurate mathematical description
of these interactions would be extremely complicated. However, as will be demon-
strated in what follows and briefly mentioned in Section 2.2, there are interesting
possibilities of reconstructing real images.

3.2. Multifocal image

In the previous section, we indicated that, in a nonplanar preparation, only the
contour line in which the preparation intersects the sharpness plane is displayed
sharply. However, the whole 3-D object would be unsharp in this case. The
conclusions concerning the focusing contour line are based on the assumption that
the sharpness plane and the focal plane are Euclidean planes.

If the point to be displayed lies outside the sharpness plane, it is displayed into
its Euclidean trace, whose radius depends on the distance of the point from the
plane. As the distance increases, so does the radius. However, the dependence
is not strictly proportional. If it was possible to display Euclidean points in the
plane, every Euclidean trace with a strictly positive diameter would cause an out-
of-focus image. If the plane of the scanning device is a set of physical pixels,

the unsharpness is only manifested if d
(
S(E)
P

)
> q where q = min{x, y}. If

d
(
S(E)
P

)
≤ q, we can take the picture as sharp.

Let P be a point of the objective space, M(E) ⊂ ω × ϕ an Euclidean scanning,
P the physical plane of the focal plane ϕ, x, y the dimension of its physical pixels

(x 6= y in the general case of rectangle pixels), d
(
S(E)
P

)
the diameter of the

Euclidean trace of point P . We call the set

Z(O) =
{
P ∈ O

∣∣∣d(S(E)
P

)
< q, q = min{x, y}

}



MULTIFOCAL IMAGE PROCESSING 83

an open zone of sharpness. Its image G(Z) in the geometrical projection G : O →
O′ is called an optical cut.

The conclusions concerning the focusing contour line are based on the assump-
tion that the sharpness level and the focal plane are Euclidean planes, but this
assumption is not valid. If the point to be displayed lies outside the sharpness
plane, it is displayed into its Euclidean trace, whose radius depends on the dis-
tance of the point from the plane. As the distance increases, so does the radius.
However, the dependence is not strictly proportional. If it was possible to display
Euclidean points in the plane, every Euclidean trace with strictly positive diameter
would cause an out-of-focus image.

It is evident that the result of a scanning depends not only on the object ob-
served, but also on the instrument focusing. The same preparation may be ob-
served with different focusings, that is, with different settings of the focal planes.
If the number of these settings is n (in general), we will obtain n different scan-
nings: n different zones of sharpness Zk, k = 1, 2, . . . , n, and n different optical
cuts Gk(Zk), k = 1, 2, . . . , n of object O. It is evident that it is only possible to
obtain a sharp image by a single scanning if the zone of sharpness is wider then
the 3D object height. If, however, it is narrower than the preparation height, a
part of the preparation is always out of focus. To construct a sharp picture in
such a case, a multifocal image is required. It is a sequence {O′

k}nk=1 of images of
object O in the geometrical projections Gk whose zones of sharpness Zk cover the
whole object O, i.e.,

O ⊆
n⋃

k=1

Zk(O).

3.3. 2D processing

The two-dimensional (2D) processing of an n-focal image involves constituting
a new image so that this new image consists of the optical cuts of the multifocal
image {O′

k}nk=1. In the next step, we will set criteria for assigning each pixel in
the images {O′

k}nk=1 to an optical cut Gk(Zk).
Human eyes can see a part of the image sharply when the high spatial fre-

quencies in the sense of the Fourier transform are present, see [2, 3]. Therefore,
a neighborhood of each pixel [i, j] of the multifocal image {O′

k}nk=1 is transformed
by the Fourier transform. A sum through a suitable annulus with the center in
the center of the amplitude spectrum (at coordinate [0, 0]) is a suitable criterion
for image contrast and sharpness diagnostics. We use the characteristic

C
(k)
P (i,j) =

1

m(Aij)

∑
[r,s]∈Aij

f (k)(r, s), (3.1)

where f (k)(r, s) is the value of the pixel [r, s] in image O′
k and m(Aij) is the number

of pixels in the annulus Aij (shown in gray in Figure 4).

Higher values of C
(k)
ij mean higher amplitudes on higher spatial frequencies,

which indicates higher contrast of small details in the studied neighborhood and
thus also a better focusing. Therefore, the expression (3.1) is used as a focusing
criterion. Figure 5 shows the sharpness zones detected by Equation (3.1) for
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Figure 4. Amplitude spectra of the same neighborhood of pixel [i, j] in different images O′
k of

multifocal image {O′
k}

n
k=1. This pixel is better focused in the left image O′

k. Amplitude spectra

are in negative, i.e., the highest values of the amplitude spectrum are black.

a multifocal image composed of twelve images (the second, the fourth, the eighth,
and the tenth are shown in Figure 1). This image O′

0 is called the compositional
image and it is possible to define it as

O′
0 : M → N, where O′

0(i, j) = k ⇐⇒ C
(k)
i,j = max

l=1,2,...n

{
C

(p)
i,j

}
. (3.2)

Note that [i, j] ∈M = {0, 1, . . . , w−1}×{0, 1, . . . , h−1} as in Section 1. A focused
2D image F is subsequently constructed from maximally focused pixels

F : M → R ⊂ R, where F(i, j) = O′
k(i, j) ⇐⇒ C

(k)
i,j = max

l=1,2,...,n

{
C

(p)
i,j

}
. (3.3)

(see Figure 6).

3.4. 3D processing

In the previous section, we used the focusing criterion only as a qualitative char-
acteristic – based on the maximum, we assigned an optical cut to each pixel. In
the 3D reconstruction, we can assign the same height to all pixels that belong to
one optical cut. In this way, we can obtain n levels from n focal images (see [9]
and [10] for example). This method is called the Method of Constant High Cuts.

Figure 7 shows a 3D reconstruction of data whose sample is in Figure 1. The
difference between this method and Greenberg and Boyde is that Fourier transform
(Section 3.3) was used for detection of optical cuts.

Thanks to the focusing criterion described above, we can use even classical
instruments (a standard microscope or a CCD camera) for much higher quality
3D reconstruction.

The radius of the Euclidean trace and wave trace of the point depend on the
distance of this point from the sharpness plane. The radius of these traces increases
with the distance from the sharpness plane. The focusing criteria parameters are
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Figure 5. Compositional image O′
0. Optical cuts detected by expression (3.1). Different colors

show different images of the multifocal image as the sharpest images in the image set.

changed accordingly. Analyzing the focusing criteria parameters for all images in
the multifocal image we can determine this distance for each pixel more precisely
than in Section 2.2. In this way, it is possible to obtain a 3-D object profile very
easily.

We assume that the value C
(k)
ij of the focusing criterion in the particular image

O′
k is inversely proportional to the radius d

(
S(E)
P

)
of the Euclidean trace S(E)

P of

the point P , which is observed in physical pixel P (i, j) in the Euclidean scanning
M(E).

Let us consider a sequence M(E)
k , k = 1, 2, . . . , n, of Euclidean scannings that

formed a multifocal image {O′
k}

n
k=1. Optical cuts M(E)

k (Zk) of particular images
O′

k are images of zones of sharpness Zk with planes of sharpness ωk, k = 1, 2, . . . , n.
Let ωr be a plane of sharpness and let the points P1, P2 lie in the zone of sharpness
Zr according to Figure 8.

Next, consider the plane of sharpness ωs of the zone Zs, s 6= r. For the dis-
tances h(s)(P1), h(s)(P2) of points P1, P2 ∈ Zr from plane ωs it holds h(s)(P1) <

h(s)(P2), which means that C
(s)
P1

> C
(s)
P2

. Let us denote C
(s)
sup = sup

P∈Zr

{
C

(s)
P

}
,
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Figure 6. Focused image composed from a multifocal image {O′
k}

12
k=1 (four images of them are

shown in Figure 1). Optical cuts were detected by expression (3.1), image was composed by

expression (3.2).

C
(s)
inf = inf

P∈Zr

{
C

(s)
P

}
, which means that

C
(s)
P = C(s)

sup ⇐⇒ h(s)(P ) = h
(s)
inf (P ) = inf

PZr

{
h(s)(P )

}
,

C
(s)
P = C

(s)
inf ⇐⇒ h(s)(P ) = h(s)

sup(P ) = sup
P∈Zr

{
h(s)(P )

}
.

We assume that the value of C
(s)
P is inversely proportional to the distance h(s)(P )

of point P ∈ Zr from plane ωs for every P ∈ Zr and, therefore,

h(s)(P )− h(s)
inf

h
(s)
sup − h(s)

inf

=
C

(s)
sup − C(s)

inf

C
(s)
P − C(s)

inf

.

Since

h
(s)
inf =

(
|r − s| − 1

2

)
·∆z, h(s)

sup =

(
|r − s|+ 1

2

)
·∆z,

it holds that

h(s)(P ) =
C

(s)
sup − C(s)

inf

C
(s)
P − C(s)

inf

+

(
|r − s| − 1

2

)
·∆z, (3.4)

where ∆z is the height of the zone of sharpness. This method enables us to
calculate the height of each point P with a precision higher than ∆z

2 . Figure 9
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Figure 7. 3D reconstruction of a preparation by means of the Method of Constant High Cuts.

A multifocal image with n = 12 (see Figure 1) was obtained by a CCD camera, optical cuts
identified with the method described in Section 3.3.

shows a 3D reconstruction of the same object from the same number of cuts
(n = 12) as in Figure 2 and 7. The quality of this reconstruction is similar to that
of the reconstruction of the same object as obtained with a confocal microscope
using the Method of Constant High Cuts for n = 150 (Figure 10).

4. Conclusion

Reconstructions of three-dimensional object surfaces are an important task in
many branches of research. Even though the standard method of imaging object
surfaces is the use of confocal microscopes, there are methods that use optical mi-
croscopes and sophisticated post-processing methods for 2D and 3D reconstruction
of objects. This enables us to obtain results similar to this from a confocal mi-
croscope with equipment by orders less expensive. This paper summarizes these
methods introducing more precise methods both for 2D and 3D reconstruction
based on the Fourier transform. In this way, we can obtain results similar to
images from confocal microscopes with affordable and much less expensive instru-
ments.
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Figure 8. Illustration to computing the distance h(s)(P ) of point P from plane ωs.

Figure 9. 3D reconstruction of the multifocal image with n = 12 by means of Equation (3.4).

Acknowledgement. The authors thank prof. Tomáš Ficker from the Faculty
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Figure 10. 3D reconstruction from a confocal microscope obtained with the Method of Constant
High Cuts for n = 150.

References

[1] K. B. Benson, Television Engineering Handbook, 2nd ed., McGraw-Hill, New York, 1986.
[2] M. Druckmüller and P. Heriban, Scientific Image Analyser DIPS 5.0, SOFO Brno, 1996.
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