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ABSTRAKT 

Táto práca sa zaoberá rozpoznávaním výstrelov a pridruženými problémami. Ako prvé je 

celá vec predstavená a rozdelená na menšie kroky. Ďalej je poskytnutý prehľad 

zvukových databáz, významné publikácie, akcie a súčasný stav veci spoločne s 

prehľadom možných aplikácií detekcie výstrelov. Druhá časť pozostáva z porovnávania 

príznakov pomocou rôznych metrík spoločne s porovnaním ich výkonu pri rozpoznávaní. 

Nasleduje porovnanie algoritmov rozpoznávania a sú uvedené nové príznaky použiteľné 

pri rozpoznávaní. Práca vrcholí návrhom dvojstupňového systému na rozpoznávanie 

výstrelov, monitorujúceho okolie v reálnom čase. V závere sú zhrnuté dosiahnuté 

výsledky a načrtnutý ďalší postup. 

KĽÚČOVÉ SLOVÁ 

Výber príznakov, šum, rozpoznávanie výstrelov, linearárne prediktívne kódovanie, 

kepstrálne koeficienty, zvuková databáza 

 

 

ABSTRACT 

This work deals with gunshot recognition and problems connected to it. Firstly, the 

problem is briefly introduced and broken down to smaller steps. Next, overview of 

datasets is provided, relevant information sources and publications in this field, and state-

of-the-art along with possible applications of gunshot recognition. The second part 

consists of feature selection and performance comparison. Next, sound recognition 

algorithms are introduced and compared, along with novel features suitable for gunshot 

detection. The work culminates in creating two stage gunshot detection system, with real 

time audio event detection. The conclusion sums up achieved results and sketches 

possible steps to consider for hardware realization. 

 

KEYWORDS 

Feature selection, noise, gunshot recognition, linear predictive coding, mel-frequency 

cepstral coefficients, audio dataset 
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INTRODUCTION 

Sound classification is a process of categorization of different sounds into classes that 

share common features. It is used with various types of sounds, ranging from automatic 

recognition of music genre, speaker and spoken content recognition to acoustic analysis 

of industrial processes and recognition of natural and artificial sounds (such as 

disturbances in environment or gunshot detection).  

The main motivation for this work was an effort to develop a reliable gunshot 

detection algorithm with low computational demands. This algorithm would then be 

incorporated into tracking collars for protected wildlife and is supposed to prevent 

poaching by alerting authorities about illegal activities. Similar efforts were undertaken 

by other researchers using microphone arrays in protected parks. 

Sound recognition comes in multiple steps. First of all, dataset representing sounds 

to be distinguished must be obtained. After the data is acquired and properly labeled, 

suitable features should be calculated. Those are supposed to sufficiently distinguish 

between various classes, this equals to low variability inside class and high variability 

between classes, which can be expressed as mutual information. Among frequently used 

features in sound event detection are mel-frequency cepstral coefficients (MFCC), linear 

predictive coefficients (LPC), various spectral characteristics, such as spectral band 

energy, and recently also MPEG-7 descriptors. While many features have high mutual 

information between them and class label, they can also have high mutual information 

between themselves, resulting in high redundancy and low added information with 

increasing feature count. Many feature extraction and selection methods exist, related to 

this is also dimensionality reduction, which aims to reduce the number of features while 

preserving information content. As an example of such dimension reduction techniques, 

we can name linear discriminant analysis (LDA) or principal component analysis (PCA). 

Ultimately, features are fed to recognition algorithm, which assorts input data into classes. 

Examples of commonly used algorithms are support vector machine (SVM), artificial 

neural networks (ANN) or Naive Bayes classifier. 

The rest of the thesis is structured into two major parts. The first part consists of 

introducing basic theory, demands and methods used. These include basics of acoustics, 

important sources of information and publications in the field of sound event detection, 

demands on datasets and some frequently used datasets. Next, frequently used features 

are introduced, along with various methods of comparing them, and a comparison of their 

effectiveness under clean and noisy conditions. The first part concludes by introducing 

frequently used algorithms in sound event recognition. The second part consists of the 

contributed work itself. It presents newely proposed features and compares them to some 

previously used features. It also proposes a system for real-time event detection with 

preliminary categorization into isolated gunshots and gunshot bursts which uses fast and 

well established algorithms. Secondly, it proposes advanced algorithms, which use new 

features and are also more computationally demanding, to further refine preliminary 

results and increase their accuracy and reliability. 
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1 ACOUSTICS 

This chapter is divided in two sections, the first one introduces basics of acoustics, its 

units, fundamental laws and behaviour of sounds in natural environment. The other 

describes gunshot acoustics in more detail. 

1.1 General Acoustics 

Sound is characterized as disturbances in pressure level, where pressure is measured in 

Pascal (Pa). Since human hearing is approximately logarithmic, pressure change is often 

measured as sound pressure level (SPL) in decibel (dB) with reference value p0 = 20 µPa. 

Equation (1) shows conversion from Pascal do dB. 

𝐿𝑝 = 20 ∙ log10 (
𝑝

𝑝0
), 

(1) 

where Lp is sound pressure level in dB and p is acoustic pressure in Pascal. 

Since this work deals with gunshot detection, it is important to know sound levels at 

different distances from source. Given sound level LP1 at distance r1, we can calculate 

sound level LP2 at distance r2 with formula (2): 

𝐿𝑝2 = 𝐿𝑃1 + 20 ∙ log10 (
𝑟1

𝑟2
), 

(2) 

formula (3) provides sound pressure p2 at distance r2 given pressure p1 at distance r1: 

𝑝2 = 𝑝1 (
𝑟1

𝑟2
). 

(3) 

Fig. 1 and Fig. 2 depict dependencies from (2) and (3). 

 

Fig. 1 Sound pressure level (dB) vs. distance 

 

Fig. 2 Sound pressure (Pa) vs. distance 
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As noted in [1], the sound level at receiver depends also on other factors apart from 

the source (which entails both initial power and directional characteristic) and distance. 

These are environmental factors (i.e. medium, such as air, water or even solid objects), 

this work focuses on sound propagated in the air. Propagation of audio waves is 

influenced mainly by speed, which itself is influenced among others by: wind, 

temperature (and its gradient), humidity, and obstacles (along with floor), where we have 

to factor in reflections, diffraction, dispersion and absorption. 

Sound of speed in dry air (0%) and 0oC is 331.2 m/s. The speed increases with 

growing density (i.e. propagates faster in water than in air). Due to non-ideal gas in which 

sound propagates, its speed is also decreased with increasing altitude, which causes its 

upward refraction. Formula (4) describes dependence of sound speed on air temperature 

in dry air (0%): 

𝑐𝑎𝑖𝑟 = (331.2 + 0.606 ∙ 𝑇), (4) 

where T is temperature in oC. 

Perception of sound is also characterized by frequency, with human audible spectrum 

lying in between 20 Hz and 20 kHz. The actual audible spectrum is influenced mainly by 

age and also by hearing damage. Sounds below this range are called infrasounds and 

sounds with higher frequency are called ultrasounds. Later in this work we examine 

influence of frequency range considered on accuracy of gunshot detection, and we will 

show that even more strictly limited frequency range achieves very good accuracy in 

gunshot detection. Apart from frequency limitations of human hearing, the audible events 

are also limited by loudness of an event, i.e. pressure variation. Lower limit is called 

“threshold of hearing” and is usually around 20 µPa or 0 dBSPL. Maximum perceived 

loudness is limited by thresholds of pain, around 130 dBSPL and subsequent hearing 

damage. 

Analogous to human hearing, there are various specifications for microphones. First 

of all, we have to consider frequency range in which microphone reliably records sounds 

along with frequency characteristic. There is also microphone sensitivity, where we want 

to know either how much mV will be on the output for a given acoustic pressure in Pa, or 

the pressure can be compared to dB level referenced to 1 volt (i.e. dBV). The upper limit 

for microphones is given by amplifier overload in capacitor microphones, dynamic 

microphones do not have to deal with this issue, since they cannot be overloaded. 

Additionally, we have to consider directivity of microphones. This work is going to 

assume the use of omnidirectional microphones, since the acoustic event can come from 

any direction. 

1.2 Gunshot Acoustics 

This chapter captures the details of gunshot acoustics, describes gunshot waveform and 

provides details about sound levels. 

Gunshot acoustics is being explored for several decades due to its use in forensics, 

while analyzing recordings from crime scenes to determine gunshot signatures and 

possibly also identify weapons used. It is also used in exact gunshot localization, for 

example in sniper localization systems, using microphone arrays.  
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The primary source of sound in gunshots is muzzle blast, which is the sound of 

expanding gases produced after discharging a weapon, this can be partially supressed 

using silencer. Typical muzzle blast lasts around 3 milliseconds and most of the acoustic 

energy is directed the same way as weapon barrel [2]. Weapons with supersonic bullets 

also produce shock wave, which has characteristic waveform, also known as N-wave. 

Shock wave propagates in the shape of cone trailing the bullet (which means no shock-

wave is detected when recording behind the shooter), the angle of cone depends on Mach 

number of the bullet. Above mentioned publication also consider mechanical action of 

the weapon, which include sound of trigger and hammer, ejection of cartridges, etc. 

Mechanical action will not be considered in this work, as these signals are detectable only 

at a very short distance, and this work is dealing with gunshot detection over longer 

distances. Fig. 3 depicts and example of a gunshot (AK-47 assault rifle), featuring shock 

wave and muzzle blast, relative position of shock wave and muzzle blast is given by 

geometry of recording. 

 

Fig. 3 Gunshot (AK-47) waveform 

 

The duration and shape of muzzle blast depends both on ammunition and weapon. 

Shock wave shape is given only by bullet geomoetry and by its speed. More detailed look 

on gunshot waveforms can be found in [3]. However, in reverberant environments, the 

recording can provide more information about the terrain itself than about the weapon, 

since due to impulsive nature of muzzle blast and acoustic shockwave, we basically obtain 

convolution of gunshot signature and surrounding environment [2]. 

As to the sound pressure levels, gunshots are very loud. At around 1m distance, most 

surpass 150 dB [3] with some achieving as much as 167 dB. The measured sound level 

depends not only on distance, but also on azimuth. 

  



 5 

2 SOUND EVENTS DATABASES  

As we have already mentioned, first step in sound recognition is obtaining a properly 

labeled dataset. The following section briefly describes requirements in such datasets and 

then lists several datasets compiled for various purposes. It also separately lists datasets 

containing mainly gunshots, which are less common, and shows our choice of recordings 

for subsequent research. After the data is acquired, suitable features should be calculated 

which sufficiently distinguish between various classes, this equals to low variability 

inside class and high variability between classes, which can be expressed as mutual 

information. While many features have high mutual information between them and class 

label, they can also have high mutual information between themselves, resulting in high 

redundancy and low added information with increasing feature count. Many feature 

extraction and selection methods exist, these will be described and some of them applied 

in chapter 5. Ultimately, features are fed to recognition algorithm, which labels input data 

into classes.  

The following section mentions multiple audio datasets compiled either for various 

sound recognition (such as sound event detection or audio scene classification) purposes 

or compiled for other purposes (such as movie industry), but also usable in the field of 

sound recognition. One subsection is solely dedicated to gunshot datasets, which are 

much rarer. The chapter concludes with information on what dataset used in this work 

consists of and technical information about the dataset, such as sampling frequency. 

2.1 Existing sound event datasets 

In order to make accurate automatic classification algorithm, broad database of sounds to 

be classified is needed. Some databases already exist for this purpose, others are created 

with different motivations (e.g. for movie sound effects). Automatic sound classification 

needs sounds as close to original as possible, this means without compression and 

additional modifications. Some existing databases will be mentioned below. 

For purposes of sound recognition, database focused on urban sounds [4] was 

compiled from freely available, crowdsourced sound effects database - Freesound [5]. 

The compiled urban sound database consists of 10 sound classes (air conditioner, car 

horn, dog bark, drilling, engine, gunshots, playing children, jackhammer, siren and street 

music) with 27 hours of audio, including silent elements. This publication also offers 

taxonomy of urban sounds due to lack of common vocabulary. Another crowdsourced 

internet database, similar to [5], is Soundbible [6], this may contain, apart from real 

sounds, also synthetic and fantasy sounds, so care is necessary when selecting suitable 

recordings. 

Some of the databases are dedicated to domestic and indoor sounds, for example in 

case of fall detection in elderly care. Supported by Netcarity project, this database consists 

of daily activities such as ironing, eating, watching television and their combinations [7]. 

Another database under this project is described in [8], it consists of 450 events with 

approx. 210 falls performed by 13 different actors. In this work, accelerometer and 3D 

camera data were collected for multimodality as well. The latest database in this category 

is based on 6.8 hours of various noises (bangs, crashes, household appliances) and speech 
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(adult male and female, child) labeled as 9 different categories [9]. A special case of 

database is [10], it is focused purely on music. In order to avoid copyright issues, it does 

not contain songs or clips, but only extracted features (such as mel-frequency cepstral 

coefficients - MFCC) associated with individual songs. Due to size of this database 

(approx. 500 GB), user can directly download only 1% sample of randomly selected data, 

full database is accessible as amazon snapshot with detailed instruction provided on 

database website. 

Apart from databases explicitly for scientific purposes, others are compiled and 

accessible. As a fist example, there are “British Library Sounds" [11], which present 80 

000 recordings in various categories (from speech and dialects through world music to 

weather and natural sounds), available recordings are part of 3,5 million sounds held in 

the British Library. Collection of natural sounds in British Library is also described in 

[12]. This database has its origins around year 1900 and many analog recordings were 

subsequently digitized, so recording quality is difficult to estimate, however most 

recordings are digitized with 96 kHz sampling frequency and 24 bit quantization (mostly 

music and speech). This database offers many sounds to listen to for almost everybody 

(depending on copyright laws in given countries for certain recordings), but download is 

limited to staff and students of UK higher and further education institutions. Another 

commercial database [13] is created for movie making purposes, there are both free and 

paid collections consisting of recordings of crowds in different places and ambience 

sounds. Along with [9], DCASE 2016 Challenge used [14] and [15], databases of indoor 

and outdoor sounds and events, both described in [16]. 

Iranian authors Ghaderi and Kabiri use their own sound database in several 

publications dedicated to acoustic fault analysis of combustion engines, such as [17], [18]. 

Dataset consists of 4 cars with 60 recordings of both faulty and normal sounds, resulting 

in 480 engine recordings. Tab. 1 summarizes all of the above described databases. 

2.1.1 Gunshots Databases 

Specialized gunshot sound databases are much scarcer, they are mostly produced for 

military or civil security purposes, in which cases the access is quite difficult. First 

encountered database consists of approximately 800 gunshots and other sounds evoking 

danger (e.g. explosions, car crashes …) [19], but it is available only to INDECT project 

partners, project dealing with intelligent security described in chapter 3. Another database 

consists solely of gunshots and mechanical sounds produced by weapons [20]. It was 

compiled for movie making purposes, however apart from postprocessed version, there 

is also raw version that does not incorporate any modifications and so is viable for our 

purposes. The dataset consists of around 1500 recordings of gunshots and additional 

mechanical sounds, recorded in WAV format with high quality (two audio channels, 

sampling frequency of 192 kHz and 24-bit quantization), as a part of unifying our dataset, 

this was later downsampled as described in the following section. Other works 

incorporating gunshots usually have few isolated examples, usually sourced from open 

sources such as [5] or [6] without compiling dedicated datasets. 
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Table 1 Overview of sound datasets 

Title Date Types Size 

A Dataset and Taxonomy for 

Urban Sound Research [4] 
2014 

Air conditioner, car horn, 

dog bark, drilling, engine, 

gunshots, playing children, 

jackhammer, siren, street 

music 

27 hours audio, 

18.5 hours 

annotated sounds, 

1302 recordings 

Freesound [5] Since 2005 
Recorded and synthetic, 

Various classes 

230 000+ 

recordings 

Soundbible [6] Since 2006 
Recorded and synthetic, 

Various classes 
2000+ recordings 

The Joint Database of Audio 

Events and Backgrounds for 

Monitoring of Urban Areas [19] 

2011 

Speech events, non-speech 

events (from birds to 

gunshots), ambient noises 

~ 800 recordings 

Netcarity Multimodal Data 

Collection [7] 
2009 

Daily activities (eating, 

ironing, watching TV…) 

23.5 hours, 200 

examples/activity 

A hardware-software framework 

for high-reliability people fall 

detection [8] 
2008 

Falls, door slams, 

background noises … 
~ 450 events 

Chime-home: A dataset for 

sound source recognition in a 

domestic environment [9] 

2015 

Speech, percussive sounds, 

broadband noise, video 

games/ TV, background 

noise 

6.8 hours 

The Million Song Dataset [10] 2011 Music – features only 

1 million 

contemporary 

popular music 

tracks 

British Library Sounds [11] - 
Various (speech, ambient 

noises, music …) 
80 000 

Airborne Sound [13] - Ambience, crowds 

50 recordings, 113 

minutes (free 

recordings) 

The free firearm sound effects 

library [20] 
- 

Gunshots, gun mechanic 

sounds 

~ 1500 gunshots, ~ 

1000 gun 

mechanics sounds 

TUT Acoustic scenes 2016, 

Development dataset [14] 
2016 

Indoor and outdoor ambient 

noises (Cafe, library, park, 

beach …) 

~ 10 hours 

TUT Sound events 2016, 

Development dataset [15] 
2016 

Indoor events (dishes, 

glass, object impact …), 

outdoor events (birds, cars, 

banging …) 

108 minutes, 54 

recordings 

Automobile Independent Fault 

Detection based on Acoustic 

Emission Using FFT [17] 

2011 
Healthy and faulty engine 

sounds 

480 recordings (4 

cars, 2 states, 60 

recordings each) 
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2.1.2 Our Dataset 

Our dataset consists of selected audio data from previously mentioned datasets, as well 

as some recordings made by us. The database is divided in two parts. Firstly ambient 

noise, which contain outdoor noises, such as construction site, crowded place or rain and 

indoor noises, for example air conditioning. Second part consists of specific events, these 

include gunshots, breaking glass, cracking wood, barking dogs etc. Tab. 2 summarizes 

sounds in our dataset. Some of the sounds are too subtle or out of context to be used as 

context sounds for our purposes (such as dropping keys or ringing phone), their presence 

is for possible future use. However they can still be used in place of general impulsive 

sounds in absence of other, more suitable sounds. 

All selected sounds were in lossless format (such as .wav or .flac) and using various 

sampling frequencies. For the sake of unity, all sounds were subsampled to 44.1 kHz with 

16-bit quantization, multiple channels were averaged to mono signal and the resulting 

audio was saved in wav format. 

 

Table 2 Dataset compiled from other datasets and our recordings 

Type Noise / Event Quantity 

Crowds indoor Noise 85 minutes 

Outdoor noises (mostly crowds) Noise 37 minutes 

Air conditioning Noise 72 minutes 

Drilling Noise 90 minutes 

Car engine Noise 65 minutes 

Playground Noise 232 minutes 

Jackhammer Noise 90 minutes 

Siren Noise 75 minutes 

Street music Noise 315 minutes 

Car horn Event 108 recordings 

Coughing, throat cleaning Event 40 recordings 

Wood cracking Event 17 recordings 

Barking dog Event 258 recordings 

Door slams Event 20 recordings 

Drawers Event 20 recordings 

Keys dropping Event 20 recordings 

Elephant trumpeting Event 13 recordings 

Gunshots Event 1532 gunshots 

Keyboard Event 20 recordings 

Knocking Event 20 recordings 

Laughter Event 20 recordings 

Phone ringing Event 20 recordings 

Page turning Event 20 recordings 
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Our database is divided into three sections as follows: 1) gunshots from hunting 

weapons, 2) other acoustic events potentially occurring in the elephants’ environment, 

and 3) mixtures of gunshots with other acoustic events. The single category sounds in the 

first two sections are intended for training algorithms while the mixed sounds in the third 

section are more suitable for testing. Gunshot sounds were recorded at different angles 

and distances from the microphone. In total, the largest subset of sounds of the same type 

is represented by 374 gunshots from the assault rifle AK-47. We have investigated the 

similarity of individual gunshots within various classes comparing gunshots from the 

same weapon, the same category (caliber) of weapons and all gunshots together, both in 

the time domain and spectral domain. In all cases, individual gunshots were extracted 

from the recordings using a rectangular window with a length of 30 ms and then, each 

extracted gunshot signal was normalized so that maximum absolute amplitude was equal 

to one, in order to eliminate effects of different intensity of sounds. Subsequently, all 

gunshots were time synchronized by setting the maximum point to be at a specific time 

location, and finally limited to a length of 1024 samples (approx. 23 ms). These 

synchronized gunshot waveforms were stored together in a time-amplitude distribution 

matrix. In statistical processing the mean µ(t) and standard deviation σ(t) were estimated 

sample by sample throughout the whole gunshot duration. Fig. 4 shows a graphical 

interpretation of the distribution matrix, displayed as a grey scale image together with the 

statistical parameters obtained for a subset of 308 gunshots within the class of AK-47s. 

As a part of preprocessing, gunshots originating very far away, having low original 

maximum amplitude (before normalization) were not considered – they would be ignored 

by the sound detector in real signal processing. The darker shade in Fig. 4 means that the 

waveforms are more concentrated around the average waveform. Fig. 5 shows two 

examples of gunshots from AK-47 

 

 

Fig. 4 Gunshot waveforms stacked on top of each other 
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Fig. 5 AK-47 waveform with (left) and without (right) shock wave 

Generally, the muzzle blast has quite a distinctive shape which is known as the N-

wave [8]. In order to characterize this shape, we have statistically observed two significant 

features – the two zero-crossing points close to the main positive peak. Fig. 6 shows the 

distribution of the zero-crossings immediately before and after the peak for AK-47 shots 

in relation to the position of the maximum point given as the zero point on the horizontal 

axis. 

 

 

Fig. 6 Distribution of zero-crossings relative to peak 

To evaluate overall similarity of waveforms between gunshot classes, standard 

deviation curves σ(t) corresponding to the muzzle blast were compared. Tab. 3 shows 

examples of cumulative standard deviations calculated for different gunshot sets both 

including and excluding gunshots originating far away (i.e. ca. 16% of all gunshots). Note 
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that the far-away gunshots having overall low amplitude were also normalized into the 

range –1 to +1. Thus the standard deviations depend exclusively on the shape of gunshot 

waveforms. A lower value of standard deviation means that the individual waveforms are 

more similar to each other. 

 

Table 3 Cumulative standard deviations as similarity criterion 

Weapon 
Without far 

gunshots 

With far 

gunshots 

Assault rifle 

AK-47 
68.7 67.0 

All assault 

rifles 
79.1 79.4 

All weapons 86.3 95.0 

 

These results indicate, as expected, that with increasing variability of weapons 

included, gunshots are less and less similar, the method above aimed to quantify those 

differences. 

In order to investigate spectral characteristics of gunshots, the conventional Fourier 

transform was applied. Fig. 7 shows the magnitude spectra of gunshots from an AK-47 

displayed in the same manner as the waveforms in Fig. 4. In this case, each spectrum was 

calculated only from the muzzle blast without considering acoustic shock. In general, 

gunshot energy is significant at low frequencies. For instance, the average spectrum (blue 

line) covers 90% of energy in the range from 1 to 2024 Hz. In all cases there is a very 

obvious spectral peak located at 561 Hz. 

 

 

Fig. 7 Spectra of gunshots stacked on top of each other 



 12 

Among all tested non-gunshot sounds, the ones with more impulsive character (such 

as cracking branches or thunderstorm) are expected to be more similar to gunshot sounds, 

as opposed to those with stationary character (e.g. rain, idling engine, etc.). However these 

sounds also sometimes contain unpredictable events which can change otherwise 

stationary characteristics. Figures 8-11 illustrate some similarities between a branch crack 

and a gunshot from an AK-47.  

 

Fig. 8 Gunshot waveform 

 

Fig. 9 Gunshot spectrum 

 

Fig. 10 Waveform of branch crack 

 

Fig. 11 Spectrum of branch crack 

 

It can be seen, that both gunshot and cracking branch have visually similar waveform 

and also spectrum. This example in particular shows gunshot spectrum with more dence 

peaks (which is consistent with Fig. 7 where multiple gunshots are shown), while 

cracking branch has peaks spread more far apart. 
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3 INFORMATION SOURCES 

This chapter presents information sources relevant to topics of sound event detection and 

gunshot detection. It briefly lists important conferences and journals, furthermore it 

mentions national and international projects under which gunshot detection or sound 

event detection systems were developed. Final section provides overview of important 

publications beginning in 2000 along with authors and institutions dealing with sound 

event detection or acoustic scene classification. 

3.1 Conferences and Journals 

Papers dedicated to gunshot and audio recognition are usually presented on general audio 

and signal processing conferences or, secondly, on conferences dedicated to machine 

learning and pattern recognition. These conferences present topics such as audio scene 

classification, sound event detection, source separation, audio event localization but also 

speech recognition. Recently, also topics of sound generation are more and more frequent 

with the advent of generative adversarial neural networks (GANs) and Wavenet [21] in 

particular. Below is a short list of conferences at which these papers are published: 

• IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP) 

• IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 

(WASPAA) 

• Interspeech 

• Detection and Classification of Acoustic Scenes and Events (DCASE) 

• International Workshop on Machine Learning and Music 

• European Signal Processing Conference (EUSIPCO) 

• International Workshop on Acoustical Signal Enhancement 

• AES International Conference on Audio Forensics 

• AES International Conference on Semantic Audio 

Among journals, three notable were found, apart from numerous machine learning 

journals: 

• IEEE Transactions on Audio, Speech and Language Processing 

• IEEE Signal Processing Magazine 

• Eurasip Journal on Advances in Signal Processing 

• Eurasip Journal on Audio, Speech, and Music Processing 

• IEEE-ACM transactions on audio speech and language processing 
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3.2 Projects 

Increasing number of national and international projects are dedicated to sound events 

and music recognition. The aims range from allowing multimedia search by audio 

content, recognition of environments where recording took place, but also security 

reasons such as detecting dangerous situation or automated captioning in case of speech 

recognition. 

Gunshot and dangerous sound recognition was part of comprehensive European 

project INDECT, which was dedicated to “development of solutions to and tools for 

automatic threat detection”. Project duration was since January 2009 until June 2014. The 

project was solved by a number of european universities, part of this project was also 

solved in Košice University of Technology, Slovakia . Dangerous sounds dataset was 

recorded there and several important publications dealing with dangerous sound 

identification (gunshots and breaking glass) or specific weapon identification based on 

audio recording originated from the department. 

Netcarity project, which ran for four years since 2007, was dedicated to increasing 

quality of life for elderly people. One of the aims was to develop fall detection algorithm, 

this task was also connected with creating multiple sound effects datasets. 

Ongoing project (2015-2020) number 637422, funded by European Research Council, 

Computational Analysis of Everyday Soundscapes (EVERYSOUND). It is solved by 

audio research group from Tampere University of Technology and its aim is „to develop 

computational methods which will automatically provide high-level descriptions of 

environmental sounds in realistic everyday soundscapes such as street, park, home, etc. 

This requires developing several novel methods, including joint source separation and 

robust pattern classification algorithms to reliably recognize multiple overlapping sounds, 

and a hierarchical multilayer taxonomy to accurately categorize everyday sounds.“ 

3.3 National Projects 

Sound and music processing and recognition is topic of many national grants and projects. 

Below is a list of few examples from USA and United Kingdom, where national projects 

on this topic are abundant. 

• (USA) Sounds of New York City (SONYC) project 

• (USA) Data-Driven Music Audio Understanding 

• (USA) An Integrated Framework for Multimodal Music Search and Discovery 

• (UK) Structured machine listening for soundscapes with multiple birds 

• (UK) Making Sense of Sounds 

• (UK) Audio Data Exploration: New Insights and Value 

• (UK) Machine Listening using Sparse Representations 

Sounds of New York City (SONYC) project is still ongoing project, dedicated to 

monitoring and combating noise and also to “accurate description of acoustic 

environments in terms of its composing sources”. This project collected dataset [4] and 
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established taxonomy of urban sounds. The team also develops sound classification 

algorithms and acoustic monitoring devices. [22] 

Data-Driven Music Audio Understanding is concerned with “extracting 

information from music audio and discovering deeper patterns and structure within it”.  

Project was solved between 2007 and 2011 by the Laboratory for the Recognition and 

Organization of Speech and Audio (LabROSA) at Columbia University (estimated) but 

last publications are from 2008. [23] 

An Integrated Framework for Multimodal Music Search and Discovery is also 

dedicated to music, namely annotation of non-speech audio with descriptive keywords 

and development of methods improving music discovery and search. Project is running 

from 2011 until 2017 (estimated). [24] 

Structured machine listening for soundscapes with multiple birds develops 

methods for recognition of birds in multisource recordings and interactions between them. 

Project duration is 2014-2019. [25] 

Making Sense of Sounds, project “on how to convert these recordings into 

understandable and actionable information: specifically how to allow people to search, 

browse and interact with sounds.” It is focused on on general description of sound in order 

to improve ability to search in comprehensive sound databases. Project duration is 2016-

2019. [26] 

Audio Data Exploration: New Insights and Value, this project dealt with 

automatic environmental sound recognition. It was solved by Audio Analytics Ltd. In 

cooperation with Queen Mary University. Project ran from 2014 until 2015. [27] 

Machine Listening using Sparse Representations aimed to understand ability to 

hear and recognize sounds and introduce new methods for machine listening of general 

audio scenes. Project duration was from 2008 until 2014. [28] 

3.4 Relevant Publications 

Acoustic signals recognition and classification is well established discipline with many 

publications. However most publications are dedicated to speech recognition. This 

section will mention some papers dedicated to event detection and recognition which 

includes feature selection, algorithm design and comparison and also acoustic 

characterization (in gunshots). This summary will deal with works published in 2000 or 

later. 

A. Dufaux published influential paper dedicated to sound recognition in noisy 

environments [29], followed by dissertation which compares different features and 

classifiers under different noise levels [30].  

Several papers were published from Polytechnic University of Catalonia, first author 

A. Temko published papers dealing with event classification, focused on human 

produced, non-speech events in office settings (such as cough, applause, door slams etc.). 

Papers published range from 2005 [31] until 2009 [32]. Next author from the same 

institution is T. Butko, who continues in publishing papers focused on office settings, but 

for the sake of improved accuracy includes also video features. As a first author, his first 

publications date from 2008 [33] and most recent in 2011 [34], in 2013 he co-authored 
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paper on footsteps gait analysis [35]. Both authors publish together with C. Nadeu, who 

deals mostly with speech signals. 

One influential paper on event detection [36] was published by an author who usually 

deals with speech processing. Authors A. Pikrakis and T. Giannakopoulos from 

University of Athens authored (together or separately) several papers on violent content 

detection, including gunshots ranging from 2006 [37] to 2010 [38]. An important author 

in gunshot acoustics is R. Maher from Montana State University. His works date from 

mid-1980’s and deal mostly with music. Works dealing with gunshot acoustics range 

from 2006 [39] to 2016, later he was co-authoring with T. Routh [40]. In 2007, two works 

on gunshot detection were published from Polytechnic University of Milan, one deals 

also with localization [41], the other with noisy environments [42]. In 2008 and 2009 a 

collective of authors from Portuguese INSEC-ID published several papers on non-speech 

audio event detection, among others [43] [44] [45]. Since 2008 University of Illinois 

Urbana-Champaign authors, most notably X. Zhuang published papers on event 

detection. Papers deal with HMM-based detection [46], feature analysis [47], speech and 

non-speech audio events detection [48] and event detection based on visual saliency in 

spectrograms [49]. In the framework of EU project INDECT, team from Technical 

University of Košice published several papers dealing with sound event detection, 

focused on events indicating threat, mostly including gunshots. First publication from 

2010 [50] was continued by others, most notably dealing with features [51][52]. Works 

on this topic continue, with latest at the time of writing being [53]. First notable 

publication from Carnegie Mellon University on acoustic event classification was from 

2005 [54], followed only after 2011 by authors A. Kumar [55][56] and S. Chaudhuri [57]. 

A big number of important papers both on sound event detection and speech processing 

along with other tasks, such as audio source separation or localization come from audio 

research group on Tampere University of Technology, led by T. Virtanen. Among the 

most recent papers dealing with event detection are [58][59] or [60]. 

  



 17 

4 APPLICABILITY OF GUNSHOT 

RECOGNITION 

Gunshot detection and recognition has wide applicability, apart from obvious military 

purposes. Gunshot sounds are connected with threat, so gunshot detection in populated 

areas can be connected with law enforcement such as in INDECT project [50], be it in 

general area detection to alert police or connected with localization (angle and distance) 

for forensic purposes. Extended gunshot recognition, such as gun type or ammunition 

used can also be used for forensic purposes [61]. Apart from open-air detection, detection 

from recordings (such as telephone calls) was considered [39][41]. 

Illegal use of weapons is problem not only in cities but also in the wilderness. Some 

papers deal with this problem in order to protect wild animals from poachers. It can be in 

the form of microphone arrays [62] or special modules used together with tracking collars 

[63]. These devices differ slightly in their requirements from those used in cities in their 

need for lower power consumption (due to limited ability to change batteries or inability 

to use power grid), which comes from lower computational demands and low false alarm 

rate (due to increased difficulty of checking frequent false alarms). 

Apart from these uses, acoustic events detection can be used in general audio 

discovery in media [64] or content annotation and classification in action movies or 

recordings [37]. 

Fig. 12 presents wide applicability diagram for real-time detection and recognition. 

Fig. 13 shows possible uses for recordings, military purposes are not included. 

 

 

Fig. 12 Real-time applicability 
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Fig. 13 Applicability in recordings 

4.1 State-of-the-Art in Gunshot Recognition 

The comparison of results achieved in audio event detection, and specifically gunshot 

recognition is quite complicated due to isolated nature of work in various institutions. 

First problem is the absence of big, accessible and widely used audio datasets. Various 

authors and research groups record their own datasets or assemble them from 

crowdsourced data or multiple other datasets. Even though they usually continue using 

this dataset and compare the results with their new proposed methods, other authors use 

different datasets and so the results are not consistent. Another problem is, there are 

multiple metrics, such as overall accuracy, recall and precision, or specificity and 

sensitivity, this makes direct comparison of results even more complicated and sometimes 

outright impossible. One big exception to both problems is DCASE challenge, which 

presents dataset for multiple tasks (such as acoustic scene classification or sound events 

detection) and calls upon authors to come up with algorithms that perform best on this 

data using single metric. This chapter will try to list some notable results regardless of 

just presented problems. 

The first work compares several features and measures (correlation against template, 

8th order LPC coefficients, 13 MFCC coefficients and impulsivity measure), the features 

are extracted with 25ms windows over the whole recording, however correlation provides 

just one number per recording [65]. The features that have temporal information (MFCC, 

LPC and impulsivity – since they are extracted over whole recording) are fed to HMM 

with 20 observable states and 8 hidden states. The probability distributions were modelled 

by a mixture of three Gaussians. The correlation is used with simple threshold. This paper 

compares 4 sound classes (gunshot, balloon, speech and clapping) with 22 instances each, 

under different Sound to Noise ratios (SNR), from clean signal to 20 dB SNR. In 

conditions without noise, each measure correctly detected all gunshots, though correlation 

and impulsivity made errors in classifying non-gunshot sounds, sometimes causing false 

positives. Correlation was chosen by the authors as the best measure under noisy 

conditions, at 20 dB SNR gunshot detection was 91% successful with 23% false alarms. 

Paper [37] focuses on violent content classification in movies using audio (presence 
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of gunshots, screams etc.). It is important to note that this approach might not be the best 

in our case, since audio effects in movies are heavily edited and so might be very different 

from real-life gunshots, but the paper can still provide some interesting ideas. The method 

works with individual segments (scenes) divided into W time frames (each 400 ms). 

Scenes are subsequently classified based on feature statistics (6 features with 8 derived 

statistics) extracted from these W frames. Features used include energy entropy, 

amplitude, short-time energy, Zero-Crossing Rate (ZCR), spectral flux and spectral roll-

off. As an algorithm, SVM with 4 different kernel functions were tested, along with 

varying C parameter, which expresses trade-off between training error and margin. The 

polynomial kernel achieved the best performance, achieved results are 90.5% correct 

detection and precision of 82.4% on a dataset of total duration 20 minutes with 50% used 

for training and 50% used for testing. Half of the dataset consisted of positive class 

(violent content, such as gunshots and fights) and half of negative class (non-violent 

content such as speech, music or fireworks). 

Gerosa and Valensize [42] achieved successful detection rate of 92% with 10% false 

alarms. Their work aimed to distinguish scream and gunshots from ambient noise. Test 

database consisted of recordings from movies and internet, some live recordings of 

shouting people, ambient noise consisted of recording public square in Milan. Part of 

experiment consisted also of training and testing under different SNR (0 dB to 20 dB with 

5 dB steps). System uses two parallel Gaussian Mixture Models (GMM) classifiers (one 

for gunshots and one for screams) the number of components for each GMM is 

automatically chosen using Figueiredo-Jain algorithm. Each classifier uses subset of 

features chosen from a set of 47 (such as MFCC, PLP coefficients, ZCR or spectral 

features). Feature selection used in this work is a mix between filter methods (that 

evaluate features without considering the classifier) and wrapper methods (that use 

classifier performance as a metric on how useful the feature is). 

Another classifier uses two-stage method, with first stage serving as event detection 

using normalized signal energy. The second, gunshot recognition stage, is using Gaussian 

radial basis function kernel for SVM [66] and achieved 97% True positive rate and 0 false 

negatives in a dataset of 332 gunshots and 102 outsider signals (claps, door slams, talking 

and ticks). Using only 8th order LPC coefficients and correlation. MFCC and linear kernel 

for SVM were also compared, achieving inferior results. 

Paper [67] focused on audio event detection (gunshots (463) and breaking glass 

(150)) in background noise (53 minutes of traffic). This work compares different setups 

of HMM classifier and subsets of features (based on first 13 MFCC and MPEG-7 

descriptors). Feature selection was used considering mutual information of class labels 

and features and also mutual information between individual features. Best results were 

achieved for 3-state HMM with 38 features, achieving 100% recall and 98,33% precision. 

In this work, 90 % of data was used during traning and validation and 10 % during testing 

stages. 
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5 COMPARISON OF FREQUENTLY USED 

FEATURES 

This chapter will present comparison of various features under different conditions, 

including variation of frame length, event position within frame and various noise 

conditions. Observed features include mel-frequency cepstral coefficients (MFCC), 

linear prediction coefficients (LPC) and linear prediction cepstral coefficients (LPCC). 

Performance was evaluated using Matlab Neural Net pattern recognition tool, using 

neural network with one hidden layer with 10 neurons. Data was divided into training, 

validation and testing sets in default proportion 70%, 15% and 15% respectively, using 

random permutations for data division during each training round. 

To represent results, we will be using recall (also known as true positive rate), 

precision (PPV – positive predictive value) and F-score, calculated as shown in equations 

(5), (6) and (7) respectively: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(6) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, 

(7) 

 

where TP (True Positives) is number of gunshots classified as gunshots, P is number of 

all gunshots (Positives), FN is number of gunshots misclassified (False Negatives) and 

FP (False Positives) is number of non-gunshots classified as gunshots. 

To establish baseline performance, Tab. 4 below shows performance (precision was 

used to indicate performance) of features of different orders using frame length of 1024 

samples (approx. 23 ms at 44.1 kHz) which is frequently used frame length in similar 

applications. This table can be used as a starting point to compare results from subsequent 

sections [68]. 

Table 4 Precision (6) of various features with frame length 23 ms [68] 

Number of 

coefficients 

Feature set 

LPC LPCC MFCC 

8 83.3 % 84.6 % 84.4 % 

12 87.8 % 86.3 % 86.9 % 

16 88.5 % 87.4 % 83.4 % 

20 89.3 % 88.4 % 83.2 % 

Average performance 87.2 % 86.9 % 84.5 % 
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5.1 Effects of Frame Length and Position on Feature 

Variability 

This section compares effects of different frame lengths on gunshot recognition and 

explores the effect of frame length and position of audio event in frame on variability of 

features. The aim of this approach is to reveal relevance of given feature to gunshot class. 

Preliminary experiments were conducted using only small number of gunshots, after 

obtaining results, we proceeded to include the whole dataset. In order to investigate 

influence of frame length, gunshot recordings were segmented into frames of lengths 3 

ms, 5 ms, 8 ms and 11 ms, as shown in Fig. 14. As to the event position, gunshots were 

segmented into frames of length 3 ms with 50% overlap as shown in Fig. 15. 

Variability/stability observation consisted essentially of comparing values of coefficients 

under changing conditions. Illustrative results are shown in Fig. 16 and Fig. 17, these 

represent LPC coefficients (which were the most stable from the three sets) of order 20, 

due to space constraints, legends were removed, but individual lines represent individual 

coefficients. 

 

 

Fig. 14 Increasing frame size 

 

Fig. 15 Shifting event position within frame 

 

Fig. 16 shows, with the exception of 5 ms frame, relatively stable coefficients (on 

small dataset), however recognition results were visibly impacted by shortening the frame 

(numeric results of recognition will be presented later). Fig. 17 again shows relatively 

stable coefficients for first three shifts, i.e. while muzzle blast of gunshot is still at least 

partially present in the frame, subsequent shift to a low-energy zone is reflected on the 

value of coefficients. The following steps deal with frame length, due to less difficult pre-

processing. 
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Fig. 16 LPC coefficients (order 20) - increasing frame size 

 

Fig. 17 LPC coefficients (order 20) - shifting frame position 

In the next step, feature performance was estimated for all frame lengths and for 

different orders (8 to 30). MFCC was tested in two ways, MFCC20 column denotes 

features extracted with 20 banks and changing number of coefficients, MFCC column has 

number of filter banks and coefficients extracted equal. 

Figures 18-20 show progressively decreasing recall for different features with 

decreasing frame lengths. Results for frame length of 11 ms are also summarized in Tab. 

5 and Tab. 6. Results achieved for frame length 11 ms for LPC and LPCC achieved results 

very similar to the ones achieved with frame length 23 ms (results compared with Tab. 4 
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[68]) and better than other frame lengths. Thus, we will explore viability of frame length 

of 11 ms in the following tests, unless otherwise noted. Observation also shows, that there 

is no substantial improvement beyond order 12 for LPC or LPCC. 

Initial improvement in performance was observed for MFCC20 with increasing 

number of coefficients, but subsequently random behaviour. MFCC experiences steady 

increase in performance with increasing order (and number of coefficients). Comparison 

of both can be seen in Tables 5 and 6, due to more monotonous behaviour of MFCC (as 

opposed to MFCC20), this approach will be used, unless otherwise mentioned. 

Table 5 Recall (5) for frame length 11 ms 

Order 
Feature set 

LPC LPCC MFCC20 MFCC 

8 84.2 82.1 79.9 77.6 

10 84.6 84.1 81.6 82.4 

12 87.0 84.3 82.8 80.8 

14 86.0 82.9 83.8 85.9 

16 86.3 85.0 85.4 86.5 

18 86.9 83.9 81.1 82.6 

20 86.4 83.4 84.5 85.1 

22 86.7 83.9 78.2 86.2 

24 84.8 83.1 82.9 85.2 

26 85.3 84.4 81.3 86.0 

28 85.7 84.6 84.3 84.5 

30 85.9 83.9 85.8 84.3 
 

Table 6 Precision (6) for frame length 11 ms 

Order 
Feature set 

LPC LPCC MFCC20 MFCC 

8 81.7 84.0 74.3 73.8 

10 85.1 85.5 77.5 76.8 

12 90.3 87.3 82.0 79.2 

14 89.2 88.8 80.1 77.2 

16 89.4 89.3 80.9 80.4 

18 90.0 89.0 79.9 81.9 

20 90.3 87.2 78.9 81.8 

22 89.9 89.3 81.3 82.2 

24 89.8 87.8 81.3 83.0 

26 89.3 88.0 81.9 82.0 

28 90.9 88.1 81.7 84.8 

30 89.1 88.9 77.8 84.5 
 

 

 

Fig. 18 Recall (5) of LPC coefficients of various orders for different frame size 
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Fig. 19 Recall (5) of LPCC coefficients of various orders for different frame size 

 

Fig. 20 Recall (5) of MFCC coefficients of various orders for different frame size 

Figures above conclusively show, that 3 ms frame is insufficient. Recall difference 

between 11 ms and 8 ms frames is marginal, what suffers during this reduction is 

precision. With reducing frame size from 8 ms to 5 ms precision remains roughly the 

same, while recall diminishes. As noted above, these are the reasons why we choose 11 

ms frame size for subsequent experiments. 

In the following part, feature variability with respect to frame length was compared. 

In this step, only gunshot sounds were used (1532 from various weapons, distances and 

angles). Features were extracted from all sounds using various frame lengths, they were 
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then compared and the most invariant was chosen.  

Two methods were used, first, absolute differences between individual features were 

compared. Calculation of difference is shown in equation (8): 

 

∆𝑚
̅̅ ̅̅ =

∑ ∑ (𝑎𝑚,𝑘,𝑝+1 − 𝑎𝑚,𝑘,𝑝)𝑃−1
𝑝=1

𝐾
𝑘=1

𝐾(𝑃 − 1)
, 

(8) 

 

where m is series index of coefficients, 1≤m≤30, k is gunshot index, p is index of frame 

position, and am, k, p are corresponding coefficients. Variability of best 3 coefficients (i.e. 

coefficients with the lowest variability calculated with (8)) from each order were summed 

and compared with other orders, Tab. 7 below shows results. When changing number of 

best coefficients during evaluation (e.g. considering 5 coefficients instead of 3), best 

feature order may vary. 

 

Table 7 Best feature orders and coefficients using absolute values 

Feature Best order Best 3 coefficients 

LPC 30 

30 

29 

28 

LPCC 8 

3 

1 

5 

MFCC 26 

24 

23 

21 

 

Apart from LPCC, according to this criterion, best coefficients were those with 

higher coefficient number (and consequently also feature order), this is probably due to 

much lower value range these coefficients acquire. 

Subsequently, similar test was used, only with relative differences of features, 

calculated as shown in equation 9, dividing difference by average value of the two 

coefficients. This might offset different value ranges accross various coefficient indices 

and thus offer more unbiased view. 

 

∆𝑚
̅̅ ̅̅ =

∑ ∑
(𝑎𝑚,𝑘,𝑝+1 − 𝑎𝑚,𝑘,𝑝)

(𝑎𝑚,𝑘,𝑝+1 + 𝑎𝑚,𝑘,𝑝)
𝑃−1
𝑝=1

𝐾
𝑘=1

𝐾(𝑃 − 1)
, 

(9) 

 

Tab. 8 shows achieved results of rating by relative feature importance. The table presents 
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best feature order in 3 different feature categories and 3 best feature indices for each 

feature and feature order combination. In contrast with Tab. 7, we can see that most 

important coefficients (with one exception in MFCC) are concentrated among the first 

coefficients. We will see that this is in accordance with mutual information criterion and 

subsequent recognition performance. 

 

Table 8 Best orders and coefficients using relative values 

Feature Best order Best 3 coefficients 

LPC 8 

1 

2 

3 

LPCC 10 

1 

3 

2 

MFCC 22 

1 

2 

21 

 

Since recognition performance is not significantly impacted beyond feature order 12, 

the real problem is choosing correct coefficients, instead of choosing order. To evaluate 

which of the two measures is better, feature performance will be tested using neural 

networks. Additionally, mutual information between class label and feature value will be 

calculated, as shown in (10). This measure reflects relevance of the feature in 

classification process for given classes. 

 

𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑥𝑖 , 𝑦𝑗) ∙ log
𝑝(𝑥𝑖 , 𝑦𝑗)

𝑝(𝑥𝑖) ∙ 𝑝(𝑦𝑗)
,

𝑖,𝑗
 

(10) 

 

where I(x,y) is mutual information, p(xi) if probability distribution of features, p(yj) is 

probability distribution of classes and p(xi,yj) is joint probability. Computation was 

realized using Matlab function kernelmi (available on mathworks file exchange) with 

logarithm base 2, which uses kernels to estimate mutual information between continuous 

random variables. Due to memory constraints, this part uses 1532 gunshots and only 

10000 segments of other sounds randomly picked from initial dataset. In this step, we are 

not dealing with mutual information between individual features, this means redundancy 

will affect information gain and so it will also negatively affect recognition performance, 

when adding features. Tab. 9 summarizes best results of mutual information tests for all 

feature sets. Mutual information was calculated according to (10) shown and explained 

above. For now, no mutual information between features was examined. 
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Table 9 Best orders and coefficients – Mutual information (10) 

Feature Best order Best 3 coefficients Mutual information [bit] 

LPC 30 

5 0.4789 

4 0.4741 

6 0.4665 

LPCC 30 

2 0.4132 

1 0.3535 

4 0.2298 

MFCC 28 

1 0.2883 

2 0.1378 

3 0.1274 

 

In general, the most mutual information was concentrated in lower coefficients. In 

LPCC and MFCC, mutual information quickly decreased with increasing feature index, 

decrease in LPC was less dramatic, but still present. 

Fig. 21 to 23 present performances represented by F-score of all coefficient sets 

chosen by different methods. X-axis represents number of coefficients, Y-axis is F-score. 

Feature order depends on which order was chosen as best by each method. The following 

methods were tested: absolute and relative stability, mutual information between features 

and class labels (in legend labeled as “MI”) and, for reference, simple increase from 1 to 

30 (in legend labeled as “increase”). 

 

 

Fig. 21 F-score (7) of different number of LPC coefficients for various selection methods 
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Fig. 22 F-score (7) of different number of LPCC coefficients for various selection methods 

 

Fig. 23 F-score (7) of different number of MFCC coefficients for various selection methods 

Closeness of results obtained by “MI” and “increase” might be explained by the fact, 

that low index coefficients have high mutual information with class labels. Relative 

stability exhibits slightly worse but still comparable results while absolute stability 

attained the worst results, probably because lowest absolute differences are concentrated 

in higher index coefficients, which according to (10) have comparably lower mutual 

information with class label than lower index coefficients. 

Overall, all features achieved similar results with MFCC being slightly worse and 

requiring more features than LPC and LPCC. 
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5.2 Comparison of Various MFCC Settings 

As a next step, we investigated extraction of MFCC coefficients, which has a lot of 

possibilities for modifications. Firstly, we describe the usual proces of MFCC extraction, 

then we briefly describe the dataset used for the tests. Afterwards, we describe 

preprocessing and postprocessing and methods of modification of extraction proces, and 

finally present and discuss results. 

The MFCCs calculated according to the standard approach are described in [69]. 

First, a decadic logarithm of power spectrum is calculated (11): 

𝑃(𝑘) =  log10 (|𝐹𝑇(𝑠(𝑡))|
2

), (11) 

where |FT(s(t))|2 is a square of magnitude of Fourier transform of input signal (that is, 

power spectrum). Afterwards, using N filter banks, usually with triangular shape, defined 

by (12) we filter the signal obtaining N frequency bank energies Xn (13). 

 

𝛷𝑛(𝑘) =  0                    ,   for 𝑘 < 𝑘𝑏𝑛−1
 

(12) 

𝛷𝑛(𝑘) =  
𝑘 − 𝑘𝑏𝑛−1

𝑘𝑏𝑛
− 𝑘𝑏𝑛−1

,  for 𝑘𝑏𝑛−1
≤ 𝑘 ≤ 𝑘𝑏𝑛

 

𝛷𝑛(𝑘) =  
𝑘𝑏𝑛+1

− 𝑘

𝑘𝑏𝑛−1
− 𝑘𝑏𝑛

,  for 𝑘𝑏𝑛
≤ 𝑘 ≤ 𝑘𝑏𝑛+1

 

𝛷𝑛(𝑘) =  0                     , for 𝑘 > 𝑘𝑏𝑛
 

 

where n is the index of filter bank, k is index of spectral coefficient, 𝑘𝑏𝑛
 is filter boundary 

of n-th filter and 𝛷𝑛(𝑘) is transfer function of n-th filter. The example above is a set of 

equations for traingular function, however other functions shapes are described below. 

𝑋𝑛 = 𝑃(𝑘)𝛷(𝑘). (13) 

Where Xn is energy in n-th bank and P(k) is power of k-th spectral coefficient. 

Filter banks are usually defined on nonlinear mel scale (this concept will be 

challenged in one of the first experiments in the chapter). Frequency in Hz is converted 

to mel-frequency by (14); this relationship also called Hertz to mel warping function is 

shown in Fig. 24. 

 

𝑓𝑚𝑒𝑙 =  1127 ∙ 𝑙𝑛(1 +
𝑓

700
) 

(14) 
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Fig. 24 Frequency scale conversion from Hz to mel 

 

Filter boundaries are then defined by (15): 

𝑘𝑏𝑛
= 𝑓𝑚𝑒𝑙𝑙𝑜 + 𝑛 ∙

𝑓𝑚𝑒𝑙ℎ𝑖 − 𝑓𝑚𝑒𝑙𝑙𝑜

𝑁 + 1
, (15) 

where fmello and fmelhi is lowest and highest frequency in mels. 

Finally, a discrete cosine transform is applied to the filter bank energies (16), 

resulting in a set of M coefficients. 

 

𝑐𝑚 = ∑ 𝑋𝑛 ∙ cos(
𝜋

𝑁
𝑚(𝑛 − 0.5))

𝑁

𝑛=1
, for   m = 1, 2, … , M.  (16) 

These steps are sometimes preceded by applying preemphasis during preprocessing stage, 

which can be realized by simple FIR filter. During postprocessing, cepstral liftering is 

sometimes applied. 

We used GUDEON [70] dataset to generate audio for these experiments. We have 

used all 1532 gunshots and added 90% probability of added noise (consisting of various 

other recordings, with amplitude of at least 0.1). Non-gunshot recordings consisted of 

2451 recordings of random non-gunshot sounds (with amplitude of at least 0.1). We used 

60% of the data for training, 20% for validation and 20% for testing. Random data 

division was used respecting original ratio of ca. 40% gunshots and 60% non-gunshots 

for each subset. Fully connected feedforward neural networks with 1 hidden layer 

(consisting of 10 neurons) was used together with mean normalization, neural networks 

were implemented in Matlab. 

Preprocessing before MFCC extraction consisted of dividing audio into non-

overlapping frames of 11 ms (486 samples at sampling frequency 44.1 kHz) using 
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rectangular window. Frames were subsequently resampled to 192 kHz and truncated to 

2048 samples (from 2116 samples). After calculation of power spectrum, we have 

upsampled the spectrum 10x (resulting in 20480 frequency bins) in order to calculate low 

index coefficients using more samples than just one. Pre-emphasis as a part of 

preprocessing was turned off, as was cepstral liftering in postprocessing. 

In this experiment, we have investigated the influence of variation of frequency 

bandwidth, number of filter banks, filter shapes, frequency scale (mel vs. linear) and 

finally MFCC order on correct gunshot recongition. Apart from this, we have also 

investigated the influence of audio normalization on recognition performance. F-score 

was used as a metric along with true positive rate (TPR) and true negative rate (TNR). 

The baseline setup against which we compared the results was MFCCs of order 12 

with bandwidth 1 Hz – 4 kHz, containing 24 triangular filter banks on a scale strictly 

linear until 1 kHz and mel afterwards (later called „linear/nonlinear“). Firstly, we 

compared these results to different frequency scales (linear scale, mel scale), with results 

presented in table 10. 

 

Table 10 Comparison of baseline setup with different frequency scales 

Frequency scale 
Metric 

TPR TNR F-score 

Linear/non-linear 76.8 % 83.3% 75.4 

Linear 72.2 % 86.3 % 74.4 

Non-linear 75.5 % 84.1 % 75.1 

 

In this case, results do not show any significant differences for various scales. Later 

results show very similar results for linear/nonlinear scale and mel scale, and, in some 

cases, improvement in recognition with linear scale. Table 11. below looks into how 

changing maximum frequency changes the results, with other options unchanged (using 

linear/non-linear scale). In this case, we use 24 filter banks for all frequencies, which 

results in filters with more bandwidth for higher frequencies. The results do not show any 

significant differences for various maximum frequencies, however later results with other 

configuration changed show that maximum frequency of 4 kHz does not achieve as good 

results as the rest, especially for lower MFCC order. 

 

Table 11 Comparison of baseline setup with different bandwidths 

Bandwidth 
Metric 

TPR TNR F-score 

4 kHz 76.8 % 83.3 % 75.4 

8 kHz 73.9 % 84.7 % 74.5 

12 kHz 72.5 % 85.9 % 74.4 

16 kHz 74.2 % 85.1 % 74.9 
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Table 12 tries setup similar to Table 11., but using different number of filter banks 

for each maximum frequency, so that bandwidth of all filters is the same. We can see 

slight improvement in performance for 8 kHz bandwidth using this setup. 

 

Table 12 Comparison of baseline setup with different bandwidths and filter bank count 

Bandwidth Number of filter banks 
Metric 

TPR TNR F-score 

4 kHz 24 76.8 % 83.3 % 75.4 

8 kHz 32 79.4 % 84.5 % 77.8 

12 kHz 37 74.5 % 85.1 % 75.1 

16 kHz 41 74.2 % 84.9 % 74.8 

 

Next experiment was similar to previous one, but here, we are using MFCC order 

equal to the number of filter banks. Tab. 13 summarizes the results, with 4 kHz bandwidth 

experiencing the most significant plunge in recognition performance, while other setups 

experience less pronounced, but still significant decrease.When MFCC order is too high, 

the performance tends to be lower than for lower orders. Possibly because too many 

features add noisy character to the data, another reason might be too big ratio of 

coefficients to filter banks (which is 1 in this case, 0.5 in Tab. 11 and even lower in Tab. 

12, depending on the bandwidth chosen). 

 

Table 13 Comparison different bandwidths and filter bank count – maximum number of 

coefficients 

Bandwidth 
MFCC order = number 

of filter banks 

Metric 

TPR TNR F-score 

4 kHz 24 28.4 % 97.6 % 42.9 

8 kHz 32 70.9 % 82.9 % 71.5 

12 kHz 37 70.9 % 85.7 % 73.2 

16 kHz 41 69.6 % 81.4 % 69.8 

 

In another test, we used setup with maximum frequency of 8 kHz and 32 filters, 

which achieved the best results so far. And we investigated the influence of MFCC order 

on recognition performance. Due to bigger amount of data, table is not longer viable and 

results are depicted in Fig. 25. This tests shows that lower MFCC orders perform better 

and there is gradual decrease with increasing order (with significant anomalies for both 

nonlinear scales). Other tests support this when MFCC orders of up to 12 achieve the best 

results and further increase shows worse results. These results are also consistent with 

other features, where increasing feature order above certain value results in decreasing 

recognition performance. 
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Fig. 25 Gunshot recognition with increasing MFCC order 

Some publications [71] experiment with various shapes of filter banks in order to 

increase recognition performance. The following test compares different filter shapes. 

The results achieve similar F-score, however exponential filter performs slightly better in 

terms of True Negatives, while triangular filter performs the best for True positives. 

Tab. 14 shows these results. 

 

Table 14 Comparison of various filter bank shapes 

Filter shape 
Metric 

TPR TNR F-score 

Triangular 76.5 % 84.5 % 76.0 

Rectangular 74.5 % 83.7 % 74.2 

Gaussian 75.2 % 84.7 % 75.3 

Gammatone 74.8 % 84.1 % 74.7 

 

Furthermore, Tab. 15 provides detailed comparison of various exponential filters 

based on [71]. All filters in tab. 15 are based on lower portion (x<0) of exponential 

function, s parameter describes the steepness of the function as described in [71], +1 

described increased base of exponential filters. 
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Table 15 Comparison of exponential filter banks with different parameters 

Filter shape 
Metric 

TPR TNR F-score 

Exponential, s=1 71.9 % 87.1 % 74.7 

Exponential, s=2 72.5 % 83.7 % 73.0 

Exponential,s =1, +1 72.9 % 86.3 % 74.8 

 

Frequency scale influence was investigated at the beginning of the section, however 

its effects combined with various orders were not examined. Next experiments consisted 

in testing performance of different MFCC orders when using different maximum 

frequencies, both for linear/nonlinear scale (Fig. 26) and for linear-only scale (Fig. 27). 

Linear-only scale performs slightly better and (except for order 22) does not contain 

performance anomalies such as 12 kHz performance for linear/nonlinear scale. The 

reason why these anomalies appear was not discovered. 

We have tried to correct the anomalies by normalizing audio signal so that maximum 

value in every frame is 1, which resulted in no performance anomalies, but performance 

in general was significantly decreased (by approx. 7%). 

 

 

Fig. 26 Comparison of performance for different orders and bandwidths with linear/nonlinear 

scale 
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Fig. 27 Comparison of performance for different orders and bandwidths with linear scale 

As could be seen throughout the experiments, the results for lower feature orders do 

not change dramatically with increasing bandwidth for filter banks. This conclusion is 

consistent with previous finding, that most of the energy in gunshots is concentrated in 

lower frequency bands. Another conclusion would be, that increasing feature order 

usually causes recognition performance to decrease, or at least the performance does not 

experience further increase. An important factor is also a ratio of feature order to number 

of filter banks, where ratio around 0.5 performed the best. Regarding filter shapes, most 

of them achieved comparable results, but it is possible that some filter shapes result in 

better true positive rate, while other achieve better true negative rates, at least in gunshot 

recognition task. 

As a result, we conclude that it is better to use linear frequency scale. The best 

performing bandwidth appears to be 1 Hz – 8 kHz, with 32 triangular filter banks. We 

have chosen MFCC order 8 to be used during further experiments with real-time gunshot 

detection. 

5.3 Effects of Noise Levels and Types 

Until now, all sounds used in experiments contained no additional noise, apart from noise 

present during recording and the noise introduced by recording devices and processing. 

In this chapter, performance of previously used features under adverse noise conditions 

is investigated. 

During the tests, multiple noise types and noise levels were used. White noise was 

chosen because of its spectral characteristics, and widespread use of white noise during 

testing. Additionally, sounds were combined with sound of rain and sound of idling 

engine, which also served as noises, under various SNR. Waveforms and spectra of those 

additional noises are shown in Fig. 28 to 31, it can be seen, that rain has wider spectrum 

while spectrum of engine is concentrated in low frequencies, with most energy 
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concentrated below 1 kHz. Signal-to-noise ratios (SNR) were set to 0 dB, 10 dB, 20 dB 

and 30 dB. During tests, recordings with equal amount of noise were used both for 

training and for testing. Paper [42] compares results when using different SNR for 

training and testing sets. 

 

Fig. 28 Engine in time domain 

 

Fig. 29 Engine in spectral domain 

 

Fig. 30 Rain in time domain 

 

Fig. 31 Rain in spectral domain 

Figures 32 to 34 show F-score for all features with different orders and signal-to-

noise ratios. At 30 dB, LPC and LPCC achieve similar results, while MFCC shows 

inferior results. With SNR decreasing to 20 dB and 10 dB, LPC and LPCC F-score 

significantly decreases, at the same time, MFCC keeps roughly original values, which are 

even better than those of other features. At 0 dB, LPCC experiences significant decline 

with growing order, which results from decrease in precision (not so much recall). MFCC 

and LPC achieve comparable results, with LPC achieving better results at recall and 

MFCC at precision. Results in this chapter are based on [72]. 
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Fig. 32 F-score (7) of LPC coefficients of various orders for different SNR 

 

Fig. 33 F-score (7) of LPCC coefficients of various orders for different SNR 

Recognition performance of LPC and LPCC for high SNR ratio sis mostly flat 

throughout whole feature order range. However with decreasing SNR, more random 

character is visible, reminiscent of MFCC, this is especially true of LPC, while LPCC 

keeps its monotonous character much better. 
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Fig. 34 F-score (7) of MFCC coefficients of various orders for different SNR 

Overall, similar results as in previous steps were observed, that increasing feature 

order beyond certain point does not significantly influence recognition performance. The 

only exception being LPCC at 0 dB, where recognition performance dramatically 

decreases, this might be attributed to their increased noise sensisitivy in comparison with 

LPC or MFCC. Trends under degradation with engine and rain sounds were similar to 

white noise, but the degree was slightly different. 

5.4 Feature Performance Comparison Based on 

Distributions 

We propose a novel approach to feature comparison that, to our knowledge, was not 

presented elsewhere. The approach consists in comparing feature mean and actual values 

for multiple categories. The proposed output would be area under negative part of fitted 

distribution, which represents percentage of misclassified segments. Below, we describe 

the method in greater detail and provide some outputs. Please note, that these outputs 

were only tested for three categories (gunshots, barking dog and car horn) so they might 

provide more extreme values and with added categories, results might be more 

continuous. 

In the first step, mean (and for later use also standard deviation) of examined features 

from all recordings is calculated – we tested this approach with LPC coefficients of even 

orders 8 through 30. Then, one feature and one category is selected. Feature values of 

individual recordings are then calculated and the distance to mean value from that 

category and nearest other category are compared. Histogram of such data gives us 

information on quantity of data closer to negative class. In order to quantify classification 

capacity, we proceed to fit the histogram with distribution and measure area under 

negative part (i. e. values closer to incorrect class).  
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As to the choice of proper fit, we turned to function from mathworks file-exchange 

webpages for „allfitdist“ function. This function takes data as an input and fits various 

distributions to it, then compares Bayesian Information Criterion (BIC), or other metric 

of choice, and establishes best fits. For now, we use different distributions for different 

runs, but we consider using only one distribution for all fits for better comparison. Table 

16 shows information provided by our function for gunshot category (feature order 30, 

feature index 20). Column „Distribution“ lists 4 best distributions according to BIC 

(second column) – the lower the BIC, the better the fit is. Third column, „Negative Area“ 

shows percentage of area of distribution that is in negative values, i. e. theoretical 

percentage of misclassified recordings when only this feature is used. 

 

Table 16 Distribution fit comparison 

Distribution 

Bayesian 

information 

criterion 

Negative 

Area 

[%] 

Extreme value 1035.015 36.477 

Normal 1114.886 44.102 

Tlocationscale 1121.743 44.100 

Logistic 1239.840 42.296 

 

Simpler variation of this approach might be just to compare histogram counts of 

values (difference of distance from mean of incorrect class and mean of correct class) 

closer to incorrect class and those closer to correct class. Fig. 35 illustrates such a 

histogram for MFCC values of order 20 and feature index 6 with correct class of gunshots 

and incorrect classes of barking dog and idling engine. It can be clearly seen that there is 

more instances of samples closer to the correct class, but this is not always the case. 

 

Fig. 35 Histogram of difference of samples between mean correct and mean incorrect 
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This way, we can rate each feature on how it will perform and then choose the 

optimal features for given problem. Fig. 36 illustrates this scenarion, x-axis represents 

number of MFCC features with scenario „increase“, where we progressively add features 

from index 1 to index 20 and scenario „distance“, where we used this measure to order 

the features. The illustrated example shows neural network performance with classes 

gunshots and barking dog. It can be seen that the best performance is achieved using just 

3 features when „distance“ is used, whereas with simply using features sequentially, we 

need to use 13 features. 

 

 

Fig. 36 F-score for two different feature selection methods 

 

Since we are comparing only distribution of a single feature, so far this method 

cannot tell us about expected performance of multiple combined features. We can 

however compare all features one by one and choose the best performing, but there would 

still be an unresolved issue of mutual information between various features, so the actual 

improvement would be less. This can also mean, that there is not monotonous increase in 

recognition performance, but that global maximum is not the first maximum.  
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6 RECOGNITION ALGORITHMS 

6.1 Overview of Recognition Algorithms 

Sound event detection (SED) in general, and gunshot recognition in particular used a 

variety of different recognition algorithms throughout the existence of this field. Among 

the first approaches are gaussian mixture models (GMMs) and hidden Markov models 

(HMMs) [73]. Later approaches include support vector machines (SVMs), at first with 

linear kernel, later with non-linear kernels (such as Radial Basis Function), the latter 

achieving better performance [66]. State-of-the-art results are achieved by neural 

networks, which range from feedforward fully-connected networks, to convolutional and 

recurrent networks [74]. High performance of the networks comes with a downside of 

problematic interpretation of processes and learned representation in hidden layers of the 

networks. For a brief comparison of supervised machine learning algorithms, see for 

example [75]. For a more detailed explanation of basic machine learning algorithms, see 

[76]. 

6.2 Naïve Bayes Classifier 

Naïve Bayes classifier works with a conditional probability model, using Bayes theorem 

(17), 

𝑝(𝑌𝑛|𝐱) =  
𝑝(𝑌𝑛)𝑝(𝒙|𝑌𝑛)

𝑝(𝒙)
, (17) 

where x is a feature vector and Yn is nth class label, p(Yn|x) is a probability of feature vector 

x calculated from observing nth class, p(x| Yn) is a probability of obtaining feature vector 

x with nth class and p(x) is distribution of features. In general case, we make no 

assumptions about features, so if we use 3 features, (17) will be of the following form 

(18): 

𝑝(𝑌𝑛|𝐱) =  
𝑝(𝑌𝑛)𝑝(𝑥1|𝑥2, 𝑥3, 𝑌𝑛)𝑝(𝑥2|𝑥3, 𝑌𝑛)𝑝(𝑥3|𝑌𝑛)

𝑝(𝒙)
, (18) 

i.e., with growing number of features, we would have to consider growing number of 

dependencies, which would increase computational demands immensely. Instead, we 

assume mutual independence between all features (thus the Naïve classifier) and simplify 

the equation to a form of (19). 

𝑝(𝑌𝑛|𝐱) =  
𝑝(𝑌𝑛)𝑝(𝑥1|𝑌𝑛)𝑝(𝑥2|𝑌𝑛)𝑝(𝑥3|𝑌𝑛)

𝑝(𝒙)
 (19) 

In order to classify an input with a set of features, we simply calculate probabilities for 

all classes, and then pick the one with maximum a posteriori probability, according to 

(20). 

𝑦̂ =  max
𝑛∈(1,…,𝑁)

𝑝(𝑌𝑛) ∏ 𝑝(𝑥𝑖|𝑌𝑛)
𝐹

𝑖=1
, (20) 
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where xi is ith feature out of F features total. 

6.3 Decision Trees and Random Forests 

Decision trees consist of a series of binary decisions, working with pairs: feature and 

threshold. Number of decisions is equal to number of features in feature vector. The 

progressive decisions finally lead to a classification into one of two or more classes. 

Decision trees can work with unnormalized data [76], since internal structure is not 

influenced by feature values. 

The construction of decision tree progresses from root node, the first decision node, 

which is chosen so that it best separates the classes to leaf nodes, which designate the 

final class. There are multiple ways to determine which feature best separates the dataset 

and we are going to briefly describe them, but first, we introduce the term impurity. 

Ideally, we want to achieve zero inpurity, so that one feature, or decision eliminates whole 

subset of classes. However this is not always the case, and often there are still both classes 

present after one decision (e.g. classifying gender using height, men are usually taller than 

women, but there is still going to be tall women and shorter men) [76]. 

First impurity measure is called Gini impurity index, it is calculated using (21). 

𝐼𝐺𝑖𝑛𝑖(𝑥𝑖) = ∑ 𝑝(𝑌𝑛|𝑥𝑖)(1 − 𝑝(𝑥𝑖|𝑌𝑛))
𝑛

, (21) 

the Gini index measures probability of misclassification when decision is taken with 

feature xi. This index reaches minimum – zero – value, when all samples in one node are 

classified into one category. 

Another measure is Cross-entropy impurity index, defined by (22). 

𝐼𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖) = ∑ 𝑝(𝑌𝑛|𝑥𝑖) log 𝑝(𝑌𝑛|𝑥𝑖),
𝑛

 (22) 

this measure assumes maximum value in case of uniform distribution in classification 

into classes. That means the higher the value, the deeper the tree will have to be. While 

Gini index informs us of missclassification probability, cross-entropy helps us minimize 

uncertainity about the classification. 

The decision tree is grown until we achieve either all pure nodes (i.e. no uncertainity 

in classification), zero information gain, or maximum tree depth (that is, we run out of 

features). 

Lastly, there is misclassification impurity index (23). 

𝐼𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) = 1 − 𝑝(𝑌𝑛|𝑥𝑖), (23) 

in [76], misclassifiaction index is described as poorest choice, since i tis not as sensitive 

to different probability distributions. 

Random trees employ ensemble learning, where we use multiple Decision trees 

which are trained slightly differently (either different features, different subsets of 

training data or both) and so achieve slightly different results. This way, we obtain 

a number of class labels from which we choose the most frequent, this usually leads to 

increase in performance and prevents overfitting. 
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6.4 k-Nearest Neighbors 

k-Nearest Neighbors (k-NN) is a simple algorithm which, in order to classify an input, 

looks into its nearest neighboring data points and assings the input to the most frequent 

neighbor. Euclidean distance is the most common choice of metric in case of continuous 

input features.  

This algorithm has a parameter k, which determines how many neighboring data 

points will the algorithm check. In order to choose the optimal k, we usually test multiple 

choices and choose the best performing one. In order to avoid ties, we have to use odd 

number for k. 

This algorithm is particularly susceptible to curse of dimensionality, i.e. problems 

occuring with higher dimensional features, where it can be demanding to compute 

distance in high dimensional spaces, or the distance differences are not that significant 

anymore. In these cases, dimensionality reduction techniques are usually employed [77]. 

6.5 Support Vector Machines 

Support vector machines (SVMs) are one of the more complex and better performing 

supervised learning algorithms. This can also be proven by their longtime superior 

performance in MNIST dataset classification [76]. 

SVM is an algorithm which tries to find the best separation between two classes (we 

have to use multiple one verus all classifiers for multiclass problems) by maximizing the 

margin that separates the hyperplane and marginal datapoints (the datapoints on the edges 

are called support vectors). In its simplest form, SVM is non-probabilistic a linear 

classifier, however sometimes linear classification is not possible, because classes are not 

linearly separable. In cases like these, mapping to a higher dimensional space, where the 

separation can be achieved, is performed. The mapping is done using kernel trick, it can 

be achieved using various kernel functions and the new dimension datapoints consist of 

combination of original datapoints. Among common kernel functions are polynomial 

kernel, hyperbolic tangent, or most frequently used gaussian radial basis function. 

Among other parameters that tune SVMs is a regularization parameter (sometimes 

called C parameter), this expresses trade-off between margin width and number of 

misclassifications. That is, high C values provide high separation margin but tolerate 

more misclassifications, conversely lower C values lead to fewer misclassifications but 

also smaller margin width, this can be seen as a tradeoff between high bias and high 

variance respectively. 

Another parameter that changes training behavior of SVMs is called gamma 

parameter. Gamma parameter influences how many points are considered when 

calculating the separating hyperplane, with lower values including also points farther 

from the divide and higher values considering only points close to the other class. 

6.6 Neural Networks 

Neural networks (NNs) are supervised machine learning algorithms with extensive use in 
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various fields. They achieve state-of-the-art performance in polyphonic (when multiple 

audio sources are active at the same time) SED. Neural networks are formed by multiple 

individual nodes (called neurons) and connections between them in a layered architecture, 

every layer can contain any number of neurons. NNs are non-linear classifiers due to their 

usage of non-linear activation function and layered architecture. 

6.6.1 Neuron 

Neuron is a basic building unit of neural networks. Each neuron has N inputs and one 

output. Output value of a neuron is determined as an output of neuron’s activation 

function and weighted sum of inputs plus bias (24): 

𝑦 =  𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑁

𝑖=1
+ 𝑏), (24) 

where y is neuron output, xi is ith input to the neuron and wi is corresponding weight, b is 

bias term and f is the activation function. Although activation functions can be linear, 

using nonlinear functions introduces nonlinearity to the system and allows solving 

nonlinear problems. 

Among most frequently used activation functions belong sigmoid (25), which has 

output range limited to interval (0, 1) and is continuously differentiable (depicted in Fig. 

37). Hyperbloic tangent function (26), with properties similar to sigmoid, but range 

limited to (-1, 1), this function is frequently used with machine vision approaches. And 

lastly rectified linear unit (27), shown in Fig. 38, which is not continuously differentiable, 

but is used in state of the art approaches and generally achieves better results than sigmoid 

function. Special case of activation function is so-called softmax function, frequently 

used in last layer of classification neural networks which output single category. Softmax 

function (28) outputs probability of different output classes given certain input features. 

On the other hand, when we are using multiclass classification (as in polyphonic sound 

event detection), we can use thresholded sigmoid function, instead of softmax function. 

𝑦(𝑥) = 𝜎(𝑥) =  
1

1 + 𝑒−𝑥
. (25) 

𝑦(𝑥) = tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (26) 

𝑦(𝑥) = {
0    for 𝑥 ≤ 0
𝑥    for 𝑥 > 0

. (27) 

𝑦(𝑥) =  
𝑒𝑥

∑ 𝑒𝑥𝑛
𝑁

, (28) 

where y(x) is activation function and x is input to the function. 
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Fig. 37 Logistic (sigmoid) function 

 

Fig. 38 Rectified linear function 

6.6.2 Fully connected networks and training 

Among the first types of networks developed was feedforward fully-connected 

network, which is depicted in Fig. 39. In this type of network, inputs are fed to the first 

layer of neurons, where they are linearly transformed by neuron-specific weight and bias 

and fed into activation function. In this fashion, information progresses through arbitrary 

number of hidden layers until it reaches output layer, which has number of neurons 

corresponding to the number of output classes. The key point is, each neuron in one layer 

uses output of all neurons in previous layer as input and outputs to all neurons in the 

following layer. 

 

 

Fig. 39 Schematic depiction of neural network with one hidden layer and 4 neurons in each 

layer 

When first initializing a neural network, weights and biases are chosen at random, to 

improve recognition performance, training stage takes place. Training stage is an 

optimization tasks where weights and biases are iteratively updated through 
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backpropagation algorithm to minimize the error. Error is expressed through a loss 

function, such as (29): 

𝐸 =
1

2𝑛
∑ ‖𝑦(𝑥) − 𝑦′(𝑥)‖

𝑥

2

, (29) 

where E is error value, n is number of examples, y is actual class label and y‘ is predicted 

class label. Training is done over a training set, one pass over whole training set is called 

an epoch, number of epochs ranges from tens to hundreds or even thousands. 

Optimization is usually implemented using stochastic gradient descent and its various 

modifications, Adam technique is used in current state of the art approaches. 

Stochastic gradient descent consists of updating the weights in the direction opposite 

to the gradient of loss function (such as (29)). Learning rate is a parameter that influences 

how big step is taken. Equation (30) shows how weight increment is calculated each step 

(epoch). This algorithm can be implemented so that the weights are updated after different 

number of training examples (n in (29)). Using more examples leads to smoother 

progress, but is more demanding memory-wise. 

∆𝑤𝑖,𝑗 =  −η
𝜕𝐸

𝜕𝑤𝑖,𝑗
, (30) 

where Δwi,j is an update to weight of ith neuron in jth layer, η is learning rate and 
𝜕𝐸

𝜕𝑤𝑖,𝑗
 is a 

partial derivation of loss function (e.g. (29)) with regard to weight wi,j. 

The learning process was prone to overfitting, so multiple methods to avoid it were 

concieved. One of the first was early stopping and validation. This approach consists of 

comparing classification performance on tranining data (which has a tendency to improve 

on each pass, also called an epoch) to performance on so called validation data. Validation 

dataset consists of data that is not used during training and is considered as unseen by the 

classifier, when performance on validation data starts to drop, training is stopped. 

Another approach to counter overfitting is implementing dropout [78]. This idea 

consists of randomly dropping out neurons (together with their connections) during 

training. Dropout comes with a parameter, dropout rate, which can be adjusted per layer 

and gives a percentage chance of neuron dropping out. State-of-the-art SED systems use 

dropout of 25% in convolutional layers [60]. 

Regardless of architecture, good practice is to normalize all inputs to neural network 

so that they have zero mean and standard deviation equal to one. This prevents some 

features to exert undue influence, such as when one is in range 0-1 and another 1-1000. 

Lately, this approach was extended from the input layer to all hidden layers, in what is 

called batch normalization [79]. Batch normalization subtracts mean and divides by 

standard deviation inside each hidden layer, just before activation function. This process 

improves learning speed, allows use of deeper networks, higher learning rates and 

provides less sensitivity to random weight initializations. 

6.6.3 Convolutional networks 

Neural networks were soon modified and new layers invented. One such layer was 

convolutional layer, which does not use different weight for every input datapoint, but 

shares a set of weights (which is called filter, and has variable dimensions) repeatedly for 
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all datapoints, basically applying convolution on the input. This process is depicted on 

Fig. 40. Filter dimensions are usually rectangular, with typical values of 3x3 or 5x5, 

bigger dimensions were discontinued because of high computational demands, however 

new hyperparameter optimization algorithms found out, there can be use also for filters 

7x7 and possibly bigger [80]. Apart from filter dimensions, convolutional layers have 

parameters such as stride, which determines how much is filter moved. Stride values 

higher than 1 shrink the input dimensions. An optional parameter, padding around input 

data, is used to prevent dimension shrinking caused by convolution on the edges of the 

input. Activation functions are used in the same way as with fully-connected layers, where 

one element of the filter is one neuron of the network. 

 

Fig. 40 Convolutional network with max-pooling layers 

Convolutional layers were mostly used in image recognition at first, later they were 

incorporated in audio recognition (using spectrograms) with promising results. Along 

with convolutional layers, another frequently used layer is pooling layer. Pooling is a 

form of subsampling and is characterized by its dimensions, i.e. how much do we 

subsample in which dimension. Pooling is mostly realized as max-pooling, which 

preserves only maximum value in given area (discarding spatial information), but it can 

also be realized by averaging the area. 

It was shown that different filters of convolutional networks learn to recognize 

various features, or shapes, such as edges or corners. Filters in higher values learn to 

recognize more complex concepts, such as cars or animals. 

6.6.4 Recurrent networks 

Another type of layer is recurrent layer, as opposed to feedforward layers, these 

layers incorporate a feedback, which, depending on the exact function, retains part of the 

value from previous timestep. Common means of implementing recurrent layers is using 

either long short-term memory units or gated recurrent units (illustrated in Fig. 41). They 

found usage especially in non-impulsive signal recognition, such as speech recognition 

or music classification. 
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Fig. 41 Schematic depicition of gated recurrent unit 

6.7 Hidden Markov Models 

Hidden Markov Models (HMMs) can be characterized as a probability distribution over 

sequence of vectors. It is characterized by the number of states in the model, number of 

observation symbols per state, state transition probability distribution, symbol probability 

distribution in each state (GMMs are frequently used) and initial state distribution [81]. 

Authors in [73] use viterbi algorithm for classification (i.e. decode the optimal path) and 

expectation-maximization algorithm during training phase. Comparing MFCC and mel 

energies as features, and using several topologies (i.e. number of states), it achieves 24% 

performance at 0dB SNR in classification into 61 classes. 
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7 CONTINUOUS AUDIO EVENT 

DETECTION 

The whole approach is based on audio signal processing in two stages, namely 

Preliminary gunshot detection (first stage) and subsequent Advanced gunshot detection 

(second stage). In the first stage, the sound scene around the sensor (microphone) is 

continuously captured, and shot-like sounds are sorted into group of individual shots and 

group of burst. Then, signals in both groups are stored for further advanced analysis in 

separate buffers. In the second stage, all sounds in the buffers are individually investigated 

in order to detect a gunshot or reject other shot-like sounds. Fig. 42 shows the concept. 

The first section of this chapter introduces the idea of continuous monitoring further, 

along with how to deal with preliminary flagged segments. Second and third sections deal 

with preliminary detection of bursts and gunshots respectively. 

 

Fig. 42 Diagram of the whole two stage concept 

7.1 Continuous Monitoring of Audio Events 

This chapter details our work on continuous audio input monitoring in order to detect 

gunshots or gunshot bursts. It will introduce the concept in general, including 

preprocessing and basic filtering. Gunshot and burst detection will be described in 

dedicated subsections. Fig. 41 represents a block diagram of our approach. Bold capital 

letters in some blocks identify signals of interest, shown in Fig. 42 below. 
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Fig. 43 Block diagram of continuous audio event monitoring system – 1st stage 

 

Fig. 44 Four basic sound categories as preliminarily classified by continuous audio event 

detection 
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Continous monitoring works with audio frames of length 330 ms without overlap 

(14553 samples with sampling frequency of 44.1 kHz). This length was chosen because 

methods for burst detection, mentioned in the following section, work with at least 3 

periods of signal in a time-frame, which results in 300 ms for weapons with slowest rate 

of fire (10 rounds per second) in our audio dataset, extra 30 ms is a reserve (since, as will 

be presented later, period detectors report up to 10% deviation on individual periods). 

Overlap was not introduced because of the need to save computational power. Audio 

input is sampled at 44.1 kHz with 16-bit quantization, as these are frequently used values 

for this task and provide reasonable compromise between resolution and power demands. 

Next step is to check input signal energy, and in case no (or very weak) signal is 

detected, we discard the frame and do not continue with other operations. Energy is 

calculated over whole time frame as a sum of squared samples. Energy threshold was 

chosen so that every single gunshot burst in used audio dataset passes the criterion, the 

resulting value was set to 0.3. If the signal is stronger than this value, check for amplitude 

limiting takes place. Amplitude limiting is checked by counting number of values close 

to, or at maximum absolute values (in case of normalized signal, the values are +1 and -

1) and comparing this number to a threshold. The threshold was estimated observing our 

audio dataset, and was experimentally set to 30 samples, i.e. if more than 30 samples in 

the whole frame are very close to maximum values, the frame is flagged as containing 

amplitude limited signal. Amplitude limited frames are saved for later processing (as they 

will require approach different to non-limited signal) and no further action is taken. Fig. 

45 – 47 below illustrate deformation of spectrum with increasing amplitude limiting. Fig. 

45 shows original gunshot waveform and its spectrum normalized to maximum value 1. 

Fig. 46 shows lightly amplitude limited waveform of the same signal with almost no 

discernible change in spectrum. Fig. 47 shows heavily amplitude limited signal with 

noticeably different spectrum, introducing more peaks in higher frequencies. These 

figures demonstrate the need for separate treatment of amplitude limited signals when we 

are dealing with features derived from spectrum or waveform. 

  

Fig. 45 Gunshot (waveform and spectrum) with no amplitude limiting 
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Fig. 46 Gunshot (waveform and spectrum) with light amplitude limiting 

  

Fig. 47 Gunshot (waveform and spectrum) with heavy amplitude limiting 

 

If no amplitude limiting is detected we proceed with the next steps. We check the 

frame for possible presence of single gunshots or gunshot bursts, using methods detailed 

below. If this preliminary test indicates presence of either, frames are saved for further 

processing and confirmation of true positives. Preliminary tests are also described in 

dedicated sections, further advanced processing is described in separate chapters. Signals 

B-D shown in Fig. 41. are saved in dedicated folders together with a timestamp for later 

processing/revision, an example of naming possible gunshots can be found below. 

 

gunshots/22-May-2019-09-30-33-3033.wav 

gunshots/22-May-2019-09-32-21-2731.wav 

gunshots/23-May-2019-18-05-58-0025.wav 

… 
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7.2 Preliminary Burst Detection 

This section briefly describes processes and methods of preliminary burst detection. 

Advanced burst detection will be described in dedicated chapter.  

After passing energy threshold check and amplitude limiting check, input frame is 

passed to preliminary burst detection block. Preliminary (online) burst detection uses 

center-clipping method (described in next subsection) to estimate whether input signal is 

periodic, and if so what the period is. The reason to pick center-clipping was mainly due 

to its low computational demands (in comparison with e.g. AMDF (Average Magnitude 

Difference Function), which will be described later) and sufficient performance in 

establishing basic frequency. This method uses center-clipping with reduction factor of 

0.8 and alpha factor of 0.1, this setup ensures, periodic signal will not be lost in noise 

easily. In order for a frame to be flagged as a possible burst, it needs to have a period in 

range of +/- 5 ms from nominal weapon rate of fire (thus having range 85 ms – 105 ms 

for M45 and AK-47). If any frame conforms to these rather loose criteria, it is saved 

together with previous and the following frame for advanced (offline) processing, any 

adjacent frame conforming to these criteria is appended to the recording. Results for the 

first stage detection are presented below in Tab. 17. „Original duration“ shows duration 

of the whole category of sounds used in testing, „Stage 1“ column shows total duration 

flagged as bursts by preliminary burst detection in seconds, and also as a total percentage 

of original duration. All bursts in categories M45 and AK-47 pass this criterion under 

tested conditions. 

 

Table 17 Preliminary burst detection results 

Category 
Original 

duration 

Stage 1 

[seconds] 

Stage 1 

[%] 

Speech and music 11 hours 42 sec 0.11 % 

Engine 
1 hour 5 

min 
97 sec 2.49 % 

Rain and 

thunderstorm 
13 minutes 16 sec 2.05 % 

Birds 35 minutes 21 sec 1.00 % 

Dog 3 hours 74 sec 0.69 % 

 

7.2.1 Center-clipping Method 

The center-clipping algorithm is more suitable than AMDF (described later in chapter 

8.1.1) to determine whether the given time frame is periodic, but it is not as good in 

determining the degree of periodicity. This algorithm works only with peaks (both 

positive and negative) and zeroes all values in between, zeroing threshold will be called 

clipping level [82]. In contrast to AMDF, this algorithm uses overlapping factor of 2/3. 

Clipping level is determined by equation (25) as follows: input segments are 

subdivided into three frames (j-1, j, j+1) then peaks of left (MAXj-1) and right frame 
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(MAXj+1) are extracted. The clipping level CL is a product of the lower of these values 

and reduction factor rf which was experimentally set to 0.8 for best performance [83]. 

𝐶𝐿𝑗 = 𝑟𝑓 ∙ min(𝑀𝐴𝑋𝑗−1;  𝑀𝐴𝑋𝑗+1), (25) 

after clipping, resulting samples are either rounded to +/-1 or zeroed as shown in Fig. 43 

where input signal is in black, dashed pink line is clipping level and resulting clipped 

signal is in red. This clipped signal is used as an input for autocorrelation. Examples of 

autocorrelation function for periodic and non-periodic signals are shown in Fig. 49.  

 

Fig. 48 Signal clipping 

  

Fig. 49 Center-clipping autocorrelation output for periodic (left) and non-periodic (right) inputs 

It can be seen, that periodic signal outputs distinctive peaks with decreasing 

amplitude at regular intervals. In contrast, non-periodic signal produces noise-like signal 

without any distinctive peaks or general trend. 
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After obtaining output from the autocorrelation function, the algorithm locates 

maximum of the function (apart from R(0)) and decides whether investigated frame is 

periodic according to the following criteria (26) and (27): 

𝑅(𝑘𝑚𝑎𝑥) ≤ 𝛼 ∙ 𝑅(0), nonperiodic (26) 

𝑅(𝑘𝑚𝑎𝑥) > 𝛼 ∙ 𝑅(0), periodic (27) 

where α is an empiric constant based on previous testing [83] and defaults to 0.3 for 

speech signal. In our application, we are using alpha factor equal to 0.1, since higher 

values resulted in too many missed detections. The period can be calculated by 

multiplying the position of maximum peak kmax by sampling period, the same way as in 

AMDF algorithm (30). However we cannot determine degree of periodicity (which can 

be done with AMDF) since energy normalization process is not as straightforward as in 

AMDF. 

7.3 Preliminary Individual Gunshot Detection 

This section describes detection of individual gunshots within bigger, 330 ms frames. 

Since individual gunshots (we are considering muzzle blast and disregarding acoustic 

shockwave, however the presence of shockwave is not a problem) without echo are very 

short, just several milliseconds, the whole frame will be divided into smaller subframes. 

Previous research [68] suggested 11 ms frame is sufficient for gunshot detection and 

results in performance comparable to 23 ms frames used previously.  

Thus the next step is to divide 330 ms frame into 11 ms subframes, again without 

overlap. The reason we are not using overlap is because it introduces increased demands 

on computational power and our application presupposes presence of many gunshots, 

moreover the importance lies in high precision (i. e. low false alarm count), not on perfect 

recall. In the next step, energy check is performed again, in order to discard silent 

subframes, the threshold was set so that the most silent gunshots in our dataset will pass 

it. In this case, energy was calculated as a sum of squared samples and energy threshold 

under which no further calculation was done was set to 0.13.  

Subsequently, we calculate features derived from 8th order MFCC, the concept was 

described more in detail in chapter 5.2, where comparison of various setups took place, 

but we will briefly mention the differences and any additional modifications. The 

calculation is basically identical, however these features are calculated on a linear 

frequency scale (as opposed to mel scale in MFCC), the bandwidth was 1 Hz – 8 kHz 

with 32 triangular filters, we will call these features LFCC (emphasizing linear frequency 

scale, bandwidth or filter shapes can and will vary). Additionally, before the calculation, 

the signal is upsampled to 192 kHz and further 10x in spectrum in order to increase the 

number of samples in each frequency bin. This LFCC set-up was proven to be slightly 

better than others (even compared to MFCC). 

In the preliminary detection stage, neural networks were chosen as recognition 

algorithm due to its previous extensive use and good performance. Neural network 

training and testing was performed on a mix of data with gunshots from [20] and other 

sounds coming from Urban Audio dataset [4] and our recordings. We have used 7 non-

gunshot classes (barking dog, drilling, jackhammer, siren, engine sound, sounds recorded 

near elephants – including trumpeting, and sound of rain and storm) and gunshot class. 
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For training, each class consisted of 900 feature vectors extracted from sound frames 11 

ms long, randomly chosen from the above mentioned datasets. 

Regarding architecture, in the first step, two approaches have been tested. First 

approach was training the network simply for gunshot detection, i. e. 2 class problem, 

gunshots vs. everything else. Second approach was to train the network for multiclass 

classification, where there was an output neuron for every non-gunshot class as well as 

for gunshot class. First approach yielded better results results mostly in terms of true 

positives for gunshot class, so we have subsequently decided to use the 2 class neural 

network. As for the number of hidden layers and neurons, grid search was used to 

determine best combination of hyperparameters. The grid search included options of 10, 

20 and 30 hidden neurons in 1 or 2 layers, with both layers having the same amount of 

neurons. Finally, architecture with 2 hidden layers of 20 neurons each was chosen, 

resulting in 79% true positives and 86% true negatives over a dataset containing 1532 

gunshots and 227923 non-gunshot frames from 4 different classes (barking dog, engine, 

raining and storm, speech and music). 

Finally, if the network decides that a gunshot is present, the frame, along with 

previous and the following frame (and any adjacent flagged frames) is saved into 

dedicated folder with a timestamp for further processing as mentioned in the introductory 

chapter 7.1. 

This preliminary approach was subsequently tested on a data consisting of classes 

„barking dog, engine, rain and storm, speech and music“. This monitoring yielded 

numerous non-gunshot sound frames labeled as gunshots. These, along with neighboring 

non-labeled frames (combined 31286 frames) were later used for testing in advanced 

gunshot detection, as described in chapter 8.2. 
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8 ADVANCED GUNSHOT DETECTION 

This chapter explains how frames flagged as possible gunshots are processed to determine 

whether or not they really are gunshots. We will use neural networks for most of the 

testing, and in the end compare them to some other recognition algorithms to choose the 

best performing. Apart from describing the algorithm itself, this chapter will also describe 

new time-domain features we propose, which in this case exhibit great recognition 

performance for refining results obtained from preliminary gunshot detection. 

8.1 New Features in Time Domain 

This section proposes new features derived from signal waveform. Most features 

currently used in audio recognition are calculated in spectral domain (such as LPC or 

many MPEG-7 descriptors). Feature testing and reported performance in this section were 

performed on dataset described in [84]. 

This and the following paragraphs will describe calculation of 11 temporal features, 

with some illustrated by figures. First two features are relative positions of zero-crossings 

before and after the most dominant peak and third is their mutual distance (abbreviated 

RP-, RP+ and ZDist respectively), these are illustrated in Fig. 50 (shortening time axis 

for illustration purposes). 

 

Fig. 50 Zero-crossings and their distance [84] 

Other features include time distance between minimum and maximum values (PDist) 

and distance in two dimensions (PlDist), angle between the line connecting minimum and 

maximum and horizontal line (Ang) – the angle was calculated with horizontal line in 

seconds. Some of the features mentioned here are illustrated in Fig. 51. 
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Fig. 51 Peak distance and angle [84] 

The area of triangle delimited by 2 highest peaks and a minimum (referred to as 

“Area”) is shown in Fig. 52. 

 

Fig. 52 Area feature illustrated [84] 

Ultimately, 4 features were defined as coefficients (A and B in (28)) of exponential 

fit to both positive (abbreviated Ap, Bp) and negative (abbreviated An, Bn) local 

extremes. 

𝑦(𝑡) =  𝐴 ∙ exp(𝐵 ∙ 𝑡), (28) 

where y(t) is exponential approximation, A and B are fitted coefficients, that serve also as 



 59 

recognition features and t is time. These features are illustrated in Fig. 53 together with 

approximations of positive envelope p(t) and negative envelope n(t) with numeric values 

for one sample waveform. 

 

Fig. 53 Envelope approximation by exponential fit [84] 

The viability of these features was tested by different means before actual usage so 

that we can tell which might be useful beforehand. Firstly a ratio between absolute mean 

value (µ) and standard deviation (σ) of each feature was calculated, with the expectation 

that higher value means that features will perform better. Next, we calculated mutual 

information between feature values and class labels using Matlab kerlenmi function (we 

disregarded mutual information between features themselves). Ultimately, two-sample t-

test (using Matlab ttest2 function) was calculated measuring similarity of two 

distributions, where we compared distributions of gunshots and non-gunshots. We have 

used p-value of t-test (with 5% significance level, assuming unequal distribution 

variances), which should be lower for more dissimilar distributions, thus indicating better 

discrimination capability of a feature. Statistics for mean and standard deviation were 

calculated on all available data in all categories. Mutual information and p-values were 

calculated for no more than 2000 frames in each category due to memory restrictions 

during calculation. Ratio of mean to standard deviation indicated “Angle“ feature to be 

performing the best and A-coefficients of the fit of both negative and positive extremes 

the worst. Mutual information rating offers slightly different view, where “An“ feature is 

rated as the best, while “Area“ is the worst, with the rest of the features achieving similar 

scores. Lastly, p-value, ehre low values indicate dissimilar distributions indicated B-

coefficients of the fit and RP+ with RP- are the best features. As further discussion 

reveals, we opted for precisely these features because of their superior performance. Tab. 

18 summarizes the results for these different tests. 
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Table 18 Recognition rating estimate for TDF 

Feature 

gunshots non-gunshots all 

µ σ 
|µ|/ 
σ 

µ σ 
|µ|/ 
σ 

Mutual 
Information 

p-value 

RP- -135.17 131.55 1.03 -815.99 1311.42 0.62 0.47 2.817E-182 

RP+ 209.28 585.47 0.36 -431.13 3465.14 0.12 0.43 2.279E-43 

Zdist 344.44 604.17 0.57 384.86 3278.48 0.12 0.50 3.776E-03 

Pdist 327.02 1368.28 0.24 -17.65 4822.17 0.00 0.43 3.138E-09 

PlDist 819.79 1143.47 0.72 3958.53 2753.80 1.44 0.41 0.000E+00 

Angle 74.40 34.17 2.18 89.55 78.15 1.15 0.61 9.556E-35 

Area 0.98 0.88 1.11 0.82 1.03 0.80 0.33 1.681E-01 

An -3.23 62.46 0.05 -10.38 766.72 0.01 0.68 1.933E-01 

Ap 5.28 93.65 0.06 20.10 1081.58 0.02 0.77 2.265E-01 

Bn -0.35 0.42 0.82 -0.06 0.64 0.09 0.53 4.600E-136 

Bp -0.58 0.73 0.79 -0.06 0.62 0.10 0.62 1.514E-142 

 

Actual recognition performance was tested using progressively increasing number 

of these features (firstly ordered by above mentioned criteria) with implementation of 

Matlab neural networks (10 neurons in 1 hidden layer, sigmoid activation function). This 

configuration did not perform very well for lower number of features, which prompted us 

for reordering. After few trials, we settled on six to seven features: RP+, RP-, Bn, Bp, 

PlDist, Angle and ZDist. Performance for increasing number of TDF is illustrated in Fig. 

54, Table 19 indicates recognition performance for problems „all gunshots vs. non-

gunshots“ and „AK-47 vs. non-gunshots“.Overall, we conclude that despite the fact, that 

some other features (such as LPC or MFCC) achieve slightly better results, our features 

are comparable and are an excellent addition to some more frequently used features, 

especially due to their temporal origin which might hint low mutual information with 

spectral features. Their viability will be explored and confirmed in the subsequent 

chapter. 

 

Table 19 Best performance of temporal features 

Subset Recall Precision F-Score 

AK-47 80.8 % 38.1 % 51.8 

All gunshots 82.2 % 69.3 % 75.2 
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Fig. 54 Gunshot recognition performance for different number of temporal features [84] 

 

8.2 Advanced Gunshot Detection Results 

Various ideas for advanced gunshot detection were considered. One such example of 

state-of-the-art approach [60] uses convolutional/recurrent networks with mel 

spectrogram (with 40 frequency bins) over multiple time frames (1024 time frames of 40 

ms each with 50% overlap) for multiclass sound event detection (including gunshots). 

This approach was tested, training the network using our dataset. The results on gunshot 

recognition could not be reproduced, and were not satisfactory. For this reason, and 

because of long training times, we did not consider using this architecture afterwards. 

Instead, we turned to MFCC once again in order to leverage its variability described in 

chapter 5.2. In order to limit mutual information between this stage and stage 1 

recognition, many parameters were changed. These features were calculated on a mel 

frequency scale, using different feature order and more filter-banks and also different 

filter shape (gammatone) compared to preliminary detection approach, so mutual 

information should be limited. Individually, triangular filter banks calculated on mel 

frequency scale performed better, but later experiments turned out in favor of gammatone 

filter banks on a mel scale. 

The dataset for this chapter came from 2 different testing rounds of stage 1 

(preliminary) gunshot recognition. First set - set A - was obtained from testing data 

described in Tab. 17 and contains both, frames labeled as gunshots (approx.. 20% of set 

A) and frames not labeled as gunshot (approx.. 80% of dataset) by the preliminary stage. 

The set consisted of 59723 frames unevenly distributed in 4 classes (i.e. dogs, engine, 

rain, speech and music), plus 1532 gunshot sounds from [20]. Set A was further 

subdivided into training subset (60% of the dataset), validation subset (20%) and testing 

subset (20%). In algorithms that did not use validation subset, this was joined with 
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training subset into single (80%) training subset. All subsequently mentioned training was 

performed exclusively using this dataset along with most of the testing (with exceptions 

explicitly mentioned later), which served as a basis for selecting suitable algorithms. The 

reported numbers thus reflect performance of described algorithms only, disregarding 

information from stage 1 (apart from 20%-80% distribution of flagged vs. non-flagged 

frames). Due to relatively low number (11944) of frames flagged as gunshots in this 

dataset by the first stage, and thus possibly distorted testing results, we are including an 

additional dataset. The dataset B is 100% testing dataset and consists exclusively of 

frames flagged as gunshots in stage 1 (32818 frames) in categories barking dog, engine, 

speech and music, public places (including distant chatting crowds, traffic soundsand 

construction sounds) and gunshots. Overlap in dog and engine classes should be limited 

to minimum, since both dataset randomly drew from more extensive pool of sounds. 

Sounds in gunshot category consist of dataset [20] and thus are identical with dataset A. 

There is no overlap in category “speech and music” in sets A (using czech speech and 

international music of various genres) and B (using slovak speech and international music 

of various genres). Public places category in dataset B has its origins in [13], since no 

data from this source were used in dataset A, algorithms did not see any part of the data, 

and so there is no overlap in this category in datasets A and B. Results from dataset B are 

reported separately at the end of the chapter and express overall recognition performance 

with information combined from stages 1 (online/preliminary) and 2 (offline/advanced), 

as further clarified later. 

Training single feedforward network for one vs. all or multiclass recognition was an 

approach employed in preliminary gunshot detection and also provided unsatisfactory 

performance for second stage. Here, we aimed for a more complex and better performing 

approach, thus we have reached to explore ensembling methods. We have trained one 

network for each non-gunshot category separately, so that we have 4 networks, each 

distinguishing gunshot from different non-gunshot sound. We have been using training 

subset of set A for all networks, while picking only sound classes of interest. Additionally, 

in pursuit of other, uncorrelated features, we turned to features developed by us, and 

described in [84] and also in chapter 8.1. We have used 5 best features from the list 

(according to metrics and further tsting described in [84]). Namely exponent of 

approximation of negative (Bn) and positive (Bp) waveform envelope, relative positions 

of first zero-crossings before (RP-) and after (RP+) the dominant peak and distance 

between global minimum and maximum (PlDist), the rest of the features mentioned in 

chapter 8.1 did not provide further improvement in recognition so we did not use those. 

In order to see numeric values for a single gunshot, we present Fig. 55 which shows 

gunshot waveform used and Tab. 20 with values of every feature (MFCC+TDF). 
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Fig. 55 AK-47 gunshot waveform - input to feature extraction 

Table 20 Features extracted from gunshot in Fig. 55 

MFCC  1 MFCC 2 MFCC 3 MFCC 4 MFCC 5 

112.16 -10.70 -11.60 -8.32 -1.88 

     
MFCC 6 MFCC 7 MFCC 8 MFCC 9 MFCC 10 

-3.13 2.55 0.93 -10.72 -1.93 

     
MFCC 11 MFCC 12 MFCC 13 MFCC 14 MFCC 15 

3.70 -1.70 4.36 4.59 2.71 

     
MFCC 16 MFCC 17 MFCC 18 MFCC 19 MFCC 20 

5.29 -2.51 1.33 -1.57 -1.46 

     
RP- RP+ PlDist Bn Bp 

-136.05 90.70 231.08 -0.79 -1.17 

 

The results for network with single hidden layer with 30 neurons are summarized in 

Tab. 21, table is divided into part where only MFCC were used, combination of MFCC 

and 5 time domain features (TDF) named in previous paragraph, and 5 TDF only. 

Comparison with results from other architectures and afterwards also other algorithms is 

provided later. Later comparison shows both performance differences (in terms of true 

positives and true negatives) and execution time differences. As will be seen, some 

algorithms provide clearly better results, while some allow for a compromise regarding a 

ratio of true positives and true negatives. 
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Table 21 Recognition results using single neural network trained per category 

Category # frames MFCC only MFCC+TDF TDF 

Speech & 

music 
2301 98.7% 99.3% 99.6% 

Engine 7708 99.6% 99.8% 99.7% 

Barking dog 1834 98.4% 89.4% 90.5% 

Rain/storm 102 82.9% 96.2% 89.5% 

 

As can be seen, results for combined features are generally better in comparison with 

other feature setups, except for the “dog” class, whose performance is much poorer. One 

problem with this approach (separately training networks for each category) in real-life 

conditions is that we cannot tell beforehand which network to use. Inspiration was drawn 

from ensemble learning, where mutltiple recognition algorithms are run in parallel and 

these vote for the result. Thus, we run all networks and then sum probabilities of resulting 

classes (gunshot / non-gunshot) across networks and then decide.  

Tab. 22 compares results obtained over all classes using ensemble method (i.e. using 

each network and then sum probabilities), comparing also different network architectures. 

The name of the network “NNxy” means single layer network with xy neurons, the name 

“NNxy+xy” stands for two hidden layers, each with xy neurons. Apart from neural 

networks, we have also tried other recognition algorithms, compared to selected neural 

network (NN20+20) in Tab. 23. NN20+20 was chosen because it offers TNR comparable 

to best architecture (NN30 in this case), but vastly superior TPR. Other tested algorithms, 

along with brief description of their hyperparameters, are listed below. Chapter 6 on 

recognition algorithms provides more detailed look into each algorithm. The compared 

algorithms include the following, Support vector machines (SVM) with Gaussian kernel, 

this kernel was chosen because it achieved superior results in [66]. Another algorithm, k-

nearest neighbors (kNN) is using Euclidean distance (for standardized features) and k = 

5 nearest neighbors (achieving comparable or better results than using different values 

during optimization step). Decision tree (tree) with minimum leaf size equal to 1 (i.e. 

number of samples in one leaf node), maximum number of splits equal to number of 

samples minus one, and using “Gini diversity index” as a split criterion. This set-up for 

decision trees achieved the most desirable results (in terms of true negatives) during the 

optimization stage. And lastly Naïve Bayes classifier, where we are presupposing normal 

distribution for each feature. Along with these results, Ensemble result is presented, 

which was obtained as summing decisions (not probabilities) of all classifiers in the table 

and choosing the most frequent class. For example, if SVM, kNN and neural networks 

decide the event is gunshot and decision trees and Naïve Bayes say it is not a gunshot, 

overall decision is gunshot, because 3 algorithms vote for gunshot while only 2 vote for 

non-gunshot. True negative rate (TNR) is defined as a ratio of correctly rejected non-

gunshot sounds and true positive rate (TPR) which is defined as a ratio of correctly 

detected gunshots. In Tab. 22 and Tab. 23, green color shows best results achieved using 

TPR as primary metric and highlights also corresponding TNR, orange results highlight 

the best TNR result plus corresponding TPR result. 

Training of all algorithms below was performed with training subset of set A. 

Training was performed with 80% of the data (in neural networks, 60% for training and 

20% for validation) and testing with 20% of the data, chosen in non-overlapping blocks. 
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Results reported in tables below come from testing data only. Overall non-gunshot 

contained 59723 frames, gunshot category contains 1532 shots from different weapons 

(including assault rifles, hunting weapons and handguns). Inputs to all algorithms are 

standardized, so that mean value is 0 and standard deviation is 1 using data from the 

testing set. This is done with all algorithms except for decision trees, which do not need 

such treatment ensuring equal scale. 

 

Table 22 Performance for different neural network architectures and features 

True Negative Rate 

Features  NN10 NN20 NN30 NN10+10 NN20+20 NN30+30 

MFCC 72.1% 76.3% 76.2% 79.3% 76.4% 75.8% 

MFCC+TDF 92.2% 90.7% 90.0% 90.3% 89.9% 91.7% 

TDF 97.5% 97.7% 98.0% 97.3% 97.4% 97.3% 

True Positive Rate 

 Features NN10 NN20 NN30 NN10+10 NN20+20 NN30+30 

MFCC 88.6% 88.6% 90.2% 87.9% 89.5% 85.0% 

MFCC+TDF 92.2% 93.5% 94.4% 92.2% 92.8% 95.1% 

TDF 85.0% 80.7% 73.5% 83.7% 86.0% 86.0% 

 

Table 23 Performance for different classification algorithms and features 

True Negative Rate 

Features SVM kNN NN20+20 Tree Naïve Bayes Ensemble 

MFCC 100.0% 82.9% 76.4% 72.9% 81.3% 85.0% 

MFCC+TDF 98.2% 90.5% 89.9% 89.9% 85.0% 92.7% 

TDF 97.2% 96.9% 97.4% 98.3% 95.7% 97.2% 

True Positive Rate 

Features SVM kNN NN20+20 Tree Naïve Bayes Ensemble 

MFCC 16.3% 88.9% 89.5% 85.3% 69.3% 88.6% 

MFCC+TDF 9.5% 93.8% 92.8% 95.8% 96.7% 94.8% 

TDF 86.3% 89.5% 86.0% 87.6% 91.2% 87.3% 

 

As can be seen from tables above, from the point of view of least false alarms, SVM 

perform the best, however they have also prohibitively low true positive rate. From the 

point of view of best true positive rate, Naïve Bayes classifier performs the best. In order 

to choose a compromise, with focus on less false alarms, we have chosen decision tree 

algorithm with TDF only features, which provides excellent true negative rate (98.3%), 

while achieving very good true positive rate (87.6%). Additionally, decision tree 

algorithm also performs the best in terms of execution time, as will be shown later. 

Apart from overall results of true negatives and true positives, we will look at true 

negative rates by category, i.e. what class is the most problematic overall. Tab. 24 below 

is similar to Tab. 21 in the fact that it offers true negatives per category. The difference is 
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that Tab. 21 provides results for individual algorithms (in this case neural networks) and 

Tab. 24 provides results for whole ensemble (using decision tree algorithm), number of 

sound frames in each category is the same in both tables. 

 

Table 24 True negative rates for decision tree ensemble – breakdown by category 

Category # frames MFCC MFCC+TDF TDF 

Speech & music 2301 88.8 % 96.2 % 98.6 % 

Engine 7708 63.2 % 87.5 % 98.2 % 

Barking dog 1834 87.7 % 91.1 % 98.4 % 

Rain/storm 102 84.8 % 100.0 % 99.1 % 

 

From Tab. 23 can be seen, that from the point of view of maximal true positives, 

combination of MFCC and TDF is the best. To further analyze contribution of individual 

TDFs, we took MFCC features, and added TDFs one by one and examined how true 

positives changed with various individual TDFs. Tab. 25 summarizes the results for 

decision tree algorithm. 

 

Table 25 Contribution of individual time domain features 

Metric 
MFCC 

only 

MFCC + 

RP- 

MFCC + 

RP+ 

MFCC + 

PlDist 

MFCC + 

Bn 

MFCC 

+ Bp 

True positives 85.3% 92.2% 94.8% 85.0% 86.0% 89.2% 

True negatives 72.9% 93.4% 90.7% 73.4% 76.7% 82.5% 

 

Tab. 25 shows that, each TDF contributes to better recognition performance in at 

least one aspect (true positives / true negatives). Looking at individual contributions, we 

establish that from TDF from best to worst are RP- > RP+ > Bp > Bn > PlDist. Now to 

figure out incremental contribution of TDF to recognition performance with MFCC, we 

are going to add time domain features one by one to MFCC in order of their contribution 

from best to worst (specified above). Tab. 26 shows results of this incremental 

contribution. 

 

Table 26 Incremental contribution of time domain features 

Metric 
MFCC 

only 

MFCC + 

1 TDF 

MFCC + 

2 TDF 

MFCC + 

3 TDF 

MFCC + 

4 TDF 

MFCC + 

5 TDF 

True positives 85.30% 92.22% 89.97% 90.41% 89.91% 89.94% 

True negatives 72.90% 93.40% 94.44% 95.10% 95.42% 95.75% 

 

The biggest incremental increase in performance happens with 1 or 2 TDF, extra 3 

TDF increase performance only slightly, and so, it is up to application requirements to 

determine whether adding the features is worth the increase in computational demands or 
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not. However when using TDF only as features, chapter 8.1 concludes that using more 

than 3 features is advisable, since this significantly increases TPR. 

In order to compare computational demands of different algorithms, we have run 

each algorithm five times and averaged the execution time. Each time, we input 59723 

feature vectors (i.e. 59723 different, 11 ms long recordings converted to features). The 

algorithm was run on a desktop running Windows 7 with 8 GB RAM and Intel Core2 

QUAD Q9650 processor without graphic card acceleration. Tab. 27 and Tab. 28 show, 

analogously to Tab. 22 and Tab. 23, execution times for different neural network 

architectures and for different algorithms respectively. Only execution time (in seconds) 

of algorithms is included, features were calculated separately. 

 

Table 27 Execution times in seconds of various neural network architectures 

Features NN10 NN20 NN30 NN10+10 NN20+20 NN30+30 

MFCC 0.37 0.44 0.51 0.45 0.56 0.79 

MFCC+TDF 0.53 0.56 0.63 0.54 0.74 0.94 

TDF 0.25 0.29 0.34 0.31 0.44 0.67 

 

Table 28 Execution times in seconds of various recognition algorithms 

Features NN20+20 SVM kNN Tree 
Naïve 

Bayes 
Ensemble 

MFCC 0.56 36.66 20.78 0.18 0.30 62.94 

MFCC+TDF 0.74 46.16 24.68 0.19 0.40 72.25 

TDF 0.44 1.27 1.48 0.11 0.14 3.48 

 

As could be expexted in Tab. 27, more neurons meant longer execution time. This 

includes both input neurons (i.e. number of input features) and neurons in hidden layers. 

Tab. 28 is more interesting. As for input features, less features mean shorter execution 

time, again. However various algorithms perform very differently, with decision trees 

being the quickest and SVMs the slowest by a wide margin. Neural networks, have 

execution times only slightly worse than decision trees, and so are very good choice from 

execution time point of view as well.  

Apart from execution time of algorithms themselves, we should also compare 

execution times of feature extraction algorithms, since they are slower than actual 

recognition algorithms, we only calculated features of 1532 recordings (each 11 ms long) 

and compared their execution times. Among compared features are MFCC coefficients 

of order 20, upsampled MFCC coefficients (used in preliminary gunshot detection) of 

order 20, 5 time domain features (TDF) described in previous section and LPC 

coefficients of order 20, Tab. 29 summarizes those results in seconds. Each extraction 

algorithm was calculated 5 times again and the time was averaged. 
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Table 29 Execution times in seconds of feature extraction algorithms 

MFCC 
MFCC-

upsampled 
LPC TDF5 

1.07 16.22 0.17 110.213 

 

LPC coefficients, as native Matlab algorithm achieve the best performance in terms 

of execution time. MFCC algorithm from Matlab file exchange fares order of magnitude 

worse, while upsampling adds considerable amount of time to the calculation. TDF 

execution time is by far the longest, which also makes it unsuitable for real-time 

deployment in its current implementation. One explanation for such a long time of 

execution is, that the algorithm is in its first version and no optimization was done. 

However excellent recognition performance of TDF make it a great algorithm to be 

employed for offline, advanced analysis. Since TDF as described in previous chapter 

actually consists of 11 different features, it is to be expected that different features have 

different calculation complexity. Tab. 30 below breaks TDF down into single features or 

groups of features to compare their individual calculation times. Some features are in 

groups, because their prerequisites are calculated together with other features (such as 

ZDist being difference of RP+ and RP-) or are output of the same function (such as Ap 

and Bp). TDF5 represents 5 TDF selected in this chapter, TDF11 presents a complete set 

of all TDFs presented in chapter 8.1. 

 

Table 30 Calculation times of various TDF 

RP- RP+ 
RP- 

RP+ 

RP- 

RP+ 

Zdist 

PDist PlDist 
PDist 

PlDist 

0.019 0.020 0.023 0.023 0.023 0.025 0.025 

       

Ang 

PDist 

PlDist 

Ang 

Area Ap, Bp An, Bn 
Ap, Bp 

An, Bn 
TDF11 

0.025 0.026 1.285 56.687 55.459 110.115 110.958 

 

It can be seen, that there are big differences in calculation times, while most of the 

features take very little time (comparable to LPC in previous table) to calculate, Area 

feature is around two orders of magnitude more complex. Exponential fit features (i.e. 

Ap, Bp, An, Bn) are even much more demanding, taking up the majority of time needed 

to calculate all features. When we look at Tab. 26, we can see that if we are going to use 

combination of TDF and MFCC, we can easily do without exponential fit features without 

sacrificing much recognition performance. However if we are using only TDFs, as is the 

case because of the bigger benefits to true negative rate, we have to be using more than 3 

features, since the analysis in chapter 8.1 shows there are still big benefits to adding more 

features and namely Bn and Bp. 
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Thus, the final algorithm for advanced gunshot detection based on dataset A is a 

decision tree with hyperparameters mentioned by the beginning of this chapter. The final 

performance will be now tested on dataset B to provide more unbiased results. Tab. 31 

presents results in terms of true negatives. With dataset B consisting of false alarms after 

stage 1 (31286 frames), we also provide the proportion of original data before stage 1 in 

“Total frames” column. The most interesting part consists of number and percentage of 

true negatives in dataset B from stage 2 and the total proportion of false alarms in the 

original pool of recordings from which dataset B was compiled. Tab. 32 provides 

information on true positives in a similar manner. 

 

Table 31 Evaluation of overal results (True Negatives) of gunshot detection on dataset B 

Category 

Total 

frames 

[# frames] 

Stage 1 - 

TN 

[# frames] 

Stage 1 - 

FA 

[# frames] 

Stage 1 

- TN 

[%] 

Stage 2 - 

TN 

[# frames] 

Stage 2 

- TN 

[%] 

Overall 

- TN 

[%] 

Dog 55389 46412 8977 83.79% 7938 88.43% 98.12% 

Engine 23422 8085 15337 34.52% 14982 97.69% 98.48% 

Public 

places 
69440 66570 2870 95.87% 2592 90.31% 99.60% 

Speech & 

music 
53591 49489 4102 92.35% 3884 94.69% 99.59% 

Combined 201842 170556 31286 84.50% 29396 93.96% 99.06% 

 

Table 32 Evaluation of overal results (True Positives) of gunshot detection on dataset B 

Category 

Total 

frames 

[# frames] 

Stage 1 - 

TP 

[# frames] 

Stage 1 

- TP 

[%] 

Stage 2 - 

TP 

[# frames] 

Stage 2 

- TP 

[%] 

Overall 

- TP 

[%] 

Gunshots 1532 1207 78.79% 1158 95.94% 75.59% 

 

The whole system, including stage 1 and stage 2 thus achieves TNR of over 99% for 

4 combined non-gunshot categories and over 75% TPR for 1532 gunshots from various 

types of weapons, including handguns and assault rifles.  
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9 ADVANCED BURST DETECTION 

This chapter describes advanced processing employed on audio frames flagged and saved 

as possible gunshot bursts by preliminary algorithm described in chapter 7.2. The main 

focus of the chapter is to examine period and periodicity of input audio waveform. This 

approach is further improved by addition of gunshot detection on top of which we 

examine periodicity. First section in this chapter introduces process of feature extraction 

and evaluates proposed features. Remaining two sections describe two proposed versions 

of algorithm, compare them and propose final solution. 

9.1 Burst Features 

The most salient feature of gunshot bursts is its periodicity. Thus, we have focused on 

estimating average period of the burst, detailed period of each gunshot in a burst along 

with differences between adjacent periods (referred to as delta-period) and time 

difference between first and last period (referred to as first-delta-period). We have also 

compared degree of periodicity (i.e. how similar individual periods are) regarding 

adjacent periods (referred to as periodicity) and first and last period again (referred to as 

first-periodicity). Methods employed include Average Magnitude Difference Function 

(AMDF), center-clipping and peak-search, algorithms not yet described will be described 

in the following chapter. 

9.1.1 AMDF Method 

The Average Magnitude Difference Function (AMDF) calculates D(k) curve, which is 

based on modified short-term autocorrelation function, namely it uses absolute value of 

difference instead of multiplication, as shown in (29) 

𝐷(𝑘) = ∑ |𝑠(𝑛) − 𝑠(𝑛 + 𝑘)|
𝑁−𝑘

𝑛=1
, (29) 

where s(n) are signal samples, k=(0,1,....N-1) is time shift, and N is frame length (in 

samples). The function is calculated for all frames. D(k) curve is afterwards normalized 

by division with R - regularization term corresponding to signal energy (30) so that values 

are in range 0-1, with zero representing perfectly periodic signal. An example of output 

before and after normalization can be seen in Fig. 57 with Fig. 56 being the input signal, 

the important thing is, that only Y-axis is scaled, without effect on X-axis. This way, 

different signals can be compared to each other. Typically, the envelope has decreasing 

tendency due to lowering number of samples in summation. However, we are using 

overflow to adjacent segments (if there are no adjacent segments, we just circularly shift 

the frame) and so function output looks more monotonous, such as the one depicted in 

Fig. 58, apparent period of around 50 samples. This approach is advantageous in that we 

are avoiding meaningless minima which usually appear for higher shift values. The first 

significant minimum (outside of zero-region where time shift is near 0) represents the 

periodicity degree and basic period of investigated frame. 

𝑅 = ∑ 2 ∙ |𝑠(𝑛)|
𝑁

𝑛=1
. (30) 
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Fig. 56 AK-47 gunshot burst - input to AMDF 

  

Fig. 57 AMDF output - without normalization (left) and with normalization (right) 

The basic period in seconds can be calculated as follows: 

𝑇0 = 𝑘min ∙ 𝑇S, (31) 

where kmin stands for location of the first significant minimum in the D(k)-wave 

(horizontal coordinate) and Ts is sampling period. Moreover, the non-zero value of D(kmin) 

(vertical coordinate of the first significant minimum) effectively represents degree of non-

periodicity in the signal waveform. For a truly periodic (having constant period and wave 

shape identical in all periods) signal s(n) becomes D(kmin) = 0. The AMDF algorithm was 

previously applied for successful selection of multiple periodic speech segments in [85]. 
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Fig. 58 Similarity function D(k) 

9.1.2 Feature Statistics 

In order to estimate period and delta-periods, we employed center-clipping with peak-

search. Peak-search consists in finding peak positions placed approximately period-length 

apart, with tolerance of 10% (with the initial period estimate coming from center-clipping 

algorithm described in previous chapter). Periodicity was estimated using AMDF method 

with adjacent pairs of gunshots (from single burst) as an input. These statistics were 

estimated on clean gunshot bursts without added noise, they are presented below, in Tab. 

33, with mean values, minima, maxima and their differences. 

 

Table 33 Statistics of AK-47 bursts 

Feature Unit Mean Min Max Max-Min 

Period - peak-

search 
[ms] 91.01 85.20 99.15 13.95 

Delta-period [ms] -0.15 0.02 8.16 8.14 

First-delta-period [ms] -1.22 0.03 9.91 9.88 

Periodicity [-] 0.46 0.21 0.78 0.57 

First-periodicity [-] 0.53 0.34 0.80 0.46 

 

As can be seen, individual periods vary significantly (around 10%). However, with 

detailed look on all bursts, mean period within each burst varied only slightly (approx. 

2%). On the other hand, periodicity took on a wider range of values, which were also 

overlapped with other, non-burst sounds, thus, we do not consider periodicity as a suitable 

feature later. 

Next, we wanted to compare peak-search method to AMDF under clean and noisy 
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conditions. We considered multiple noises, both stationary (awgn, engine, rain) and 

impulsive (barking dog, cracking branches). In order to estimate length of all periods 

using AMDF, we did not consider only first minimum, but all minima in similarity 

function (Fig. 58). Tab. 34 presents period statistics under different noise conditions. 

 

Table 34 Period length using peak-search and AMDF with gunshot signal degraded using 

different levels of various non-gunshot signals 

Noise type 

Peak-search AMDF 

20 dB 0 dB 20 dB 0 dB 

AWGN 13.95 13.83 15.58 12.43 

Rain 12.70 12.89 9.93 13.24 

Engine 13.95 13.73 15.99 139.16 

Dog 13.95 13.95 9.91 298.96 

Cracking branch 12.32 13.42 11.63 226.83 

Without noise 13.95 9.93 

 

Peak-search apparently performs well even in noisy conditions, but period 

localization (i.e. reported start and end of periods) reports a lot of incorrect positions, thus 

its reliability in stationary noise conditions is misleading, solution to this problem would 

be to pick an algorithm according to long-term noise conditions evaluated on a different 

basis. 

9.2 Advanced Burst Detection Results 

This section compares two different approaches to burst detection using previously 

introduced features. The first approach being AMDF and the second peak-search 

algorithm (which uses center-clipping). 

The first approach consists of detailed look into signal periods directly from input 

audio waveform. In order to establish whether frames flagged by preliminary detection 

really are bursts, we examine their periods in detail. In order to do this, we use both 

previously described methods (AMDF and peak-search), note that both methods are 

employed on whole recordings (with any appended frames). As stated previously, the 

mean period of gunshot bursts have, under tested conditions, very small deviation values. 

This feature was selected as a criterion to establish whether recording really is a burst, the 

criterion was that mean period must be nominal weapon rate of fire +/- 3 ms. In contrast 

with preliminary approach, this method takes into account each individual period in 

recording and achieves ore precise period measurements. 

Results in form of false alarm counts are summarized in Tab. 35 below. The table is 

divided into different categories of non-gunshot sounds, it includes original input audio 

duration, total duration flagged as bursts in stage 1 (online recognition) and proportion of 

recordings flagged as bursts in stage 2 (offline duration) to those flagged as bursts in stage 

1. Tab. 36 presents true positives for the two methods, separately for each weapon, 
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showing total number of bursts per weapon and number of bursts succesfully recognized 

as bursts.  

 

Table 35 Burst detection results – False alarms 

Category 
Original 

duration 
Stage 1 

Stage 2: AMDF 

[flagged 

recording /all] 

Stage 2: peak-search 

[flagged recording/all] 

Speech and 

music 
11 hours 42 sec 11/126 46/126 

Engine 1 hour 5 min 97 sec 54/224 43/224 

Rain and 

thunderstorm 
13 minutes 16 sec 2/16 2/16 

Birds 35 minutes 21 sec 22/46 22/46 

Dog 3 hours 74 sec 13/65 0/65 

 

Table 36 Burst detection results – True positives 

Weapon Burst count 
Stage 2: AMDF 

[true positives] 

Stage 2: peak-search 

[true positives] 

AK-47 30 30 30 

M45 16 11 11 

PPsh 16 12 12 

 

In terms of false alarms, the results indicate comparable performance of AMDF and 

peak-search in stage 2, it can be seen, that AMDF and peak-search performed comparably 

well, with various non-gunshot sounds achieving less false alarms using various 

approaches. Overall number of false alarms is less for AMDF approach. In terms of true 

positives, both approaches achieved identical results. 

9.3 Advanced Burst Detection Combined With Individual 

Gunshot Detection 

Since bursts consist of individual gunshots, another approach would be applying 

individual gunshot detection over whole frame and use AMDF afterwards. The input to 

individual gunshot detection is the whole frame divided into smaller subframes (11 ms), 

the output is a binary signal showing presence of gunshots. This binary signal serves as 

an input to AMDF, which determines its period. Similarly to the first approach, if detected 

period falls into tolerance of +/- 3 ms of nominal weapon rate of fire, the whole recording 

is flagged as containing gunshot burst. This method is more computationally demanding, 

as apart from calculating AMDF, we also need to extract features from the signal. 

In the chapter dealing with advanced individual gunshot detection, we considered 

mainly two algorithms, ensembles of either neural networks (with two hidden layer 20 

neurons each) or decision trees. In this chapter, we will compare both of these methods 
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using approach described in previous paragraph. Both of these algorithms provide less 

false alarms when using TDF only (without MFCC). Tab. 37 below compares results of 

this mixed method using neural network and decision tree algorithms to the results of two 

previously tested methods. Each cell shows number of recordings flagged as bursts out 

of all recordings, meaning non-gunshot categories show false alarms and gunshot 

categories true positives. 

The recognition algorithms used in this section are exactly the same as in previous 

chapter. Trained on the same data, false alarms from stage 1 gunshot detection, which 

means some of the sounds that testing datasets in this task (burst detection) and gunshot 

detection overlap only minimally. 

 

Table 37 Burst recognition performance comparison with combined approach 

False positives  

Category AMDF Peak-search 

Combined 

approach – 

neural networks 

Combined 

approach – 

decision trees 

Speech and music 11/126 46/126 0/126 1/126 

Engine 54/224 43/224 0/224 2/224 

Rain and 

thunderstorm 
2/16 2/16 0/16 0/16 

Birds 22/46 22/46 2/46 14/46 

Dog 13/65 0/65 5/65 24/65 

True positives  

Weapon AMDF Peak-search 

Combined 

approach – 

neural networks 

Combined 

approach – 

decision trees 

AK-47 30/30 30/30 24/30 25/30 

M45 11/16 11/16 10/16 16/16 

PPSh 12/16 12/16 10/16 12/16 

 

 

Tab. 37 shows that false positives, an aspect which is more important than true positives 

for this application, are much lower using combined methods compared to simpler 

methods mentioned in previous chapters. When comparing the two combined methods, 

neural networks achieve less true positives than decision trees, but also less false alarms. 

For this reason, we are chosing combined approach with neural networks and TDF as 

final advanced burst detection algorithm.  
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10 DEVELOPED SOFTWARE 

This chapter briefly described main scripts and some of the auxiliary functions created as 

a part of this thesis. The description includes names, purpose, inputs and outputs. The 

listed scripts use many internal functions also created as a part of this thesis, not all are 

described in detail in here for the sake of brevity, but they are commented in the code 

itself to provide better understanding. Comment descriptions include description of inputs 

and outputs together with dimensions and brief description of what the function does. 

 

The main script of the work is continuously running audio event detection. 

Name: audioEventDetection.m 

Purpose: main script loop, takes input from device audio input, performs real-time 

audio analysis to detect audio limiting, gunshots and gunshot bursts, save flagged frames 

into dedicated folders. 

Input: input directly from device audio input 

Output: writes audio to file 

 

The script dealing with advanced gunshot recognition uses folder with wav 

recordings as an input and outputs list of recordings flagged as containing gunshots along 

with exact time at which gunshot was detected. The user can choose feature set and 

algorithm (default algorithm is Decision Tree and feature set TDF). 

Name: gunshotAdvanced.m 

Purpose: determine whether preliminarily flagged gunshots really are gunshots 

Input: path to folder containing wav recordings 

Output: command-line list of recordings where gunshot was detected along with 

detection times 

 

For advanced bursts detection, the script accepts folder path as an input and outputs 

names of recordings containing gunshot bursts. User can choose the method as AMDF, 

Psearch or Combined. All of the methods were described in chapter 9. When choosing 

combined method, user can also choose feature set and classification algorithm. The 

default method is Combined with TDF features and decision trees. 

Name: burstAdvanced.m 

Purpose: determine whether preliminarily flagged bursts really are bursts 

Input: path to folder containing wav recordings 

Output: command-line list of recordings where burst was detected 

 

 

 



 77 

Auxiliary function to extract 5 TDF coefficients described in chapter 8.1. 

Name: TDF5.m 

Purpose: Extract 5 TDF coefficients from segmented input audio vector 

Inputs: - vec: segmented audio matrix of dimension 486xT, where first dimension 

represents consecutive segment of audio and T is integer equal to the number of segments 

- fs: sampling frequency of vec, in kHz 

Outputs: - five output variables, each representing one feature from TDF5 feature 

set, dimension of each output variable is Tx1, whole output is thus Tx5 

 

Auxiliary function to implement Average Magnitude Difference Function (AMDF) 

described in chapter 9.1.1. 

Name: amdfFull.m 

Purpose: calculate length of all periods present in input signal (with none small 

variance of period allowed), used in advanced burst detection 

Inputs:  - audio: audio (mono) recording to be analyzed, of dimensions 1xS, where 

S is the length of input in samples 

  - fs: sampling frequency of audio in Hz 

  - tim: length of frame to be analyzed in milliseconds 

Outputs: - Rt: vector of detected periods with dimensions 1xP, where P is number 

of detected periods and is dependent on input audio 

 

Auxiliary function to calculate signal period using Center-clipping method described 

in chapter 7.2.1. 

Name: cclip.m 

Purpose: quick method to calculate basic period of input signal, used in preliminary 

burst detection 

Inputs: - audio: audio (mono) recording to be analyzed, of dimensions 1xS, where 

S is the length of input in samples 

  - fs: sampling frequency of audio in Hz 

  - tim: length of frame to be analyzed in milliseconds 

  - alpha: alpha-factor influencing threshold over which signa lis declared 

periodic, value typically used in speech processing is 0.3, value used in this work is 0.1 

  - rf: reduction factor, establishes threshold under which signa lis rounded 

to 0 with respect to maxima detected in first/last third of audio, value used in this 

work is 0.8. 

  - fmax: maximum expected frequency in Hz, can be adjusted to limit 

searching interval 

Outputs: Rt: estimate of basic period of audio in ms  
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11 CONCLUSION 

This work consisted of brief introdution to basics of acoustics after which we summarized 

needs for succesfull gunshot recognition system. The basic requirement is sound event. 

dataset, which we have introduced and listed a few of them. Then we have listed several 

important sources dedicated to tasks of acoustic scene classification and sound event. 

detection, along with best performing papers dedicated to gunshot recognition itself.  The 

work itself consists in comparing features extracted from audio data, and using it in 

combination with various recognition algorithms. 

Firstly, general comparison of features was conducted with commonly used 1024 

sample frame (approx. 23 ms with sampling rate 44.1 kHz), where LPC performed the 

best. In the next step, frames of various sizes were compared (11 ms, 8 ms, 5 ms and 

3 ms) from which 11 ms frame size was picked, due to almost identical performance as 

23 ms frame and overall better than that of shorter frames. Detailed view at recognition 

performance with 11 ms frame confirmed insignificance of feature order for these 

features, we suspect this is caused by high mutual information between lower and higher 

feature indices. From preliminary results on several recordings, we can see that when at 

least 50 % of muzzle blast is present in 3 ms frame, LPC coefficients are quite stable, 

which is helpful when considering using overlap. This part culminated in investigation of 

feature variability when changing frame size, two methods, absolute and relative, were 

used, subsequently compared with mutual information between class labels and features 

and then their recognition performance was tested with neural networks. We conclude, 

that relative variability was good measure of feature performance, it achieved similar 

results as mutual information and indicated coefficients with lower indices are generally 

better. 

Next, features were compared under different noise conditions. Features were 

compared under the influence of white noise with different SNRs. Results show, that 

while LPC coefficients are better for nearly clean recordings, MFCC perform 

significantly better at medium noise levels. When high power noise is present, 

performance of MFCC and LPC are comparable. An interesting fact is that recognition 

performance of LPCC dramatically decreases when increasing feature order at 0 dB SNR. 

The first part of thesis concludes with description of algorithms most commonly used 

in sound recognition tasks, most of which were used also in this thesis. The most extensive 

part is dedicated to neural networks, since they are used in majority of sound recognition 

papers today. 

The next part of the thesis deals with developing the gunshot detection algorithm 

itself. The first part begins with chapter 7 which elaborates on general idea of continuous 

audio detection. The chapter presents two algorithms for preliminary detection of 

gunshots and gunshot bursts. The purpose of this stage is to make sure every minute of 

audio is monitored. During this stage, we mostly get rid of noise and most non-gunshot 

sounds while still having not insignificant false alarm ratio (around 14%). In order to 

increase the precision of the algorithm, we use second stage, which achieves much better 

results but is also computationally too expensive to handle all the real-time data. 

Chapter 8 deals with individual gunshot detection. We combine all the methods 

examined from the first chapters, beginning with comparing multiple features. In the end, 
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we use newly developed feature set that we have introduced in [84]. Along with feature 

set, we compare performance of multiple machine learning algorithms, which are later 

ensembled for even better performance. The final algorithm consists of an ensemble of 

decision trees, each specializing in eliminating different sound category. The individual 

detection scores of decision trees are summed up, producing a voting approach 

successfully used in ensemble learning. In comparison with recent works of other authors 

dedicated to gunshot detection, our system performs significantly better, best paper in 

DCASE 2017 track “Detection of rare sound events” [86] achieved error rate of 16% in 

gunshot class, while our system achieves performance with equivalent score of 2%. 

The final chapter of this work consists of advanced burst detection. Multiple methods 

are compared but the main topic of the chapter is work with periodicity, how to establish 

precise period measurement of bursts and to compare similarity of adjacent periods. The 

final method in this chapter constitutes a combination of single gunshot detection and 

periodicity examination. 

11.1 Future Work 

This work was dedicated to feature analysis, selection and comparison of recognition 

algorithms and also general proposal of system architecture. The demands of the proposed 

system were estimated using algorithm execution timing, which also served as basis for 

confirming the need for two recognition stages. 

Since the original idea inspiring this thesis was development of gunshot recognizing 

modules to be placed on tracking collars used in wildlife protection, there is still some 

development work to do. The most obvious step would be implementation of the whole 

system into compact, portable form which could be used along with tracking collars. 

Choosing proper platform would depend both on computational power needed and energy 

demands, which are constraints that go in opposite direction, so further testing would be 

needed. Additionally, there is a question of how to distribute computational demands. 

Since tracking collars are periodically sending their possition to authorities, there is a 

possibilty of sending also preliminarily flagged recordings. This way, advanced 

recognition, which is more computationally demanding, could be performed on a more 

powerful computers with steady energy supply. This would also be advantageous, since 

flagged recordings could be reviewed in place by an employee and possibly eliminate 

further false alarms. This method would however require further analysis of energy 

budgeting and further considerations such as how often to upload preliminarily flagged 

elements. More frequent uploads (such as in real time), would allow quick response, 

however frequent transmission is energetically demanding. On the other hand, sending 

the data (collected in a temporary buffer) for further analysis once every hour or two 

might still allow sufficiently prompt response, while saving battery time. There are a lot 

of possibilities that would depend on the situation in place, where local factors must be 

considered and the solution tailored by local needs.  
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