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Abstract. This paper considers an optimization problem of 
sum-rate in the Gaussian frequency-selective channel. We 
construct a competitive game with an asymptotically 
optimal compensation to approximate the optimization 
problem of sum-rate. Once the game achieves the Nash 
equilibrium, all users in the game will operate at the opti-
mal sum-rate boundary. The contributions of this paper 
are twofold. On the one hand, a distributed power alloca-
tion algorithm called iterative multiple waterlevels water-
filling algorithm is proposed to efficiently achieve the Nash 
equilibrium of the game. On the other hand, we derive 
some sufficient conditions on the convergence of iterative 
multiple waterlevels water-filling algorithm in this paper. 
Through simulation, the proposed algorithm has a signifi-
cant improvement of the performance over iterative water 
filling algorithm and achieves the close-to-optimal 
performance. 

Keywords 
Interference channel, iterative water filling algorithm 
(IWFA), power allocation, game theory.  

1. Introduction 
The rate region of Gaussian interference channel (IC) 

is an open problem for almost thirty years in multiuser 
information theory. The best rate region up to date is the 
famous Han and Kobayashi (HK) region [1] proposed in 
1981. The multiuser Gaussian frequency-selective IC is 
a special case of Gaussian IC which can be frequently en-
countered in the wireless/wire communication (e.g., 
OFDM and DSL). So the optimal code design is also 
a problem for the Gaussian frequency-selective IC. There 
have been many works devoted to the improvement of the 
rate region in the Gaussian frequency-selective IC. Litera-
tures [2]-[5] discussed the use of cooperative game theory 
for analyzing the Gaussian frequency-selective IC with 
centralized control to compute the largest achievable rate 
region of the system (i.e., Nash bargain solution of the 
achievable rate-tuples). However, the coordination is usu-
ally unpractical in many scenarios. 

The dynamic spectrum management is also a common 
approach to improve the sum-rate of the Gaussian fre-
quency-selective IC. In 2002, Yu [6] proposed the iterative 
water-filling algorithm (IWFA) for computing power allo-
cation (i.e., Nash equilibrium (NE)) which was one of the 
first dynamic spectrum management algorithms in the 
frequency-selective Gaussian IC. Due to the non-coopera-
tive behavior and the selfish-optimum, it is a sub-optimal 
solution to the Gaussian frequency-selective IC. In 2004, 
Cendrillon proposed an optimal spectrum management [7] 
in the DSL scenario. However, it has a high complexity 
which makes it computationally intractable. Then, a simpli-
fied optimal spectrum balancing was derived in [8]. 
Several distributed algorithms [9]-[13] were proposed, 
whose performances are near-optimal. 

In this paper, we consider the optimization problem of 
sum-rate in the Gaussian frequency-selective IC. We find 
that the optimization problem can be approximated as 
a competitive game with an asymptotically optimal com-
pensation (called main game). The calculation of the 
optimal compensation is a big concern. In this paper, we 
model the compensation as a game model (called sub-game 
in this paper) and the NE of the sub-game can be computed 
by an iterative method. After the sub-game obtains the NE 
(i.e. the optimal compensation is reached), we start to 
calculate the NE of the main competitive game, at which 
the plays in the game can operate at the optimal rate 
frontier. The main contribution of the paper is the 
construction of the game model to solve the optimization 
problem of sum-rate. Furthermore, a distributed power 
allocation algorithm called iterative multiple waterlevels 
water-filling algorithm (IML-WFA) is proposed to achieve 
the NE of the main game and some sufficient conditions on 
the convergence of IML-WFA are derived in this paper. 
When compared with IWFA, the IML-WFA has 
a significant improvement of the performance and can 
achieve a close-to-optimal performance. Moreover, 
a simplified version of our algorithm is derived and it 
directly leads to an extended autonomous spectrum 
balancing (ASB) [10]-[12] with the multiple reference lines 
fashion. 

The remainder of the paper is organized as follows. In 
Section 2, the system model for the Gaussian frequency-
selective IC is formulated. In Section 3, we construct a new 
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game model for the sum-rate maximum game. Then a dis-
tributed algorithm is derived for the dynamic power alloca-
tion. In Section 4, numerical examples are presented. Con-
clusions are drawn in Section 5. 

2. System Model 
This paper considers the Gaussian frequency-selective 

IC as applied to discrete multi-tone (DMT) technique [14]. 
Then, the Gaussian frequency-selective IC is changed to a 
set of parallel Gaussian ICs. Suppose the number of total 
users in the parallel Gaussian ICs is N and the number of 
subchannels of each user is K. Then, we index the users by 
N = {1, 2,…, N}and label these K subchannels by 
K = {1, 2,…, K}. So, the transmission at each tone can be 
modeled independently 

         ,k k k k k   Ky C x n    (1) 

where x(k) = [x1(k),…, xN(k)]T is the transmit signals at 
tone k. xi(k), i  N is the signal transmit by user i at tone k. 
y(k) = [y1(k),…, yN(k)]T is the received signals at tone k. 
yi(k), i  N is the signal received by user i at tone k. 
n(k) = [n1(k),…, nN(k)]T is the vector of additive noise at  
tone k. ni(k), i  N is the additive noise with zero mean and 
variance i

2(k) seen by user i at tone k. C(k) is the NN 
channel transfer matrix at tone k, whose (m,n)th entry is 
defined as cmn(k). cmn(k) denote the interference coefficient 
from user n to user m. 

We define a matrix A(k) called channel gain matrix 
whose entry is the square of the corresponding entry in 
matrix C(k), i.e., amn(k) = [cmn(k)]2. We denote the vector 
containing allocated power of user i  N at all tones as 
pi = [pi(1),…, ni(K)]T. The set of all feasible system power 
vectors of user i is defined as, 
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where Pi is the total power constraint for user i. 

Based on the above system model, we simply con-
sider the interference as noise, then the achievable rate of 
user i  N at tone k is, 
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Then, the achievable rate of user i  N is, 
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where p = [p1
T, p2

T,…, pN
T]T. 

Each user is subject to a total power constraint, 
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3. Problem Formulation and Distribu-
ted Power Allocation Algorithm  
The basic component of game theory is a game 

G = {M, S, {ui, i  M}}. M is the set of players. Si is the 
set of strategy for player i  M, S = S1  S2 …SN is the set 
of strategy profile of all players. ui is the utility function 
which player i wishes to maximize. In our notion, M is 
equivalent to N. Si is equivalent to Pi which consists of all 
feasible power vectors pi. ui is equivalent to Ri. 

From [7] and [8], the optimal spectrum management 
problem is defined as, 
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It is obvious that (5) can be regarded as a sum-rate 
maximum game among all users. Furthermore, (5) can be 
rewritten as follows, 
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Then (6) can be considered as the competitive game 
(main game) with the compensation. The first term in (6) is 
the utility function user i wishes to maximize selfishly and 
the second term in (6) is the optimal compensation term for 
user i. Thus, we can generalize the following competitive 
game model with compensation. 
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where      i i iR R   p p p ,  i p  is the compensation 
function for user i. 

Determining the compensation function is a big prob-
lem for us to construct the competitive game (7). If we 
choose the optimal compensation of (6), then the game 
turns back to the optimal spectrum management problem 
defined in (5). Therefore, we propose an approach to ob-
tain the compensation by an asymptotically optimal fashion. 
The main thought is shown as follows. 

We suppose the user i is the current user and fix the 
other users’ transmit power allocation. Then, (7) can be 
modeled as, 
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To obtain the asymptotically optimal compensation, 
we set the derivative of the optimal compensation term 
given in (6) with respect to pi(k), 
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We assume the difference between the current power 
allocation and the last power allocation is small, then we 
can replace the pi(k) with  ˆ ip k  in (9), where  ˆ ip k  denote 
the last power allocation for user i. Then (9) is a constant in 
the current time, and its integration is, 
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From (8) and (10), we can formulate the following 
new game model (called sub-game in this paper) whose set 
of players is all tones of user i, 
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where       i i i i iR R k   p p  

It is obvious that (12) is a convex game. The NE to 
sub-game (12) is defined as follows, and by an iterative 
fashion such as the IWFA, the NE to (12) can be reached. 
Thus, the asymptotically optimal compensation Γi(k) is also 
obtained. 

Definition 1: Given an initial power allocation of all users 
and a channel gain matrix, the power allocation 
p ̃i= [p ̃i(1), p ̃i(2),…, p ̃i(K)]T is a NE of the sub-game (12), if 
the following inequality holds, 
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At each iteration, how can we obtain the maximum of 
(12)? The following theorem gives an approach to the 
problem. 

Theorem 1: Given the power allocation of all other users, 
a channel gain matrix, and a sub-game defined in (12). The 

optimal power allocation of user i can be reached via 
multiple waterlevels water filling algorithm (ML-WFA).i.e., 
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which is referred to as the waterlevel. 

          2
i i ij j ii

j i

k k a k p k a k 


 
  
 

   (15) 

which is referred to as the normalized interference-plus-
noise for user i at tone k. 

The proof of Theorem 1 is included in the Appendix. 

Theorem 2: Given the power allocation of all other users, 
a link gain matrix and a sub-game model among all tones 
of user i defined in (12), the NE to the optimization 
problem (12) exists. 

Proof From [15]–[17], if the following conditions are 
satisfied, in our notation, it says, if for k = 1,…, K 

i, Pi is compact and convex. 

ii, R̃i: Piú+ is a continuous function in pi. 

iii, R̃i is convex function in pi. 

Then the game is convex game and the NE exists.  

The Theorem 2 guarantees the existence of the NE in 
the sub-game (12). 

Then we recall the main game model with a compen-
sation defined in (7) and give the following NE [18] 
definition. 

Definition 2: Given a link gain matrix, the power 
allocation p*= [p1

*, p2
*,…, pN

*] is a NE of the game defined 
in (7), if the following inequality holds: 
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where p-i= [p1,…, pi-1, pi+1,…, pN]T, iN, NE(p-i) is the 
Nash equilibrium strategy of the player i if the remaining 
players chooses to play p-i  i.e., NE(p-i) = pi which can be 
obtained by sub-game (7). 
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is the set of all feasible system power vectors.  

Obviously, the NE defined in Definition 2 can also be 
reached by an iterative fashion. Now, we give a theorem to 
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guarantee the existence of the NE of the game defined in 
(7). 

Theorem 3: Given a power allocation of NE of user iN, 
a link gain matrix and a competitive game model with 
a compensation defined in (7), the NE to the game (7) 
exists. 

Proof The method of proof is similar to Theorem 2. 

From above discussion, a distributed power algorithm 
(i.e., IML-WFA) is proposed to achieve the NE of the 
game defined in (7). The IML-WFA can be divided into 
two parts. One is the inner iteration (sub-game) and the 
other is the outer iteration (competitive game model with 
a compensation).The IML-WFA works as follows: with the 
total power constraint, the first user updates its power allo-
cation and compensation function by deriving a ML-WFA 
solution (see Theorem 1) while considering the interfer-
ence powers of itself and the other users as noises and the 
first user continues to do the multiple waterlevels water-
filling algorithm until the process (called inner iteration) 
converges. The process is then successively applied to the 
second user, the third user, etc., until the total process 
(called outer iteration) converges. By definition, it has to 
converge to a NE of the game in (7). The algorithm is sum-
marized in Algorithm 1 and a simplified illustration is 
shown in Fig. 1. 

Multiple 
Waterlevels 
Water-filling

Convergence?
NO

YES

User 1

Multiple 
Waterlevels 
Water-filling

Convergence?
NO

YES

User 2

Convergence? Convergence?NO

YES YES

NO

Power allocation of user 1 Power allocation of user 2

IML-WFA

Inner iteration

 
Fig. 1.  A simplified illustration of IML-WFA (two-user case). 

In Algorithm 1, ML-WFA(*,*,*) denotes the ML-
WFA function which achieves the multiple levels water 
filling and returns the power allocation. The detail of ML-
WFA function is shown in Sub-Algorithm 1 and the 
derivation is included the proof of Theorem 1 which is 
included in the Appendix. 

 

The complexity of the proposed algorithms can be 
separated into two parts. One is the complexity of the inner 
iteration and the other is the complexity of the outer itera-
tion.  

 
Since the inner iteration is the single-user water-filling 
process (which is a convex optimization process and has 
a computational complexity of order O(K)) and all the 
other users’ compensations caused by current user at each 

Algorithm 1 (Distributed Power Allocation) 
1 Initialize   0, ,ip k i k   N K  

and power constraint iP  
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3   For m=1 to N      
4      Repeat 
5         For n=1 to K 
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Sub-Algorithm 1 (ML-WFA function) 
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tone in the water-filling process need to be computed, 
hence the inner iteration has a computational complexity of 
order O(KN). Then the inner iteration process is applied to 
the N users resulting in an outer iteration process. There-
fore the IML-WFA has a computational complexity of 
order O(KN2). The complexity of the proposed algorithms 
is equivalent to the complexity of iterative spectrum 
balancing (ISB) [9]. 

From the complexity analysis above, we can find that 
if there are many users in the Gaussian frequency-selective 
IC, the algorithm will be very complex because we have to 
compute all the other users’ compensations at each tone. 
A natural idea for simplifying the algorithm is to use the 
best compensation to approximate the total compensation 
that the current user must receive at each tone. Then we 
have the following definition for the current user i, 
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Then, (10) can be approximated as follows, 
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By the simplification of the compensations, the com-
plexity is reduced to O(KN) which is equivalent to the 
complexity of ASB [10]-[12]. The result given in (18) is 
similar with the result given in [11], [12, Section IV.C, Equ. 
(26)]. But the difference is obvious. In literature [11], [12], 
they choose a uniform reference line as the penalty the 
current user must suffer from and in this paper, we choose 
different reference line at different tone as the comple-
metarity the current user must pay for. So the result given 
in [11], [12] can be regard as the simplified form of our 
result given in (18) which can be considered as the ex-
tended ASB with the multiple reference lines fashion. Next, 
we will present some sufficient conditions for the conver-
gence of the IML-WFA. 

Theorem 4: If the channel gain matrices satisfy the 
condition, 

    max 1
k

k



K

A   (19) 

where ρ(*) denotes the spectral radius of the matrix and the 
spectral radius is the maximal absolute value of eigen-
values. Then the distributed power algorithm (i.e., IML-
WFA) converges. 

The proof of Theorem 4 is included in the Appendix. 

Corollary 1: If the channel gain matrices satisfy any one 
of the following conditions, 
i),    max 1

ijk
i j

k


  
K

A ,   (20) 

ii),    max 1
ijk

j i

k


  
K

A ,  (21) 

iii),    
, ,

1
max

1ijk i j
k

N
   

A   (22) 

then the distributed power algorithm (i.e., IML-WFA) 
converges. 

Proof From [21], we have the fact that, 

       max max
k k

k k
 


K K

A A   

which holds for any matrix norm. So if   
1

max 1
k

k



K

A , 

then    max 1
k

k



K

A .  

Hence,   
1

max 1
k

k



K

A  then IML-WFA converges. It 

is equivalent to the following condition 

   max 1
ijk

i j

k


  
K

A   

where [*]ij denote the (i,j) th entry in the matrix. Similarly, 

  max 1
ijk

j i

k


  
K

A , then the IML-WFA converges. If we 

define a NN matrix B whose diagonal entries are zero and 
off-diagonal entries are 1/(N – 1). Then ρ(B) = 1. If 
[A(k)]ij < 1/(N – 1), i,j,k, then   max

k
k




K
A B . It is obvious 

that      max 1
k

k 


 
K

A B , then the IML-WFA 

converges. 
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Fig. 2.  Total throughput comparison of DPA and IWFA. 

4. Numerical Result 
In this section, we summarize the numerical examples 

comparing the performance of our distributed power allo-
cation algorithm (DPA) with IWFA [6], autonomous spec-
trum balancing (ASB) [10]-[12] and optimal spectrum 
balancing (OSB) [8] in a four-user Gaussian frequency-
selective IC. The channel is divided into 100 subchannels. 
The power constraint is 0  P1, P2  20. The total through-
put is shown in Fig. 2. There is a significant improvement 
on sum-rate in DPA compared with IWFA. Fig. 3 illus-
trates the convergence of compensation function. It is clear 
that with the increasing of iterative number, the compensa-
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tion function tends to a certain number which is the optimal 
compensation for the utility function of the competitive 
game. From Fig. 2, we find that the IML-WFA converges 
at the fourth iteration. So in Fig. 3, the compensation func-
tion is almost a horizontal line. By running through all 
possible profiles of power, we get the achievable rate re-
gion as shown in Fig. 4, which shows that DPA achieves 
near optimal performance similar as OSB and ASB, and 
significant gains over IWFA. This simulation coincides 
with the analysis in (18) that our algorithm is the extended 
version of ASB. We also perform many simulations with 
more than two users with different scenarios. We find that 
there are more users in the scenario, then the algorithm 
gains more performance improvement over IWFA.  
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Fig. 3.  Convergence of price function. 
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Fig. 4.  Rate Region. 

5. Conclusion  
This paper presents the distributed power allocation 

algorithm based on the competitive game with an asymp-
totically optimal compensation. Through an iterative 
method, we can calculate the compensation with an asymp-

totically optimal fashion. Then a distributed power alloca-
tion algorithm is proposed to reach the NE of the main 
competitive game, which can be implemented in low com-
plexity in the Gaussian frequency-selective IC. We also 
find that the algorithm extends the ASB to the multiple 
reference lines fashion. By simulation, DPA exhibits the 
close-to-optimal performance and works near the rate re-
gion frontier. Because it is a distributed algorithm, it can be 
used in the Gaussian frequency-selective IC scenario (e.g. 
OFDM, DSL and ad-hoc network) with less or without the 
help of centralized control. 
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Appendix 

Proof of Theorem 1 

Proof  The Lagrangian function of (12) is defined as 
follows, 

    
1

K

i i i i i i
k

L R p k P


     
 
 p .   (23) 

We define, 

          2
i i ij j ii

j i

k k a k p k a k 


 
  
 

 .  (24) 

The Karush-Kuhn-Tucker (KKT) conditions are given by, 

 
 

0i
i

i

R

p k



  



,  (25) 

 

 
     

 

log 1

0

i
i i

k i

i
i

p k
k p k

k

p k






             



,  (26) 

 
     1

0i i
i i

k
k p k

 



  


, (27) 

      1
i i

i i

p k k
k


 


 

     
,  (28) 

Let      
1

i
i i

k
k


 


 

  (29) 

which is called waterlevel for user i at tone k. 

Then (28) can be rewritten as, 

       i i ip k k k 


    (30) 
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It is a multiple waterlevels water filling algorithm 
(ML-WFA). Then we have proven the Theorem 2. 

Next, we pay our attention to the efficient implemen-
tation of ML-WFA. From [19], it is obvious that two con-
straint functions impose on the waterlevel  

   ,i k k K . 

One is the single waterlevel constrain function which 
comes from (29), 

       1
,k i i i

i

f k k k
k

  


   K .  (31) 

Using the total power constraint, the other constraint 
function is obtained, 

        , 0i i i i
k k

g k k k k P  
 

     
K K

K . (32) 

Since   0ip k  , then we bound the waterlevel as 

follows, 
   ,max

i i k k     K   (33) 

where    maxmax
i i

k
k 




K
. 

Due to the monotonicity of (31), we can bound the λi 
by (33), 
      max minlb max ub

i k i i k i
kk

f f   


    
KK

.  (34) 

Equation (32) can be rewritten as follows, 

        , 0i i i i
k k

g k k k k P  
 

     
K K

K  

      1
0i i i

k ki i

g k P
k

 
  

 
       

 
K K

.  (35)  

So, the rest work is to find the root of (35) between 
lb
i  and ub

i . This can be easily implemented via the bisec-

tion method and the ML-WFA is summarized in Sub-
Algorithm 1. 

Proof of Theorem 4 

Proof The utility function for the user i is, 

 

   
     

 

 
1

log 1

. . 0, ,

,

i
i i i

k i

i

K

i i
k

p k
R k p k

k

s t p k i k

p k P i






 
    

 
     

   







N K

N

p

  (36) 

where           2
i i ij j ii

j i

k k a k p k a k 


 
  
 

 .  (37) 

Equation (37) can be expressed in matrix form [20] as 
follows 
  Gp    (38) 

where 
2, , ...,

T

Ν
  
        is an M dimensional column 

vector (M = K  N),      1 , 2 ,..., , 
T

i i i i K i      N is a K di-

mensional column vector. σ is an M-dimensional column 
vector. p = [p1

T, p2
T, …, pN

T]T is an M dimensional column 
vector. pi = [pi(1), pi

T(2), …, pi(K)]T is a K dimensional 
column vector  and G is an M  M matrix. 

In general, G is a partitioned matrix with zero diago-
nal blocks. The (i,j) th block is a K  K diagonal matrix. 

From (29), we mark the maximum of (29) as 

   maxi i
k

k 



K

.   (39) 

Then, the  i k can be formulated as 

     ,i i ik k k    K    (40)  

where δi(k) is defined as the adjustment variable for water-
level at each tone. Then, it is straightforward to check that, 

      i i i ip k k k      , (41)  

     
1

K

i i i i
k

P k k K  


 
   
 

  . (42)  

Then, (41) can be expressed as, 

          
1 1

1 1
,

K K
i

i i i i i
k k

P
p k k k k k k

K K K
   

 

       K . (43) 

Equation (43) can be formulated as matrix form, 

 i i i p Q d   (44) 

where Qi úK  K, 

  
1

  

1
1

i kl

k l
K

k l
K

  

   


Q =   (45) 

d is an K-dimensional column vector whose entries 
can be obtained from (43). 

From (44), we obtain the following relation, 

  p V d    (46) 

where, V = diag(Q1, Q2, …, QN), d  is an M dimensional 
column vector. 

Combining (38) with (46), the following mapping 
relation can be obtained, 

      p V Gp d = VGp h = Tp h   (47) 

where T = VG , h = V d . From (47), we find that the 
next power allocation is a mapping transformation of the 
current power allocation. 

Hence, we rewrite the (47) as follows, 

 (n+s+1) n (s+1) p = T p h   (48) 

where, p(n) denotes the power allocation at the nth iteration. 
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It is straightforward to check that, 

  (n+s+1) (n+s) n (s+1) (s)  p p T p p .  (49) 

Then,  
  n(n+s+1) (n+s) (s+1) (s)  p p T p p .  (50) 

It is obvious that if ||T|| < 1, then IML-WFA con-
verges. Since T = VG, then ||T||  ||V|| ||G||. V is block di-
agonal. Each diagonal element Qi has the special structure 
as shown in (45), then we can bound the norm of V by 
bounding the norm of Qi. We choose L1-norm [21] to 
bound the norm of Qi. From (45), it is obvious that, 

  
1

2 1
i

K

K


Q .  (51) 

Then,   
1

2 1K

K


V  ,  (52) 

 
1 1 1

1
2( 1)

K

K
  


V G G .   (53) 

Similarly, L2-norm and L∞-norm can be use to bound 
the norm of Qi, then the following result can be obtained, 

 
2( 1)

K

K



G ,  (54) 

 
2

1G .  (55) 

So, if the G satisfies (53), (54) or (55), then the IML-
WFA converges. 

If a permutation of row-column imposes on the G, 
then we obtain the following diagonal matrix, 

       1 , 2 ,...,diag KG = A A A   (56) 

where   ,k k KA is the channel gain matrix defined in 
Section 2. As the permutation does not change the norm, 
we get 

   max , 1, 2,
p k p

k p


  
K

G A .  (57) 

Let p = 2, then we get,    

   
2

max 1
k

k



K

A   (58) 

then the IML-WFA converges.  

Equation (58) is equivalent to the following inequa-
tion, 

    max 1
k

k



K

A  . (59)  

So if (59) is satisfied, then the IML-WFA converges. 
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