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Abstract
The subject of this thesis is neural network acceleration with the goal of reducing the
number of floating point multiplications. The theoretical part of the thesis surveys current
trends and methods used in the field of neural network acceleration. However, the focus is
on the binarization techniques which allow replacing multiplications with logical operators.
The theoretical base is put into practice in two ways. First is the GPU implementation
of crucial binary operators in the TensorFlow framework with a performance benchmark.
Second is an application of these operators in simple image classifier. Results are certainly
encouraging. Implemented operators achieve speed-up by a factor of 2.5 when compared
to highly optimized cuBLAS operators. The last chapter compares accuracies achieved
by binarized models and their full-precision counterparts on various architectures.

Abstrakt
Predmetom tejto diplomovej práce je akcelerácia neurónových sietí s cieľom redukcie počtu
operácií násobenia reálnych čísiel. Teoretická časť tejto práce sleduje súčasné trendy a
metódy využívané v oblasti akcelerácie neurónových sietí. Najväčší dôraz je kladený na bi-
narizačné techniky, ktoré umožňujú nahradiť násobenia logickými operátormi. Teoretický
základ je zavedený do praxe hneď dvomi spôsobmi. Prvým z nich je implementácia kritick-
ých binárnych operátorov spustiteľných na GPU vo frameworku TensorFlow a ich rýchlostný
benchmark. Druhým je aplikácia týchto operátorov v jednoduchom klasifikátore obrázkov.
Výsledky sú rozhodne povzbudivé. Implementované operátory dosiahli 2,5-násobné zrých-
lenie v porovnaní s vysoko optimalizovanými cuBLAS operátormi. Posledná kapitola práce
sleduje úspešnosť dosiahnutú binarizačnými modelmi.
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Rozšírený abstrakt
Počas posledných niekoľko rokov sa z neurónových sietí stali najsofistikovanejšie prostriedky
na riešenie problémov. Vďaka svojej komplexnosti vyžadujú modely dosahujúce najlepšie
výsledky obrovské množstvo výpočtových zdrojov. Tieto požiadavky vedú k vývoju viace-
rých akceleračných techník zameraných na sprístupnenie týchto modelov na malých zariade-
niach s obmedzeným množstvom zdrojov. Predmetom tejto diplomovej práce je akcelerácia
neurónových sietí s cieľom redukcie počtu operácií násobenia reálnych čísiel.

Teoretická časť práce sleduje súčasné trendy a metódy využívané v oblasti akcelerá-
cie neurónových sietí. Kvantizácia, odstraňovanie a zdieľanie parametrov zahŕňa techniky
zamerané na redundanciu v presnosti a počte parametrov sietí. Binarizácia je extrémnou
formou kvantizácie parametrov, pri ktorej sú váhy a prípadne aj aktivácie kvantizované
na 1 bit. Takáto reprezentácia umožňuje SIMD spracovanie pomocou lacných logických
alebo iných bitových operátorov. XNOR siete binarizujú váhy aj aktivácie podľa znamienka
na hodnoty ±1 a aproximujú presnosť pomocou skalárnych škálovacích parametrov. Táto
transformácia umožňuje 32-násobnú redukciu veľkosti natrénovaných sietí pracujúcich s
dátovým typom float a teoreticky až 58-násobné zrýchlenie konvolučných vrstiev. Bina-
rizáčné techniky si napriek radikálnej strate presnosti na úrovni parametrov udržujú dobrú
úspešnosť výstupu, čo podporuje domnienku o vysokej robustnosti súčasných architek-
túr. Najväčším problémom binarizovaných modelov je efektivita trénovacieho procesu.
Stochastický gradientný zostup a všetky jeho rozšírené varianty vyžadujú vysokú pres-
nosť parametrov. V súčasnosti sa tento problém rieši uchovávaním parametrov s vysokou
presnosťou počas trénovania alebo viacbitovou kvantizáciou spätného prechodu.

Moderné nástroje umožňujúce návrh a implementáciu neurónových sietí, ako napríklad
Torch alebo TensorFlow, nedisponujú funkcionalitou podporujúcou prácu s binárnymi ten-
zormi. Prvá časť praktickej časti rozširuje TensorFlow o implementácu kritických binárnych
operátorov spustiteľných na GPU. Implementácia pozostáva z dvoch maticových binariza-
čných operátorov a z všeobecného maticového súčinu využívajúceho princípy XNOR sietí
(XGEMM). XGEMM bol podrobený rýchlostnému benchmarku a porovnaný s cuBLAS
verziou pracujúcou nad operandami s vysokou presnosťou. Napriek veľmi vysokej úrovni
akcelerácie cuBLAS verzie, XGEMM dosiahol takmer 2,5-násobné zrýchlenie výpočtu. Im-
plementovaný XGEMM je prvou dostupnou verziou XNOR všeobecného maticového súčinu,
ktorá dosahuje citeľné zrýchlenie. Ďaľšia optimalizácia môže viesť k výraznejšiemu zrých-
leniu a potenciálne až ku komerčnej využiteľnosti.

Druhá polovica praktickej časti pozostáva z integrácie operátorov to jednoduchej dopred-
nej siete. Zvolenou architektúrou bol 4-vrtstvový perceptron klasifikujúci ručne písané čís-
lice (MNIST). Binarizované boli len 2 skryté vrstvy. Základnými faktormi ovplyvňujúcimi
rýchlosť trénovania sú veľkosť trénovacej dávky a počet neurónov v skrytých vrstvách.
V závislosti od týchto faktorov bolo dosiahnuté iba 25% maximálne zrýchlenie trénova-
nia a priemerná strata úspešnosti o 5,5% na testovacej sade. Tento výsledok poukazuje
na potrebu lepšej optimalizácie implementovaných operátorov. Benchmark nebol zameraný
na udržanie vysokej úspešnosti klasifikácie. V poslednej kapitole sú porovnané state-of-
the-art binarizačné metódy z pohľadu binarizácie. Binarizácia na menších datasetoch ako
MNIST alebo SVHN dosahuje výborné výsledky. Nové metódy efektívneho návrhu a tréno-
vania binarizovaných modelov výrazne zlepšili úspešnosť aj na náročnejších úlohách.
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Chapter 1

Introduction

In recent years we have experienced a tremendous advancement in fields of visual and
audio recognition tasks. Neural networks have been the tool that researchers had used
to tackle these problems. However, existing models that achieve state-of-the-art results
are extremely computationally expensive and in many cases, very memory dependent. In
today’s IoT world of small and embedded devices with limited memory and computational
power, the resource requirements of such models are not feasible. Acceleration of neural
networks is a go-to solution. The primary goal is to minimize network resource requirements
without significantly hindering its performance.

Throughout the history of machine learning, researchers created many topologically
distinct models that have different resource requirements. Probably the most well-known
type suitable for media recognition tasks are convolutional neural networks (CNNs) which
are a type of traditional feedforward networks. Acceleration of CNNs have been studied
extensively during the past few years and researchers came up with several compelling
acceleration techniques.

In this thesis, we delve deep into the problem of CNN acceleration. The text is sub-
divided into two logical parts. First part consisting of three chapters lays out theoretical
foundation for network acceleration. The thesis starts with the detailed but straightfor-
ward description of feedforward neural networks and CNNs. The goal is to make sure that
the reader understands where the computational and memory complexity originates. The
second chapter provides insightful analysis of newest acceleration techniques, their applica-
tions, advantages, and drawbacks. Namely, we talk about parameter pruning and sharing,
low-rank factorization, transferred/compact convolutional filters and knowledge distillation.
The last chapter of the first part focuses in detail on binarization methods, which had the
most success in limiting the number of expensive single precision multiplications in neural
network computations.

The second part of the thesis focuses on practical implementations of binarized networks.
A brief description of the TensorFlow framework is followed by a detailed specification of
the implemented binary operators that have been missing in the framework. The most
interesting is the GPU implementation of the general matrix multiplication using logical
operators which achieves speed-up by a factor of 2.5 when compared to well optimized
cuBLAS implementation. This result is extremely encouraging considering that the de-
scribed implementation can still be improved significantly. The following chapter applies
these operators in the image classifier and evaluates the performance. The last chapter
focuses on binarized networks performance regarding the accuracy and provides several
benchmarks of various network architectures for different tasks.
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Chapter 2

Neural networks

Neural networks were first introduced in 1943 when McCulloch and Pitts published a model
of neuron which worked as a simple threshold device to perform logic function [31]. Working
principle of McCulloch-Pitts model stayed unchanged to this day. Neurons in networks can
differ in their base1 and activation2 functions.

Networks of such neurons display remarkable ability to recognize patterns in the input
data which in many cases outclass even human abilities. However, to accomplish such a feat,
neural networks need to be sufficiently large and extensively trained resulting in memory
and computational power requirements. To better understand these requirements, the next
section describes a concept of feedforward artificial neural network (FNN) which is among
the most commonly used architectural archetypes.

2.1 Feedforward networks
Neuron layers are the basic building blocks of the FNN’s structure. Neurons within the
same layer share base and activation function. Connections between the neurons are in a
feedforward fashion, meaning there are no connections between neurons of the same layer
and no feedback [12].

This text focuses on static networks with the constant number of neurons and their
learnable parameters, that perform classification3. Following notations are used throughout
the text to describe neural networks:

L the number of layers. Layers are indexed from 1

~al output vector of layer l = input vector of layer l+1 (~a0 is a vector of input features).

W l
ij weight on the j−th input of i−th neuron in layer l. Size of weight matrix dimension

| ~W l
i | = |~a(l−1)|+ 1 because of bias terms. Let |W l

i0| be the bias. Then by padding ~a so
that ~a0 = 1 allows us to compute basis function as a single matrix multiplication.

θ(·) the activation function.

J(Θ) the cost function.
1aggregating function of arbitrary number of neuron inputs
2threshold function with single input and output
3as opposed to regression problems, the task is to classify inputs into a predefined set of outputs
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2.1.1 Fully-connected layer

Neurons in a fully-connected layer have connections to all activations in the previous layer.
They share the number of the inputs which equals to the number of neurons in the previous
layer or the neural network input width in case of the first layer. The process of computa-
tion of a fully-connected neural network is vectorizable into a single matrix multiplication
operation. Equation 2.1 shows general case with a batch of activations and the weight
matrix4.

aN = θ
(
a(N−1) ×WN

)
(2.1)

 

 

 

 

Figure 2.1: Visualisation of a fully-connected layer with n neurons and m+ 1 inputs.

The fully-connected layer consisting of n neurons with m inputs contains n ∗ (m + 1)
learnable parameters. This number could quickly reach millions or even billions when ap-
plied to image recognition. Fully-connected layers try to find patterns between all inputs.
This behavior is useful only if there is minimal spacial relevance between individual in-
puts. Intuitively, this is not the case for audiovisual inputs, which have significant spacial
dependencies and therefore using only fully-connected layers introduces many redundant
parameters.

Sophisticated architectures use fully-connected layers to find non-linear combinations of
high-level features, which are provided by more specialized layers such as convolutional or
recurrent layers. Often the last layer of the model is a fully-connected layer.

2.1.2 Convolutional layer

Convolutional layers significanly minimize the number of learnable parameters by searching
for patterns within selected spatial regions of the input. The spatial extent of this connec-

4the weight matrix is a column matrix meaning the i-th column holds weights of the i-th neuron
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tivity is commonly known as the receptive field of a neuron or filter size. Connections of
neurons are local along width and height dimensions of the input but always full along the
depth of the input volume. For example, for an RGB input image and filter size equal to
5, there are 5× 5× 3 = 75 connections for each neuron in the convolutional layer.

Output volume is defined by 3 hyperparameters:

Depth (N) Depth corresponds to the number of filters we want to use. Each filter looks
for different patterns within local regions of the input volume. For example filters in
the first convolutional layer may search for oriented edges or colored groups of pixels.
Term depth column refers to a set of neurons that execute these filters in the same
region.

Stride (S) Stride refers to the number of pixels by which we slide filters along the input
volume. This parameter is rarely higher than 3.

Zero-padding (P) A technique used to control the spacial size of output volume. Zero
padding of 1 adds a 1-pixel thick border of zeroes around the input volume.

For a 3-dimensional input volume [W1, H1, D1] a convolutional layer defined by N filters
with the receptive field of size F , stride S and zero padding P produces output volume
[W2, H2, D2] where:

W2 =
W1 − F + 2 ∗ P

S
+ 1 (2.2)

H2 =
H1 − F + 2 ∗ P

S
+ 1 (2.3)

D2 = N (2.4)

Convolution

Convolution operation is an iterative application of dot product of filter and selected input
region. It might seem like an inherently iterative process without the option of vectoriza-
tion. However, any convolution is transformable into a fully-connected layer with missing
connections, in other words, a layer with non-learnable weights set to zero. This transfor-
mation requires an alteration of the input commonly known as lowering.

Consider input volume of size [W,H,D] and convolution with N [X,X,D]-sized filters
at stride S. This setup defines L = LW ∗ LH = (W−XS + 1) ∗ (H−XS + 1) locations each of
which has X2D features. The process of convolution can be vectorized by following these
steps:

1. Transform a location matrix into column vector with X2D rows, and create a matrix
LM composed of such column vectors for all locations (|LM | = X2D × L).

2. Transform filter matrices into row vectors of size X2D and create filter matrix FM
composed of such rows for all N filters (|FM | = N × Y 2).

3. Calculate result of a convolution by computing matrix product LM × FM .

4. Reshape resulting matrix of size N × L into desired volume of size LW × LH ×N .

To have a better idea of a parameter scale in convolutional layers, see appendix C.

6



Figure 2.2: Convolutional layer with RGB input image of size [8, 8, 3], filter size 4, no zero
padding, stride 2 and depth 4. The image depicts depth column as the highlighted line of
neurons in the convolutional layer. Total number of filters is N = 3× 3× 4 = 36.

2.1.3 Pooling layer

Pooling layers are used to reduce the size of output volume and are commonly inserted
in-between convolutional layers. Pooling operation takes the local region in the input
volume and selects one representative for each 2-dimensional slice of the input. Similar to
convolutional layers, pooling layers are defined by their receptive field (F ) and stride (S).
A very common pooling has F = 2 and S = 2 with MAX operation, which reduces input
volume by 75%.

Figure 2.3: Visualization of 2 by 2 MAX pooling with a stride of 2 on [8, 8, 3] input, that
produces [2, 2, 3] output.

7



Dilated convolutional layers5 or convolutional layers with larger strides can be used to
replace pooling layers [38]. This approach is essential in training of generative models, and
it seems likely that the future architectures will feature less or no pooling layers.

2.2 Network complexity
In the previous section 2.1, we discussed feedforward networks and their common structural
parts - layers. Most of the modern architectures stack these layers on top of each other
to form complex deep neural networks. Residual networks (ResNets) achieved most recent
state-of-the-art results. ResNets use dozens of convolutional layers organized into blocks of
two followed by a single fully-connected layer. The two convolutional layers in a ResNet
block are joined by a unit that adds input of the block with the output of the second
convolution [18].

Size of the network model is often the determining factor concerning model’s overall
usability. Large models require more space and time to perform their function. Model space
and time complexity are the primary measures used to evaluate acceleration techniques.

2.2.1 Space complexity

Memory is one of the most significant challenges in deep neural networks (DNNs) today.
Limited memory bandwidth of DRAM devices is causing increased latency and power con-
sumption when used for processing of vast amounts of weights and activations in neural
network models. As shown in sections 2.1.1 and 2.1.2, the number of attributes can pro-
liferate with each layer. For example ResNet 50 [18] with 50 convolutional layers requires
over 95MB memory for storage for each image [4].
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Figure 2.4: Memory requirements of various networks for the ImageNet challenge. All
experiments were conducted on a JetPack-2.3 NVIDIA Jetson TX1 board with 256 GPU
cores and 4 GB of shared RAM. Note that minimum size of 200 MB is caused by initial
allocation of the network model. This measurements were taken by Canziani et al. [2]

5dilated layers perform convolution on dispersed regions. Closely connected regions have dilation of 0
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GPU data requirements are challenging memory complexity as well. Vector paths in
GPUs are typically 1024 bits wide which aligns with 32 samples in a batch of 32-bit floating
point data. The result is an increase of a local storage requirement by a factor of 32.
Lowering (see 2.1.2) is another example of an operation that boosts performance specifically
on GPUs but increases memory complexity quadratically to the convolutional filter size.
Measuring the memory use of ResNet 50 training with a mini-batch of 32 on a typical
high performance GPU shows that it needs over 6 GB of local memory. Furthermore, high-
performance graphics processors such as TitanX have only 1 KB of memory associated with
each core that can be fast enough to saturate the floating point data path [10].

This lead researchers to come up with techniques to reduce the number of parameters
so that the state-of-the-art networks can run on small embedded devices, cell phones, and
FPGAs equipped with only several megabytes of memory6.

2.2.2 Time complexity

In real life applications, there is a need for neural networks to produce results in real time.
Good examples are cases of voice recognition and translation in real time during a conference
call or visual recognition used by an industrial robot that sorts some product. These
applications cannot afford to wait seconds to perform their tasks. Another consideration is
the speed of training process. AlexNet in its original form took 2-3 days to train with GPU
acceleration in place. Inference time is determined by the number of learnable parameters
(determines the number of computations) and by the type of computation used. Common
practices to optimize the type of computation include:

1. Use of less computationally expensive activation functions such as (leaky) rectified
linear units (ReLU) over sigmoid or tanh activation functions.

2. Approximating single precision floating point operations with half precision, fixed
point, low bit-width integer or even boolean operations with lower latency on both
CPUs and GPUs.

3. Using a vectorized approach that takes advantage of fast matrix operations (e.g.
lowering in 2.1.2).

Next chapter is dedicated to advanced acceleration techniques that substantially reduce
both space and time complexity of deep FNNs.

6problem of compressing the reduced models is also relevant

9



Chapter 3

Advanced deep neural network
acceleration methods

In this chapter, we take a look at new network compression and acceleration approaches as
surveyed by Cheng et al. [4]. These approaches could be classified into 4 categories. Param-
eter pruning, quantization, and sharing aims to reduce performance-insensitive parameters
in convolutional and fully-connected layers. Low-rank factorization focuses on the fact that
filters in convolutional layers are typically 4-dimensional tensors with a significant amount
of redundancy. These methods decompose filter tensors into tensors with lower rank and
use them as an approximation of the original tensors. Transferred/compact convolutional
filters based methods design special structural convolutional filters that reduce both space
and time complexity. Lastly, knowledge distillation approaches learn a distilled model and
train smaller neural network that approximates a more extensive network.

3.1 Parameter pruning, quantization, and sharing
Parameter pruning, quantization, and sharing approaches aim to reduce network parame-
ters by removing redundant parameters or reducing them. We briefly touch this topic in
Appendix C, where simple assumption1 about the input data and their relevance towards
convolutional filters lead to parameter sharing scheme that pruned millions of redundant
parameters from the network. Based on the latest research, there are 3 classes of these
techniques:

1. Model quantization and parameter binarization

2. Parameter pruning and sharing

3. Methods based on the structural matrix.

3.1.1 Quantization and binarization

Computations within neural networks are performed in a domain of real numbers, which
translates into 2-byte half precision, 4-byte single precision or even 8-byte double precision
arithmetic in computer implementations. Network quantization aims to compress the orig-
inal network by reducing the number of bits per parameter, shrinking parameter domain

1filters in each depth slice/level can share weights because there is no precondition as to where edges or
blobs of colors may appear on the image
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during the process. The apparent result is a linear reduction of the space complexity, but
possibly less noticeable is the time complexity optimization. Although GPUs are designed
to perform fast floating point operations, quantization to lower bit-widths often leads to
operations with smaller latencies. When it comes to quantization, it is a tradeoff between
higher inference speed plus smaller memory consumption and overall network accuracy.

Quantization

In 2013, Denil et al. demonstrated that the weights within one layer could be accurately
predicted by ∼ 5% of the parameters, which indicates that the neural network is overly
parameterized. That inspired the use of vector quantization methods, such as:

• Application of k-means scalar quantization to the parameter values [13].

• 8-bit parameter quantization [45].

• 16-bit fixed-point representation in stochastic rounding based convolutional neural
network training [15].

• Minimizing Hessian-weighted quantization errors in average for clustering network
parameters [5].

• Deep three-stage compression with codebook encoding [17] (state-of-the-art).

Quantization performs the division of the input space into several connected regions
called Voronoi regions/polygons [12]. In more practical terms, quantization maps larger
input space onto more compact and more easily representable output space. Quantization
is often accompanied by clustering, since many activation functions, including rectified
units, have a range of R values. Appendix D contains a description of the state-of-the-art
deep three-stage compression method which uses quantization with k-means clustering to
reduce network size by a factor of ≈ 30.

Binarization

Binarization methods use weights quantized and projected down to 2 values. Modern ap-
proaches tend to use binary representations even during the training. As [32] showed, such
networks are remarkably robust. These networks provide maximum weight compression
as well as ability to use binary operations instead of expensive floating point operations.
Furthermore, such networks are an excellent choice for hardware implementations. Chapter
4 describes theory and math behind binarization techniques in detail. Practical implemen-
tations of binarized models are subject of chapters 5 to 7.

3.1.2 Parameter pruning and sharing

Network pruning and sharing have been used to reduce network complexity and to address
the over-fitting issue. These methods minimize the number of connections by removing
ones with low impact or by sharing same weights in between neurons. Early approaches
removed excess weights based on the Hessian of the cost function (e.g. OBN2 [9]).

Work by Srinivas and Babu [39] proposed pruning those weights which change the
output neuron activations the least. An approach known as HashNets uses low-cost hash
functions to create weight hash buckets for parameter sharing [3].

2optimal brain damage
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3.1.3 Structural matrix

Previously mentioned methods focused primarily on convolutional layers. However, there
is an abundance of redundant parameters within fully-connected layers, which are still a
substantial part of the most modern architectures such as residual networks. Billions of
parameters and computations within fully-connected layers are the most memory consuming
parts of networks that feature them. The bulk of fully-connected layer computations are in
general performed by weight matrix W of size m× n and input vector ~a multiplication.

Structural matrix based method try to find structure in W , such that it can be de-
scribed with less than mn parameters. One of the most recent methods proposes use of
Adaptive Fastfood Transform [48], which with clever use of random diagonal matrices, ran-
dom permutation matrix, Walsh-Hadamard matrix and fast Fourier transform manages to
reparametrize W so that memory complexity changes O(nm) → O(n) and computational
complexity drops O(nm)→ O(n logm).

3.2 Low-rank factorization
Low-rank factorization methods accelerate (convolutional) neural networks via minimizing
the rank of matrices representing convolutional filters. Recall that input and output of a
typical convolution layer are 3D tensors 2.1.2. Convolution kernel itself is a 4D tensor. The
primary solution strategy for rank minimization has been based on nuclear-norm minimiza-
tion which requires computing singular value decompositions which gets more costly with
larger matrices and ranks [47]. The following equation defines low-rank decomposition of
matrix A of size n×m with rank R:

A(i, j) =

R∑
r=1

A1(i, r)A2(j, r), i = 1, n j = 1,m (3.1)

Two approaches have stood out in this domain of acceleration in recent years.

1. Canonical Polyadic (CP) decomposition [26]

2. Exact closed form with batch normalization (BN) decomposition [43]

3.2.1 CP decomposition

Canonical polyadic decomposition is the most straightforward way to separate variables in
case of multiple dimensions. For a d-dimensional matrix A it builds on top of equation 3.1
and has the following form:

A(i1, . . . , id) =

R∑
r=1

A1(i1, r) . . . Ad(id, r) (3.2)

Lebedev et al. [26] use CP-decomposition in tandem with non-linear least squares to
replace each convolutional layer by a sequence of 4 convolutional layers with much smaller
kernels. Resulting network is optimized via the regular backpropagation process. This
approach managed to achieve speedup by a factor of 4 on a second convolution layer of
AlexNet (C).
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3.2.2 BN decomposition

This approach builds directly on top of 2-way tensor decomposition proposed by Jader-
berg et al. [22] and improves it by proposing a new algorithm for computing low-rank
decomposition and a new method for training low-rank constrained convolutional neural
networks.

Figure 3.1: 2-way decomposition. The original convolutional layer is on the left. Low-rank
constraint convolutional layer with rank-K is on the right.

As mentioned in 3.2, computing low-rank decomposition is difficult, and in general, it
is done by iterative schemes. BN decomposition finds the exact closed-form solution for a
particular form of low-rank decomposition. This computation is much more effective than
previously used iterative methods. During the training process, convolutional kernels are
parametrized in a way that enforces the low-rank constraint. This is complemented with
batch normalization training technique proposed in 2015 by Ioffe & Szegedy [21].

3.3 Transferred/compact convolutional filters
Research by Cohen et al. in [6] has motivated recent advances in transferred convolutional
filters. The research stated the concept of equivariance based on a significant amount of
empirical evidence. Equivariance states that for an input tensor x, network or a layer Φ(·)
and a transform tensor T (·) the following formula holds:

Φ(Tgx) = T ′gΦ(x) (3.3)

That is, transforming an input x by a transformation g and then passing it through the
learned map Φ3 should give the same result as first mapping x passed through Φ before
the final transformation of the representation. The takeaway idea is that it is reasonable
to perform transformations on layers or even convolutional filters.

Building on that idea, several works have been published that proposed convolutional
layers defined by a set of base filters and transformations that apply to them. For example,
the work in [11] exploited the cyclic symmetry of filters in convolutional layers by generating
new filters via 90◦ rotations and horizontal/vertical flipping of base filters.

3learned network or layer
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3.4 Knowledge distillation
The core idea of this approach is modeling and training more dense networks to mimic deep
neural networks. The work in [1] and [19] showed that shallow neural networks of mod-
est size (student) could approximate the function performed by larger networks (teacher)
trained on the input data set. The teacher network produces scores on the input, which
are in turn used to train the student network. As of now, it is not possible to train student
model directly on the original input so that the model reaches the same accuracy as either
learned teacher nor learned student network.

Romero et al. [35] further extended the student-teacher paradigm in a work which
proposed training deep but thin networks called FitNets, that made the student mimic the
full feature maps of the teacher.

In general, knowledge distillation approaches achieve significant computation time re-
duction. However, they are applicable only to classification tasks with the softmax loss
function.
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Chapter 4

Binarized networks

Previous chapters discussed the concept of neural networks concerning memory and compu-
tational complexity (chapter 2) and surveyed advanced acceleration strategies that tackle
the problem of redundancy and computational overhead within the network architectures
(chapter 3). In section 3.1.1 we introduced network quantization techniques and the ex-
treme case of network binarization which is the most suitable strategy for reducing the
number of multiplication operations in the network.

Network binarization faces difficult challenges on both theoretical and practical level.
Keeping high precision of weights during the parameter update is paramount for the stochas-
tic gradient descent to work correctly. Parameters in pure binarized networks have no
precision at all. As a result, current solutions tend to keep floating point approximations
of parameters or their quantized equivalents during the training and re-binarize after each
parameter update.

Several approaches in the past tried to simplify computations. Using powers of 2 and
reducing multiplications into binary shifts were among the first. These methods practically
eliminated multiplication, but experienced a significant drop in model accuracy and failed
to guarantee training convergence. Binarization reduces the range of weight values down
to 2 options. Typical cases would be {−1,+1} or {0, 1}. In 2015 Courbariaux et al. [8]
proposed training method called BinaryConnect which substitutes binary weights during
both forward and backward propagation in feedforward networks. This approach was later
improved on by Lin et al. [30], which introduced TernaryConnect.

Even though BinaryConnect managed to achieve excellent results on the smaller scale
(MNIST, CIFAR-10, SVHN), it lacks on large-scale datasets. Advances achieved by Raste-
gari et al. [34] outperform BinaryConnect based methods and are presented later in this
chapter in section 4.2.

From the practical standpoint, modern machine learning frameworks such as TensorFlow
or Torch have not implemented support for binary tensors yet. Available implementations
of binarized networks are only proofs of concepts.

4.1 BinaryConnect
As shown in the first chapter, activation ali of an i-th neuron of l-th layer is the output of
the neuron activation function with input in the form of the scalar vector product of input
vector ~al−1 and weight vector ~W l

i .
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ali = θ(~al−1 ∗ ~W l
i ) = θ

(∑
j=0

al−1j ∗W l
ij

)
(4.1)

BinaryConnect (BC) constraints the weights to be either +1 or −1 during propagations.
This means that equation 4.1 can be expressed as a difference of 2 sums:

ali = θ
(∑

a+ −
∑

a−
)

(4.2)

a+ and a− are sets of previous layer activations with positive/negative connection
weights. By using the rectified linear unit (ReLU) as the activation function which has
a form of θ(x) = max(0, x), this approach completely removes multiplication in the for-
ward pass.

4.1.1 Weight binarization

Binarization of weights is the operation that transforms weights of arbitrary type in the
original network into binary values. BC suggest two binarization techniques.

Deterministic binarization transforms weights by their sign. Alternatively, we could
introduce a threshold which would be the average of an input vector, which could
compensate for the loss of information.

wb =

{
+1 if w ≥ 0

−1 otherwise
(4.3)

Stochastic binarization uses hard sigmoid function σ to calculate the probability of the
weight binarization as either one of the two values.

σ(x) =


+1 if x ≥ 1

0 if x ≤ 0
x+1
2 otherwise

(4.4)

wb =

{
+1 with probability p = σ(w)

−1 with probability 1− p
(4.5)

This approach is more delicate and more correct averaging process, which yields better
results in experiments [8]. However, stochastic binarization brings the problem of
efficient generation of random numbers. That gets partially solved by the mini-batch
nature of the learning process where binarization of inputs is performed only once for
the whole mini-batch compared to the individual multiplication for each entry in the
mini-batch.

4.1.2 Quantized backpropagation

A proposed approach to removing multiplications from the backward pass in [30] uses the
power-of-2-quantization which allows replacing multiplications by binary shifts. During
the backward pass, error signal δ propagates from the output layer back towards the first
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input layer. Along the way, for each layer with weight tensor W , bias tensor b, precomputed
gradient tensor of the layer output∇a and layer input x, updated weight tensor is calculated
as:

∆W = η
(
δ �∇a

)
∗ xT (4.6)

∆b = η
(
δ �∇a

)
(4.7)

η is the learning rate and operator � is element-wise multiplication. Error signal δ is
updated via the following rule:

δ =
(
W T δ

)
�∇a (4.8)

Since input tensor x (output tensor a) has a known distribution of values, it is plausible
to perform quantization of each entry to an integer power of 2. That way outer multipli-
cation in equation 4.6 which represents the bulk of multiplications, can be replaced by bit
shifts. Experiments in [30] showed, that 3 bits are enough to quantize x. Amount of the
remaining multiplication operations is negligible.

4.1.3 Parameter update

Out of 3 training phases, weights are binarized only during the forward and backward
propagation. Keeping good precision weights during the parameter update is paramount
for the stochastic gradient descent to work at all. This requirement implies a need to keep
high precision weights in memory. Therefore memory complexity is not optimized.

BC forces weights to be real values in the interval 〈−1, 1〉 ensuring that binary proba-
bilities are in a reasonable range of values. If during the parameter update a weight value
escapes this range, it is clipped at the edges of the interval.

4.2 XNOR-Networks
In 2016 Rastegari et al. [34] published an alternative approach towards binary networks.
They proposed 2 solutions. Binary weights are characteristic of a simpler Binary-Weight-
Network (BWN) model with real value inputs. More advanced XNOR-Network (XNN) in
addition to binary weights transforms real value input into binary input and use XNOR
bit-counting operation to compute convolutions.

4.2.1 Binary weight networks

As mentioned previously, the goal of quantization is a precise approximation. Consider
weight filter W in a CNN. BWN approximates W with binary weight filter B and scaling
factor α ∈ R+ such that W ≈ αB. Approximation precision is maximized1 by minimizing
the squared norm of the difference of W and αB.

α∗, B∗ = argmin
α,B

(
‖W − αB‖2

)
(4.9)

By solving the equation 4.9, the optimal estimation of weight filter is achieved by taking
the sign of weight values =⇒ B∗ = sign(W ), and the optimal scaling factor is the average

1α∗, and B∗ are optimal approximations
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of absolute weight values =⇒ α∗ = 1
n ‖W‖ where n is the number of weights in the filter

W . Then for convolution ∗ with input tensor A the following formula holds:

A ∗W ≈ (A⊕B)α (4.10)

Operation ⊕ is convolution with additions and subtractions only, similar as in 4.1. Note
that multiplication is not entirely removed in the forward pass, as it still needs to be scaled
by α.

Training algorithm

Algorithm for BWN training follows similar steps as for BC.

1. For each filter in every layer compute scaling factor α and binary filter B. Approxi-
mated weight filter is then W̃ .

2. Perform standard forward propagation using equation 4.10 which results in a predic-
tion tensor Ŷ and cost J .

3. Compute gradients as ∂J

∂W̃
.

4. Use standard SGD or ADAM to update the original weight tensors using computed
gradients of their approximations and learning rate η.

5. Update learning rate via any learning rate scheduling function.

Analysis

After the training completes, real value weight tensors are no longer required because
forward propagation requires only binary weights and scaling factor. This approach achieves
acceleration only during the forward pass. Training achieves no memory saving. However,
a trained network operates with ∼ 32x memory saving and ∼ 2x time-saving. BWN proved
to be successful even on more extensive networks such as AlexNet, where it performed
without any loss of accuracy.

4.2.2 Input binarization

Unsurprisingly, the process of input binarization follows the same idea as weight binariza-
tion. However, the main focus is not necessarily on precise approximation of the tensor,
but on precise approximation of entire convolution operation such that for any input tensor
A and weight filter W we find optimal binary tensors BA and BW and scaling factors α
and β such that:

AT ∗W ≈ β(BA)T ∗ αBW (4.11)

That leads to a similar optimization problem as in BWNs, with the solution of B∗W =
sign(W ), B∗A = sign(A) and scaling factors α and β being the averages over absolute values
in tensors W and A respectively. As mentioned in [7], convolving 2 binary tensors can be
performed by XNOR and bit-counting operations. Consider input and weight tensors of 8
binary inputs. Then by concatenating these tensors into two 8-bit integers, we can perform
dot product on these values with only 2 inexpensive instructions (figure 4.1). Equation 4.12
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shows the relationship between vector dot product and XNOR dot product, where n is the
size of the input vectors X and W .

A ·W = 2 ∗ popcount
(
A xnor W

)
− n (4.12)

Doubling of the population count result can be implemented as a left shift by one
position, which completely removes any form of multiplication from the calculation.

Figure 4.1: Dot product of two binary vectors ~A and ~W performed by XNOR and popcount
single-instruction operations. Popcount returns the number of non-zero bits.

4.2.3 Binarized convolution

If we consider standard use-case of the convolution operation, we end up with a relatively
small 3D kernel (width × height × depth) on a relatively large 3D input of the same depth.
Input scaling factor is computed for all input sub-tensors that align with convolution kernels
and steps. Overlaps of the sub-tensors during convolution steps require many redundant
computations. The algorithm is broken into 2 parts to avoid this redundancy. In the
first phase, we flatten the input by averaging its elements along the depth axis. Flattened
matrix (AF ) when convolved with constant matrix k results in a matrix K that contains
all the necessary scaling factors β (figure 4.2). Equation 4.13 shows relationship between
full precision convolution and its binary approximation (· marks element-wise product).

A�W ≈
(

sign(A)⊕ sign(W )
)
·Kα (4.13)

4.2.4 XNN training

Typically, convolutional networks use several different layers to complement the convolu-
tional layer. The output of the convolution is normalized with batch normalization [21],
activated via a non-linear function, and pooled afterward. This sequence of transforma-
tions does not work well with binary networks. Applying normalization on binary tensors
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Figure 4.2: Optimized β-matrix computation.

does not affect them, and pooling causes significant loss of information. Rastegari et al.
normalized and activated the input tensor before binary convolution. They proposed using
non-binary activation after the binary convolution on state-of-the-art networks. The last
step in the sequence could be any pooling.
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Chapter 5

XNOR kernel implementation

So far we have discussed the theory behind neural network binarization. This chapter
focuses on the implementation of binarization principles in TensorFlow (5.1) framework
which has an excellent extensible developer interface that allows creating new operators
from scratch and integrating them with the rest of the framework in a seamless fashion.
To port XNN principles into the framework, we had to create operations for binarization
of tensors and a general matrix multiply (GEMM) operator that utilizes only the xor, not
and population count instructions to perform the matrix multiplication. These operators
have to compete with cuBLAS and Eigen3 GEMM implementations used in TensorFlow
which are exceptionally well optimized and beat them to achieve a performance speedup.

Next section briefly describes the TensorFlow framework and what it takes to extend it
by new operators. Later sections in this chapter describe in detail the implementation of
binarization and XNOR GEMM (XGEMM) and compare them to the TensorFlow matmul
operator.

5.1 TensorFlow
Tensorflow is an open source library for high-performance numerical computation generally
used in machine learning applications. The core principle is building an interconnected
graph of operators that perform various mathematical transformations on input tensors.
Tensors are n-dimensional vectors of typed numbers. Supported types range from 8-bit real
numbers up to the 64-bit complex numbers with signed and unsigned variants. TensorFlow
comes with TensorBoard, which is an application for visualization and statistical evaluation
of TensorFlow graph executions.

Neural networks generally contain dozens if not hundreds of mathematical operations
that are hard to visualize and difficult to debug. Tensorflow allows to group up related
operators by arbitrary relation, such as involvement in the same layer. This grouping
makes graph visualization in TensorBoard clearer, and it also provides more comprehensive
statistics.

5.1.1 Extending the framework

Each operator consists of C++ and CUDA backend and operation’s frontend. TensorFlow
declares operation interface (inputs, outputs, data types, additional attributes and shape
inference) via the C++ REGISTER_OP call. Operation name links the frontend declaration
with the operation’s backend.
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BACKEND

FRONTEND

Figure 5.1: Steps required to create and integrate a new TensorFlow operator.

Operation kernel is the core of operation’s backend implementation. Kernel checks the
validity of inputs and prepares data structures for the outputs in the memory. It also
calls functors, the templated execution units of operations. CPU functors usually embed
CPU implementation in their body. GPU functors prepare CUDA thread distribution and
execute CUDA kernel. Operations used in the neural networks usually need complemen-
tary gradient computation. TensorFlow allows implementing gradient calculation via the
RegisterGradient decorator directly in python.

Diagram in figure 5.1 sums up and visualizes the process of extending the TensorFlow
API with a new operator. It is important to note that TensorFlow does not insist on this
structuring and it should be used only as a template of best practice1.

5.2 Tensor binarization
Unfortunately, TensorFlow does not support 1-bit tensors, and the matrix multiplication
operator requires half, single and double precision floating point numbers, complex numbers
with minimal bit-width of 32 bits or 32-bit integers as operands. The consequence of this
is that implementing XGEMM as a combination of low bit-width operands with standard
GEMM to achieve a speedup is not an option.

1visit TensorFlow tutorial pages for more information
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TensorFlow provides a suite of bitwise operators for tensors with integral types. There-
fore the best course of action was to pack batches of N elements into a single number with
integral type with bit-width of N bits, which would allow processing of N elements at once
with bitwise operators. My implementation focuses on binarizing matrices since they are
the inputs of matrix multiplication methods and cover most of the need in neural network
models.

Next two sections focus on GPU implementation of two matrix binarization approaches.
The row-wise approach which reduces matrix width and column-wise transposition bina-
rization which combines matrix transposition and row wise binarization into one operation.

5.2.1 Matrix row binarization

The matrix row-wise binarization operator takes an input matrix and binarizes it row by
row. Allowed input data types are 8, 16 or 32-bit integers and 16, 32 or 64-bit floating
point numbers. The output is determined by the qtype attribute which has to refer to an
integral data type.

Row-wise binarization operation kernel checks the input and allocates memory for the
output. The number of output rows stays the same and output columns are calculated
according to the equation 5.1, where CI is the number of input columns and B is bit-width
of qtype.

CO = floor
(
CI +B − 1

B

)
(5.1)

GPU functor organizes threads into blocks of 64 arranged in an 8 × 8 matrix. Each
thread computes one element of the output processing B elements of the input. Figure 5.2
visualizes the process.

Figure 5.2: Row binarization with B = 2, block size = 2 and an input matrix with size
3× 5.

5.2.2 Matrix column binarization

To achieve maximum efficiency and the best speed up, every operator had to be implemented
on a rather low level. The most time-consuming part of an operation executed on big chunks
of data is memory access [36]. Data access in a row-wise fashion as in 5.2.1 is fast thanks to
the prefetcher which loads adjacent memory locations in advance. When accessing elements
in a column-wise manner, we jump across the memory by a whole row each time losing the
benefit of prefetched data in the process.
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This issue comes in a column binarization as well as in matrix multiplication. Trans-
posing the second operand allows matrix multiplication algorithm to access both matrices
in a row-wise fashion. Column binarization operator combines matrix transposition with
binarization making the data preparation process of GEMM faster.

Current implementation takes the same input arguments as 5.2.1, but the output is
restricted to 32-bit integers. Operation kernel prepares output matrix dimensions as in
equations 5.2, where R references rows, C columns and subscripts I and O refer to in-
put/output matrix.

RO = CI

CO = floor
(
RI + 31

32

) (5.2)

CUDA kernel operates in 3 phases. During the initial phase, each thread in a block sets
one row of the shared memory (32 cells) to a negative one value. This step ensures that
during the binarization, the exceeding values are zeroed out. With shared memory correctly
initialized, the warp of threads proceeds to fill shared memory with the input matrix values.
Each thread tries to load 32 values into a single column of the shared memory. Notice that
the shared memory contains one transposed block of the input matrix. The third phase
performs binarization of each column of the shared memory and saves the result to a cell
of the output that corresponds to the position of the thread in CUDA thread matrix. The
whole process is visualized in figure 5.3.

Figure 5.3: Column binarization with transposition of an input matrix with size RI × CI .
Binarization bit-width is same as thread count per block = 4.
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5.3 XGEMM
XNOR general matrix multiply operator follows the same principles as traditional matrix
multiplication operator. Matrix multiplication C = A × B is a O(n3) operation that
composes the output matrix element cij as a dot product of the i-th row of A and j-th
column of matrix B (equation 5.3).

Ai,j =


a1,1 a1,2 · · · a1,j
a2,1 a2,2 · · · a2,j

...
... . . . ...

ai,1 ai,2 · · · ai,j

 Bj,k =


b1,1 b1,2 · · · b1,k
b2,1 b2,2 · · · b2,k

...
... . . . ...

bj,1 bj,2 · · · bj,k



Ci,k = A×B =



j∑
x=1

a1,xbx,1
j∑

x=1
a1,xbx,2 · · ·

j∑
x=1

a1,xbx,k

j∑
x=1

a2,xbx,1
j∑

x=1
a2,xbx,2 · · ·

j∑
x=1

a2,xbx,k

...
... . . . ...

j∑
x=1

ai,xbx,1
j∑

x=1
ai,xbx,2 · · ·

j∑
x=1

ai,xbx,k


(5.3)

The naive implementation of matrix multiplication (3 nested loops) suffers from dis-
continuous memory access and thus from an ineffective utilization of cache memory units.
The following subsection describes several matrix multiplication techniques most of which
are used to optimize operations on multidimensional tensors. Matrix preprocessing, usage
of shared memory and tiling are among the ones that optimize the implemented CUDA
kernel.

Several additional challenges are raised as a result of the usage of XNOR based compu-
tations. One of the problems is the impact of necessary data padding, which is caused by
the fact that any combination of allowed weights in XNNs affects the output. Subsection
5.3.2 defines the problem more closely and describes implementation steps taken to solve
this issue.

5.3.1 GEMM optimization

Matrix multiplication is a notorious optimization problem. GPUs are well suited to compute
this operation fast thanks to the density of the operation’s inputs. There is a myriad
of optimization techniques that improve matrix multiplication performance. This section
focuses on the most powerful methods such as tiling, global memory coalescing, prefetching
and loop unrolling.

Tiling

One of the most significant problems of algorithms operating on large data structures is that
after a certain boundary the cache loses its ability to prefetch data from the main memory
efficiently and to maintain temporal data locality. That is a cause of the performance drop
on more massive inputs. Tiling, also known as blocking is a go-to solution for this problem.
One of the advantages of this approach is inherent compatibility with matrix processing on
GPUs.
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Tiling increases a computation-to-memory ratio by dividing the output matrix into
rectangular parts called tiles. Usually, the tiles are 16 × 16 or 32 × 32 squares. Tiled
algorithm loads tiles from both input matrices into separate buffers and computes the
change of the output for each element of the tile. Tiles from matrix A are loaded in a
row-wise pattern and tiles from B in a column-wise pattern. Tile row index of A defines
row index of C and tile column index of B defines column index for C. Figure 5.4 visualizes
the process.

Figure 5.4: Tiled matrix multiplication.

Tiling is an easily parallelizable algorithm on both GPUs and CPUs. Each thread in a
block (tile) computes one element of the output matrix.

Global memory coalescing and avoiding shared memory bank conflicts

These optimizations are related to GPU implementations. All threads in a warp execute
the same instruction. If that instruction loads data from the global memory, hardware
checks whether threads access consecutive memory locations. If that is the case, hardware
coalesces all memory accesses into consolidated access to consecutive DRAM addresses.

Another thing to keep in minds is that shared memory on the GPU has 32 banks.
Successive addresses are assigned to successive banks. Shared memory bandwidth is 4
bytes per bank per clock cycle. Designing an algorithm to avoid bank conflicts helps to
achieve higher memory throughput while decreasing computation time.

Prefetching and loop unrolling

Prefetching speeds up computation by explicitly requiring data in advance so by the time
they are needed they are already prepared in the cache. Hardware has prefetching units
that can recognize simpler patterns in the access. However, software prefetching is used
with tiling to load data for the next tile computation into registers while the current tile is
computed.

Loop unrolling is a counter-intuitive process of increasing loop step and multiplying
code in the loop body. Unrolling can reduce the number of required instructions (especially
branching) and reduce the execution time. Intelligent compilers automatically unroll inner
loops. Outer loops can be unrolled manually or with #pragma unroll directive.
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5.3.2 Implementation

Current XGEMM operator accepts input matrices of any integral type and produces 32-
bit integer, single and double precision floating point output. Operation kernel checks the
validity of both input matrices and prepares them for XGEMM functor.

Input preprocessing

XGEMM operation kernel uses internal binarization on a 32-bit width. The kernel uses
row-wise binarization functor to binarize first input matrix A and column-wise transpose
functor to binarize the second input B. The number of columns in the A matrix must
be the same as the number of rows of the B matrix. That number represents the size of
binarization axis for both binarization functors. Final dimensions of binarized matrices
Abin, Bbin, and the final output matrix C are:

ColAbin
= ColBbin

=
ColA + 31

32
=

RowB + 31

32
RowAbin

= RowA = RowC
RowBbin

= ColB = ColC

(5.4)

Transposition of the second matrix partially solves the problem of global memory coa-
lescing in the XGEMM CUDA kernel.

Data padding

Tiled computation of matrix multiplication results in internal padding whenever matrix
dimensions are not integer multiplications of the tile dimensions along both axes. For a
standard floating point GEMM, this does not cause any issues. Tiles are zero padded,
which results in several zero additions that do not affect the output.

XGEMM does not use zero values. The result of a population count operation would
yield a 0 if and only if half of the bits were zero and another half 1. This behavior is not only
impractical to implement, but it is also impossible in case of odd input dimension size for
the binarization axis. Furthermore, input padding in the XGEMM is twofold. Binarization
pads input matrices with additional zeroed out columns if the number of columns is not
multiple of binarization bit-width (32 in case of XGEMM). Second padding happens during
the tiling as described for the general case. In both cases, the matrices are padded with 0
bits or integers.

The same amount of zero bits pads both input matrices. These zero bits are XNOR-ed
which results in the same increase of every element in the resulting matrix (0 xnor 0 = 1).
That means that each element of the resulting matrix needs to be adjusted proportionally
to the added bit (B) and tile padding (T ).

B = 31− (ColsA − 1) mod 32 (5.5)
T = TileSize− 1−

(
((ColsA +B)� 5)− 1

)
mod TileSize (5.6)

Padding = B + T � 5 (5.7)

Symbols � and � mark left and right bitshifts.
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CUDA kernel

XGEMM CUDA kernel organizes threads into blocks of 32 × 32 to perform tiling. In
addition to the traditional inputs, it receives the total padding value which it uses to
reduce the final result. The kernel uses two tiled-size static shared memory buffers for tiles
from both inputs. Threads operate in three phases. In the first phase, they fetch data from
the global memory into the shared memory. If the global memory address is invalid, threads
fill matching shared memory location with 0 values (tile padding). Threads synchronize
after the load and proceed to phase 2.

Second and third phase utilize additional optimization of the XNOR vector product that
reduces the total number of instructions by approximately 3N where N is the size of tile
dimension. This optimization breaks the computation into two parts. Instead of performing
the full XNOR dot product (see 4.1), in the first part only the xor and population count are
used to accumulate the value, which represents the total number of 0 bits. That removes
N bitshifts, not operations and subtractions. Finally, a thread has to subtract the doubled
number of zeroes from the total number of processed bits which equates to 32 × N × k,
where k denotes number of tiles along the binarization axis.

In the second phase, all threads perform vector dot product of the corresponding rows
and columns taken from the shared memory tiles and store the result into a register. After
the thread warp processes all the tiles it adjusts the result according to the computation
optimization and the padding, and stores it to the output memory in the third phase.

Figure 5.5: Visualisation of XGEMM operation implementation. The left-hand side shows
input preprocessing with binarization operators. Right-hand side show XGEMM tiled com-
putation where × symbol represents matrix multiplication using only xnor and population
count instructions.

The implemented kernel does not take advantage of prefetching and loop unrolling.
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5.3.3 XGEMM benchmark

Figure 5.6 shows the result of XGEMM implementation benchmark that compares speedup
compared to the TensorFlow matmul operator which uses cuBLAS GEMM. Benchmark was
executed on the NVIDIA GeForce 940MX GPU with 2GB memory (full device details are
in Appendix E). Benchmark computed matrix multiplication of matrix A of size N rows
by M columns and matrix B of size M rows by N columns. N is on the vertical axis as M
is on the horizontal axis of the graph. White and red parts of the graph represent none or
negative speedup while the green parts represent a real speedup.

Figure 5.6: Dimensions of inputs are in range 〈100, 4000〉. Benchmark was executed for
each combination of inputs in the range with step 100. Benchmark ran for 10-40 iterations
for each combination of inputs and methods.

Even though there is symmetry in the input matrices, the graph is asymmetrical, show-
ing steadily worse performance for low N . Binarization is the cause of this asymmetry.
Inputs are binarized along the M axis. Therefore, the amount of time spent in binarization
kernels raises quadratically with N . Speedup of the XGEMM overtakes overhead of the
binarization with N larger than approximately 600. Speedup increases with the size of
inputs reaching over 250% with 4000× 4000 inputs.

Rastegari et al. proposed 58x faster convolution operations [34]. XGEMM achieves only
a fraction of this proposition, and under specific conditions, the operation is even slower
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than a full precision GEMM. There are two primary reasons for the discrepancy between
theory and practice.

1. Theoretical work does not take into account the overhead related to binarization and
latency introduced by the dense memory access.

2. Paper assumes an equal level of the implementation optimization for the full-precision
and binary kernels. TensorFlow’s cuBLAS GEMM is scrutinizingly optimized while
the XGEMM implementation uses only the basic optimization techniques.

There is no doubt that the implementation can be drastically improved. The fact that
the XGEMM implementation achieves speedup on reasonably sized inputs is extremely
promising.
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Chapter 6

MNIST classification with
XGEMM

The previous chapter describes the concept and implementation of XGEMM. This chapter
injects XGEMM into a neural network classification of the MNIST database and measures
the achieved speedup and change in the classification accuracy. Implemented architecture
is a simple multi-layer perceptron which utilizes novel methods for training of binarized
networks suggested by Tang et al. in [44].

6.1 MNIST database
MNIST by Yann LeCun et al. [27] is a database of handwritten digits designed as an
introductory machine-learning and pattern matching dataset. It consists of a training set
with 60,000 examples and a test set of 10,000 examples. The digits are normalized by
their size and centered in a 28 by 28 pixels images. Researchers use MNIST dataset for
benchmarking due to its simplicity and ease of use.

Figure 6.1: Sample preview of MNIST database images.

The training set contains samples from approximately 250 writers. Set of writers of
the test set is disjoint from the set of training set writers. Current state-of-the-art classi-
fiers perform better classification than human readers that achieve an average accuracy of
98.29%.
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6.2 Full-precision network architecture
Implemented MNIST classifier consists of 4 fully-connected layers (see 2.1.2). This type of
architecture is often referred to as a multi-layer perceptron (MLP). All layers except for the
last one have the same number of neurons. First 3 layers use the rectified linear unit (ReLU)
activation function. The last layer has 10 neurons and performs affine transformation with
softmax activation to produce probabilities for all 10 classes. Figure 6.2 visualizes the
model.

Figure 6.2: Full-precision network architecture.

The input image is flattened into a feature vector of 784 elements and fed into the net-
work layer. Inference process produces predictions which are used to calculate network loss
via the cross-entropy function. Adam optimization algorithm which combines advantages
of AdaGrad and RMSProp algorithms [23] uses computed parameter gradients to calculate
parameter updates.
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MLP is not an ideal architecture for image recognition. However, it is the best choice
for easy acceleration with XGEMM. Convolutional networks (see 2.1.2) are better suited
for visual tasks and achieve better results with less effort. The following section defines a
modified architecture utilizing XNN principles.

6.3 Binarized network model
Binarization of the full-precision model requires two notable adjustments.

1. Replace ReLU activation with binary activation (signum).

2. Quantization of weights before the affine transformation via XGEMM.

Figure 6.3: Binarized network architecture.

Figure 6.3 shows the change in network architecture. Green blocks labeled Quantize rep-
resent binary activations. Binary Affine is an affine transformation with binarized weights
and XGEMM.
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The focus of the implementation is not only on the acceleration but as well on a good
accuracy while achieving the speedup. Research by Tang et al. shows that it is advanta-
geous to keep full precision in the first layer to keep the higher quality of derived knowledge
of the input features in later layers [44]. Empirical evidence supports implications of the
assumption on the accuracy. Input feature vector is not sizeable enough to achieve signifi-
cant speedup by applying XGEMM. Therefore it is fitting to omit binarization in the first
layer.

6.4 Implementation and experiments
Implementation of full-precision MLP matches the architecture described in section 6.2
precisely as described. Binarized network code utilizes few critical features of implemented
XGEMM. Firstly the XGEMM has binary activation and quantization embedded within,
meaning calling signum to quantize activations and weights is a redundant computation.
This feature shrinks the model into more compact version shown in figure 6.4.

Figure 6.4: Compressed version of the binarized model.

An essential part of the implementation is XGEMM gradient computation. Gradients
for custom operators can be defined directly in python with TensorFlow RegisterGradient
decorator (see 5.1.1). Input is the gradient with respect to the output of the XGEMM (∇G)
and both input matrices (A, B). Then gradients are computed according to equations 6.1.
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Gradient computations are not quantized which increases computation time.

∇A = ∇G×BT

∇B = AT ×∇G
(6.1)

The implemented binarized model also omits binarization in the output layer. Output
width is only 10, which is too low to achieve any speedup through XGEMM.

6.4.1 MNIST benchmark

Most big models suffer from long training time. Mini-batch training reduces the training
time significantly by reducing the number of gradient computations and parameter updates
linearly with the batch size. Batch size determines the size of the input matrix of each
network layer. Therefore it is an attribute of underlying matrix multiplications. Another
attribute is the size of layers interpreted as the number of neurons.

Training in real applications has several options concerning when it should end. Typi-
cally the cross-validation method is used to terminate training process before the network
overfits the training dataset or to tweak parameters such as learning rate or dropout proba-
bility. For the benchmarking purposes, the learning rate is constant η = 0.005 and number
of training steps is constant relative to the input size. A training step refers to the pro-
cessing of a single mini-batch. Table 6.1 shows the relation between the number of training
steps and input sizes.

Input size Steps

≤ 1000 1000

≤ 2000 600

> 2000 300

Table 6.1: The relation between the maximum of batch size and layer size, and the number
of steps. A smaller number of steps decreases overall runtime.

Both models were tested on an NVIDIA GeForce 940MX GPU (see Appendix E) on
operating system Fedora 27 with CUDA v9.1, cuDNN v7.0.5 and TensorFlow v1.5.0-rc0.
Batch size ranged from 512 to 4096 increasing with step 512 and with the number of neurons
in each hidden layer ranging from 1000 up to 4200 increasing by 400. The total amount of
runs equals 162 (81 for each network).

Figure 6.5 shows the speedup achieved by binarization with XGEMM on the network.
Speedup gradually increases with the layers size. The rate of increase is lower than for an
isolated XGEMM (see 5.3.3). The leading cause is that the compressed binarized model is
much more complicated than simple matrix multiplication. XGEMM layers are only half
of the network and gradient computation, which is not quantized, consumes a significant
amount of total training time. The general conclusion of the speedup benchmark is that
increasing layer and batch size increase the achieved speedup.

Maximal speedup is by ≈ 25% for layer size ≈ 4000. That might not seem like much, but
with more fully-connected layers it should potentially reach the speedup of pure XGEMM at
about 100%. A good example where this would help is a triphone classification of frames in
speech recognition. Karel’s implementation in Kaldi [33] uses 7 fully-connected layers with
3370 neurons classifying inputs into 1936 categories. Training time of such networks can be
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Figure 6.5: Speedup of the binarized network with XGEMM on MNIST classification.

several weeks depending on learning rate and speed of convergence. Reducing this amount
to a half and significantly increasing the speed of trained network inference is excellent if
binarized network maintains the accuracy.

Benchmark provides few insights concerning network accuracy. Table 6.2 shows statis-
tical data gathered from all benchmark runs. On average the XGEMM network achieved
≈ 5.5% drop inaccuracy with higher variance. Note that binarized network used the same
hyperparameters as the full precision network. The question of how to train binarized
models is the subject of several studies, which are surveyed in the next chapter.

Model Max [%] Min [%] Mean [%] Standard deviation [%]

Full-precision 97.02 94.57 96.01 ±0.56

Binary XGEMM 91.91 87.68 90.49 ±0.93

Table 6.2: Comparison of full-precision and binarized network models.
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Chapter 7

Comparison of binarized models

Chapter 4 described several binarization techniques, most importantly the XNOR-net. This
chapter briefly describes few additional methods utilizing binarization, namely Binarized-
Neural-Network (BNN) by Courbariaux et al. [7] and the DoReFa-net by Zhou et al. [49].
Application of these methods into practice is still a complicated task because of a sudden
drop in accuracy on large-scale datasets. Section reference of this chapter draws from
research by Tang et al. [44] and shows several successful methods of improving binarized
models.

7.1 Binarized-Neural-Network
BNN is built on top of the XNN principles and introduces an improved method of train-
ing networks with binary weights and activations, and when computing the parameters
gradients during the training. Authors created an implementation of xnor-based matrix
multiplication. However, this implementation is not a GEMM and works only for matrices
with dimensions that are multiples of 512, and only for single-precision inputs and output.

Neural networks use regularization to prevent overfitting and achieve better general-
ization. Adding noise to network parameters provides a form of regularization. The best-
known form of adding noise is the dropout method [40], which randomly sets a percentage
of weights to zero when computing the gradients. Full-precision networks often incorporate
dropout layers into their architecture. Binarization of weights and activations acts like a
dropout. BNNs also utilize batch normalization on activations to achieve zero mean and
unit variance.

BNNs layers are composed of a sequence of stochastic or deterministic binarization
(4.1.1), affine transformation with binarized activation of the previous layer, and batch
normalization. Gradients are computed with respect to non-binarized activations.

7.2 DoReFa-net
DoReFa-net (DRF) is a training method of quantized models with low bit-width weights,
activations and parameter gradients. This approach does not restrict parameters to be
binary. However, authors used 1-bit weights in their experiments and achieved accuracy
comparable to full-precision models. Quantization of weights in DRFs is based on the XNN
principle. Instead of using channel-wise scaling factors, DRF selects a constant scalar to
scale all filters. That allows to the exploitation of binary convolutional kernels during the
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backpropagation. Quantization of activations is a straightforward k-bit representation of
each activation, where k is quantization bit-width.

7.3 Effective training strategies for binarized networks
Paper How to Train a Compact Binary Neural Network with High Accuracy? [44] pro-
vides insightful analysis of mentioned binarized models and based on careful observations
proposes several strategies for enhanced training of binarized models achieving better com-
pression rate and inference accuracy. Binarized models have unique features that are not
observed in full-precision models. Previous works focused on achieving the best approxima-
tion of original models not paying attention to the underlying nature of binarized networks.
Acknowledging these features allows devising better strategies for creating architectures of
binarized models and their training.

Low learning rate

Selecting adequate learning rate is a key to successful training. Convolutional layers are
commonly trained with the learning rate of approximately 0.01. Behavioral analysis of
binarized networks showed high fluctuations in network accuracy leading to lower accuracy.
Higher learning rate causes more frequent sign changes of weights introducing lower stability
during training. Empirical evidence shows that the training process stabilizes with a lower
learning rate. The learning rate can be as low as 0.0001.

PReLU activation function

Parametric rectified linear unit (PReLU) allows to omit the activation scale factors used
in XNN and move weight scale factors into the activation function. This modification
simplifies complicated convolution operation in XNN (see 4.2.3) and allows it to be carried
out only by the XGEMM. When applied to BNN, this method further increases achieved
accuracy.

Regularization

As mentioned previously, regularization increases network generalization capacity and helps
to prevent overfitting. Ridge regression [20] (L2 regularization) is standard practice in deep
neural networks. Binarized models provide the best approximations when full-precision
parameters have values close to ±1. To achieve this Tang et al. propose an alternative
regularization term that pilots weights to ±1:

J(W, b) = L(W, b) + λ

L∑
l=1

Nl∑
i=1

Ml∑
j=1

(
1− (W l

ij)
2
)

(7.1)

Nl and Ml in the equation 7.1 denote the dimensions of the weight matrix in the l-th
layer. L(W, b) is loss associated with the network for input batch. Rest of the equation is
the proposed regularization term parametrized by λ.

Scaling the last layer

Binarization of the last layer proved to have a significant adverse impact on network accu-
racy and compression rate. Outputs of the last layer in full-precision classifiers correspond
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to the probabilistic distribution of prediction among the classes. When both inputs and
weights of the last layer are binarized, the domain of output activation decreases signifi-
cantly relative to the second to last layer size. The low range of output values does not befit
the softmax function which is usually the last step of classification inference. Introducing
simple scale layer defined by a learnable scalar scale parameter in between the binarized last
layer and the softmax activation function improves compression rate and reduces accuracy
drop caused by binarization.

Multiple binarizations

Mentioned binarized models use signum function to binarize both weights as activations
directly. Tang et al. propose iterative binarization process that computes successive bina-
rizations based on the residual approximation error. This strategy results in significantly
better accuracy but at the cost of multiple computations of the affine transformation. To
achieve any speedup this method requires exceptionally well optimized XGEMM implemen-
tation.

Expanding lower layers

Han et al. [17] showed lesser parameter redundancy in lower layers of neural networks.
Binarization significantly reduces network representation capacity which can be regained by
expanding network layers. This process needs to be done carefully to keep high compression
rate and speedup. Therefore it is advisable to expand only the lower layers.

7.4 MNIST, SVHN and CIFAR-10 classification accuracy
Following tables compare binarization methods on various architectures on MNIST (see
6.1), SVHN (the street view house numbers dataset) and CIFAR-10 [24] datasets. The last
row of each table refers to the state-of-the-art full-precision solution. All other full-precision
solutions are in highlighted rows. Accuracy measurements were taken over from the original
studies.

Method Architecture Error Rate [%]
BinaryConnect MLP 1.29

BNN 3-layer MLP 0.96

XNN LeNet-5 0.77

Full-precision LeNet-5 0.80

Full-precision 2-layer MLP with DropConnect [46] 0.21

Table 7.1: Comparison network binarization methods on the MNIST dataset.
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Method Architecture Error Rate [%]
BinaryConnect CNN inspired by VGG [37] 2.30

BNN CNN inspired by VGG 2.53

Full-precision Gated CNN [28] 1.69

Table 7.2: Comparison network binarization methods on the SVHN dataset.

Method Architecture Error Rate [%]
BinaryConnect CNN inspired by VGG 8.27

BNN CNN inspired by VGG 9.90

XNN Network-in-Network (NIN) [29] 13.72

Full-precision NIN 8.80

Full-precision CNN with fractional max-pooling [14] 3.47

Table 7.3: Comparison network binarization methods on the CIFAR-10 dataset.

MNIST, SVHN, and CIFAR-10 visual recognition tasks are relatively small-scale and
easy to solve. Tables 7.1, 7.2, and 7.3 reflect that not only by showing low error rates on
the state-of-the-art solutions. Binarized models achieve the same accuracy on MNIST and
comparable accuracy on SVHN and CIFAR-10. These results are auspicious. However,
binarized models perform noticeably worse on large-scale datasets, such as ImageNet as
shown in the next section.

7.5 ImageNet classification accuracy
The ImageNet dataset consists of over 14 million annotated images with approximately
20 thousand categories. It is considered to be a large-scale dataset. Accuracy on the
ImageNet is measured on a top-1 and top-5 scale. Top-N accuracy is generalized accuracy
measurement scale for classification tasks. Neural network prediction is considered correct
if the target class is in the top N predictions. For example, all MNIST classifiers have 100%
top-10 accuracy. Top-1 accuracy is the default accuracy measurement.

Table 7.4 compares binarization methods on the ImageNet dataset. BinaryConnect and
BWN methods that binarize only the weights show better results than fully binarized BNN
or XNN. However, application of efficient training strategies on BNN improved its perfor-
mance with the AlexNet architecture by almost 20% for both Top-1 and Top-5 accuracy.
BWN achieves impressive result when applied to GoogLenet architecture, dropping accu-
racy only by approximately 6%. However, based on the ResNet-18 benchmark, XNN would
perform with much lower accuracy. Unfortunately, no research applied binarized training
optimization on these well-performing architectures.
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Method Architecture Top-1 [%] Top-5 [%]
BNN AlexNet (Appendix C) 27.90 50.42

BinaryConnect AlexNet 35.40 61.00

XNN AlexNet 44.20 69.50

DoReFa-net AlexNet (2-bit activations) 49.80 −
Optimized BNN AlexNet (2-bit activations) 46.60 71.10

Optimized BNN NIN (2-bit activations) 51.40 75.60

Full-precision AlexNet 56.60 80.20

XNN ResNet-18 [18] 51.20 73.20

BWN (see 4.2.1) ResNet-18 60.80 83.00

Full-precision ResNet-18 69.30 89.20

BWN GoogLenet [42] 65.50 86.10

Full-precision GoogLenet 71.30 90.00

Full-precision Inception ResNet-v2 [41] 83.50 96.90

Table 7.4: Comparison network binarization methods on the ImageNet dataset.
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Chapter 8

Conclusion

This thesis contributes in two ways. Firstly it comprehensibly summarizes neural network
acceleration techniques with stress on network binarization. Binarization allows replacing
expensive floating point multiplications with faster bitwise operators, and process neural
network computations in a SIMD fashion. Researchers developed several methods that
maximize network speedup while minimizing the loss of accuracy. Network binarization
has achieved palpable advancements in the field over the course of past 3 years. However, it
is still relatively unknown among the machine-learning community, with to my knowledge
no source summarizing the plethora of binarization studies up until now.

The second more practical contribution is in the form of a TensorFlow operator suite
which allows developing binarized networks in one of the most popular machine-learning
frameworks of today. These operators are implemented in templated CUDA and C++ code
runnable on CUDA-enabled GPUs. Speedup benchmark revealed 2.5 faster execution time
on reasonably sized inputs. This result is much lower than the theoretical supposition,
showing that there is still much space for an improvement of the implementation.

Theoretical base and TensorFlow implementation were merged in a binarized imple-
mentation of MNIST classifier and compared to the full-precision counterpart. Binarized
and full-precision architectures were trained and compared with different batch and hidden
layer sizes. The maximal achieved speedup was only by approximately 25% which would
grow with network size. These results imply that the current implementation is not ready
for the commercial use. However, the fact that it achieved any speedup at all is a good
sign moving forward. Various binarized techniques are compared by the achieved accuracy
on different architectures and tasks in the last chapter, showing promising results. Recent
advancements keep relatively good accuracy even on large-scale datasets.

Binarization faces difficult challenges on both theoretical and practical fronts. Studies
showed that binarized networks have unique nature and require a specialized approach
to modeling and training. The future work should focus on exploiting these features in
algorithms tailored for binarized models. In addition to that, the implemented operator
suite for the TensorFlow is small and not optimized to the maximum. The smallest step
forward would be to implement binarized convolution utilizing the existing operators or
further accelerating them, which would require extensive CUDA programming skills.
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Appendix A

Memory media contents

/
thesis ... thesis text

figures ... svg and pdf figures

poster ... poster sources

*.tex ... latex source files

Makefile
src ... implementation

benchmarks ... python benchmark code

graph ... graphing utilities

MNIST_data ... the MNIST dataset

models ... network archtectures in TensorFlow

operators ... new operators backend implementation in C++ and CUDA

op_interface ... new operators frontend - python interface

resources ... image resources for README files

results ... benchmark and MNIST results

tests ... test source files for the implemented operators

compare_mnist.sh ... execution script for the MNIST comparison

configuration.py
run_benchmarks.py
run_mnist.py ... trains a MNIST model with given arguments

run_tests.py ... executes tests with given arguments

README.md
LICENCE ... MIT licence

dip.pdf ... complete thesis in pdf

poster.pdf
video.mp4 ... short video description of the work

Source files are also publicly available here https://github.com/LukasSlouka/TF_XNN.
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Appendix B

Poster

NEURAL NETWORK IMPLEMENTATION
WITHOUT MULTIPLICATION

Lukáš SloukaAuthor: xslouk02@stud.fit.vutbr.czEmail: Date: May 2018

How does it work? How is it implemented?

Performance on MNIST

What about the network accuracy?

NETWORK
BINARIZATION
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Appendix C

AlexNet

In 2012 the ImageNet challenge was won in a landslide by deep convolutional network now
known as AlexNet. The goal was to train a network to classify 1.3 million high-resolution
images into 1000 different classes. The developed network had 5×105 neurons and contained
5 convolutional layers. AlexNet had 6× 107 learnable parameters [25].

The input of the first convolutional layer was an image of size [227, 227, 3]. Krizhevsky
decided to use neurons with receptive field size F = 11, stride S = 4 without any zero
padding. Depth of this layer was N = 96. By application of equations (2.1.2) resulting
volume had size [55, 55, 96]. This means that the first layer of AlexNet has 55× 55× 96 =
290, 400 neurons, each with 11 × 11 × 3 = 363 weights and 1 bias. That means that
the number of parameters of this layer is over 108, which is more than total number of
parameters mentioned before. AlexNet authors reduced this number down to ∼ 35, 000
with a parameter sharing strategy (see 3.1).

To put it in contrast, consider using fully-connected layer instead. Input vector size is
227 × 227 × 3 = 154, 587. That means that single fully-connected neuron would produce
over 5-times more learnable parameters than used the first convolutional layer of AlexNet.
Without parameter sharing, it would take less than 650 fully-connected neurons to produce
the same amount of learnable parameters as a convolutional layer with 300, 000 neurons.

Figure C.1: All 96 filters learned by AlexNet. We can see that some filters detect edge
patterns and other detect colored groups of pixels.
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Appendix D

Deep-compression

Train Connectivity

Prune Connections

Train Weights

Cluster the Weights

Generate Code Book

Quantize the Weights 
with Code Book

Retrain Code Book

Pruning: less number of weights
Quantization: less bits per weight

original
   size

   9x-13x 
reduction

  27x-31x 
reduction

   same 
accuracy

   same 
accuracy

original 
network

Encode Weights

Encode Index

Huffman Encoding

  35x-49x 
reduction

   same 
accuracy

Figure D.1: Flow diagram of the three-stage deep compression algorithm that achieves up
to 49 times better space complexity compared to the original network.

As shown in figure 2, the 3 stages of deep compression are pruning, quantization and
Huffman encoding which is a classical form of lossless data compression. Any of these steps
can serve as a standalone optimization.

Deep-compression algorithm builds on top of pruning method presented by Han et al. in
2015 [16] which is state-of-the-art pruning for convolutional models with no loss of accuracy.
Pruning algorithm starts with regular network training followed by removing all weights
with values lesser than a predefined threshold. After obtaining the connectivity, the network
is retrained once again to learn final weights of selected sparse connections. Resulting sparse
weights could be stored in efficient compressed sparse row/column (CSR/CSC) format.

Quantization algorithms in general compress networks by reducing the required number
of bits per weight. To do so, the deep-compression algorithm uses k-means clustering of
connection weight parameters (n � k where n = the number of weights). Clusters of
these weights have for sufficient k practically same value. Average values of clusters form
vector called centroid, which represents shared values for clustered weights. During back-
propagation update, all gradients of weights belonging to the same cluster are grouped, and
SUM reduced, multiplied by the learning rate and subtracted from the centroid, resulting
in fine-tuned centroid. Equation D.1 shows network compression rate, given k clusters, n
weights and b number of bits required to represent each connection.

r =
nb

nlog2(k) + kb
(D.1)
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Appendix E

NVIDIA GeForce 940MX GPU

Parameter Value
CUDA Capability Major/Minor version number 5.0
Total amount of global memory 2004 MB (2,101,870,592 bytes)
Multiprocessors (3) × CUDA Cores/MP (192) 576 CUDA Cores
GPU Clock rate 1242 MHz (1.24 GHz)
Memory Clock rate 1001 MHz
Memory Bus Width 64-bit
L2 Cache Size 1 MB (1,048,576 bytes)
Max Texture Dimension Size 1D x→ 65536

Max Texture Dimension Size 2D x→ 65536, y → 65536

Max Texture Dimension Size 3D x→ 4096, y → 4096, z → 4096

Max Layered Texture Size (dim) x layers 1D (16384) × 2048
Max Layered Texture Size (dim) x layers 2D (16384,16384) × 2048
Total amount of constant memory 64 KB (65,536 bytes)
Total amount of shared memory per block 48 KB (49,152 bytes)
Total number of registers available per block 64 KB (65,536 bytes)
Warp size 32
Maximum number of threads per multiprocessor 2048
Maximum number of threads per block 1024
Maximum sizes of each dimension of a block 1024 × 1024 × 64
Maximum sizes of each dimension of a grid 2,147,483,647 × 65,535 × 65,535
Maximum memory pitch ≈ 2 GB (2,147,483,647 bytes)
Texture alignment 512 bytes
Concurrent copy and kernel execution Yes with 1 copy engine(s)
Run time limit on kernels Yes
Integrated GPU sharing Host Memory No
Support host page-locked memory mapping Yes
Alignment requirement for Surfaces Yes
Device has ECC support Disabled
Device supports Unified Addressing (UVA) Yes

Table E.1: A curated output of a CUDA deviceQuery.
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