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Abstract. The paper is focused on the application of the 
equivalent dipole moment (EDM) method to accelerate the 
marching on in time (MOT) method for the time domain 
electric field integral equation (TD-EFIE). The implicit 
MOT scheme with the EDM method for the TD-EFIE is 
derived and analyzed. It is shown that the derived scheme 
is faster than the conventional one, even if it is not used for 
modeling electrically large structures. Since the conven-
tional implicit MOT scheme for the TD-EFIE is sensitive to 
small changes of its coefficients, the full-value using of the 
MOT scheme with the EDM approximation requires 
an appropriate technique (e.g. a preconditioning) to obtain 
a well-conditioned scheme. 
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1. Introduction 
For transient analysis of antennas or scatterers, the 

time domain electric field integral equation (TD-EFIE) can 
be solved. For its numerical solution, the marching-on-in-
time (MOT) [1] method can be applied, so the TD-EFIE is 
solved in space by the method of moments (MoM).  

The MoM employing triangular surface patches is 
a versatile technique for variety EM problems. However, 
one of its major disadvantages is a high computational 
complexity which is proportional to the square of a number 
of surface unknowns since the electromagnetic coupling 
between all discretized elements has to be considered.  

In recent years, several techniques for decreasing the 
computational complexity of the MOT method have been 
proposed. The plane wave time domain (PWTD) algorithm 
[2] and the time domain adaptive integral equation method 
(TD-AIM) [3] belong between the most popular ones. 
Although the computation complexity of these methods is 
lower than the conventional MOT approach, they are suit-
able mainly for modeling electrically large structures. 

This paper deals with the acceleration of the conven-
tional MOT method for the TD-EFIE by the equivalent 
dipole moment (EDM) method. The EDM method has 
been originally applied for the acceleration of the MoM in 
the frequency domain [4] - [6]. In this paper, the EDM 
approach is applied on the MOT method, and the resultant 
scheme is analyzed. The basic idea of the EDM method 
consists in computing the interaction between the source 
and testing function locations directly (the approximation 
of the radiated field by an infinitely small dipole with the 
equivalent moment) for a separation distance larger than 
the nominal value, without evaluating double integrals. 

The paper is organized as follows: Section 2 presents 
the MOT scheme with the EDM method derived for the 
TD-EFIE. Section 3 investigates the limitation of the de-
rived method. Section 4 presents numerical examples, and 
section 5 concludes the paper.  

Note that the whole paper, and the investigation car-
ried out in this paper is limited to open perfectly electric 
conducting structures to avoid troubles with internal reso-
nances. 

2. MOT Scheme with EDM Method 
for TD-EFIE 
Let us analyze the scattering of an open perfectly 

conducting structure illuminated by a transient electromag-
netic wave. The TD-EFIE is solved by the method of 
moments. The surface of the analyzed structure is approxi-
mated by planar triangular patches, and RWG [7] functions 
are used to expand the spatial variation of the electric cur-
rent density. In time, the TD-EFIE is approximated by 
central finite differences. The goal is to find the surface 
current due to the incident field. The resultant implicit 
MOT scheme can be written in the following matrix form 
[1] 
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where [mn] denotes a matrix of time invariant coefficients, 
[Im(tk)] is a column vector of the unknown current coeffi-
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cients at time ti, [m(tk)] is a column vector related to the 
incident field Vm(tk-1/2) located at the m-th testing function, 
and the coefficient mn(tk) depending on the location of the 
m-th testing and the n-th source function and the known 
current coefficients from time t0 to tk-1, t is the length of 
the time step. Detailed derivation is given in [1]. 

The most time consuming part of the implicit scheme 
(1) is the evaluation of the coefficient mn(ti) at each time 
step which consists in computing surface integrals over 
testing and expansion functions involving Green’s func-
tions. These integrals for MOT schemes are usually com-
puted by numerical or analytical-numerical techniques [8], 
[9]. However, in this paper to speed up the computing of 
the coefficient mn(ti), we exploit the equivalent dipole 
moment (EDM) method [4] originally proposed in the 
frequency domain. 

The EDM method stands on the idea that if the size of 
triangles for approximating a body of an analyzed structure 
is sufficiently small, the fields radiated due to the current 
on a triangle pair may be approximated by radiation of 
an infinitely small dipole with the equivalent moment. The 
approximation is valid beyond the nominal value R0 [4]. 

The equivalent moment for RWG function (Fig. 1) 
can be defined [7] 
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where n
c±  is the vector between the free vertex and the 

centroid of the triangle pair Tn
±, with n

c- directed toward 
and n

c+ directed away from the vertex, rn
c± is the position 

vector of the centroid of Tn
± with respect to the global ori-

gin, and the ln is the length of the n-th common edge of the 
triangle pair Tn

±. 

The radiation of the infinitely small dipole [10] after 
the transformation to the time domain can be described 
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where I0 is the current on the infinitely small dipole,  is 
the intrinsic impedance of the medium, and c is the velocity 
of the wave propagation in that space, R=|r-r’| is the dis-
tance between the observation point r and the position of 
the infinitely small dipole r’, R/)'(ˆ rrr  is the unit 

vector. 

In order to speed up the scheme (1), let us approxi-
mate the contribution of the current at the n-th source 
function to the m-testing function by an infinitely small di 

 
Fig. 1. Definition of the equivalent moment for RWG 

function. 

pole (3) with the equivalent moment (2). After substituting 
R=Rmn=|rm-rn|, where the rm and rn are the position vectors 
of the center of the m-the and n-th edge (Fig. 2), respec-
tively, and mnnmmn R/)(ˆˆ rrrr  to (3), after the discretiza-
tion of (3) in time in the same way as the scheme (1), and, 
finally, after the testing procedure (in the same way as in 
[4]), the coefficient mn(ti) can be expressed 
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where  
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Although expression (3) for the radiation of the infi-
nitely small dipole is valid at arbitrary distance from the 
dipole, the coefficient mn(tk) can be computed for the im-
plicit MOT scheme (1) according to (4) only if the distance 
between the center of the m-th and n-th edge is larger, than 
the nominal value R0. If this condition is not met, the ap-
proximation (4) cannot be used, and the coefficient mn(tk) 
have to be computed in the conventional way. 

Note that the integral in (5) is computed numerically. 

In order to meet the basic requirement of the EDM 
method in the time domain that the size of triangles for 
approximating the analyzed structure is sufficiently small, 
we have to compare the size of all triangles and the wave-
length (fmax) at the maximum frequency fmax of the impor-
tant part of the spectrum of the excitation pulse. The re-
quirement can be met if the lengths of all triangle edges are 
much smaller than the wavelength (fmax). In accordance 
with the application of the EDM method in the frequency 
domain [4]-[6], we choose the average edge length of tri-
angles comparable to 0.1(fmax). 
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Fig. 2. Configuration of m-th and n-th triangular pair and 

associated vectors.  

3. Analysis of MOT Scheme with EDM 
Method for TD-EFIE 
Before the MOT scheme with EDM method is used, it 

has to be known how the conventional MOT scheme is 
sensitive to small change of its coefficients, and how accu-
rate the approximation of the coefficient mn(tk) in the 
MOT scheme by the EDM method is. Subsequently, if it is 
possible, a rule for the determination of the nominal value 
R0 should be defined. 

3.1 Sensitivity Analysis of MOT Scheme 
It is known that the frequency domain electric field 

integral equation (FD-EFIE) suffers from the low fre-
quency breakdown [11], [12] which means that a reliable 
solution is difficult to find if the discretization becomes 
very fine in terms of subdivisions per wavelength. Finer 
discretization usually causes larger condition numbers of 
a system matrix, and consequently, an exploited numerical 
scheme for solving a given task is more sensitive on the 
evaluation of its coefficients. Thus, the low frequency 
breakdown can arise. Since TD-EFIE is the counterpart of 
the FD-EFIE, similar behavior can occur for MOT scheme 
for TD-EFIE [13]. To remedy this phenomenon, an appro-
priate technique (e.g. a preconditioning, or the modifica-
tion of the MOT scheme to its hierarchical version [13]), 
can be used.  

To avoid the above trouble without applying addi-
tional technique in this paper, let’s carry out the condition 
number analysis of the MOT scheme (1), and define re-
quirements on an excitation signal since the breakdown is 
a matter of low frequencies. 

Note that the MOT scheme defined by (1) represents 
linear invariant discrete system, so the condition number of 
its system matrix can be computed after transforming the 
scheme to the Z-domain.  

We carried out extensive numerical experiments, and 
computed the condition number for different structures 
which were located in free space. The analyzed structures 
were discretized with respect to the frequency f= 300 MHz 
(= 1 m) with the average edge length of triangles compa-
rable to 0.1(fmax) as it was discussed at the end of sec-
tion 2.  

The results for three structures, the strip 
(2 m  0.08 m), the square plates (1 m  1 m), and the 
rectangular plate (2 m  1 m), are depicted in Fig. 3. Obvi-
ously, the MOT scheme has large condition numbers at low 
frequencies as we expected. Similar results were observed 
for other numerical experiments. Considering mentioned 
facts and results of our investigation, we can conclude: 

1. If the spectrum of the excitation signal has impor-
tant components at the frequencies where the con-
dition number of the system matrix is high (a low 
frequency region), all coefficients of the scheme 
(1) has to be computed with high accuracy. This 
fact imposes high demand on the accuracy of 
evaluation of the surface integrals of the MOT 
scheme (1) and on the scheme itself, otherwise, 
the scheme is unstable. 

2. The MOT scheme (1) is less sensitive to small 
change of its coefficients at higher frequencies 
(low condition numbers). Thus, the troubles can 
be avoided by an excitation signal whose ratio of 
the maximum and minimum frequency of the im-
portant part of its spectrum is not high. According 
to the results of our numerical experiments, the 
ratio should not exceed 4 for the given discretiza-
tion criterion (this ratio should not be exceeded 
for the MOT scheme with EDM method). It has to 
be stressed that although the extensive numerical 
experiments were carried out, their number was 
limited, so the given ratio is not general, and it is 
used only for the investigation in the rest of this 
paper. 

 
Fig. 3. Dependence of condition number on frequency for 

different structures. 
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3.2 Accuracy of Approximation of mn by 
EDM Method and Determination of 
Nominal Value  

The accuracy investigation is carried out on the 
analysis of the strip with the dimensions 2 m  0.08 m. The 
body of the strip is modeled with respect to the frequency 
f = 300 MHz by 44 patches to meet the discretization crite-
rion. Let’s transform the coefficient mn(ti) to the Z-do-
main, firstly as it is defined for the scheme (1) in [1], and 
secondly as it is defined by the EDM approximation (4), 
and compute a relative error of the EDM approximation 
depending on the distance between the center of the m-th 
and n-th edge for the different lengths of the time step. The 
relative error is computed at the frequency f = 300 MHz 
where we expect the highest error because the electrical 
size of triangles is the largest. 

From Fig. 4 we can see that for small distances 
between the centers of the edges, the relative error has 
downward tendency, but it is high. However, from a 
certain distance, the relative error is small, but not 
negligible. Evidently, this error depends on the length of 
the time step (Rmin is the minimum distance between any 
two centers of triangular patches). Since the relative error 
is not negligible even for long distances, and depends on 
the length of the time step, the nominal value R0 cannot be 
determined from such kind of investigation. Thus, it has to 
be proceeded in a different way, directly in the time 
domain. 

 
Fig. 4. Relative error of approximation (4) depending on the 

distance between the center of m-th and n-th edge. 

Based on the results of our numerical experiments in 
the previous subsection that the ratio of the maximum and 
minimum frequency of the important part of the spectrum 
of the excitation pulse should not exceed 4 for the given 
discretization criterion and the modeled structures, we 
carried out extensive numerical experiments, and computed 
transient responses of different structures (the same ones as 
in the previous subsection) and compared the responses 
obtained by the MOT scheme (1), and by the MOT scheme  

with the EDM approximation (4) to find a relative error of 
those responses lower than 3 %. It was observed that the 
nominal value R0 depends on the length of the time step, as 
it was expected, but even on the ratio of the maximum 
distance between any two centers of triangular patches Rmax 
and the wavelength (fmax). 

The normalized nominal values R0 are depicted in Fig. 
5. Apparently, the MOT scheme with the EDM method 
saves more computational time in comparison to the con-
ventional scheme (1), as the electrical size of an analyzed 
structure is larger, and the length of the time step is smaller 
since more interactions between the m-th and n- triangular 
pair is computed by the EDM method. 

Note that the ratio Rmax/(fmax) is very close to the 
electrical size of the analyzed structure at the maximum 
frequency of the important part of the excitation signal. 

 
Fig. 5. Normalized nominal value. 

4. Numerical Examples 
Let’s demonstrate the efficiency of the MOT scheme 

with the EDM method, and illuminate two strips of differ-
ent lengths, a square plate, and a rectangular plate by 
a harmonic plane wave modulated by the Gaussian pulse 
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where k̂  is the unit vector in the direction of the propaga-
tion of the incident wave, E0 ,0ˆ. k  r is a position vector 
relative to the origin, T is the width of the Gaussian pulse, 
c is the velocity of the electromagnetic wave in vacuum, f0 
is the frequency of the harmonic signal, and t0 is the time 
delay of the pulse. The parameters of the incident plane 
wave are set to: E0= 120π x̂ , T = 24 ns, t0 = 25 ns, 
f0 = 187.5 MHz, zk ˆ . The bandwidth of this wave is 
225 MHz. The time and frequency characteristics are de-
picted in Fig. 6. 
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Fig. 6. Harmonic plane wave modulated by Gaussian pulse a), 

the spectrum b).  

The analyzed structures are located in the xy plane, 
and discretized with respect to the frequency f = 300 MHz 
to meet the discretization criterion. Their dimensions, the 
number of triangular patches Ntr necessary for the ap-
proximation of their body, and the distances Rmax are sum-
marized in Tab. 1. The nominal values were computed with 
the help of Fig. 5 for different lengths of the time step. The 
structures are firstly analyzed by the conventional MOT 
scheme and than by the MOT scheme with the EDM 
method. 
 

Structure Dimensions 
[m  m] 

Ntr 
[-] 

Rmax 
[m] 

R0
1 

[m] 
R0

2 

[m] 

Strip 1 2.00  0.08 44 1.94 1.00 0.85 

Strip 2 5.00  0.08 111 4.94 1.52 1.38 

Square plate 1.00  1.00 264 1.33 0.80 0.72 

Rectangular plate 2.00  1.00 484 2.15 1.05 0.90 

Tab. 1. Geometrical properties of the analyzed structures. 
Nominal values R0

1 and R0
2 are computed for different 

lengths of the time step, t =1.5Rmin/c, and t =Rmin/c, 
respectively.  

The results of the analysis recorded in the percentage 
saved time for different lengths of the time step are sum-
marized in Tab. 2. Evidently, the MOT scheme with the 
EDM method saves more computational time in compari-
son to the conventional MOT scheme, as the electrical size 
of the analyzed structure is larger, and the length of the 
time step is smaller. Thus, we confirmed our assumption 
mentioned at the end of subsection 3.2. 
 

 
Structure 

 
Rmax/(fmax) 

Saved time for 
t =1.5Rmin/c 

[%] 

Saved time for
t =Rmin/c 

[%] 

Strip 1 1.94 17 24 

Strip 2 4.94 38 42 

Square plate 1.33 10 15 

Rectangular plate 2.15 20 28 

Tab. 2. Saved time by the MOT scheme with the EDM method 
in comparison to the conventional MOT scheme for 
different lengths of the time step. 

The transient responses of the current at the center of 
the strip 2, and the rectangular plate obtained by both ap-
proaches are depicted in Fig.7, and Fig. 8, respectively. 
Apparently, the agreement is very good. 

 

 
Fig. 7. Current response at the center of the strip 2 a), and its 

enlarged detail b). The length of the time step is 
t = 1.5Rmin/c. 
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Fig. 8. Current response at the center of the rectangular plate 

a), and its enlarged detail b). The length of the time 
step is t = 1.5Rmin/c. 

Note that the accuracy of the conventional MOT 
scheme was verified by the results obtained by the inverse 
discrete Fourier transform of the frequency domain solu-
tion in [1]. Thus, here, we take it as a reference for the 
MOT scheme with the EDM method. 

5. Conclusion 
Although the exploitation of the EDM method for the 

acceleration of the MOT scheme for the TD-EFIE seems 
perspective, its full-value using requires an appropriate 
technique for the decreasing sensitivity of the MOT 
scheme to obtain a well-conditioned scheme. Actually, 
such a technique should be used even if the conventional 
MOT scheme is used to increase the stability of obtained 
results. 
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