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Abstrakt
S postupem času se elektrotechnický průmysl posouval dopředu. Přišel rozvoj v

automobilovém průmyslu, leteckém průmyslu, navigacı́ a dalšı́ch odvětvı́. S rozvojem

automobilového a leteckého průmyslu se zvětšila potřeba pro motory s vysokou

spolehlivostı́. Samotný fakt zapřičinil rozvoj motorů s vı́ce fázemi. Tyto stroje majı́ za

úkol zvýšit spolehlivost, ale zároveň zachovat nebo zvýšit výkon stroje.

Klı́čová slova
5-fázové stroje, 3-fázové stroje, analytický návrh, porovnánı́ strojů, rekon�gurace

proudů, Lagrangové multiplikátory

Abstract
In recent decades, the electrical industry has been rapidly developed. �e development

is in electrical vehicles, navigation, electrical aircra�, high-power wind generators,

multi-phase electrical machines and drivers. With development in the automotive

industry and airspace industry, the need of high-reliability electrical machines. �is

fact results in the development of poly-phase machines. �ese machines try to achieve

a higher reliability with the same or higher power rating.

Keywords
5-phase machines, 3-phase machines, analytical design, comparison of the machines,

recon�guration of currents, Lagrange multipliers



Rozšı́řený abstrakt

Tato práce je zaměřená na vı́ce-fázové stroje. Je rozdělená do čtyř částı́. V prvnı́ části

je zaměřena na aktuálni stav poznánı́ o vı́ce-fázových strojı́ch. Je tam popisováno využitı́

5 fázového stroje jako generátoru pro větrné turbı́ny, jako pohonu pro elektrické letadlo

nebo také pro aplikaci přı́mého připojenı́ motoru na kolo v automobilovém průmyslu.

Taktéž je v prvnı́ kapitole popsáno řı́zenı́ vı́ce-fázových strojů pomocı́ SVM. Dále jsou

tam uvedeny možnosti rozloženı́ statorového vinutı́ pro vı́ce-fázové stroje. Na závěr této

kapitoly jsou uvedeny některé možnosti (spůsoby) testovanı́ vı́ce-fázových strojů.

Druhá kapitola začı́ná výpočty pro druh vinutı́ u třı́ a pěti fázových strojů. Jsou

tam uvedeny výpočty pro stabilitu vynutı́ pro jednotlivé přı́pady. Jednotlivé výsledky

jsou uvedeny v tabulkách 2.1, 2.2, 2.3 a 2.4. Dalšı́m krokem této kapitoly je srovnánı́

tři a pěti-fázových indukčnı́ch strojů. Je tam uvedeno několik variant pro pěti-fázový

stroj. Všechny stroje byly navrhnuty tak, aby měly stejný výkon, fázové napětı́, rozměry

stroje a počet pólů. Všechny parametry strojů jsou uvedeny v Tab. 2.5. Následně bylo

provedeno strovnánı́ pro jednotlivé přı́pady. Porovnávaly se napřı́klad Joulovy stráty ve

statoru a rotoru, jejich účinnost a účinnı́k. Všechny hodnoty jsou vidět v Tab. 2.6.

Na začátku třetı́ kapitoly je uvedený postup návrhu pěti-fázového stroje pomocı́

matematické analýzi. V tomto návrhu je také poukázáno na fakt, že u pěti-fázového

stroje vytvářı́ třetı́ harmonická přı́davný moment a proto je požitá i ve výpočtech.

Následně jsou spomenuty chybné stavy stroje. Blı́že rozebrané jsou stavy kdy se nesepne

jedna nebo dvě fáze a tedy jednou nebo dvěma fázemi neprotéká žádný proud. Pro tyto

přı́pady byly vypočı́tané průběhy proudů za pomoci Lagrangových multiplikátorů. Tyto

průběhy měly za účel dosáhnout požadovaný moment v přı́padě, kdy dojde k výpadku

jedné nebo dvou fázı́. Dále byly také uvedeny jiné možnosti rekon�gurace proudů ve

stroji, jako napřı́klad genetický algoritmus.

Ve čtvrté a poslednı́ části byla provedana konečně prvková analýza. Paremetry stroje

jsou uvedeny v Tab. 4.1. Analýza byla provedena pro čtyři přı́pady. Prvnı́ byl chod

naprázdno, kdy ze zı́skaly hodnoty indukovaného napětı́ stroje, které byly použity pro

výpočet rekon�gurace proudů pro jednotlivé přı́pady. V prvnı́m připadě se jednalo o

chod pod zatı́ženı́m, kdy byla provedena rekon�gurace tak, aby se dosáhlo hodnoty mo-

mentu 10 Nm. Dosažený moment stroje byl 10.1 Nm. Následně se provedla konečně

prvková analýza i pro chybové stavy. V těchto přı́padech se hodnoty požadovaného mo-

mentu snižovaly, aby se amplitudy proudů držely v blı́zkosti chodu stroje při normálnı́ch

podmı́nkách. Hodnoty momentu byly snı́ženy na 8 Nm pro přı́pad poruchy v jedné fázi

a 6 Nm pro přı́pad výpadku ve dvou fázı́ch.
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Ψm Permanent magnet �ux linkage [Wb]

Ψm1 First harmonic amplitude [Wb]

Ψm3 �ird harmonic amplitude [Wb]

θr Rotor position [°]

Na Winding function for phase a [-]

φ Spatial angel [rad]

Ns Number of turns [-]

T (θr) Transformation matrix [-]

WCO Co-energy [J]

T Torque [Nm]

GA Genetic algorithm [-]
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OC On-line optimal current [-]

LM Lagrange multipliers [-]

H Vector of ones [-]

Pw Wanted power output [W]

Pout Output power [W]

λ1 Lagrange multiplier [-]

λ2 Lagrange multiplier [-]

Pcu Joule losses [W]

n Number of healthy phases [-]

β1 Phase shi�, fundamental [rad]

m1 Multiplayer of amplitude, fundamental [-]

βb3 Phase shi�, third harmonic [rad]

mb3 Multiplayer of amplitude, third harmonic [-]

e Back electromotive force [V]

ε Speed normalized back electromotive force [V]

A Criterion [-]

εacc Accessible back electromotive force [V]

εz Zero-sequence component of ε [V]

ε12 Speed normalized back electromotive force of phases 1 and 2 [V]

Q Number of stator slots [-]

pr Number of rotor pole-pair [-]

FEA Finite elements analyzes [-]

IPM Interior permanent magnets [-]

EMF Electromotive force [-]
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Introduction

In recent decades, the electrical industry has been rapidly developed. �e develop-

ment is in electrical vehicles, navigation, electrical aircra�, high-power wind genera-

tors, multi-phase electrical machines and drivers. With development in the automotive

industry and areospace industry, the need of high-reliability electrical machines. �is

fact comes with wide a�ention for multi-phase machines. �e new structures of com-

bining multi-phase winding with new techniques, new topology and optimization for

pursuing hight-reliability applications. A�er individual models have been created for

normal and fault conditions. �ose models are used to analyze the characteristics of

those multi-phase machines.

�is thesis will be investigating the multi-phase machines. First part will be divided

into four sections. In the �rst section the theory of poly-phase machines will be in-

troduced, their design, operating of the machines and testing. In the second section,

the comparison of the �ve-phase and three-phase machines are mentioned. Such as slot

pole number and his impact on the machine and comparison of the performance of three

and �ve-phase machines. In the third section of the �rst part, the analytical methods of

�ve-phase machines are introduced. Such as the mathematical model of �ve-phase per-

manent magnet motor, the calculation of torque injection of third harmonic current and

his impact. Also short-circuit variants are mentioned. For cases of only one phase is

shorted, two consecutive phases or two non-consecutive phases. Subsequently there are

cases of open phases in the third chapter.

In the �nal �nal and four chapter there is a model of �ve-phase machine with cases

of open phase circuited. With the impact on the torque of the machine. �is analyzation

was done in Ansys Maxwell.
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1 State of the art of poly-phase machines

1.1 �eory of the poly-phase machines

�is chapter is dealing with poly-phase machines. As a multiplex machines will be

considered machines, which have some phase multiple by a number of two, three etc..

Simultaneously, as poly-phase machines can be considered �ve, seven or more phase ma-

chines. �e application of poly-phase machines is interesting for such a reason as that

the power conversion could be split into smaller units and therefore for the very large

machines could be more e�cient and/or more economical to use n number of invertors

with 1/nth rating, instead of one large inventor with the full rating. With a greater num-

ber of inverters then 1 (in our case n) the possibility of working, even if a malfunction

occur or the inverter is switched o� [1].

�e term of multi-phase suggests an intention of tolerance when malfunction appear

and function of independent channels, whereby the machine is still capable to operate[1].

�e machines are capable of functioning in open case scenarios, since they still can gen-

erate a rotating �eld. But it is need to be carefully considered, because it can have an

impact on other parts of the machine. Also some kind of strategy needs to be imple-

mented for this cases such as in [2], [3], [4] and [5]. Also, their control strategy needs

to be discussed such as space-vector modulation.

Poly-phase electrical machines can be used such as permanent magnets generators

for a wind turbines [6], propulsion for an electric aircra� [7] or synchronous motor for

in-wheel applications. Each of this cases will be describe closer [8].

1.2 Five-phase permanent magnet generator

With raising number of well priced permanent magnets with great parameters, the inter-

est of using PM in construction of electric machines raised as well. One of the application

place is in in �ve-phase PM generator, which is used as a wind turbine. Many types of

wind turbine generators systems have been developed to achieve a higher amount of

capture energy. From [6] those systems are electrically exited synchronous generators

(EESG) or permanent magnet synchronous generators (PMSG).

With direct-drive permanent magnet generators come some advantages such as

lower failure rate and higher energy yield, but it also comes with disadvantages such

as demagnetization of PM at higher temperature, the cost of PM (the price is be�er, but

still relatively high) or incapability of controlling the �eld strength. By applying of the

�ve phases for generators and dividing the necessary power into a �ve phases, a higher

density of power can be obtained [6], [9] and [10]. Di�erent PM types such as alnico PM,

ferrits, samarium-cobalt or neodymium-iron-boron PM in PMSG can be found in [6].
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1.3 Propulsion of electric aircra�

As well as PM, the energy storage systems have been enhanced. �is enhancements lead

to a higher interest in the electrical aircra� (EA), especially as en electric propulsion [7].

�e trend is to replace the hydraulic systems with an electrical actuators, which are

fed from and electric generators. �ese generators are coupled with gas turbine or the

engine of the aircra�. Some of the publications for EA propose the hybridization of the

propulsion systems such as in [11] and [12].

�e electric propulsion system for EA needs to be reliable and have fault-tolerant

characteristics. �is means that the EA still capable of driving, even if the fault occurs.

Example of the recon�guration can be seen in [5] and [3]. For this reason, the electric

motor, which is used to have a higher number of phases. In [7] is proposed two solutions

for the �ve-phase machine. �e EA has two electric motors. One has a higher degree of

fault tolerance but at the same increasing the total amount of weight. �is solution has

two VSI. Each motor has its own VSI. On the other hand, the second solution with just

one VSI is a solution with lower weight but in case of fault state, this solution reduces

the number of phases in both motors.

1.4 Synchronous motor for in-wheel application

Over the years the use of electric motors in vehicles grown (electric vehicles or hybrid

electric vehicles). Some of the solutions are brushless DC PM motors, interior permanent

magnets motors (IPMM) and surface mounted PM motors (SPMM) [8], [13].

One of the alternatives to the IPMM and SPMM is multi-phase permanent magnet

assisted synchronous reluctance motors (PMSRM). Multi-phase PMSRM have be�er per-

formance compared to SPMM and IPMM [13]. Also, other advantages of the multi-phase

PMSRM are that, the fault tolerance capability is increased and torque ripple is decreased.

Now if we take a look at the di�erences in PMSRM internal and external rotor con-

�guration. In case of the internal rotor, the motor is used as a boost for the engine torque

but the disadvantages that the rotor needs to be coupled with gears and complex power

train. Nonetheless the second case with external rotor for PMSRM does not need the

complex coupling in the power train [13], [14], [15].

1.5 Space-Vector Modulation

Space-Vector modulation (SVM) for the �ve-phase machine is using a sinusoidal voltage

as a phasor. �e second option is an amplitude vector which is rotating at an angular

frequency (angular frequency is a constant). �e inventor which is used for �ve-phase

machines have a 32 internal states (2n in case of �ve phases 25
). �is 32 vector can be split

into non-zero and zero. �irty of these vectors are non-zero and two zero vectors[16].
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If it is used a d-q transformation with �ve outputs of voltage, it will shape two times

32 space vectors. As it is developed into two representation of space vector, one of them

will be a d-q and the second will be described as a d3-q3. �ese representations can be

seen in Figure 1.4 and 1.5.

Figure 1.1: Space Vector representation in d-q plane.

As can be seen from Figure 1.4 and 1.5 the outer part of the d-q plane is shown as a

most inside hexagon of d3-q3. However, the middle part of each d-q and d3-q3 plane are

placed into the same region.

1.5.1 Voltage Source Inverter (VSI) for �ve phase

�e �ve-phase is power from an inverter, which have circuit consists of two power de-

vices. �is power devices are semiconductors and are in antiparallel connection. By

using a space vector form is crated a model of VSI for �ve-phase. In this model are

assumed [16]:

• Ideal commutation

• Zero voltage drops

Five phase machine is connected in a star con�guration. Now the phase to voltage of the

star con�guration is wanted. �is voltage can be easy to �nd, if we de�ne the voltage

between the star point and the negative dc bus (vpn) [16].

From this assumption can be de�ned voltage for each phase [16].
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Figure 1.2: Space Vector representation in d3-q3 plane.

vA = va + vpn

vB = vb + vpn

vC = vc + vpn

vD = vd + vpn

vE = ve + vpn

Because of phase voltage sum is equal to zero, for star connection. �e equation for

vpnoccur [16].

vpn =
1

5
(vA + vB + vC + vD + vE) (1.1)

�erefore by applying a substitution, we get the following phase to neutral voltages

equation
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Va =
4

5
VA −

1

5
(VA + VB + VC + VD + VE)

Vb =
4

5
VB −

1

5
(VA + VB + VC + VD + VE)

Vc =
4

5
VC −

1

5
(VA + VB + VC + VD + VE)

Vd =
4

5
VD −

1

5
(VA + VB + VC + VD + VE)

Ve =
4

5
VE −

1

5
(VA + VB + VC + VD + VE)

By using a power variant transformation in a stationary reference frame, the voltage

Vd−q and Vd3−q3 is obtained.

Vd−q =
2

5
Vdc(Van + aVbn + a2Vcn + a3Vdn + a4Ven) (1.2)

Vd3−q3 =
2

5
Vdc(Van + aVcn + a2Ven + a3Vbn + a4Vdn) (1.3)

In (1.2) and (1.3) the a=ej2π/5, a2=ej4π/5, a3=e−j4π/5 and a4=e−j2π. By applying (1.2)

and (1.3) can be easily calculated the active vectors form in d-q and d3-q3 planes.

1.6 Space-Vector Decomposition for �ve phase machine

As was mentioned before, by applying more than three phases in terms of power rating,

the greater possibility of freedom in design and reliability occur. One of the techniques

for modelling a multi-phase machine is a Space-Vector Decomposition (VSD). �e pos-

sibility of applying VSD exist for poly-phase machine which have a phase distribution

360/m electrical degrees. For this case, the n represents the number of phases. Space-

Vector Decomposition can be also used with a half phase progression. In half phase

progression is phase distribution of 180/m, this is usually used in split-phase machines

[17], [18].

�ere are many possible arrangements of the stator, but in any of these cases, the

VSD is a viable option, which can be used to modelling the electric machine.

1.6.1 Stator arrangements

For poly-phase machine stator windings, there are multiple design options. All option

depends on the physical layout of phases in circumference. One of the most common

options in a poly-phase machine is the asymmetrical layout, in which the phase progres-

sion is 360/m.
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Figure 1.3: Symmetrical winding scheme for �ve phase (full progression).

When we take to a consideration case of a split-phase winding, which is created

of x three-phase winding (sets) with x is considered as an even number. �en there

is no possible way to reduce winding scheme to symmetrical N time three-phase with

progression of 360/m. On the other hand, it is possible to arrange such a winding into N

time three-phase with 180/m progression[18].

As an example we can take N=2. In this arrangement of three-phase winding called

as semi-12-phase or quasi-6-phase. It does not ma�er how we try to redistribute or

rede�ned winding. �ere is no way to arrange winding to scheme with progression of

360/m. Instead of using winding with the progression of 360/m, we will use a winding

with a progression of 180/m. Such winding can be seen in Fig. 1.3 [17].

Figure 1.4: Dual three-phase winding (half phase progression).

1.6.2 VSD Full phase progression 360°/m

�is section is focused on asymmetrical n-phase winding, with progression of 360/m

electrical degree (full phase progression). One of the examples can be seen in Fig. 1.2.
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Before we start the numerical calculation, we have to do a few modelling assumptions

[17], [19]. Such as :

• Magnetic saturation e�ects are neglected

• Stator inductances are independent of rotor position

• Air-gap harmonics are not connsidered

As a �rst calculation, we start with inductance matrix L, which structure consist of n×n.

Progression of phase is in electrical radians α and mutual inductance Lk between phases

shi� by kα in electrical radians. �is matrix is also referred to as symmetrical Toeplitz

matrix structure (circulant matrix) [18].

L =


L0 L1 L2 L3 L4

L1 L0 L1 L2 L3

L2 L1 L0 L1 L2

L3 L2 L1 L0 L1

L4 L3 L2 L1 L0

 (1.4)

If the matrix is circulant, it is possible to diagonalize the matrix by Fortescue transfor-

mation. In this case, the character ”j” is representing an imaginary unit [17].

FLF−1 =


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λn

 (1.5)

[F ]i,k =
√

(
1

n
)exp[j

2π

n
i(k − 1)] (1.6)

For i and k from (1.6) is used formula ∀i, k = 1...n. Matrix (1.5) have some demerits such

as that matrix is complex and non-orthonormal.

For real matrix F can occur two situation, one for odd and for even n. In both cases,

the matrix is orthonormal and can transform the stator inductance matrix (1.4).

FLF t =



d1 0 0 0 0 0 0 0

0 d1 0 0 0 0 0 0

0 0 d2 0 0 0 0 0

0 0 0 d2 0 0 0 0

0 0 0 0 di 0 0 0

0 0 0 0 0 di 0 0

0 0 0 0 0 0 d0 0

0 0 0 0 0 0 0 dn
2


(1.7)

In case that structure of matrix (1.33) have an odd number of n, the last row is removed.

Numerical evaluation can be seen in [17]
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1.7 Testing of the �ve-phase machines

Over the years, many methods of testing aimed at poly-phase machines. �ese meth-

ods aimed at lowering the cost of testing, for example, mixed frequency testing (this

method is also known as synthetic load) and back-to-back testing. Back-to-back test-

ing is frequently used, for high-power machines. �e requirement for this method are

two identical machines, which are coupled to the same sha�. �e machines have split

functions, one of the machines operate as motor, while the second machine is operat-

ing as a generator. �e procedure for loss measurement in back-to-back testing could

be adapted for inverter-fed permanent magnet (PM) machines. As is mentioned earlier,

two identical machines are mechanically coupled, but this time the single converter is

parallel. As was mention, only one inverter is used, for that reason, the phase sequence

of the generator has to be reversed. �is reversed sequence is compared to the motoring

phase sequence. Use of this combination of machines require a certain angle of the d-

axes between the motor and the generator. �is angel is used to get a circulating power.

[20].

Back-to-back testing is a costly method, because it requires the coupling of the sha�s

of the machines and their power supplies. Also have to be considered a requirement of

the space, because this method requires a substantial amount of space. For these reasons,

alternative methods have been developed, such as synthetic load. Any kind of testing,

which can be done on three-phase machines, can be adapted to poly-phase machines.

However, it is easier to adopt the testing method, if the poly-phase machine has winding,

which consists of x three-phase winding (x is meant as an integer). �e best-case scenario

is when the x is an even integer [20].

With time, other methods are considered to testing poly-phase machines, such us

phantom loading, inverter-driven method and two frequency method. �ese methods

are used, because they can provide the same temperature rise of testing machines, as in

the case of testing the machine by a back-to-back method. However, in the case of the

back-to-back method is possible to recirculate the power, if the dc links of converters are

connected. In case of the other methods the recirculation of the power because of their

losses [20].

In [20] new method is introduced, this method can test the machine without the need

of mechanical coupling. �e machine is tested with full-load and also is this method

capable of circulating power through the di�erent sectors, unlike phantom loading or

two frequency methods. Method mentioned in [20] is based on that the two sections

of the machine are connected. �ese sectors are opposite of each other and control

(alternating) between generation and motoring mode.
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2 Comparison of �ve-phase and three-phase ma-
chines

2.1 Slot pole number

�is chapter is dealing with a comparison of three- and �ve-phase machines, as an ex-

ample slot/pole combination. In Table 2.1, Table 2.3, Table 2.2 and Table 2.4 can be seen a

calculations, which de�ne the stability of winding in three- and �ve-phase machines. In

the case of Tab.2.2 and Tab.2.4, if the value of calculation is not an integer, the winding is

considered as unstable. In case of Slot/pole ratio, �rst we have to look at tables of stability

a�er that the number decides which kind of winding it is (concentrated green, fractional-

slot orange, integer-slot winding red, unbalance black). For example in Tab.2.1, the value

in the third row, fourth column, is 0.67 for �ve-phase machine. �is number also means

that it is a stable concentrated winding.

Table 2.1: Number of slot per pole per phase �ve-phase.

yrq =
S

m · p
(2.1)

As it is mention above, the slot/pole/phase ration can be calculated, as a number of

slots divided by the number of poles and phases. �is number is also important in the

calculation of winding factor. In the Tab.2.2 is calculated the stability of the winding by

(2.1). �e result is compared to an integer.

If the value is an integer then the winding is considered as stable. On the other hand,

if the value is fractional the winding is considered as unstable, therefore is not desirable

of any further calculations [21].
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Table 2.2: Stable/unstable winding for �ve-phase.

k =
S

m ·GCD(S, p)
(2.2)

In (2.2) is used a GCD. �e GCD is the greatest common division between the num-

ber of slots S and the number of pole p. By calculating this number, it can be decided,

if the winding is balanced or not. �is case is similar as before. �e evaluation is com-

pared if it is an integer. If the value is an integer the winding is considered as a balance

winding, otherwise, the winding is unbalanced. As an unbalance winding is considered

that winding, which the combination of a number of poles and number of slots does not

allow to arrange the coils in such a way that they produce a symmetrical system.

Table 2.3: Number of slot per pole per phase three-phase.
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Table 2.4: Stable/unstable winding for three-phase.

As can be seen from the tables above, the three-phase machine has more unstable

winding compared to �ve-phase winding. As a next step, the winding factor can be

calculated. As is mention in [22], the total winding factor consists of pitch factor kp

and the distribution factor kd. Distribution factor is calculated by equation (2.3). �e

equations for the distribution factor from [22], are calculated based on the geometric

sum of voltage phasors.

kd =
sin(v·q·αu

2
)

q · sin(v·αu

2
)

(2.3)

In equation (2.3) the v means the number of harmonic, αu is a slot angel and q is a

number of slots per pole pair per phase. �e slot angle can be estimated by equation 2.4.

αu =
2pπ

S
(2.4)

It is possible to adjust the equation (2.3) for the three-phase machine, in which the

calculation is shortened. So the equation (2.5) is for instance of m equal to three, for the

�rst harmonic.

kd =
1

2qsin( π
6q

)
(2.5)

Now the a�ention will be focus on the pitch factor. In case that the ends of coils are

not at distance 180 electrical degree and it is a short-pitched winding, the pitched factor

is not equal one and therefore the winding factor is going to be lowered by the value of

pitch factor calculated by equation (2.6).

kp = sin(v
y

yQ

π

2
) (2.6)
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In this equation the y is pitch and yQ is the pole pitch. If a pitch is equal to pole the pitch

factor is equal one kp = 1, otherwise the pitch is less then pole pitch and kp < 1.

2.2 Performance comparison of poly-phase induction machines

In this part, the performance of �ve and three-phase machines will be compared. Both

machines were designed with the same dimensions and ratings in paper [23]. But the

number of the slot in stator and rotor had to be changed to �t the �ve-phase wind-

ing. �ese numbers were chosen to achieve a similar ratio between stator and rotor slot

number. �e rating and dimensions can be seen in Tab. 2.1 [23].

Table 2.5: Rating and dimensions of machines [23]

data three-phase �ve-phase
power (kW) 5.5 5.5

phase voltage (V) 220 220

frequency (f) 60 60

number of pole pairs (p) 2 2

external stator diameter (mm) 182 182

internal stator diameter (mm) 115 115

axial length (mm) 140 140

airgap length (mm) 0.6 0.6

winding pitch (slots) 9 12

number of stator slots 36 60

number of rotor slots 28 44

As was mentioned above, the di�erences in stator and rotor slots for three and �ve-

phase machines cause a di�erence in volume of conductor material. In this case, the

�ve-phase machine has a fewer conductor material in stator and rotor. To be exact the

stator winding of the �ve-phase machine is about 82 % of the volume in the three-phase

machine. And in case of the rotor, the winding of �ve-phase is 89 % of volume in the

three-phase machine.

�e comparison is under steady-state model. Both machines are under sinusoidal

stator voltage and in case of the �ve-phase machine, the third harmonic current compo-

nent is present.

In Tab. 2.5 are shown the output values of the machines. �e �ve-phase machine

is divided into three parts. As can be seen in Table 2.5 the second column is for the

three-phase machine, which is fed by sinusoidal voltage with any third harmonic (the

machines is in star connection). Although because of the saturation, the third harmonic

magnetic �ux density appears in the air-gap, so it induces harmonic in the rotor (voltages
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and currents). �is could be used to produce an additional useful torque. For this case,

the value of the magnetic �ux density is slightly higher than the fundamental magnetic

�ux density (around 3.8 % higher). �is fact results in the generation of additional torque

(the value is around 0.14 %). For additional torque component to be compelling value

only if the machine is heavily saturated.

Table 2.6: Performance comparison of the three and �ve phase machines [23].

data three-phase �ve-phase (a) �ve-phase (b) �ve-phase (c)
P0 [W] 5500 5500 5500 5500

V1 [V] 220 220 220 220

BM [T] 0.707 0.766 0.671 0.700

Psj [W] 320.7 324.0 357.1 298.6

Prj [W] 150 148.7 145.6 158.9

Pmag [W] 130 156.8 167.5 139.2

Pmech [W] 37 37 37 36.8

s [%] 2.58 2.54 2.49 2.72

T [Nm] 29.95 29.94 29.92 29.99

η [%] 89.7 89.2 88.6 89.7

cos(φ) [-] 0.805 0.788 0.810 0.847

B3/B1 [%] 3.8 1.5 14 6

T3/T1 [%] 0.14 0.20 1.79 0.38

(In case of �ve-phase a is fed by sinusoidal voltage without third harmonics, �ve-

phase b and c are with third harmonics. For �ve-phase machine b, the third harmonic

voltage is modi�ed to produce a trapezoidal shape. At the same time the �ve-phase

machine c third harmonic was adjusted to achieve a maximal e�ciency.)

In the third column of Table 2.6 (�ve-phase a), the results of the �ve-phase machine

is shown. �is machine is fed just by sinusoidal voltage (same as three-phase machine).

As the �rst comparison, we could take a peak of magnetic �ux density in air-gap. �e

value for the �ve-phase machine is 0.766 T, which it is around 8 % higher than, in case

of three-phase machine 0.707 T. In case of the same peak of magnetic �ux density BM is

needed, the stator voltage for the �ve-phase machine should be lowered. �e saturation

is slightly higher than the fundamental (around 1.5 % higher). Also, the joule losses

in stator and rotor and mechanical loses are almost the same. On the other hand, if we

look at the magnetic losses signi�cantly higher (20 % higher than three-phase). �is fact

results in lower e�ciency (the di�erence is 0.5 %). For this case, the �ve-phase machine

does not generate any advantages in e�ciency or power factor [23].

In the fourth column of Table 2.6, are results of the �ve-phase machine b. �is ma-

chine is operating with trapezoidal induction in the air-gap. In this case, the third har-
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monic is higher than the fundamental about 14 %. For this machine, the magnetic losses

are the highest 167.5 W. And therefore, the e�ciency is the worst of all compared ma-

chines 88.6 %. �e decline of the e�ciency is not caused only by magnetic losses, but

also that the Joul losses are increased. �e increase of the stator losses is caused by the

increase of third harmonic current, and the magnetic losses comes from the increase of

eddy current losses. �e increase in produce torque is around 1.79 %, if the fundamental

torque is considered as a base value [23].

As a ��h and last column of Table 2.2, are results of the �ve-phase machine c. �is

machine is adjusted to achieve maximal e�ciency. �is adjustment was done on the

winding (the pitch has been shortened by only one slot). �is shortening results in

decreasing the third harmonic component to 6 %. �is machine has a similar overall

losses as a three-phase machine, which results in the same e�ciency 89.7 %.

If it is taken to a consideration the Tables 2.5 and 2.6, it can be seen that the �ve-

phase machines have similar performance as the three-phase machines. But they have

a lower volume of conductor material, which results in lower production cost and their

higher reliability [23].
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3 Analytical methods of the �ve-phase machines

3.1 Mathematical model of the Five Phase PM motor

�is part will focus on the mathematical model of the �ve-phase motor. �is model

contains parameters such as torque, voltage and voltage equations. �ese parameters

are established for the rotating frame.

As a �rst parameter will be voltage. �e equations for stator voltage are given[24]

and [9]:

VS = RSIS +
dΨS

dt
(3.1)

where RS is stator resistance, IS is stator current and ΨS is stator �ux linkage.

If a substitution is applied on stator �ux linkage windings with considering the cur-

rents in the stator winding such as stator currents and stator winding inductances. �e

equation is [25]:

ΨS = LSSIS + Ψm (3.2)

In this case, the Ψm represent a matrix of �ux linkage caused by PM andLSS represents a

stator inductance matrix which includes self and mutual inductances of the stator. Stator

current is a matrix of currents in stator phases[25]. It is given by:

IS =
[
Ias Ibs Ics Ids Ies

]t
(3.3)

Stator inductance matrix is a symmetric 5 by 5 matrix of self inductances of every phase.

�e form of the matrix is [25]:

LSS =


Laa Lab Lac Lad Lae

Lab Lbb Lbc Lbd Lbe

Lac Lbc Lcc Lcd Lce

Lad Lbd Lcd Ldd Lde

Lae Lbe Lce Lde Lee

 (3.4)

In equation 1.4 the elements in diagonal are self-inductance of each phase and the o�-

diagonal are the mutual inductances between each phases pair.

In this case, will be considered only the fundamental and third harmonics compo-

nent. Only the fundamental and third harmonics are considered due to simplifying the
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model. Due to this fact, the Ψm can be wri�en as [25]:

Ψm = Ψm1


sin(θr)

sin(θr − 2π
5

)

sin(θr − 4π
5

)

sin(θr + 4π
5

)

sin(θr + 2π
5

)

+ Ψm3


sin(3θr)

sin3(θr − 2π
5

)

sin3(θr − 4π
5

)

sin3(θr + 4π
5

)

sin3(θr + 2π
5

)

 (3.5)

As is mentioned above the Ψm1 and Ψm3 are amplitudes of the �rst and third harmonics

and θr is a rotor position.

Figure 3.1: Stator winding [25].

�e axis of one phase is used to determines the circumferential angle φ. �e circum-

ferential angel is used to de�ne the winding function in Fig. 1.1.

Na(φ) =
4

π

Ns

p
[cosφ− 1

3
cos3φ]

Nb(φ) =
4

π

Ns

p
[cos(φ− 2π

5
)− 1

3
cos3(φ− 2π

5
)]

Nc(φ) =
4

π

Ns

p
[cos(φ− 4π

5
)− 1

3
cos3(φ− 4π

5
)]

Nd(φ) =
4

π

Ns

p
[cos(φ+

2π

5
)− 1

3
cos3(φ+

2π

5
)]

Ne(φ) =
4

π

Ns

p
[cos(φ+

4π

5
)− 1

3
cos3(φ+

4π

5
)]

In this case, the motor has concentrated winding. At the same time, air-gap is uni-

form and the inductances of the stator (self and mutual) constant values. As it was

mentioned before, there are considered only the �rst and third harmonics component.

�e winding function for each phase can be seen in the equation above. In this equation
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Ns represents the number of turns, p represents the number of pole and φ is a spatial

angel.

Now the focus will shi� on the self and mutual inductances of the stator. �ese

inductances can be calculated by the right winding function, which corresponds to the

stator phase inductances [25].

Laa = Lbb = Lcc = Ldd = Lee (3.6)

Laa =
µ0rl

g
πN2

s1 +
µ0rl

g
πN2

s3 (3.7)

Lab = Lbc = Lcd = Lde = Lae (3.8)

Lab = cos
2π

5
Lms1 + cos3

2π

5
Lms3 (3.9)

Lac = Lbd = Lce = Lda = Lce (3.10)

Lac = cos
4π

5
Lms1 + cos3

4π

5
Lms3 (3.11)

As a next step are values of Ns1 and Ns2 calculated by (3.12) and (3.13)

Ns1 =
4

π

Ns

P
(3.12)

Ns2 = −1

3

4

π

Ns

P
(3.13)

To reduce the complexity of the machine model, a coordinate transformation have to

be introduced. �is will be an arbitrary coordinate transformation. �is transformation

transfers the parameters of the poly-phase machine into a reference frame. �e reference

frame is a rotating frame with an angular velocity. �e transformation is applied also to

third harmonic. �is is due to including the e�ect of the third harmonic d1, q1, d3 and

q3. �e d and q axis are rotating at di�erent speeds for the �rst and third harmonics. For

the �rst harmonic the d1 and q1 are rotating at synchronous speed [25]. �e d3 and q3

are rotating at velocity three times greater than synchronous speed.

23



As a transformation matrix is used (3.14)

T (θr) =
2

5



sinθr sin(θr − 2π
5

) sin(θr − 4π
5

) sin(θr + 4π
5

) sin(θr + 2π
5

)

cosθr cos(θr − 2π
5

) cos(θr − 4π
5

) cos(θr + 4π
5

) cos(θr + 2π
5

)

sin3θr sin3(θr − 2π
5

) sin3(θr − 4π
5

) sin3(θr + 4π
5

) sin3(θr + 2π
5

)

cos3θr cos3(θr − 2π
5

) cos3(θr − 4π
5

) cos3(θr + 4π
5

) cos3(θr + 2π
5

)
1√
(2)

1√
(2)

1√
(2)

1√
(2)

1√
(2)


(3.14)

As �rst the transformation is used on stator voltage. So the equation for stator volt-

age is as follows

Vds1 = rsids1 − ωΨqs1 +
dΨds1

dt
(3.15)

Vqs1 = rsiqs1 + ωΨds1 +
dΨqs1

dt
(3.16)

Vds3 = rsids3 − ωΨqs3 +
dΨds3

dt
(3.17)

Vqs3 = rsiqs3 + ωΨds3 +
dΨqs3

dt
(3.18)

When the voltages are transformed, the stator �ux linkage is next. Stator �ux linkage

a�er transformation is given by:

Ψds1 = (Lls +
5

2
Lms1)ids1 + Ψm1 (3.19)

Ψqs1 = (Lls +
5

2
Lms1)iqs1 (3.20)

Ψds3 = (Lls +
5

2
Lms3)ids3 + Ψm3 (3.21)

Ψqs3 = (Lls +
5

2
Lms3)iqs3 (3.22)

A�er the calculation of stator �ux linkages, we can calculate the electromagnetic

torque. �e electromagnetic torque is equal to partial derived co-energyWco concerning

mechanical rotor angel θrm.

T =
∂Wco

∂θrm
(3.23)

�e co-energy is give by

Wco =
1

2
ITs LSIS + ITs Ψm (3.24)
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By using partial derivative of co-energy with respect to mechanical rotor angel, will

obtain an equation for electromagnetic torque

T = ITs
P

2

∂Ψm

∂θr
(3.25)

Equation (1.25) can be overwri�en, than the equation is

T = (
1

T (θr)
id1q1d3q3s)

tP

2

∂Ψm

∂θr
(3.26)

For the next step has to be applied a pseudo-orthogonal property of transformation ma-

trix. �e pseudo-orthogonal property

1

T (θr)
=

5

2
T t(θr) (3.27)

If (3.27) is applied into (3.26) the electromagnetic torque can be wri�en such as [25]:

T =
5P

4
(Ψm1iqs1 + 3Ψm3iqs3) (3.28)

Now for the �nal step in expression of electromagnetic torque is by applying substitution

from (3.19) and (3.21) into (3.28). A�er adjusting the equation electromagnetic torque is

give by[25]:

T =
5P

4
(Ψds1iqs1 −Ψqs1ids1 + 3Ψds3iqs3 − 3Ψqs3ids3) (3.29)

In (3.29) the Ψds1, Ψqs1, Ψds3, Ψqs3 represents the stator �uxes in d1, q1, d3 and q3 axes.

�e iqs1, ids1, iqs3 and ids3 represent the stator currents in d1, q1, d3 and q3 axes. �ese

currents are transformed. As can be seen from (3.29) by keeping the third harmonic, the

torque has been improved[25].

3.2 Short-circuit of �ve-phase machine

At the start of the chapter will be about a one phase short circuit. �e shi� of the phases

is 2π/5. �e phases name will be changed to A, B, C, D and E.

3.2.1 Short-circuit of one phase

Imagine that phase C is short-circuited, the equation of the voltage in the short-circuit

phase can be seen in (3.30). �is equation is given according to Lentz’s law[26].

VC = 0 = RCIC +
LCdIC
dt

+M1(
dIA
dt

+
dIE
dt

) +M2(
dIB
dt

+
dID
dt

) +
dΦC0

dt
(3.30)

�e ΦC0 is a non-load �ux for phase C,RC represent resistance of phase C, LC phase

inductance,M1 represent mutual inductance between phase and not a consecutive phase,

M2 represent similarly asM1 mutual inductance but it is di�erent in that the inductance

between phase and consecutive phase[26].
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Figure 3.2: Shi� between phases [26].

3.2.2 Short-circuit of two phases

In case of short-circuit of two phases, two option can occur. One, if the phases are

consecutive (As an example B and C). �e second option is, if the phases are non- con-

secutive(phases C and E).

As is mentioned above, the �rst case the short-circuit is on phases B and C. Values

of voltage for phases B and C can be calculated similarly to one phase circuit (3.30)[26].

VC = 0 = RCIC +
LCdIC
dt

+M1(
dIA
dt

+
dIE
dt

) +M2(
dIB
dt

+
dID
dt

) +
dΦC0

dt
(3.31)

VB = 0 = RBIB +
LBdIB
dt

+M1(
dID
dt

+
dIE
dt

) +M2(
dIA
dt

+
dIC
dt

) +
dΦB0

dt
(3.32)

By equation (3.31) and (3.32) can be express the short-circuit currents. For the second

option, the short-circuit occur on phases C and E. Likewise in the �rst option, similar

expressions for phases C and E is acquired[26].

VC = 0 = RCIC +
LCdIC
dt

+M1(
dIA
dt

+
dIE
dt

) +M2(
dIB
dt

+
dID
dt

) +
dΦC0

dt
(3.33)

VB = 0 = REIE +
LcdIE
dt

+M1(
dIB
dt

+
dIC
dt

) +M2(
dIA
dt

+
dID
dt

) +
dΦB0

dt
(3.34)

When the short-circuit currents are calculated, new currents values have to be re-

solved for healthy phases (phases A, B and D). �is could be done by the optimization

algorithm. Same goes for case of non-consecutive phases[26].

3.3 Open-circuit of �ve phase machine

As was mentioned before, one of the advantages of polyphase machines is the fault

tolerance. �is time in case of open-circuited. As is mentioned in [27], the open-circuited
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is one of the common faults found in poly-phase machines. When the fault occurs the

currents of the healthy phase (phase with currents with any problems) has to be changed,

for the fact that one or more phases can not be supplied by the currents.

�e strategies for modi�cation of currents may be, genetic algorithm (GA), On-line

optimal current (OC), Lagrange multipliers (LM). More information to each method can

be found in [27], [2], [28] and [3]. �is thesis focus will be on LM, but in chapters (3.3.2)

and (3.3.3) are shown a method of GA and OC.

3.3.1 Lagrange multipliers

At the start of Lagrange multipliers, we need to de�ne a function, which has to be min-

imized. �is function will be represented by minimizing the copper losses (3.35).

Pcu = RiTi (3.35)

Where i represents vector of currents.

i =


i1

i2

...

...

in

 (3.36)

In this case, n represents the number of phases. As a next step, the constraints for the

main function are de�ned:

• �e output power should be equal to the required power.

• �e sum of currents in healthy phases should be equal to zero.

Pw = Pout (3.37)

n∑
j=1

i = Hi = 0 (3.38)

Where H represents the vector of ones,Pw represents the required power (wanted power)

and Pout represents the output power.

Pout = VTi (3.39)

A�er the constrains are de�ned, the main equation can be wri�en

f = RiTi + λ1(V
Ti− Pw) + λ2(Hi) (3.40)
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Main function can be seen at (3.40). λ1 and λ1 represents the Lagrange multipliers.

�is function will be partial derivative with respect to the jth current.

∂f

∂ij
= 0 = 2Rij + λ1(Vj) + λ2 (3.41)

�e derivation is set to zero to be optimized. As next step is a substitution from (3.41)

into (3.39), which yields:

Pw =
n∑
j=1

Vj(−
λ1(Vj)

2R
− λ2

2R
) = −λ1

(VTV)

2R
− λ2

VT

2R
(3.42)

In (3.42) is de�ne the new wanted power with LM. Also the substitution from (3.41)

into (3.38) yields:

−λ1
(HV)

2R
− λ2

n

2R
= 0 (3.43)

Now when we have two-equation, the LM can be calculated from (3.42) and (3.43).

λ1 = 2R
VPw

−nVTV + (HV)2
(3.44)

λ2 = 2R
PwHV

−nVTV + (HV)2
(3.45)

By applying (3.44) and (3.45) into (3.41), the current is given as :

i = Pw
nV −HTHV

nVTV − (HV)2
(3.46)

Now the equation for the current is express, so the calculation for each state of the

�ve-phase machine can be done.

Above mention calculation are considered for star connection of the machine. If the

connection would change to pentagonal or pentacle the vector H would have to change

accordingly to the situation. More information to each situation of connection can be

found in [3] and [29]. Each of the connection with the direction of the currents can be

seen in Figure 3.3.

3.3.2 Calculation of currents

As for the �rst calculation, the normal state of the machine is considered. �e value of

the torque wanted is 10 Nm. �is value was calculated for two scenarios with back EMF

amplitude of 100 V.

As can be seen in Figure 3.4, the amplitude of each phase is �ve ampers. �is current

has been calculated with ideal sinusoidal back-emf, but if the curves of back-emf are not
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Figure 3.3: Con�guration of the windings. a) star, b) pentagon, c) pentacle.

Figure 3.4: All healthy phases (sinusoidal back EMF).

perfectly sinusoidal can be just replaced. �e amplitude of the current is 5.5 A in each

phase. �e curves of currents can be seen in Figure 3.5.

For the next step, currents in one open phase situation are evaluated(phase A is

considered as an open phase). As can be seen from Figure (3.6) the currents have lost

their sinusoidal curves. �e amplitudes for all phase di�er. For the phases B and E, the

amplitude of the current is 8.75 A and currents in phase C and D are 7.1 A.

�e amplitude of phase B is 1.59 times higher than in a normal phase operation. For

the phase C, this value is 1.29. �e multiplier of amplitude for phase B and E is quite

high, but it is necessary to say those values are to achieve a full torque as in the healthy

case (10 N.m of torque). If the value of torque (it can also use power) is lowered to 80%

(8 N.m of torque) the multiplier of amplitudes are lowered to 1.27 and 1.02 respectively.

�ese curves of currents for torque which is lowered to 8 N.m can be seen in Figure (3.7).

Now let us have a look at cases in which are 2 phases open. Similarly, as in short

circuit, there are two ways which the calculations can go. �ose are if phases are con-
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Figure 3.5: All healthy phases (non sinusoidal back EMF).

secutive or phases are non-consecutive. As the �rst one will be when 2 phases are open

they are consecutive (phases A and B are open). If the wanted torque is nominal, then

the amplitudes for phases of C and E are 16.4 A which is quite high from the normal

amplitude of currents in healthy case. �is amplitude is almost 3 times higher. As for

the phase D the amplitude went from 5.5 A to 21.4 A. Which is 3.9 times higher than

normal operation. �is can be seen from Figure (3.8).

In case that the torque is lowered to previously 8 N.m, the amplitudes of phases C

and E decrease to the value of 13.1 A. �is amplitude is almost 2.4 times higher from

normal operation, for phase C 1.85 and for phase E 1.5 times higher from operation

under operation with one phase open. For the phase D, the amplitude has been lowered

to 17.1 A. �is value of amplitude is 3.1 times higher than normal operation and 2.4 times

higher than operation with one phase open. �is case can be seen in Figure 3.9.

As a last case which was calculated for consecutive open phase scenario, was the

case when the torque is decreased to 60% on nominal torque (value of torque 6 N.m).

In this scenario, the amplitude of C and E phase is 9.8 A. For phase D the maximum

value of current is 12.8 A. �ese values are signi�cantly lower than in case of need the

full (nominal) torque. In short, they are 1.67 times lower for all phases. �e values

of currents are still quite high and would create signi�cant copper losses. But if the

capability of the machine allowed for higher currents in phase. It is possible to get the

nominal torque with just three phases.

If the phases are non-consecutive as an example phase A and C. �e amplitudes of

each healthy phases di�er from the case when the 2 phases are consecutive. As a �rst

part, the calculation is for nominal torque. For phases D and E, the amplitudes are 12.7
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Figure 3.6: Recon�guration one phase open (Phase A is open, 10 Nm).

A and for phase B 8.4 A. As can be seen this di�erence is for phase E 3.7 A, for phase

D is 8.7 A. When we continue to the 8 N.m of torque. �e amplitudes are 10.1 A for D

and E, and 6.8 A for phase B. �e amplitudes in phases D and E are still quite high, 1.84

times higher than normal. But when we get to the 60% nominal torque, the multiplier

of amplitudes get us to the reasonable area. At the start the phase B the amplitude is 5.1

A, and for phases D and E is 7.6 A. �e curves of currents for 6 Nm of torque can be seen

if Figure 3.10.

3.3.3 Di�erent method of calculation currents Genetic Algorithm

In this chapter are considered a di�erent approach to the problem of recon�guration of

currents. One of the possible approaches is the Genetic Algorithm. In the case of a GA,

there are many possible ways to de�ne the calculation. �e reason for many possible way

is that it depends on you how many independent variables you create. As an example

in the case of one phase open circuit, you can choose that you do not want to change

the amplitudes of current and just change the phase shi� of each phase. Also, it has

to be considered how many independent variables is used because with the increase of

variables the time of calculation is also growing. For this thesis will be based on articles

[30], [31] and [32]. In [30] there are 2 options calculated for �ve-phase machines. �ose

are currents recon�guration with 6 and 12 parameters. Both cases are based on these

equations:

IA = Imaxcos(ωt+ ϕ) (3.47)
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Figure 3.7: Recon�guration one phase open (Phase A is open, 8 Nm).

IB = Imaxcos(ωt+ ϕ− 2
π

5
) (3.48)

IC = 0 (3.49)

ID = Imaxcos(ωt+ ϕ− 6
π

5
) (3.50)

IE = Imaxcos(ωt+ ϕ− 8
π

5
) (3.51)

In the case of current recon�guration with six independent variables, there are 3

variables which are used to de�ne the amplitudes (m1, m2, m3) of currents, and 3 are

used for phase shi� (β1, β2, β3). With this knowledge the equation (3.74-3.51) change to:

IA = Imaxcos(ωt+ ϕ) (3.52)

IB = m1Imaxcos(ωt+ ϕ− 2
π

5
− β1) (3.53)

IC = 0 (3.54)

ID = m2Imaxcos(ωt+ ϕ− 6
π

5
− β2) (3.55)

IE = m3Imaxcos(ωt+ ϕ− 8
π

5
− β3) (3.56)
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Figure 3.8: Recon�guration two phases open (Phases A and B are open, 10 Nm).

Figure 3.9: Recon�guration two phases open (Phases A and B are open, 8 Nm).

It is needed to say that in this GA calculation with 100 individuals in a generation.

And in total there are 500 generations. Also the condition which was to reduce the

torque ripple and residual currents. For this condition, constraints need to be set and

those keep a mean torque weakened by 10% to the nominal torque and copper losses

can not be higher than 20%.

Table 3.1: Values of parameter using GA optimization(six parameters) [30].

m1 m2 m3 β1 β2 β3

1.333 1.292 1.247 0.489 -0.484 0.328

�e curves of currents can be seen in Figure 3.8 and the torque can be seen in Figure
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Figure 3.10: Recon�guration two phases open (Phases A and C are open, 6 Nm).

3.9. �e amplitude for phase B is 6.65 A, for phase D is 6.45 A and for phase 6.23 A (the

amplitude of currents in normal state is 5 A).

Now take a look at optimization with 12 parameters. �is optimization is based on

knowledge, that the third harmonic currents are injected. �is will change the equation

(3.74 - 3.51) to:

IA = Imax1cos(ωt+ ϕ1) + Imax3cos(3ωt+ ϕ3) (3.57)

IB = mb1Imax1cos(ωt+ ϕ1 − 2
π

5
− βb1) +mb3Imax3cos(3ωt+ ϕ3 − 3

2π

5
− βb3) (3.58)

IC = 0 (3.59)

ID = md1Imax1cos(ωt+ϕ1− 6
π

5
− βd1) +md3Imax3cos(3ωt+ϕ3− 3

6π

5
− βd3) (3.60)

IE = me1Imax1cos(ωt+ ϕ1 − 8
π

5
− βe1) +me3Imax3cos(3ωt+ ϕ− 3

8π

5
− βe3) (3.61)

�e third harmonic is used because it is creating an additional torque for the machine.

As was mention in case of 6 parameters, for the 12 variables are 6 of them deduced to the

amplitudes (including the third harmonic amplitudes) of currents and 6 for the phases

shi�s.
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Figure 3.11: Curves of currents with application of GA(6 parameters).

Figure 3.12: Torque with one phase open (6 parameters).

Table 3.2: Values of parameter using GA optimization(12 parameter fundamental) [30].

mb1 md1 me1 βb1 βd1 βe1

1.047 1.308 1.444 0.55 -0.481 0.008

Table 3.3: Values of parameter using GA optimization(12 parameters third harmonic)

[30].

mb3 md3 me3 βb3 βd3 βe3

1.982 0.042 1.982 -1.524 -0.881 1.565

As can be seen from both Figures (3.8) and (3.9), the curve of the torque it is not

ideal. �e amplitudes and minimums di�er from torque in normal operation. For the

case of 6 parameters, the mean torque is 2.91 N.m, in case of 12 parameters the mean

torque is equal to 2.98 N.m. If we compare the copper losses there are 36W for case of 6
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Figure 3.13: Torque with one phase open (12 parameters).

independent variables and 35.54W. �ose values of copper losses are around 20 %, which

is the maximum of the constrain for GA.

3.3.4 Di�erent method of calculation currents On-line Optimal Current

�is chapter will be based on [27], [33], [4] and [5]. �ere are many ways how to ap-

proach the problem of open-circuited. Model of permanent magnet synchronous ma-

chine (PMSM) can be created by equation (3.62):

v = Ri+ l(
di

dt
) + e (3.62)

In equation (3.62) v represents the vector of voltage, i represents current vector and e

represents back electromotive force. Every one of these vectors is n-dimensional. Matrix

of n-by-n inductance is represented by l. When we have the base equation the torque

can be expressed as:

T = εi (3.63)

In equation (3.63) ε represent speed normalized back electromotive force vector.

Based on (3.63) the reference current vector can be created. For the On-Line compu-

tation, an optimal condition has to be created. �e criterion which is used is a minimum

Joule losses. Similarly as in (3.35). By applying (3.63) to (3.35) the Joule losses are ex-

pressed such as :

Pcu(t) =
RT 2

ε2
(3.64)

i∗ = Aε (3.65)

As a �rst mode in [27] is normal operation of the machine. �e machine is wye-

connected. Because the machine is wye-connected, the currents can not have zero-
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sequence components. To satisfy (3.65) the accessible EMF εacc have to be restricted.

εacc = ε− εz (3.66)

εz =

(
ε1 + ε2 + ε3 + ε4 + ε5√

5

)(
x1 + x2 + x3 + x4 + x5√

5

)
(3.67)

εz represents the zero-sequence component of ε. Now the criteria A can be calculated

(3.68). �e results of On-Line calculation for normal operation can be seen in Figure

(3.11).

A =
T∗
εacc

(3.68)

Figure 3.14: Optimal currents during normal operation.[27].

In cases of open phase circuited the accessible electromagnetic force vector needs to

be recalculated with regards to the healthy number op phases. As an example will be

shown for calculation, in the case of 2 open phases (phase 1 and 2 are open).

εacc = ε− εz − ε12 (3.69)

ε12 = ε1x1 − ε3x3 (3.70)

εz =

(
ε3 + ε4 + ε5√

3

)(
x3 + x4 + x5√

3

)
(3.71)

In Figure (3.13) can be seen optimal current during one phase open-circuited with

amplitude of 4 A. In Figures (3.14) the amplitudes are also 4 A, but for each phase.
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Figure 3.15: Optimal currents during open-phase circuited(one phase open).[27].

Figure 3.16: Optimal currents during open-phase circuited(one phase open).[27].

Table 3.4: Values of torque in each of the open phase scenarios(On-Line method).

- 5 phases 4 phases 3 (consecutive) phases 3 (non-consecutive) phases

Torque [N.m] 2 1.71 0.449 1.49

If we take a look at the torque values for each mode, the values have to decrease

under the condition of keeping the Joule losses around the value of normal operation(32.3

W). In Table (3.4) are values of torque for the normal and open-phase operation. If we

compare the values, in case of one open phase the torque is down 14.5%.

Now we can compare the Joule losses in each scenario. In Table (3.5) can be seen all

values of Joule losses in each mode of operation for the machine. In the case of one phase
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Figure 3.17: Optimal currents during open-phase circuited(two non-consecutive phase

open) [27].

open, the Joule losses di�er around 36% (the losses are higher than in normal operation).

In the case of two open phases which are non-consecutive, the Joule losses have grown

to a value of 58 W. Which mean increase of 79.6% compared to the normal operation.

As last is the case of open phase circuited with two consecutive phases. In this scenario,

the Joule losses obtain value of 641 W. �is value of Joule losses represents an increase

of 1884% compared to the normal operation.

Table 3.5: Values of Joule losses in each of the open phase scenarios(On-Line method).

- 5 phases 4 phases 3 (consecutive) phases 3 (non-consecutive) phases

Pcu [W] 32.3 44 641 58
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4 Extented analysis by means of �ne element meth-
ods

In this chapter, a model of the machine is created for the testing purposes. �is

model is base on [34]. �is motor was created with fractional-slot concentrated wing

on stator. In rotor there are interior permanent magnets. All calculation are done in

so�ware Ansys Maxwell 2D. Because is used a single layer winding and as can be seen

from Table 2.1 concentrated winding is used. Also, it can be seen from Table 2.2 it is

stable winding (balanced winding). �e ration of stator slots and rotor poles should be

[22], [35]:

Q = 2mk (4.1)

2pr = Q± k (4.2)

Where Q represents the stator slot number, pr represents the number of rotor pole-

pair and k have a condition that it has to be an even integer to evade unbalance force.

�e number of stator slots has been pick as 20 a rotor pole-pair to 9. Parameters of the

motor can be seen in Table 4.1.

Table 4.1: Parameters of the motor.

Parameters Values
Rated Power [W] 2000

Rated Voltage [V] 100

Rated speed [r/min] 1500

Number of stator slots [-] 20

Number of rotor pole-pair [-] 9

Stator outer radius [mm] 70

Stator inner radius [mm] 42.75

Rotor outer radius [mm] 42.15

Rotor inner radius [mm] 28.8

Air gap length [mm] 0.6

�ickness of PM [mm] 2

Width of PM [mm] 12

By the parameters which are in Table 4.1 the IPM motor has been modelled. �e

whole model will be analyzed in the 2D FEA. Sheets for the motor are M470-30A and

N33UH magnets. Geometry of the motor can be seen in Figure 4.1. Each phase has its
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colour. Phase A have a blue colour, phase B has brown colour, phase C yellow, phase D

orange and phase E have black colour.

Figure 4.1: Geometry of the motor.

�e motor as it was mentioned earlier FEA will be applied, that means the mesh of

the machine needs to be generated. �e maximum element of the air-gap is 0.3 mm,

for the rotor is 3 mm for an element and 3.5 mm for the stator. Generated mesh for the

machine can be seen in Figure 4.3.
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4.1 Motor under no-load

In this chapter, the motor is tested under no-load. From this testing, we can get back

EMF to correctly calculated the curves of currents for each phase. In Figure 4.2 can be

seen the back EMF.

Figure 4.2: Back EMF(no-load).

As can be seen from Figure 4.2 the back EMF is not perfectly sinusoidal and because

of that, the currents in case of open-phase circuited will di�er. Both cases will be mention

in the chapter 4.2. As next it can be shown the magnetic induction in the model. �e

values of magnetic induction can be seen in Table 4.2. �e maximal magnetic induction is

in the rotor bridge and it reaches 2.18 T. In other places the values of magnetic induction

are in the range of 1.1 to 1.3 T.

Table 4.2: Measured maximal values of magnetic induction of the motor

place B [T]
Stator yoke 1.10

In stator tooth 1.19

In head of tooth 1.21

Rotor yoke 1.16

Rotor bridge 2.18
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Figure 4.3: Mesh of the half of the motor.

Figure 4.4: Induction under no-load.
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4.2 Motor under full-load

As in was mentioned in the chapter 4.1. �e back EMF in the motor Fig. 4.1 is not

sinusoidal because of that, two possible solutions can be made for the case of full load.

One is to use currents which were calculated with perfectly sinusoidal back EMF with

the amplitude of 100 V, or use the measured back EMF with FEA.In both cases, the target

torque is 10 N.m.

Figure 4.5: Magnetic induction full-load.

4.2.1 Sinusoidal back EMF

In Figure 4.5 can be seen current in all phases of the motor. �is current was based on

sinusoidal back EMF with an amplitude of 100 V. With this, the amplitude of current for

each phase is 5 A. When the analyzed the torque is the primary calculated to see if the

model of current correctly calculated.

�e calculated torque can be seen in Figure 4.6. �e value of the mean torque is 8.41

N.m, which is 16 % lower than the reference torque. As can be seen from Figure 4.5 and
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4.6 the target torque was not met. With this curve of currents would need to be a higher

amplitude to achieve the required torque.

Figure 4.6: Currents (Sinusoidal back EMF).

Figure 4.7: Torque 1500 rpm (sinusoidal back EMF).

4.2.2 Back EMF from no-load

In Figure 4.7 are currents which are calculated with regards to back EMF which is calcu-

lated in no load. �e amplitude of currents in each phase are 5.6 A. with this current is

the mean torque 10.1 N.m. �is torque can be seen in Figure 4.8. With this calculation the

torque wanted and torque calculated are just 1%. It also needs to be point out, that the

amplitudes di�er, and it would be possible even with sinusoidal back EMF con�guration

to create 10 N.m of torque.
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Figure 4.8: Currents (no-load back EMF)

Figure 4.9: Torque 1500 rpm (no-load back EMF).

Table 4.3: Calculated maximal values of magnetic induction of the motor (Full-load).

place B [T]
Stator yoke 1.20

In stator tooth 1.50

In head of tooth 1.92

Rotor yoke 1.35

Rotor bridge 2.20

�e maximal magnetic induction was in the same place as in no-load (rotor bridge).

�e value of magnetic induction 2.20 T. �e magnitude of the rest of magnetic induction
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in the motor parts is the range of 1.20 to 1.95 T. �e maximal values in either place can

be seen in Table 4.3.

In the next steps, the recon�guration will be used with measured values of back EMF

and also the wanted torque will decrease for each case.

4.3 One phase open

In this case, as it was mentioned earlier, the torque will be decreased to keep the Joule

losses relatively low. �e value of torque will be 8 N.m. It is 20 % lost of torque but it

is still quite good (the motor can still function). In Figure 4.10 the curves of currents

for each phase. But as a �rst example, there is a recon�guration for the full torque.

�e amplitudes for phases are the same as in chapter 3.3.2 for case on one-phase open.

Curves of currents can be seen in Figure 4.11.

Figure 4.10: Torque 1500 rpm (one phase open, 10 Nm).

�e maximal amount of torque was 10.6 Nm and the lowest point was 7.6 Nm. Over-

all, the average torque in the motor was 9.4 Nm which is 6 % o� the target value of 10

Nm of torque.

Now the torque required is lowered to 8 Nm. �e calculation was run again. �e

currents just changed in amplitudes. Current with the produced torque can be seen in

Figures 4.12 and 4.13. �e average torque is 7.6 Nm. Which is just shy of 5 % from the

required torque of 8 Nm.

In total compared to normal operating case it is 76 % of nominal torque. �is percent-

age could be increased with and additional constraints. As an example, the amplitudes

of phases C and E. �ese values could be kept at least on value as in normal mode, or

get a be�er look on redistribution of current in each phase. But these are not the only

possible ways to achieve be�er results. �e change could be made in the motor itself.
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Figure 4.11: Currents (one phase open, 10 Nm).

Figure 4.12: Torque 1500 rpm (one phase open, 8 Nm).

Figure 4.13: Currents (one phase open, 8 Nm).
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4.4 Two phases open

At the start of this chapter needs to be sad there will be just one of them will be men-

tioned and that will be the case of non-consecutive phases. Case of consecutive phases.

For the non-consecutive, the curves of the currents can be seen in Figure 4.14. �e am-

plitudes of currents are mentioned in chapter 3.3.2. According to the current, the torque

can be seen in Figure 4.15. �e average value of the torque was 5.6 Nm. Which is 7 %

lower than the required torque of 6 Nm. In total it is 56 % of the nominal torque (nominal

torque is 10 Nm). To achieve the required/wanted torque, it would be needed to change

the values of amplitudes. �is could have been done with more constraints. With 3 out

of 5 phases is possible to continue the function of the motor, but with this recon�gura-

tion is possible to achieve with this motor just 56 %. But it is necessary to mention that

the amplitudes are not that hight and would not generate that much higher Joule losses.

Figure 4.14: Currents (two phases open, 6 Nm).

Figure 4.15: Torque 1500 rpm (one phase open, 8 Nm).
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Conclusion
�is master thesis deals with poly-phase machines as a whole. In the �rst part of this

thesis, there are mentioned way how to operate (control) the poly-phase machine, for

example, �ve-phase machine. As well as the controlling of the machine there are multi-

ple arrangements describe for the machine. At the end of the �rst chapter is to describe

a few ways how to test the poly-phase machines by using back-to-back testing, two

frequency method or inverter-driven method.

In the second part of this thesis is to describe a comparison of the �ve-phase machine

to the three-phase machine. Also, there are tables for �ve as well as for three-phase

machine in which are describe their balance and recommended winding for the number

of slots and poles.

In the third part there is describe the mathematical model of the �ve-phase perma-

nent magnet machines. �is model has an injection of the third harmonic to achieve a

higher value of torque. �is can be seen from equation 3.29. As the next step, there is an

equation for the short circuit of the �ve-phase machine. �ese equations are for the cases

of one or two phases in short circuit. In the last part of this chapter is the state of the

machine with open-circuit. �ree ways are mentioned and those are Genetic algorithm,

On-Line optimal current and Lagrange multipliers. Every one of the recon�guration is

looked at, but �e Lagrange multipliers are closely described. For Lagrange multipliers

are two constraints are created. One of the constrain is that the sum of the currents is

equal to zero and the second one is that the power wanted is equal to the power output.

With this constrains are the LM calculated and �nal equation for the currents created.

A�er the equation was created there was a test to create the output torque of 10 Nm

with perfectly sinusoidal back EMF.

�e result of this calculation can be seen in Figure 3.4. �e amplitudes of each phase

was 5.5 A. A�er the calculation for normal operation, the �rst case of open phase was

calculated. In case of one-phase open the amplitudes of phases B and E were 8.75 A

and for phases C and D 7.1 A. �is was 1.59 times higher then in normal operation, for

the phase C this value was 1.29 times. �is values are to achieve a 10 Nm of torque.

If the requirement for the torque is lower to 8 Nm (20 % lower), the amplitudes will

decrease. �is value of torque was picked because in case of one-phase open there are

four out of �ve phases in function therefore the output should by lowered about the 20

%. Same it goes in the case of two-phase open. In this scenario, there are two possible

outcomes. One in the case of consecutive phases are open and the second one the phases

are non-consecutive. As �rst it was looking at the consecutive scenario. In this case, the

amplitudes for currents to achieve 10 Nm of torque were from 3 to 4 times higher than

in normal operation. But as it was mentioned the torque should be lowered to 6 Nm.

When the torque is lowered to 6 Nm of torque the amplitude if phase D is at 12.8 A and
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amplitudes of phases C and E are at 9.8 A. �ese values are high and it would need to be

counted on this fact in the design of the machine. In case of two non-consecutive phase,

the amplitudes for phases D and E are 7.6 A and for phase B is 5.1 A.

All of this curves has been input for the FEA and the results of the analyze is men-

tioned in the last chapter. �is was created to approve the method. In case of one phase

open the average torque was 7.6 Nm and therefore the result it is not 80 % but 76 % of

the nominal torque. For the case of two non-consecutive phases open the average torque

was 5.6 Nm, which is 56 % of the nominal torque. �ese values could be increased by

applying more constrains. �is mean more LM. Also, the model was base on the model

which mean the design is not the same and for that reason, the design could be improved

to achieve be�er results of output torque.
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