
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

AUTOMATIC EVENT IDENTIFICATIONFROM FLIGHT DATA RECORDS
AUTOMATICKÁ IDENTIFIKACE UDÁLOSTÍ ZE ZÁZNAMŮ LETOVÝCH DAT

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR ADRIÁN KIRÁLY
AUTOR PRÁCE
SUPERVISOR doc. Ing. PETER CHUDÝ, Ph.D., MBA
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This bachelor’s thesis is focused on automatic processing of flight data records, namely on
identification of flight phases and turn maneuvers. A set of multiple methods for identi-
fication of these events has been developed and evaluated on a publicly available dataset
containing data collected from a single type of regional jet. In order to demonstrate these
methods, an interactive 3D application has been developed that visualizes both flight data
and detected events in an intuitive way.

Abstrakt
Táto bakalárska práca je zameraná na automatické spracovanie záznamov letových dát,
konkrétne na identifikáciu fáz letu a zátačiek. S pomocou verejne dostupného datasetu
obsahujúceho záznamy zozbierané z jedného druhu regionálneho prúdového lietadla bola
vyvinutá sada niekoľkých metód pre identifikáciu týchto udalostí. Pre demonštráciu týchto
metód bola vyvinutá interaktívna 3D aplikácia, ktorá intuitívne vizualizuje letové dáta a
identifikované udalosti.

Keywords
flight data processing, automatic event identification, phase of flight, aviation, flight data
visualization, Unity 3D

Kľúčové slová
spracovanie letových dát, automatická identifikácia udalostí, fáza letu, letectvo, vizualizácia
letových dát, Unity 3D

Reference
KIRÁLY, Adrián. Automatic Event Identification from Flight Data Records. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor doc. Ing. Peter Chudý, Ph.D., MBA

Rozšírený abstrakt
Táto bakalárska práca sa zaoberá problematikou automatického spracovania záznamov

letových dát, konkrétne na identifikáciu fáz letu a zátačiek. Fáza letu je bežne používaná
ako jednoduchý spôsob špecifikácie konkrétnej časti letu. V spojení s informáciami o zá-
tačkach alebo iných udalostiach je napríklad možné automaticky extrahovať segmenty letu
obsahujúce želané udalosti pre ďalšie manuálne spracovanie.

Vzhľadom na to, že dáta získané zo senzorov často obsahujú rôzne neželané artefakty
ktoré komplikujú spracovanie dát, je nutné dáta pred ďalším použitím vhodne predspra-
covať. Jedným z významných artefaktov je napríklad viditeľné „krokovanie” v GPS dráhe
lietadla, ktoré bolo odstránené s pomocou algoritmu založeného na konvolúcii.

Pre identifikáciu spomínaných udalostí bola vyvinutá sada metód, ktoré na základe
vybraných parametrov letových dát identifikujú jednotlivé udalosti v niekoľkých krokoch,
pričom každý krok využíva informácie získané v prechádzajúcom kroku pre zjednodušenie
alebo skvalitnenie identifikácie. V prvom kroku sa identifikuje vzlet a pristátie, na základe
ktorých je možné zvyšok letu rozdeliť na segmenty „na zemi” a „vo vzduchu”. S využitím
tohto rozdelenia sú následne identifikované ďalšie fázy, napríklad vyrovnaný let, stúpanie a
klesanie. Podobným spôsobom je vyriešená aj identifikácia zátačiek, ktorá využíva zmeny
v kurze lietadla.

Nakoľko lietadlá majú šesť stupňov voľnosti, ich pohyb je mnohokrát pomerne komp-
likovaný. I keď je pre vizualizáciu jednotlivých parametrov stále možné využiť aj tradičné
dvojdimenzionálne grafy, takáto vizualizácia nie je vzhľadom na povahu pohybu lietadla op-
timálna a jej interpretácia si vyžaduje znateľne viac úsilia. Táto skutočnosť viedla k rozhod-
nutiu implementovať interaktívnu 3D vizualizáciu, ktorá v ľahko zrozumiteľnom formáte
zobrazuje letové dáta aj identifikované udalosti, čím je možné vykonať jednoduchú vizuálnu
kontrolu identifikácie a skúmať letové dáta.

Samotná výsledná aplikácia obsahuje implementácie spomínaných metód pre predspra-
covanie dát, detekciu udalostí a vizualizáciu. Pre jej vývoj bolo využité herné jadro Unity,
ktoré bolo pre tento účel vhodnou platformou vzhľadom na kvalitnú podporu práce s 3D
grafikou, animáciami, osvetlením, tvorbu grafického používateľského rozhrania a ďalšiu
funkcionalitu.

Kľúčovou časťou vizualizácie je terén, nakoľko tvorí vačšinu viditeľného prostredia okolo
lietadla a slúži ako vizuálna referencia aktuálnej polohy. V aplikácií sú implementované
dve rôzne riešenia pre zobrazovanie terénu — riešenie využívajúce výškové dáta a satelitné
snímky zo služby Mapbox, a riešenie využívajúce voľne dostupné výškové dáta získané pro-
jektom Shuttle Radar Topography Mission (SRTM) v spojení s procedurálnymi textúrami.
Vzhľadom na to, že letové dáta obsahujú aj časové informácie, je možné na základe času,
dátumu a aktuálnej pozície lietadla vypočítať polohu Slnka v scéne a vhodne nastaviť os-
vetlenie vizualizácie. To umožnuje ľahko vizuálne určiť približný lokálny čas v aktuálnej
pozícii bez potreby znalosti časových pásiem.

Najvýznamnejším prvkom scény je samozrejme model lietadla, ktorý slúži pre vizual-
izáciu väčšiny letových dát. V prvom rade zobrazuje pozíciu lietadla vo svete a jeho rotáciu
okolo ťažiska. Ďalšími významými parametrami sú uhly hlavných riadiacich plôch, vďaka
čomu je možné sledovať ich vplyv na pohyb lietadla. Vizualizované sú taktiež rýchlosti
jednotlivých motorov a stav podvozku.

Vďaka tomu, že dáta použité počas vývoja a evaluácie metód identifikácie obsahujú
aj parameter označujúci fázy letu určené ACMS systémom, overiť úspešnosť identifikácie
fáz bolo možné priamočiarym porovnaním s týmto parametrom. Počas testov nad dátami

z 3 lietadiel (približne 600 letov na lietadlo) sa priemerná úspešnosť po vylúčení súborov
s poškodenými dátami pohybovala na úrovni 92 %.

Bohužiaľ, pre overenie úspešnosti identifikácie zátačiek nie je v dátach dostupný žiadny
podobný parameter. Z tohto dôvodu nie je možné určiť úspešnosť a množstvo neiden-
tifikovaných manévrov. Počas manuálnej vizuálnej verifikácie pomocou implementovanej
aplikácie bolo ale zistené, že skoro všetky nájdené manévre boli identifikované správne.

Automatic Event Identification from Flight Data
Records

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of doc. Ing. Peter Chudý, Ph.D., MBA. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Adrián Király
May 15, 2018

Acknowledgements
I would like to thank my supervisor doc. Ing. Peter Chudý, Ph.D., MBA for his excellent
guidance and invaluable feedback and advice during my work on this bachelor’s thesis.

Contents

1 Introduction 5

2 Aircraft Coordinate Systems and Equations of Motion 6
2.1 Coordinate Systems and Notation . 6

2.1.1 Earth-Centered, Earth-Fixed Frame 6
2.1.2 Local Geographic Frame . 7
2.1.3 Body Fixed Frame . 7
2.1.4 Stability and Wind Axes . 8

2.2 Transformations Between Coordinate Systems 9
2.2.1 Local Geographic Frame to Body Fixed Frame 9
2.2.2 Body Fixed Frame to Stability and Wind Axes 11

2.3 Equations of Motion . 11
2.3.1 Differential Equations of Force . 11
2.3.2 Differential Equations of Moments 12
2.3.3 Differential Equations of Angular Velocity 12
2.3.4 Differential Equations of Position . 13

2.4 Numerical Methods for Ordinary Differential Equations 13
2.4.1 Euler’s Method . 14

3 State-of-the-Art Flight Data Technologies 15
3.1 Sensors . 15

3.1.1 Gyroscopes . 15
3.1.2 Accelerometers . 17

3.2 Data Buses . 17
3.2.1 Controller Area Network 2.0 . 18
3.2.2 CANaerospace . 20

3.3 Data Acquisition and Recording . 21
3.3.1 Flight Data Recorder . 22
3.3.2 Quick Access Recorder . 22

3.4 Flight Data Records . 22
3.4.1 Overview . 23
3.4.2 Format . 23

4 Design of Flight Phases and Events Identification 24
4.1 Preprocessing of Flight Data . 24

4.1.1 GPS Track Smoothing . 24
4.1.2 Phase Unwrapping . 26
4.1.3 Smoothing Other Parameters . 27

1

4.2 Takeoff and Landing Detection . 27
4.2.1 Takeoff Detection . 28
4.2.2 Landing Detection . 28

4.3 Detection of Cruise Phase and Changes of Cruise Level 29
4.4 Turn Detection . 29
4.5 Overview of Detection Conditions . 31

5 Implementation 32
5.1 Used Technologies . 33
5.2 Flight Data Input and Processing . 33
5.3 Terrain and Environment . 33

5.3.1 Mapbox SDK . 34
5.3.2 SRTM Heightmaps . 35
5.3.3 Sun Position . 36

5.4 Flight Playback . 37
5.5 User Interface . 38

6 Evaluation 40
6.1 Potential Future Improvements . 40

7 Conclusion 41

Bibliography 42

A List of Available Flight Parameters 48

2

List of Figures

2.1 The Earth-Centered, Earth-Fixed frame. 7
2.2 The Local Geographic Frame and the North-East-Down coordinate system. 8
2.3 The Body Fixed Frame. 8
2.4 Relations between the flight path vector, Body Fixed Frame, Stability, and

Wind axes. 9
2.5 The Euler angles. 10
2.6 An illustration of a single step of the Euler’s method. 14

3.1 Gyroscopic precession. 16
3.2 Ring Laser Gyroscope. 16
3.3 Closed loop pendulous force feedback accelerometer. 17
3.4 Relation between Controller Area Network and CANaerospace. 18
3.5 Simplified scheme of Controller Area Network bus. 18
3.6 CAN 2.0 data frame format. 19
3.7 Signals transmitted by nodes and resulting signal on bus during CAN bitwise

arbitration. 20
3.8 CANaerospace general message format. 20
3.9 General architecture of flight data recording system. 22

4.1 Demonstration of the track smoothing algorithm. 25
4.2 Values of true heading before and after phase unwrapping. 26
4.3 Values of inertial vertical speed before and after application of moving aver-

age filter. 27
4.4 Parameters used for takeoff detection and detected start and end times. . . 28
4.5 Parameters used for landing detection and detected start and end times. . . 29
4.6 Cruise phases are detected from inertial vertical speed, remaining phases are

classified from changes in altitude. 30
4.7 Detected left (red) and right (green) turns. 30

5.1 Main view of the application. 32
5.2 Comparison of both terrain solutions—Mapbox and SRTM. 34
5.3 Illustration of tiles used by Mapbox. 34
5.4 Illustration of the radar system configuration during the SRTM mission. . . 35
5.5 Loading of new tiles in front of the aircraft after crossing the edge of tile. . 36
5.6 Position of the Sun at various times and places. 37
5.7 Visualization of landing gear status. 38
5.8 Progressbar and playback controls. 38
5.9 Different views of the sidebar. 39

3

List of Tables

3.1 CANaerospace basic message types. 20
3.2 Extract from the default identifier distribution list included in the CANaerospace

specification. 21

4.1 Phase and event detection conditions. 31

4

Chapter 1

Introduction

While most people are familiar with the use of flight data records during accident investi-
gation, this has not been the only use of these data for a quite long time. In fact, quite the
opposite is true and these data have proven to be extremely useful during normal aircraft
operations. By analyzing these data, it is possible to determine extent of required mainte-
nance, anticipate failures of components before they happen, optimize aircraft operations
and more, ultimately making air travel even safer, more reliable, and available.

However, given the large number of flights performed every day and amount of collected
data, manual analysis of each flight has no longer been an option for a long time. Fortu-
nately, thanks to the rising availability of computing power and advances in data processing,
automated processing of flight data has quickly become a standard industry practice.

The focus of this work is on detection of flight phases and turn maneuvers. Flight phases
are commonly used as a simple way to specify a part of flight. Combined with turns or other
events, they can be, for example, used for automatic extraction of segments containing the
event of interest for further manual analysis. This is particularly useful when working with
large number of data.

Development of methods for detection of this events required constant visualization of
both flight data and results of detection. As the aircraft movement is inherently more
complex when compared to most of other modes of transport, interpretation of flight data
is also often more difficult. This has led to development of an interactive 3D visualization
which makes it possible to easily interpret flight data and compare them with detected
events even from a short glance.

The beginning of this document is dedicated to theoretical basics, with chapter 2 being
focused on explanations of aircraft coordinate systems and equations of motion, providing
a necessary foundation for any work with flight data. Chapter 3 describes technologies and
systems involved in collection of flight data on aircraft, starting with sensors, data buses
used (not only) for transfer of measured data on aircraft, and ending with an overview of
systems designed to safely store the data. This chapter also contains a basic overview of a
publicly available dataset of flight data used in this bachelor’s thesis.

Chapter 4 first deals with preprocessing of the flight data before use, then describes
details about the detected events, and methods how they are detected in this work. Finally,
chapter 5 combines knowledge from all previous chapters into the final product of this
bachelor’s thesis—an interactive 3D application for automatic detection of flight events.
The evaluation of implemented methods and disussion of possible improvements then follows
in chapter 6.

5

Chapter 2

Aircraft Coordinate Systems and
Equations of Motion

Before doing any real work with the flight data itself, it is necessary to establish a solid
theoretical base that describes aircraft position and motion. Knowing these basics is not
only required during their creation, whether it is by direct measurements on a real flight or
using a flight simulator, but also provides deeper understanding while interpreting recorded
flight data.

This chapter will start off with descriptions of coordinate systems that can be used to
describe position of an aircraft in relation to various frames. As it is often necessary to
work with multiple coordinate systems, the focus will then shift to transformations between
them. Last part of the chapter will focus on equations of motions—a set of equations that
are the core of aircraft movement.

2.1 Coordinate Systems and Notation
In order to describe the basic relations and models of aircraft motion in space, it is first
necessary to define the various frames and coordinate systems that can describe the position
of the aircraft. These descriptions can be relatively complex, since aircraft have six degrees
of freedom. While there are many different frames and coordinate systems commonly in
use, this section will focus only on some of the most used and well-known ones.

2.1.1 Earth-Centered, Earth-Fixed Frame

The Earth-Centered, Earth-Fixed frame (ECEF) (see fig. 2.1) is a global frame that allows
to locate any given point on the surface of the Earth using a fixed set of coordinates. This
is possible because the axes of the ECEF rotate with the Earth around its spin axis [15].

The origin of the frame is located at the center of the Earth and the axes are defined
as follows [15]:

∙ the 𝑧𝑒 axis points towards the true North Pole,

∙ the 𝑥𝑒 axis is perpendicular to the 𝑧𝑒 axis and intersects the prime meridian,

∙ the right-hand coordinate system is completed with the 𝑦𝑒 axis orthogonal to the axes
𝑧𝑒 and 𝑥𝑒.

6

𝑦𝑒

𝑧𝑒

𝑥𝑒

𝑜𝑒

𝑝Prime meridian

Equator

North Pole

Figure 2.1: The Earth-Centered, Earth-Fixed frame is defined by the origin 𝑜𝑒 and the 𝑥𝑒,
𝑦𝑒, and 𝑧𝑒 axes.

While it is possible to determine a position in ECEF using the 𝑥𝑒, 𝑦𝑒, and 𝑧𝑒 axes as
shown in fig. 2.1, it is also common to use a polar-type Latitude, Longitude, Altitude (LLA)
coordinates, denoted by Φ, 𝜆, and ℎ, respectively. This requires use of a reference ellipsoid,
such as the one defined by World Geodetic System 1984 (WGS-84).

Note that the latitude angle Φ of a given point is defined with reference to the local
normal and generally does not cross the origin 𝑜𝑒. Correspondingly, the altitude ℎ of the
point is measured along the local normal as the distance above (or below) the reference
ellipsoid, not the distance between the Earth’s center and the point itself.

2.1.2 Local Geographic Frame

In many scenarios a simpler definition of Earth axes is preferable. In such cases, a local
geographic frame can be used. This frame assumes that the aircraft flies above a flat
ground, tangent to the Earth’s surface at a certain, specified point. Such assumption is
perfectly adequate in many scenarios concerning only a short term motion or with total
extent smaller than some tens of kilometers [10, 15].

The coordinate system of this frame, the North-East-Down (NED) coordinate system
(see fig. 2.2), is defined as follows: The origin 𝑜0 is an arbitrary reference point on or above
the surface of the Earth. The 𝑥0, 𝑦0, and 𝑧0 axes point, as the name of this frame suggests,
to the north, east, and vertically down, respectively. The 𝑥0 and 𝑦0 axes together define a
local horizontal plane tangential to the surface of the Earth [10].

An alternative choice of cartesian axes results in a similar, East-North-Up (ENU) co-
ordinate system, also commonly used with the local geographic frame. The origin of the
local geographic frame may also be placed at the center of gravity of a flying aircraft. This
may be especially useful in combination with the NED coordinate system, which is then
sometimes referred to as Vehicle-Carried North-East-Down coordinate system [6].

2.1.3 Body Fixed Frame

The Body Fixed Frame (BFF) (see fig. 2.3) is a frame described by a set of axes fixed to
the aircraft frame. Conventionally, the origin of the coordinate system is located at the
center of gravity (CG) of the aircraft. The 𝑥𝑏 axis then points forward along the nose

7

South

North

𝑜𝑒

𝑧0
𝑜0

𝑦0

𝑥0

Φ 𝜆

Prime meridian

Local meridian

Figure 2.2: The Local Geographic Frame and the North-East-Down (NED) coordinate
system. Also pictured is the relation between the local geographic frame and the Earth-
Centered, Earth-Fixed frame through the latitude Φ and longitude 𝜆.

of the aircraft, the 𝑦𝑏 axis points to the starboard and the remaining 𝑧𝑏 axis is directed
downwards. The plane defined by the 𝑥𝑏 and 𝑧𝑏 axes also usually coincides with the plane
of the symmetry of the aircraft [10].

roll

𝑥𝑏yaw

𝑧𝑏pitch

𝑦𝑏

𝑐𝑔

Figure 2.3: The Body Fixed Frame, defined by origin in the CG and the fixed axes 𝑥𝑏, 𝑦𝑏,
and 𝑧𝑏.

2.1.4 Stability and Wind Axes

Both stability and wind coordinate systems (see fig. 2.4) are reference frames with origin
in the CG. However, unlike the Body Fixed Frame, their axes are not fixed to the airframe,
but related to the current flight path vector 𝑉 .

The stability axis 𝑦𝑠 is always aligned with the 𝑦𝑏 body axis, and the 𝑥𝑠 axis is parallel
with the projection of the flight path vector 𝑉 into the plane formed by axes 𝑥𝑏 and 𝑦𝑏.
These two axes, 𝑥𝑠 and 𝑦𝑠, together form the plane of motion of the aircraft. The stability

8

𝑥𝑏𝑦𝑠, 𝑦𝑏

𝑧𝑏 𝑥𝑠

𝑥𝑤

𝑉

𝑧𝑠, 𝑧𝑤

𝑦𝑤

𝛽

𝛽

𝛼𝛼

𝑐𝑔

Figure 2.4: Relations between the flight path vector 𝑉 , Body Fixed Frame, Stability, and
Wind axes.

axes are related to BFF through a single rotation about the 𝑦𝑠 axis. The angle 𝛼 of this
rotation is commonly known as the angle of attack (AoA) [1].

In wind coordinate system, the 𝑥𝑤 axis is aligned with the flight path vector 𝑉 itself
instead. Similarly to the stability axes, the plane defined by axes 𝑥𝑤 and 𝑦𝑤 is the instan-
taneous plane of motion mentioned earlier. The wind axes are related to the stability axes
through a single rotation around the 𝑧𝑠 axis. The angle 𝛽 of this rotation is defined as the
angle of sideslip (AoS) [1].

2.2 Transformations Between Coordinate Systems
As each of the frames and coordinate systems described in section 2.1 is better suited for
set of certain tasks, it is often more convenient or even necessary to use multiple coordinate
systems and to perform the appropriate transformations between them. This section will
describe some of the methods that can be used for these transformations.

2.2.1 Local Geographic Frame to Body Fixed Frame

Let’s assume that both local geographic frame and the Body Fixed Frame are originated
at the same point 𝑜. Then, we can describe the transformation to BFF as a series of three
consecutive rotations through the angles 𝜓, 𝜃, 𝜑, called the Euler angles. It’s important to
note that these rotations are not commutative and must be performed in a specified order
to achieve correct aircraft orientation [1].

With reference to fig. 2.5, 𝑜𝑥0𝑦0𝑧0 are the local geographic frame reference axes and
𝑜𝑥3𝑦3𝑧3 are the axes of BFF, the orientation of aircraft with respect to local frame is
established by considering the following rotations required to bring 𝑜𝑥0𝑦0𝑧0 into coincidence
with 𝑜𝑥3𝑦3𝑧3 [1]:

1. Rotation about the 𝑜𝑧0 axis through the heading angle 𝜓, defined as the angle between
north and the horizontal projection of the vehicle roll axis [13]. This results in an

9

𝑥0

𝑦0

𝑧0, 𝑧1

𝑥1

𝑦1, 𝑦2
𝜓𝜓

𝑥2, 𝑥3

𝑧2

𝜃

𝜃

𝑧3

𝑦3

𝜑

𝜑

𝑜

Figure 2.5: The Euler angles.

intermediate coordinate system 𝑜𝑥1𝑦1𝑧1

R3 (𝜓) =

⎡⎣ cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

⎤⎦ (2.1)

2. Rotation about the 𝑜𝑦1 axis through the pitch angle 𝜓, resulting in an intermediate
coordinate system 𝑜𝑥2𝑦2𝑧2

R2 (𝜃) =

⎡⎣cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃

⎤⎦ (2.2)

3. Finally, rotation about the 𝑜𝑥2 axis through the roll angle 𝜑

R1 (𝜑) =

⎡⎣1 0 0
0 cos𝜑 sin𝜑
0 − sin𝜑 cos𝜑

⎤⎦ (2.3)

The final transformation matrix can be obtained by multiplying the rotation matrices
in eqs. (2.1) to (2.3), therefore

TBL = R1 (𝜑)R2 (𝜃)R3 (𝜓)

=

⎡⎣ cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃
sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓 sin𝜑 sin 𝜃 sin𝜓 + cos𝜑 cos𝜓 sin𝜑 cos 𝜃
cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓 cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓 cos𝜑 cos 𝜃

⎤⎦ (2.4)

The resulting matrix eq. (2.4) can be then used to transform components 𝑥0, 𝑦0, 𝑧0 of
a vector in local geographic frame to components 𝑥3, 𝑦3, 𝑧3 of a vector in the Body Fixed
Frame using the following relation ⎡⎣𝑥3𝑦3

𝑧3

⎤⎦ = TBL

⎡⎣𝑥0𝑦0
𝑧0

⎤⎦ (2.5)

10

By inverting the transformation matrix TBL, the reverse transformation is obtained⎡⎣𝑥0𝑦0
𝑧0

⎤⎦ = TLB

⎡⎣𝑥3𝑦3
𝑧3

⎤⎦ = TBL
−1

⎡⎣𝑥3𝑦3
𝑧3

⎤⎦ (2.6)

2.2.2 Body Fixed Frame to Stability and Wind Axes

Transformation from the Body Fixed Frame to stability and wind axes is based on same
principles as transformations in previous section. Whereas the BFF is related to the local
geographic frame through angles 𝜓, 𝜃, 𝜑, the wind axes are related to the BFF through
angles 𝛼 and 𝛽, as mentioned earlier in the section 2.1.4.

First, let’s consider transformation from stability axes to BFF. As we established earlier
in section 2.1.4, the BFF and stability axes are related through a single rotation about the
𝑜𝑦𝑏 axis by an angle 𝛼, thus, the following transformation matrix applies [1]

TBS = Ry (𝛼) =

⎡⎣cos𝛼 0 − sin𝛼
0 1 0

sin𝛼 0 cos𝛼

⎤⎦ (2.7)

Then, a single rotation about the 𝑜𝑧𝑠 axis by an angle 𝛽 performs the transformation
from stability to wind coordinates. This operation can be described by the following rotation
matrix [1]

TWS = Rz (𝛽) =

⎡⎣ cos𝛽 sin𝛽 0
− sin𝛽 cos𝛽 0

0 0 1

⎤⎦ (2.8)

By appropriately combining the matrices in eqs. (2.7) and (2.8), we obtain the following
matrix for transformation from BFF to wind coordinates

TWB = TWSTBS
−1 =

⎡⎣ cos𝛼 cos𝛽 sin𝛽 sin𝛼 cos𝛽
− cos𝛼 sin𝛽 cos𝛽 − sin𝛼 sin𝛽

− sin𝛼 0 cos𝛼

⎤⎦ (2.9)

2.3 Equations of Motion
The focus of this section will be several differential equations that together make up the
model of the motion of aircraft in space. In all of these equations, we will consider the body
of aircraft to be perfectly rigid.

First two sets of equations are realizations of the Newton’s second law of motion and
describe the changes in aircraft’s translation and rotation depending on the forces acting
on it. The next equations then describe these changes further in different frames.

2.3.1 Differential Equations of Force

The force equations of motion for rigid body can be obtained by first realizing the second
Newton’s law for each differential element of mass of the body, and integrating over the
whole vehicle, resulting in the following set of differential equations for components of the

11

velocity 𝑢, 𝑣, 𝑤 in each of the coordinate directions [10]

�̇� = 𝑟𝑣 − 𝑞𝑤 + 𝑓𝑥 (2.10)
�̇� = 𝑝𝑤 − 𝑟𝑢+ 𝑓𝑦 (2.11)
�̇� = 𝑞𝑢− 𝑝𝑣 + 𝑓𝑧 (2.12)

The resulting equations contain not only contributions from forces in each of the direc-
tions in form of specific forces 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 but also terms describing the contributions due to
the rotation rates 𝑝, 𝑞, 𝑟.

Furthermore, we can also add the effects of the gravitational force acting on the vehicle
by transformation of the gravity vector from inertial (local geographic) system to body axis
system using the methods described in section 2.2.1, obtaining the final set of equations [9]

�̇� = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin 𝜃 + 𝑓𝑥 (2.13)
�̇� = 𝑝𝑤 − 𝑟𝑢+ 𝑔 cos 𝜃 sin𝜑+ 𝑓𝑦 (2.14)
�̇� = 𝑞𝑢− 𝑝𝑣 + 𝑔 cos 𝜃 cos𝜑+ 𝑓𝑧 (2.15)

2.3.2 Differential Equations of Moments

Similarly to the force equations, the moment equations are realization of the rotational
form of Newton’s second law of motion. In this case, the incremental moment components
are summed over the whole body, giving the total moments 𝐿,𝑀,𝑁 about the coordinate
axes.

Assuming that the origin of the body axis system is in the CG and the aircraft is
symmetric about the plane defined by 𝑥𝑏 and 𝑧𝑏 axes, the following equations describing
the rolling, yawing and pitching motion apply [10]

�̇� =
𝐼𝑦 − 𝐼𝑧
𝐼𝑥

𝑞𝑟 +
𝐼𝑥𝑧
𝐼𝑥

(𝑝𝑞 + �̇�) +
𝐿

𝐼𝑥
(2.16)

𝑞 =
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟 +
𝐼𝑥𝑧
𝐼𝑦

(︀
𝑝2𝑟2

)︀
+
𝑀

𝐼𝑦
(2.17)

�̇� =
𝐼𝑥 − 𝐼𝑦
𝐼𝑧

𝑝𝑞 +
𝐼𝑥𝑧
𝐼𝑧

(𝑞𝑟 − �̇�) +
𝑁

𝐼𝑧
(2.18)

The 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 symbols denote the moments of inertia about the corresponding axes,
while 𝐼𝑥𝑧 is the product of inertia about the 𝑜𝑥 and 𝑜𝑧 axes. Thanks to the symmetricity
of the aircraft, products of inertia about axes perpendicular to the plane of symmetry, 𝐼𝑥𝑦
and 𝐼𝑦𝑧, are zero, and terms containing them are left out of the equations. Furthermore,
since the origin of the body axis system is in the CG, there is no net moment caused by
gravitational forces [9].

2.3.3 Differential Equations of Angular Velocity

Another set of differential equations relates the angular velocities 𝑝, 𝑞, 𝑟 of the body fixed
axes to the attitude rates �̇�, 𝜃, �̇� in the inertial frame [10]⎡⎣�̇�𝜃

�̇�

⎤⎦ =

⎡⎣1 sin𝜑 tan 𝜃 cos𝜑 tan 𝜃
0 cos𝜑 − sin𝜑
0 sin𝜑 sec 𝜃 cos𝜑 sec 𝜃

⎤⎦⎡⎣𝑝𝑞
𝑟

⎤⎦ (2.19)

12

The inverse equation to eq. (2.19) is following⎡⎣𝑝𝑞
𝑟

⎤⎦ =

⎡⎣1 0 − sin 𝜃
0 cos𝜑 sin𝜑 cos 𝜃
0 − sin𝜑 cos𝜑 cos 𝜃

⎤⎦⎡⎣�̇�𝜃
�̇�

⎤⎦ (2.20)

2.3.4 Differential Equations of Position

The last set of differential equations defines relationship between the vehicle carried NED
velocity and Latitude, Longitude, Altitude coordinates in ECEF frame using the WGS-84
reference ellipsoid [6]

Φ̇ =
𝑉𝑁

𝑀Φ + ℎ
(2.21)

�̇� =
𝑉𝐸

(𝑁Φ + ℎ) cos Φ
(2.22)

ℎ̇ = −𝑉𝐷 (2.23)

Velocity components 𝑉𝑁 , 𝑉𝐸 , 𝑉𝐷 can be obtained by transformation of the velocity com-
ponents 𝑢, 𝑣, 𝑤 measured in the BFF to the local geographic frame using eq. (2.6), as
described in section 2.2.1.

The meridian radius of curvature 𝑀Φ and the prime vertical radius of curvature 𝑁Φ for
a given longitude Φ can be found using the following equations [6]

𝑀Φ =
𝑎
(︀
1 − 𝑒2

)︀(︀
1 − 𝑒2 sin2 Φ

)︀ 3
2

(2.24)

𝑁Φ =
𝑎√︀

1 − 𝑒2 sin2 Φ
(2.25)

The semi-major axis 𝑎 of the ellipsoid is one of the defining parameters for WGS-84,
while the first eccentricity 𝑒 is one of the constants derived from the defining parameters.
Both constants are defined by [2] as follows

𝑎 = 6 378 137.0m (2.26)
𝑒 = 8.181 919 084 262 2 × 10−2 (2.27)

2.4 Numerical Methods for Ordinary Differential Equations
Solving the differential equations in section 2.3 analytically is generally not practicable and
for many purposes not even required. Instead, the equations can be solved effectively using
a wide range of numerical methods. Detailed explanation of these numerical methods would
be far out of scope of this work—thus, this section will only briefly focus on the simplest
and best known one: the Euler’s method.

13

2.4.1 Euler’s Method

The Euler’s method is a simple numerical method for solving ordinary differential equations
in the following form with a given initial value 𝑌0

𝑌 ′(𝑡) = 𝑓(𝑡, 𝑌 (𝑡)), 𝑡0 ≤ 𝑡 ≤ 𝑏

𝑌 (𝑡0) = 𝑌0
(2.28)

The result of Euler’s method is an approximate solution 𝑦(𝑡) at a discrete set of nodes
𝑡0 < 𝑡1 < · · · < 𝑡𝑁 ≤ 𝑏, given by the following equation [5]

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛) (2.29)

The principle behind the Euler’s method is visualized in fig. 2.6: In order to calculate
the value 𝑦𝑛+1, the slope of the line tangent to 𝑌 (𝑡) at 𝑡𝑛 is obtained using the function
𝑓(𝑡𝑛, 𝑦𝑛) and multiplied by the distance of step ℎ.

𝑡

𝑧

𝑧 = 𝑌 (𝑡)

Tangent line

𝑦𝑛

𝑡𝑛

𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛)

𝑡𝑛+1

ℎ

Figure 2.6: An illustration of a single step of the Euler’s method.

As can be seen, the approximate value 𝑦𝑛+1 obtained using the Euler’s method may
have a quite noticeable error when compared to the real value of 𝑌 (𝑡) at 𝑡𝑛+1. While this
error decreases with the size of the step ℎ, it is often still too large compared to the more
advanced numerical methods [5]. As such, the Euler’s method is considered ineffective and
rarely used in practice, where more effective methods, such as the families of Runge–Kutta
methods, are being preferred.

14

Chapter 3

State-of-the-Art Flight Data
Technologies

Ever since the beginnings of modern aviation there has been a constant need to measure
aircraft flight parameters for various purposes. With the ever increasing number of aircraft,
air travel and increasing safety requirements, both quality and quantity of these measure-
ments must grow. Today’s aircraft are not only sophisticated mechanical machines, but also
complex computer networks interconnecting many various devices, with strict requirements
on reliability [16].

These networks fulfill large number of tasks and purposes, and covering them all would
be far out of scope of this work. Therefore, this section will only focus on small part of
this topic, covering it from perspective of measurement and collection of flight data. First,
sources of these data—sensors—will be briefly discussed. Then, we will focus on one of the
protocols designed for use in aircraft networks, as these networks transport measured data
from sensors to various other devices. Next, an overview of devices and architecture used
to safely store measured data is presented.

The last part of this chapter is dedicated to a short overview of publicly available
dataset of flight data obtained using similar technologies to the ones described in this
chapter. Furthermore, these data have been used for development and evaluation of event
detection methods described in chapter 4.

3.1 Sensors
In order to measure various physical quantities and other parameters, aircraft contain a
large collection of different sensors that utilize various physical phenomena. The amount
of different sensor types used in aviation is simply too large to be covered here. Therefore,
this section will only provide a brief look at principles behind inertial sensors—one of the
key components of aircraft avionics.

3.1.1 Gyroscopes

A traditional gyroscope utilizes the principle of conservation of angular momentum—a
spinning mass or wheel will try to hold its position in space. If the spinning wheel is
mounted in a gimballing system comprised of three gimbals, the gimballing system will
allow the wheel to stay fixed in the space and the roll, pitch, and yaw angles may be
measured. These gyroscopes are commonly known as position gyroscopes [16].

15

Spin direction

𝑥

𝑦

Figure 3.1: Gyroscopic precession.

If a force is applied to an outward edge of the spinning wheel as shown in fig. 3.1 by
white arrow, the resulting force will act by rotating along the 𝑦 axis as shown by the black
arrow. This property of gyroscopic precession allows to measure the body roll, pitch, and
yaw rates using the rate gyroscopes [16].

While mechanical gyroscopes using these principles were commonly used in older air-
planes, the mechanical complexity, power consumption, and cost were major limitations.
This has led to development of various kinds of solid-state gyroscopes. Nowadays, most
modern aircraft systems use optical gyroscopes, such as the Ring Laser Gyroscope (RLG) [16].

Input rate

Gas discharge

CW & CCW
Laser Beams

PrismPhotodiodes

Mirror

Figure 3.2: Ring Laser Gyroscope.

In Ring Laser Gyroscope (RLG), two counter rotating laser beams form a continuous
light path using a series of mirrors, as shown in fig. 3.2. When the sensor is stationary,
the frequency of the laser beams detected by the photodiodes is the same. If the sensor is
rotating around the axis perpendicular to the plane of the laser beam (as indicated in the
figure), the Sagnac effect will cause that the frequencies of the laser beams differ, making
it possible to measure the rotation rate [16].

Other kinds of gyroscopes are also being used. A Fibre Optic Gyroscope (FOG) also
uses similar principles as the RLG, however it is less complex and thus cheaper to make.
Particularly noteworthy is also Microelectromechanical Systems (MEMS) technology, that
allows manufacturing of much smaller and cheaper gyroscopes and other sensors.

16

3.1.2 Accelerometers

Similarly to gyroscopes that enable measurement of rotation about a particular axis, ac-
celerometers enable measurement of acceleration along a given axis, which can be then
integrated to obtain position. Generally, accelerometers use a small proof mass of known
weight to sense forces acting on it [16].

Input axis

Hinge
Pendulous arm

Restoring coil

Permanent magnet
Excitation coil

Pick-off

Figure 3.3: Closed loop pendulous force feedback accelerometer.

One of the commonly used types of accelerometers is a pendulous force feedback ac-
celerometer, pictured in fig. 3.3. In this case, the proof mass is represented by a pendulous
arm attached to case by a hinge that allows movement in the direction of input axis. The
pick-off mechanism at the end of the arm is then used to determine displacement of the arm
relative to the null position, which relates to the acceleration in the input axis. Further-
more, in case of a closed loop accelerometer, a corrective current is applied to the restoring
coil attached to the arm, immediately returning it to the null position [16].

3.2 Data Buses
During the flight, data measured using the sensors described in section 3.1 and other data
need to be distributed to various systems through the aircraft. In the past, this was achieved
by direct connections between the necessary systems, resulting in a rather large amount
of wiring. With the advent of digital computers in avionics, these direct connections were
replaced by digital data buses, gradually reducing the amount of wiring, yet increasing the
available bandwidth and enabling development of new applications [16].

Today’s aircraft contain large amount of various avionics systems, often interconnected
using a combination of multiple kinds of data buses and protocols. Many of these technolo-
gies, such as ARINC 429 or ARINC 629, are proprietary and their specifications are not pub-
licly available. However, there are also open, free to use standards such as CANaerospace.

CANaerospace is a lightweight protocol designed for highly reliable communication of
computer systems in airborne applications via Controller Area Network (CAN) [22]. The
Controller Area Network is a serial communications protocol originally designed mainly for
automotive electronics, but later found its use in many different applications. The relation
between CAN and CANaerospace can be seen in fig. 3.4—CAN defines functions correspond-
ing to the lower layers of Open Systems Interconnection (OSI) model, such as bit/frame
encoding, timing, synchronization and error detection, while CANaerospace completes the
network stack with definitions of logical channels, message structure, data representation
and more [20, 22]. Both protocols will be explored in the following sections.

17

OSI model CANaerospace-
based network

Application

Presentation

Session

Transport

Network

Data link

Physical

CANaerospace

CAN 2.0

Figure 3.4: Relation between CAN and CANaerospace and correspondence of their features
to the OSI model.

3.2.1 Controller Area Network 2.0

The Controller Area Network (CAN) is a serial communications protocol designed for dis-
tributed real-time control with high level of reliability. Among the main features of CAN
are prioritization of messages, guarantee of latency times, configuration flexibility and error
detection and signaling [20].

In CAN networks, nodes (at least two) are connected to a bus consisting of a high and low
signal lines (see fig. 3.5). At any moment, the bus can be in one of two states: dominant or
recessive. In an absence of any inputs, the bus is in recessive state by default. The recessive
state of the bus is always overwritten by any single node that writes a dominant bit to the
bus.

CAN High
CAN Low

Node A Node B Node C

Figure 3.5: Simplified scheme of CAN bus.

Any node can start transmitting messages at any time, provided that the bus is currently
free. Unlike most of the other data buses, CAN message does not contain any kind of
identification of sending or receiving node. Instead, it identifies type of the message and
nodes then recognize and filter received messages according to this identification. This also
ensures data consistency across the system, as every message is delivered to each node.

CAN 2.0, Part B specifies two kinds of message frames: a standard one with 11 bit
message identifier, and an extended with 29 bit identifier. The format of both frames is
depicted in fig. 3.6 and the meanings of the fields are following [20]:

∙ Start of Frame (SOF) Marks the beginning of a message, consists of a single dominant
bit that enables synchronization of all nodes.

18

S
O
F

11 bit identifier
R
T
R

I
D
E

r0 DLC Data (0–8 bytes) CRC ACK EOF

(a) Standard format

S
O
F

11 bit identifier
S
R
E

I
D
E

18 bit identifier
R
T
R

r1 r0 DLC Data (0–8 bytes) CRC ACK EOF

(b) Extended format

Figure 3.6: CAN 2.0 data frame format.

∙ Identifier Either 11 bit (standard format) or 29 bit (extended format) long identifier of
message. Identifies the kind of transmitted message and determines the priority of
message (will be described later).

∙ Remote Transmission Request (RTR) A node can request an information from an-
other node (determined by the message identifier) by sending a message with dominant
value of this bit.

∙ Substitute Remote Request (SRR) Placeholder bit used in place of the RTR in the
extended message format.

∙ Identifier Extension Bit (IDE) Determines whether a standard (IDE set to domi-
nant) or extended (IDE set to recessive) message format is used.

∙ r1, r0 Reserved for future use.

∙ Data Length Code (DLC) Indicates number of bytes in data field.

∙ Data field Contains 0–8 bytes of data to be transmitted.

∙ Cyclic Redundancy Code (CRC) Contains 15 bit long checksum of the preceding
data field for error detection, followed by single delimiter bit.

∙ ACK field Contains a 1 bit long slot used for acknowledgement of successful message
transfer. Each node that successfully received the message overwrites the transmitted
recessive bit by dominant bit.

∙ End of Frame (EOF) Each frame is delimited by a sequence of 7 recessive bits.

As was mentioned earlier, a node can start transmitting on bus only if it detects that
no other node is currently transmitting. However, multiple nodes may start transmitting
at the same moment, which would result in a conflict. This conflict is resolved using a
non-destructive bitwise arbitration in the first phase of transmission.

During this phase, nodes transmit the message identifier bit by bit (see fig. 3.7), while
they simultaneously read the value on bus and verify it against the transmitted value. If at
least one node writes a dominant bit to the bus, every node that wrote a recessive bit will
read back a dominant value. As the transmitted and received values do not match, the node
loses the arbitration, stops the transmission and waits. At the end of the message identifier
field, only one node with the lowest message identifier (highest priority) will remain and
continue with transmission of the data [20].

19

R

D

R

D

R

D

R

D

SOF 10 9 8 7 6 5 4 3 2 1 0

Node A

Node B

Node C

Signal on bus

Figure 3.7: Signals transmitted by nodes and resulting signal on bus during CAN bitwise
arbitration.

3.2.2 CANaerospace

The CANaerospace standard specifies additional layers and conventions around the basic
CAN protocol that together provide a complete data communication system for aerospace
applications comparable to commercial solutions [22].

CANaerospace communication is realized through messages, that are then encapsulated
in the data field of the CAN frame. Messages in CANaerospace are categorized into 6 basic
types, defined by CAN message identifier ranges allocated for specific purposes, as shown
in table 3.1. Notice that CANaerospace also enables creation of user-defined message types
with custom format and transmission intervals. Furthermore, the node service protocol
provides a connection-oriented communication, either as High Priority or Low Priority
Node Service Data.

Table 3.1: CANaerospace basic message types [22].

CAN ID Message Type
0–127 Emergency Event Data (EED)

128–199 High Priority Node Service Data (NSH)
200–299 High Priority User-Defined Data (UDH)
300–1799 Normal Operation Data (NOD)

1800–1899 Low Priority User-Defined Data (UDL)
1900–1999 Debug Service Data (DSD)
2000–2031 Low Priority Node Service Data (NSL)

The standard defines a general message format (shown in fig. 3.8) consisting of a 4 B long
header, leaving the remaining 4 B of CAN data field for payload. While the exact meaning
of header fields may slightly vary in some contexts, the general meaning is following [22]:

0 1 2 3 4 5 6 7

Node-ID
Data
Type

Service
Code

Message
Code

Message Data

Figure 3.8: CANaerospace general message format.

20

∙ Node-ID Numerical node identifier in range of 0–255, with 0 being the broadcast iden-
tifier addressing all nodes on bus. In normal messages, it identifies the transmitting
station, while in node service data messages, it identifies the addressed node.

∙ Data Type Specifies the type and coding of data. Available basic data types are defined
by the CANaerospace standard, while use of user defined types is also possible.

∙ Service Code For node service messages, the service code contains the node service code
for the current operation. In normal messages, this field may be used as required for
the specific data.

∙ Message Code In normal messages the value is incremented by one for each message,
allowing any node to determine the age of a signal. Node service data messages use
this field for extended specification of the service.

The CANaerospace standard also includes a default identifier distribution that specifies
identifiers, data types, sign conventions and units to ensure interoperability between nodes.
For this purpose, the Normal Operation Data (NOD) identifiers in range of 300–1499 are
reserved. While use of the default distribution is recommended, the standard also allows
user-defined distribution schemes. As an example, an extract from the default identifier
distribution list is shown in table 3.2.

Table 3.2: Extract from the default identifier distribution list included in the CANaerospace
specification [22].

CAN ID Parameter name Data types Units Notes
300 Body longitudinal acceleration FLOAT

SHORT2
g forward: +

aft: -
304 Body roll rate FLOAT

SHORT2

∘/s roll right: +
roll left: -

321 Heading angle FLOAT
SHORT2

∘ ±180∘

1036 GPS aircraft latitude DOUBLEL/
DOUBLEH
FLOAT
SHORT2

∘

3.3 Data Acquisition and Recording
For safety reasons, recording of flight data is mandated by for most of aircraft involved in
passenger operations, as these data can and often are invaluable source of information during
aircraft incident investigation [16]. This is done using the Flight Data Recorder (FDR),
colloquially also often referred to as “black box”. However, these data are often useful during
normal operation of aircraft, whether for service, quality assurance, or research purposes.
For this reason, many current aircraft also contain a Quick Access Recorder (QAR) that
provides faster and easier access to data [7].

Older FDRs were responsible both for processing and collection of data. The ever
increasing number of recorded parameters necessitated development of the Flight Data

21

Flight
Data

Acquisition
Unit

Flight
Data

Recorder

Quick
Access

Recorder

Analog inputs

Discrete inputs

Data bus
Node A

Node B
...

Figure 3.9: General architecture of flight data recording system.

Acquisition Unit (FDAU) responsible for collection and appropriate processing of measured
values, which are then sent to FDR. Modern FDAUs are capable of collection of data from
multiple sources, such as the aircraft data buses and various additional analog and discrete
inputs [7]. A simplified, general architecture of the flight data recording system can be seen
in fig. 3.9.

3.3.1 Flight Data Recorder

The primary task of the Flight Data Recorder (FDR) is to record and store flight data
and to ensure their survival in case of an accident. For this reason, they are ruggedized
to withstand shock, fire, and immersion in seawater. Furthermore, the casing of FDRs is
painted bright orange to aid during recovery [16].

There have been numerous changes of used medium through the history of FDRs. Older
recorders recorded data in analog form by engraving traces onto a metal foil. Later, they
were replaced by digital FDRs that stored data on magnetic tapes. Nowadays, most air-
craft use solid state FDRs that store data using solid state memory chips. This has enabled
collection of more parameters during larger periods and significantly reduced need for main-
tenance [7].

3.3.2 Quick Access Recorder

As the FDR is usually not very accessible due to the high requirements on durability, many
large airplanes carry an Quick Access Recorder (QAR). QAR receives and stores the same
values as the FDR, but they are not designed to survive an accident.

On the other hand, they are easily accessible and data can be obtained by replacing
the memory cards, or downloaded. Modern QARs also support wireless transfer of data,
enabling even easier and faster access to data [7].

3.4 Flight Data Records
In order to develop, evaluate and demonstrate methods described in chapter 4, a sufficient
dataset of flight data was required. While such dataset could be created using a flight
simulator, it would not capture all intricacies of the real world. Different pilots, technical
status of the aircraft, weather conditions, sensor imperfections—these are only some of the
factors that differentiate real world data from simulated.

22

While collection of such data is nowadays common, for example in commercial aviation
as part of Flight Data Monitoring (FDM) or Flight Operational Quality Assurance (FOQA)
programs, they are practically never available publicly. Fortunately, National Aeronautics
and Space Administration (NASA) has published such dataset to general public as a part
of its Aviation Safety Program [17].

This section will provide an overview of this dataset and data contained in it—their
origin, format, available parameters, some of the artifacts that can be found in these data,
and how they are preprocessed before use.

3.4.1 Overview

The sample flight data have been published by NASA to provide researchers and general
public access to data which can be used to evaluate and advance data mining capabilities
that can be used to promote aviation safety [17].

These data have been obtained from a single type of regional jet over the period of three
years and contain detailed aircraft dynamic, system performance and other engineering
data [17]. They are, however, de-identified and do not provide any information that can be
traced to a particular airline or manufacturer.

3.4.2 Format

The data can by downloaded from the project page on the NASA DASHlink portal1. They
are split into 35 datasets, each containing 5–10 ZIP archives, with each of the archives
containing several hundreds of flights.

Flight data of each flight are stored in MATLAB 5.0 MAT-file and store 186 parame-
ters2. Each of the parameters is stored in a structure that contains the parameter name,
description, units, sampling rate and the recordings itself.

1Sample Flight Data project page on DASHlink portal: https://c3.nasa.gov/dashlink/projects/85/
2Full list of parameters is available in appendix A

23

https://c3.nasa.gov/dashlink/projects/85/

Chapter 4

Design of Flight Phases and Events
Identification

A phase of flight refers to a period within a flight, such as taxi, takeoff, or landing. Each
of these phases has its own characteristics and can be related to a set of operations usually
performed at such phase. For this reason, phases are commonly used as a simple way to
refer to a part of flight that is of interest.

Furthermore, we will assume that phases of flight do not overlap, and that each part of
flight should be assigned a phase, if it is possible from the available information. Phases
of flight used in this work are based on the taxonomy created by CAST/ICAO Common
Taxonomy Team [8].

Another area of interest is detection of other events that occur during the flight. This
project focuses on detection of turns—maneuvers that result in change of direction the
aircraft is flying towards.

This chapter will focus on methods developed and used for identification of flight phases
and events. The detection is done in multiple steps, where each step uses information
generated by previous steps in order to simplify or improve detection. Thus, the used
methods itself are relatively simple, but they have proven to be sufficiently powerful on
tested data.

However, real world sensor data often contain various unwanted artifacts which com-
plicate further processing. Therefore, first section of this chapter shorty focuses on these
artifacts and how they were removed before further processing.

4.1 Preprocessing of Flight Data
Whether due to hardware limitations of sensors, choice of format used for storage of data
in FDR or other reasons, flight data often contain artifacts and other elements that may
not always be suitable for analysis or visualization. This section will describe methods that
were applied before analysis and visualization of the flight data.

4.1.1 GPS Track Smoothing

The resolution of stored data is limited and depends on the format used by FDR. The accu-
racy is usually sufficient for most parameters such as roll and pitch angles where 1∘ change
results only in a very small movement. However, a 1∘ change in latitude or longitude may
represent as much as 111 km on the surface of Earth, and as such, much higher resolution is

24

needed. Results of insufficient resolution can be seen as a visible stepping in track plotted
in fig. 4.1a. This stepping is especially noticeable during the taxi phase, when the aircraft
slowly moves to or from the runway.

Latitude

Lo
ng

itu
de

(a) Before

Latitude
Lo

ng
itu

de

(b) After

Figure 4.1: Demonstration of the track smoothing algorithm.

Such stepping could cause issues during analysis and is definitely not suitable for visual-
ization. A relatively simple, but effective method of smoothing that can be used to remove
this stepping has been described on the Flight Data Community blog [14].

The core of this method is to repeatedly use discrete convolution to smoothen the track
by averaging out each of the samples with two preceding and succeeding samples. In order
to simplify the process, first and last two samples are left untouched. The rest of the
samples are obtained from results of convolution1 𝑑 * 𝑘𝑠, where 𝑑 is a vector of unprocessed
samples (or samples from previous iteration), and 𝑘𝑠 is the smoothing kernel. An example
of a good smoothing kernel that has been used in this project can be seen in eq. (4.1).

𝑘𝑠 =
[︀
7
40

7
40

3
10

7
40

7
40

]︀
(4.1)

A cost function 𝑐 (eq. (4.2)) is introduced to stop the smoothing at an optimal point—
when the track is as close to a straight line as possible, but not too far away from original
data. This cost function consists of two components: First component (eq. (4.3)) is a simple
total sum of squares between original data 𝑑 and smoothened data 𝑑′, which represents error
caused by smoothing. The straightness of the smoothened line is represented by second
component (eq. (4.4)), calculated by summing the squares of results of the convolution of

1This corresponds with the ’valid’ mode of MATLAB’s conv() function

25

smoothened data 𝑑′ and error kernel 𝑘𝑒.

𝑐 = 𝑐𝑜 + 1000𝑐𝑠 (4.2)

𝑐𝑜 =
∑︁
𝑖

(︀
𝑑′𝑖 − 𝑑𝑖

)︀2 (4.3)

𝑐𝑠 =
∑︁
𝑖

(︀
𝑑′ * 𝑘𝑒

)︀
[𝑖]2 (4.4)

𝑘𝑒 =
[︀
−1 2 −1

]︀
(4.5)

The result of smoothing can be seen in fig. 4.1b. Both latitude and longitude are
smoothened at the same time. The cost function is calculated for both latitude and longi-
tude, its results are added together and used to stop the smoothing when the sum of cost
functions is at its minimum.

In the final application (described in chapter 5) this algorithm has been extended to
preprocess not only latitude and longitude, but also altitude of the aircraft. This results in
a smooth movement in all three axes.

4.1.2 Phase Unwrapping

Parameters representing angles are stored phase wrapped—normalized in range from −180∘

to 180∘. While this may ease storage of these data in FDR, phase wrapping would signifi-
cantly complicate use of the data during analysis and results in unwanted behavior during
visualization, visible for example in fig. 4.2a.

7150 7200 7250 7300 7350 7400
Time (𝑠)

-200

-100

0

100

200

An
gl

e
(∘

)

(a) Before

7150 7200 7250 7300 7350 7400
Time (𝑠)

-200

-100

0

An
gl

e
(∘

)

(b) After

Figure 4.2: Values of true heading before and after phase unwrapping.

Fortunately, the principle of algorithm for phase unwrapping is very simple [12]: Iterate
through all values and for each pair of succeeding values, calculate their difference. If
the difference is larger than 𝜋 rad, then subtract 2𝜋 rad from this and all values to right.
Conversely, if the difference is smaller than −𝜋 rad, add 2𝜋 rad to this and all values to
right.

The result of phase unwrapping is a smooth, continuous curve, such as the one seen
in fig. 4.2b.

26

4.1.3 Smoothing Other Parameters

In some cases, the used sensors may be too sensitive and produce noise that may cause
issues with some detection methods. A good example is the inertial vertical speed parameter
shown in fig. 4.3a, which is used for detection of cruise phases (described in section 4.3).

2500 3750 5000 6250 7500
Time (𝑠)

-2000

0

2000

Ve
rt.

sp
ee

d
(ft

/m
in

)

(a) Before

2500 3750 5000 6250 7500
Time (𝑠)

-2000

0

2000

Ve
rt.

sp
ee

d
(ft

/m
in

)
(b) After

Figure 4.3: Values of inertial vertical speed before and after application of moving average
filter.

One of the easiest ways to solve this issue is filtering the signal using a moving average
filter. While very simple to understand and implement, the moving average filter is often
the optimal choice for reducing random noise in time domain encoded signals [21]. As
the eq. (4.6) shows, each filtered sample 𝑦[𝑖] is obtained by averaging values of 𝑚 samples
around the original value 𝑥[𝑖].

𝑦[𝑖] =
1

𝑚

𝑚−1
2∑︁

𝑗=−𝑚−1
2

𝑥[𝑖+ 𝑗] (4.6)

Result of filtering the inertial vertical speed parameter using a moving average filter can
be seen in fig. 4.3b. Notice that the noise visible around zero values has been significantly
reduced.

4.2 Takeoff and Landing Detection
Takeoff is defined as a phase starting with the application of takeoff power through rotation
and to an altitude of 35 feet above runway elevation [8]. Landing phase starts with the
beginning of the landing flare2 and ends when the aircraft exits the landing runway or
comes to a stop on the runway [8].

Detection of takeoffs and landings is performed in two steps. First, the weight on wheels
parameter is used to approximate the takeoff and landing as single points in time of flight.
These approximations are then used as a starting point in next step, in which time intervals
of takeoff and landing phases are determined using additional parameters.

2A maneuver during which aircraft transitions from nose-low to nose-up attitude before landing

27

0

50

100
N

1
sp

ee
d

(%
)

Initial estimateInitial thrust

2218.75 2225 2231.25 2237.5 2243.75 2250
Time (𝑠)

0

20

40

Ra
di

o
al

t.
(ft

)

Takeoff end

Figure 4.4: Parameters used for takeoff detection and detected start and end times.

Intervals between detected takeoff and landing phases are then classified as intervals “on
ground” and “in air”. This simplifies detection of other phases (described in next sections),
as only appropriate detections are performed (e.g., it doesn’t make sense to attempt to
detect cruise phase when the aircraft is on ground).

4.2.1 Takeoff Detection

Detection of takeoff (see fig. 4.4) starts from the initial approximation and searches left for
application of takeoff power, identified from the raise of engines N1 speed above 50 % RPM.
As the search always starts from the initial approximation, only the closest application of
takeoff power is considered, while any other instances where the N1 speed crosses 50 % RPM
are ignored.

The end of takeoff phase is then detected using the radio altitude parameter—first
moment when aircraft radio altitude crosses 35 ft marks the end of takeoff.

4.2.2 Landing Detection

Landing detection (see fig. 4.5) uses similar methods as the takeoff detection. The search
starts from the initial approximation and searches left for a landing flare. The landing flare
is approximated as a moment when the aircraft pitch angle raises above 0∘.

During landing, the true heading of aircraft will remain constant and equal to the
runway heading. This fact is utilized for the detection of the phase end, as any significant
deviation from the initial heading indicates that the aircraft left the runway. As it is part of
airport operations procedures to immediately exit the runway without delay after landing,
this method should successfully detect the end of landing in virtually all flights.

28

-2

0

2

4
Pi

tc
h

(∘
)

Initial estimate

Landing flare

7337.5 7343.75 7350 7356.25 7362.5 7368.75
Time (𝑠)

-180

-170

-160

Tr
ue

he
ad

in
g

(∘
)

Landing end

Figure 4.5: Parameters used for landing detection and detected start and end times.

4.3 Detection of Cruise Phase and Changes of Cruise Level
In this case, used definitions differ a little from [8] in order to better match phases de-
tected by Aircraft Condition Monitoring System (ACMS). Any level flight segment will be
considered as cruise phase, while changes in cruise level will be marked either as climb or
descent.

First, as can be seen in top part of fig. 4.6, cruise phases are detected using the inertial
vertical speed parameter by searching for any continuous intervals during which the speed
remains constantly below ±100 ft/min.

The climb and descent phases then fill the undetected intervals between takeoff, cruise,
and landing phases, as shown in bottom part of fig. 4.6. To determine whether the phase is
an climb or descent, it’s sufficient to consider the change of altitude between the two phases
it is connecting.

4.4 Turn Detection
As the main objective of performing turns in aircraft is change of its direction, they can
be easily detected from these changes. It is however necessary to differentiate between
aircraft heading and course, as changes in their values may differ. While the heading rep-
resents direction the aircraft is pointing towards, course is the direction it’s flying towards.
Therefore, it is more appropriate to use course for turn detection.

The method itself is very similar to method used for detection of cruise phase (sec-
tion 4.3). Here, the track angle parameter is first searched for sufficiently long parts of
flight where the course does not change more than 2∘ since start of the segment. Other
parts, where the course changes, are then classified as left or right turn depending whether
the change in course was positive or negative, as can be seen in fig. 4.7.

29

-2000

0

2000

Ve
rt.

sp
ee

d
(ft

/m
in

)

2500 3125 3750 4375 5000 5625 6250 6875
Time (𝑠)

0

10000

20000

30000

Pr
es

su
re

al
t.

(ft
)

Figure 4.6: Cruise phases are detected from inertial vertical speed, remaining phases are
classified from changes in altitude.

-300

-200

-100

Tr
ac

k
an

gl
e

(∘
)

2250 2375 2500 2625 2750 2875
Time (𝑠)

-20

0

20

Ro
ll

(∘
)

Figure 4.7: Detected left (red) and right (green) turns.

30

4.5 Overview of Detection Conditions
A short overview of detection conditions used for phase and event detection is provided
by table 4.1. Where applicable, both start and end conditions are given.

Table 4.1: Phase and event detection conditions.

Ord. Phase or
event

Start condition End condition Notes

1 Takeoff N1_1 > 50 % RALT > 35 ft Start cond.
searched from
approximation

2 Landing PTCH > 0.5∘ TH change from ini-
tial value > 5∘

Start cond.
searched from
approximation

3 Taxi Must be on ground
4 Cruise Must be in air, IVV change does not exceed

100 ft/min
IVV filtered using
moving average

5 Climb Previous phase
Takeoff or Cruise
with lower FL

Next phase Cruise
with higher FL

6 Descent Previous phase
Cruise with higher
FL

Next phase Landing
or Cruise with lower
FL

7 Turn Must be in air, change in TRK > 2∘, at least
2 s long

31

Chapter 5

Implementation

Since aircraft have six degrees of freedom, their movement is inherently more complex.
While visualization using traditional two-dimensional charts is still possible, it is consider-
ably harder to read and understand. This has led to decision to develop an interactive 3D
visualization as a way to present information obtained using methods in chapter 4. Such
form of visualization is not only easier to comprehend, but also allows inclusion of other
context information about status of various aircraft systems and its surroundings.

The final application can be thought of as an analogue to a video player—which instead
of video files replays flights from recorded flight data. The main view (see fig. 5.1) contains
a simplified 3D model of an aircraft surrounded by terrain generated from real world height
data and satellite view of a given location.

Furthermore, the file containing flight data is also analyzed using methods described
in chapter 4. Detected flight phases and events are then shown in the User Interface (UI)
and single click rewinds the player to the relevant part of flight.

Figure 5.1: Main view of the application.

32

5.1 Used Technologies
The application was developed using the cross-platform game engine Unity. As a game
engine, Unity is well equipped for 2D and 3D graphics, animation, lightning, UI creation,
and more, making it a good choice for this purpose. This has, in turn, enabled to spend
more time and focus on the process of identification and features of the final application.
Furthermore, use of game engines outside the gaming industry is not unprecedented and
has been spreading to more and more industries [3].

Unity uses Mono/.NET Framework as its scripting runtime and C# as a scripting lan-
guage [24]. This, however, also enables use of any managed DLL assembly inside the
application, which makes it possible to use a large number of third party libraries in case
of need.

5.2 Flight Data Input and Processing
Given the fact that the methods used for detection of phases and events are relatively simple,
they have been implemented as a direct part of the Unity application. This streamlines
the user experience, as it is possible to open flight data files directly without any external
preprocessing.

As the files containing flight data are distributed in a binary .mat format, an open-
source library CSMatIO is used for reading. The data are then copied into more efficient
data structures to improve performance during playback at a cost of longer loading and
processing. At this step, parameters that require pre-processing are also pre-processed using
methods described in section 4.1.

As the last step, the data are analyzed using the methods in chapter 4—first, the flight
phases are detected, which are then used during detection of turns. The main scene and
UI are then supplied with required data and prepared for use.

5.3 Terrain and Environment
A key part of the visualization is the terrain, as it forms most of the environment around
the aircraft and serves as a visual reference of current position. Two different solutions for
visualization of terrain were implemented—one utilizing height data and satellite imagery
from the service Mapbox, the other using freely available data from Shuttle Radar Topog-
raphy Mission (SRTM) and procedural, heightmap based texture splatting. By default, the
application uses the Mapbox terrain, but it is possible to easily switch between providers
at runtime. Comparison of both terrains can be seen in fig. 5.2.

The geographic area covered by flights in the dataset is too large to be loaded into
memory and rendered at once. Furthermore, the limited precision of the float type used by
Unity to specify position within the game world would soon start causing major issues [18].
Therefore, the terrain is split into multiple smaller chunks or tiles, and only the nearest
few of them are loaded and rendered. To prevent issues with floating point numbers, the
aircraft model is moved only within a limited area near the game world coordinate system
origin.

33

Figure 5.2: Comparison of both terrain solutions—Mapbox on the left, SRTM on right.

5.3.1 Mapbox SDK

Mapbox is a location data platform providing a range of tools and services for creating
and publishing custom maps on web, embedded devices, and mobile platforms [4]. While
Mapbox publishes large amount of their source code and Software Development Kits (SDKs)
as open source, the service itself is commercial. However, a free starter plan is also available,
with sufficiently large usage quotas for this project.

The main advantage of Mapbox was availability of both satellite imagery and terrain
elevation data with same projection, and an open source SDK for Unity, which enabled
faster integration into the application.

Mapbox serves its map data in form of tilesets—a collection of raster or vector data
split into uniform grid of square tiles at 22 preset zoom levels (see fig. 5.3) in Web Mercator
projection [4]. This principle has been popularized by Google Maps and has been heavily
used in most of the web map applications. Data provided by Mapbox are collected from a
large number of sources, both open and proprietary.

1 × 1 tiles

Zoom level 0

2 × 2 tiles

Zoom level 1

4 × 4 tiles

Zoom level 2

Figure 5.3: Illustration of tiles used by Mapbox. The same area is represented by different
number of tiles on each zoom level.

34

All the background work related to loading of tiles from servers, creating terrain meshes
and applying textures is handled by the Mapbox SDK, which is already optimized for
regular movement of the map center and automatically loads and renders missing tiles.
Thus, when the Mapbox maps are used in the visualization, the aircraft model is floating
above the game world origin, while the terrain tiles shift horizontally as it moves on its
path.

As the altitude of the aircraft increases, less detailed tiles covering larger area are needed.
An ideal implementation would also consider the camera bounds and decrease the zoom level
of more distant tiles. However, the Mapbox SDK is still in active development and doesn’t
seem to provide this exact functionality at this time. To achieve similar functionality, a
minor modifications of the SDK code have been done and an additional custom code changes
map zoom level depending on the aircraft altitude above ground level.

5.3.2 SRTM Heightmaps

Provided as an alternative to Mapbox, this solution is independent of third party services
and utilizes freely available elevation data from the Shuttle Radar Topography Mission
(SRTM) with the Unity’s built-in terrain system.

The Shuttle Radar Topography Mission was an international project that created the
first ever near global digital elevation model of the Earth. Data were collected using inter-
ferometric synthetic aperture radars, carried as a payload of the Space Shuttle Endeavour’s
mission STS-99 in February 2000 [11].

60 m

Outboard antenna
(receive only)

Main antenna
(transmit/receive)

Figure 5.4: Illustration of the radar system configuration during the SRTM mission.

The SRTM radar system (see fig. 5.4) consisted of two antennas—a main antenna placed
in the payload bay, and an outboard antenna attached to an end of a 60 m long extendable
mast. During its 11 day mission, Endeavour completed 176 orbits around the Earth and
collected elevation data for most of the land surface between 60 ∘N and 56 ∘S, covering
about 80 % of Earth’s land mass [11].

While the raw SRTM data contain voids and inaccuracies, they have been reprocessed
numerous times by various organizations. Processed SRTM data are currently available in
1, 3, and 30 arc-second resolutions in various file formats.

For purposes of this project, data with 3 arc-second resolution distributed in .hgt files
were used. These files contain 1201 × 1201 16 bit signed integer values in big endian byte

35

order, representing height of a given point on Earth, referenced to the EGM96 geoid [23].
Each of these files cover an area of 1∘ × 1∘ of the Earth’s surface.

Due to optimizations in Unity’s terrain system, the resolution of a heightmap should1

be a power of two plus one [24]. For this reason a Python script for bulk preprocessing
of height data was created. This script resamples the entire heightmap into resolution
supported by Unity, and optionally splits the heightmap into multiple smaller tiles. The
resulting processed files are then saved in a format similar to .hgt, but with little endian
byte order. Furthermore, the script also generates a file containing metadata used during
loading of height data in Unity.

Figure 5.5: Loading of new tiles in front of the aircraft after crossing the edge of tile.

When SRTM elevation data are used by the application, it prepares an array of Unity’s
Terrain objects, which are reused during the entire run of application. The aircraft model
is actually moved in both horizontal and vertical axes, but only within an area of a single
Terrain object tile. This keeps the game world coordinates of the aircraft model relatively
close to the origin and prevents issues caused by limited precision of floating point numbers.
When the aircraft crosses the edge of the tile, all of the tiles and aircraft model are shifted
back, and new terrain data are loaded in to appropriate tiles (see fig. 5.5). This whole
solution is largely based on a method described by Robert Oates in his Unite 2013 talk [19].

In order to better highlight terrain features, a splatmap is procedurally generated at
runtime from the terrain heightmap and used to apply textures on the terrain.

5.3.3 Sun Position

The recorded flight data also contain timestamps, enabling to establish time and date of
the flight, which can be then visualized by properly setting lightning of scene to match
current time and season. This also makes it easy to visually determine approximate time
of day at the current location of aircraft without any confusion caused by changes of time
zones during flight.

Unity has support for realtime global illumination and a sophisticated procedural sky
system, that can be linked to a directional light (representing Sun) in scene [24]. In this
case, Unity automatically matches the skybox according to current direction of light to
create a realistically looking scene.

Therefore, it is only necessary to calculate altitude and azimuth angles of the Sun at
given time, date, and location. These angles can be calculated by many methods with
various accuracy. For purposes of this project, a relatively simple algorithm described by
the U.S. Naval Observatory has been used. Accuracy of this algorithm is sufficient for

1Even though use of other resolutions is technically possible, the engine changes the resolution to nearest
larger power of two and pads the height data with zeros to match the set resolution.

36

Figure 5.6: Position of the Sun at various times and places.

purposes of visualization—about 1 arcminute within two centuries of 2000 and gradually
degrades [25].

5.4 Flight Playback
The main and most important part of the scene is the aircraft model, as it is used for
visualization of most of the flight data. Due to the fact that the used flight data were
de-identified, it was not possible to find and use the exact aircraft model in visualization.
Instead, a freely available 3D model of an aircraft with similar characteristics was used as
a substitute for visualization purposes.

Currently visualized values of flight data are determined using an internal, frame inde-
pendent time variable that represents the current time since the beginning of flight. This
also enables user to speed up or down the visualization, play the flight in reverse or skip
to any moment in the flight. To ensure smooth animation of the visualization, transition
between the data samples is linearly interpolated.

The most important parameters that are visualized are, of course, position in the world
and rotation around the CG. The position in the world is determined from recorded geo-
graphic coordinates and appropriately recalculated into game world coordinates depending
on the currently used terrain provider. The rotation is obtained directly from the aircraft’s
true heading, roll, and pitch angles.

To see effects of aircraft controls on its movement, deflection angles of the main control
surfaces—ailerons, elevator, and rudder—are visualized. These angles may be, mainly in
case of ailerons, relatively small and hard to see. Therefore, the models of control surfaces
are also colored according to their current deflection.

Similar color coding is used to visualize engine thrust. In this case, the engine nacelle
is colored according to the engine’s current N1 speed. While the N1 speed itself is not a
measure of engine thrust (which is not measured), it is closely related to it and commonly
used for this purpose.

Lastly, the aircraft landing gear deployment and retraction is visualized (see fig. 5.7).
This parameter has obviously only two possible values—retracted, and deployed. In order to
achieve smooth transition between these two states, it was necessary to animate it manually
using Unity’s animation system.

37

(a) Landing gear retracted (b) Landing gear deployed

Figure 5.7: Visualization of landing gear status.

5.5 User Interface
The user interface of the main view (see fig. 5.1) is partially inspired by interface of video
players, and thus, it’s relatively simple. The main focus is on visualization of the aircraft
status and intuitive representation of results obtained using methods from chapter 4.

Figure 5.8: Progressbar and playback controls.

Bottom part of the main view, shown in fig. 5.8, contains controls related to playback.
Besides play/pause button, there are also controls for controlling playback speed and player
progressbar. This progressbar serves multiple purposes—it indicates both current time in
the flight and detected flight phases, visualized as colorized segments of the progressbar.
Naturally, it can be also used to skip to any part of the flight by clicking or dragging.

The right part contains a hideable sidebar. By default it contains list of all detected
events (turns), shown in fig. 5.9a. The sidebar can be switched to data view (see fig. 5.9b),
where it is possible to add and watch any of the parameters available in the flight data file.

38

(a) Events view (b) Data view

Figure 5.9: Different views of the sidebar.

39

Chapter 6

Evaluation

As one of the parameters contained in the used datasets is flight phase obtained from
ACMS, it is possible to easily evaluate performance of phase detection algorithm by directly
comparing its results to this parameter. When tested on randomly selected collection of
flight record files from three aircraft (around 600 files for each aircraft), the average success
rate has been around 92 % after excluding malformed or invalid records. It is however
important to note that the actual success rate may be slightly higher, as definitions of
flight phases used by these methods and ACMS seem to be different.

Unfortunately, such evaluation of the turn detection performance is not possible, as
there is no parameter that could be used to compare the results. Furthermore, manual
analysis and labeling of the data to would be extremely time-consuming and unfeasible.
Therefore, it is not possible to approximate number of undetected turn maneuvers, but
visual verification using the application implemented in chapter 5 reveals that almost all
detected turns have been correctly identified.

6.1 Potential Future Improvements
While the final application implements all of the core functionality and the detection al-
gorithms work sufficiently well, there is, of course, still a lot of room for improvements
in all areas. For example, the detection algorithms could be further tweaked for better
performance and new detection capabilities could be added—such as detection of hold-
ing maneuvers, go-arounds, and other less common events. With appropriate additional
data sources, information such as departure and arrival airport, used runway or historical
weather records could be also obtained.

Data pre-processing also has some shortcomings that could be solved, namely issues
with aircraft altitude inaccuracies and correction of displacements in GPS data. A lot
of interesting upgrades could be done on the visualization side, such as general graphics
improvements, increased terrain render distance or 3D visualizations of buildings. There
are also many parameters that could possibly be visualized on the aircraft model, such as
deflections of secondary control surfaces, or more detailed visualization of engine status.

40

Chapter 7

Conclusion

The main goal of this bachelor’s thesis was to design and implement an application for
detection of flight phases and events in data obtained from flight data recorder. In order
to achieve this goal, a set of multiple methods for detection of various phases and turn
maneuvers was developed and successfully tested. Publicly available dataset of flight data
obtained from a regional jet has been used to develop and evaluate these methods.

The slightly experimental nature of this work and need to easily and intuitively evaluate
results of the detection has eventually caused a much stronger focus on visualization of both
flight data and results of detection. The result is an application that couples the detection
algorithms with an interactive 3D visualization. Use of such visualization is not only more
natural, given the complex nature of aircraft motion, but it makes possible to present vastly
larger amount of contextual information on screen.

41

Bibliography

[1] Volume 1. Performance Flight Testing. Chapter 13. Equations of Motion I. Technical
report. U.S. Air Force Test Pilot School. November 1993.
Retrieved from: http://www.dtic.mil/docs/citations/ADA320205

[2] Department of Defense World Geodetic System 1984, Its Definition and Relationships
With Local Geodetic Systems. NIMA Technical Report TR8350.2. July 1997.
Retrieved from:
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html

[3] Engines of creation. The Economist. June 2016. ISSN 0013-0613.
Retrieved from:
https://www.economist.com/news/science-and-technology/21700618-slick-
graphics-modern-video-games-are-spreading-ever-further-outside-their

[4] Mapbox. 2018.
Retrieved from: https://www.mapbox.com/

[5] Atkinson, K.; Han, W.; Stewart, D. E.: Numerical Solution of Ordinary Differential
Equations. New York, NY: John Wiley & Sons. 2011. ISBN 978-1-118-16452-5.
OCLC: 897576807.

[6] Cai, G.; Chen, B. M.; Lee, T. H.: Coordinate Systems and Transformations. In
Unmanned Rotorcraft Systems. London: Springer London. 2011. ISBN
978-0-85729-634-4 978-0-85729-635-1. pp. 23–34. DOI: 10.1007/978-0-85729-635-1_2.
Retrieved from: http://link.springer.com/10.1007/978-0-85729-635-1_2

[7] Campbell, N. A. H.: The Evolution of Flight Data Analysis. 2007.
Retrieved from: http://www.asasi.org/papers/2007/
The_Evolution_of_Flight_Data_Analysis_Neil_Campbell.pdf

[8] CAST/ICAO Common Taxonomy Team: Phase of Flight: Definitions and Usage
Notes. April 2013.
Retrieved from: http:
//www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf

[9] Caughey, D. A.: Introduction to Aircraft Stability and Control Course Notes for
M&AE 5070. 2011.
Retrieved from: https://courses.cit.cornell.edu/mae5070/Caughey_2011_04.pdf

[10] Cook, M. V.: Flight dynamics principles: a linear systems approach to aircraft
stability and control. Elsevier aerospace engineering series. Oxford [UK] ; Burlington,

42

http://www.dtic.mil/docs/citations/ADA320205
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
https://www.economist.com/news/science-and-technology/21700618-slick-graphics-modern-video-games-are-spreading-ever-further-outside-their
https://www.economist.com/news/science-and-technology/21700618-slick-graphics-modern-video-games-are-spreading-ever-further-outside-their
https://www.mapbox.com/
http://link.springer.com/10.1007/978-0-85729-635-1_2
http://www.asasi.org/papers/2007/The_Evolution_of_Flight_Data_Analysis_Neil_Campbell.pdf
http://www.asasi.org/papers/2007/The_Evolution_of_Flight_Data_Analysis_Neil_Campbell.pdf
http://www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf
http://www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf
https://courses.cit.cornell.edu/mae5070/Caughey_2011_04.pdf

MA: Butterworth-Heinemann/Elsevier. second edition. 2007. ISBN
978-0-7506-6927-6.

[11] Farr, T. G.; Rosen, P. A.; Caro, E.; et al.: The Shuttle Radar Topography Mission.
Reviews of Geophysics. vol. 45, no. 2. May 2007. ISSN 8755-1209.
doi:10.1029/2005RG000183.
Retrieved from: http://doi.wiley.com/10.1029/2005RG000183

[12] Gdeisat, M.; Lilley, F.: One-Dimensional Phase Unwrapping Problem.
Retrieved from: https://www.ljmu.ac.uk/~/media/files/ljmu/about-us/
faculties-and-schools/tae/geri/onedimensionalphaseunwrapping_finalpdf

[13] Institute of Electrical and Electronics Engineers: IEEE standard for inertial systems
terminology. New York: Institute of Electrical and Electronics Engineers. 2009. ISBN
978-0-7381-5996-6. OCLC: 468786271.
Retrieved from: http://ieeexplore.ieee.org/servlet/opac?punumber=5226533

[14] Jesse, D.: Track Smoothing. October 2013.
Retrieved from: http://www.flightdatacommunity.com/track-smoothing/

[15] Koks, D.: Using Rotations to Build Aerospace Coordinate Systems. Technical Report
DSTO-TN-0640. DSTO Systems Sciences Laboratory. August 2008.
Retrieved from: http://www.dtic.mil/docs/citations/ADA484864

[16] Moir, I.; Seabridge, A.; Jukes, M.: Civil avionics systems. Aerospace series.
Chichester: Wiley. second edition. 2013. ISBN 978-1-118-34180-3 978-1-118-53672-8
978-1-118-53673-5 978-1-118-53674-2. OCLC: 931242505.

[17] National Aeronautics and Space Administration: DASHlink - Sample Flight Data.
Retrieved from: https://c3.nasa.gov/dashlink/projects/85/

[18] Newson, D.: Unity: Coordinates and scales. April 2013.
Retrieved from:
http://davenewson.com/posts/2013/unity-coordinates-and-scales.html

[19] Oates, R.: GIS Terrain & Unity. January 2014.
Retrieved from:
https://unity3d.com/learn/resources/talks/gis-terrain-unity

[20] Robert Bosch GmbH: CAN Specification Version 2.0. September 1991.
Retrieved from: https://web.archive.org/web/20100922201217/http:
//www.semiconductors.bosch.de/pdf/can2spec.pdf

[21] Smith, S. W.: The Scientist and Engineer’s Guide to Digital Signal Processing.
Retrieved from: http://www.dspguide.com

[22] Stock Flight Systems: CANaerospace Specification V 1.7. January 2006.
Retrieved from: http://www.stockflightsystems.com/canaerospace.html

[23] United States Geological Survey: SRTM Topography.
Retrieved from:
https://dds.cr.usgs.gov/srtm/version2_1/Documentation/SRTM_Topo.pdf

43

http://doi.wiley.com/10.1029/2005RG000183
https://www.ljmu.ac.uk/~/media/files/ljmu/about-us/faculties-and-schools/tae/geri/onedimensionalphaseunwrapping_finalpdf
https://www.ljmu.ac.uk/~/media/files/ljmu/about-us/faculties-and-schools/tae/geri/onedimensionalphaseunwrapping_finalpdf
http://ieeexplore.ieee.org/servlet/opac?punumber=5226533
http://www.flightdatacommunity.com/track-smoothing/
http://www.dtic.mil/docs/citations/ADA484864
https://c3.nasa.gov/dashlink/projects/85/
http://davenewson.com/posts/2013/unity-coordinates-and-scales.html
https://unity3d.com/learn/resources/talks/gis-terrain-unity
https://web.archive.org/web/20100922201217/http://www.semiconductors.bosch.de/pdf/can2spec.pdf
https://web.archive.org/web/20100922201217/http://www.semiconductors.bosch.de/pdf/can2spec.pdf
http://www.dspguide.com
http://www.stockflightsystems.com/canaerospace.html
https://dds.cr.usgs.gov/srtm/version2_1/Documentation/SRTM_Topo.pdf

[24] Unity Technologies: Unity User Manual (2017.4).
Retrieved from: https://docs.unity3d.com/2017.4/Documentation/Manual/

[25] USNO Astronomical Applications Department: Approximate Solar Coordinates.
November 2012.
Retrieved from: http://aa.usno.navy.mil/faq/docs/SunApprox.php

44

https://docs.unity3d.com/2017.4/Documentation/Manual/
http://aa.usno.navy.mil/faq/docs/SunApprox.php

List of Acronyms

ACMS Aircraft Condition Monitoring System
AoA Angle of Attack
AoS Angle of Sideslip

BFF Body Fixed Frame

CAN Controller Area Network
CAST Commercial Aviation Safety Team
CG Center of Gravity

ECEF Earth-Centered, Earth-Fixed frame
EGM96 Earth Gravitational Model 1996
ENU East-North-Up

FDAU Flight Data Acquisition Unit
FDM Flight Data Monitoring
FDR Flight Data Recorder
FL Flight Level
FOG Fibre Optic Gyroscope
FOQA Flight Operational Quality Assurance

GPS Global Positioning System

ICAO International Civil Aviation Organization

LLA Latitude, Longitude, Altitude

MEMS Microelectromechanical Systems

N1 Fan Rotation Speed on Jet Engine
NASA National Aeronautics and Space Administration
NED North-East-Down

OSI Open Systems Interconnection model

QAR Quick Access Recorder

45

RLG Ring Laser Gyroscope

SDK Software Development Kit
SRTM Shuttle Radar Topography Mission

UI User Interface

WGS-84 World Geodetic System 1984

46

List of Symbols

𝛼 Angle of Attack

𝛽 Angle of Sideslip

𝑓𝑥, 𝑓𝑦, 𝑓𝑧 Components of the specific force

𝑔 Gravitational acceleration

𝐼𝑥, 𝐼𝑦, 𝐼𝑧 Moments of inertia
𝐼𝑥𝑦, 𝐼𝑥𝑧, 𝐼𝑦𝑧 Products of inertia

𝐿,𝑀,𝑁 Components of the moments

𝑀Φ Meridian radius of curvature

𝑁Φ Prime vertical radius of curvature

Φ, 𝜆, ℎ Latitude, longitude, and altitude
𝜑, 𝜃, 𝜓 Roll, pitch, and yaw angles
𝑝, 𝑞, 𝑟 Rotation rates around the axes

𝑢, 𝑣, 𝑤 Components of the velocity

𝑉 Flight path vector

47

Appendix A

List of Available Flight Parameters

The following table is a complete listing of flight parameters available in the NASA Sample
Flight Data dataset described in section 3.4.

Parameter Description Units Rate

ABRK Airbrake Position ∘ 1Hz
ACID Aircraft Number — 0.25Hz
ACMT ACMS Timing Used T1HZ — 1Hz
AIL_1 Aileron Position LH ∘ 1Hz
AIL_2 Aileron Position RH ∘ 1Hz
ALT Pressure Altitude LSP ft 4Hz
ALTR Altitude Rate ft/min 4Hz
ALTS Selected Altitude LSP ft 1Hz
AOA1 Angle of Attack 1 ∘ 4Hz
AOA2 Angle of Attack 2 ∘ 4Hz
AOAC Corrected Angle of Attack ∘ 4Hz
AOAI Indicated Angle of Attack ∘ 4Hz
APFD AP FD Status — 1Hz
APUF APU Fire Warning — 2Hz
ATEN A/T Engage Status — 1Hz
A_T Thrust Automatic On — 1Hz
BAL1 Baro Correct Altitude LSP ft 4Hz
BAL2 Baro Correct Altitude LSP ft 4Hz
BLAC Body Longitudinal Acceleration G 16Hz
BLV Bleed Air All Valves — 1Hz
BPGR_1 Brake Pressure LH Green psi 1Hz
BPGR_2 Brake Pressure RH Green psi 1Hz
BPYR_1 Brake Pressure LH Yellow psi 1Hz
BPYR_2 Brake Pressure RH Yellow psi 1Hz
CALT Cabin High Altitude — 1Hz
CAS Computed Airspeed LSP kn 4Hz
CASM Max Allowable Airspeed kn 4Hz
CASS Selected Airspeed kn 1Hz
CCPC Control Column Position Capt Counts 2Hz
CCPF Control Column Position F/O Counts 2Hz
CRSS Selected Course ∘ 1Hz
CTAC Cross Track Acceleration G 16Hz
CWPC Control Wheel Position Capt Counts 2Hz
CWPF Control Wheel Position F/O Counts 2Hz
DA Drift Angle ∘ 4Hz
DATE_DAY Date (Day) Day 0.25Hz
DATE_MONTH Date (Month) Month 0.25Hz
DATE_YEAR Date (Year) Year 0.25Hz

48

Parameter Description Units Rate

DFGS DFGS 1&2 Master — 1Hz
DVER_1 Database ID Version Char 1 — 0.25Hz
DVER_2 Database ID Version Char 2 — 0.25Hz
DWPT Distance to Waypoint LSP — 1Hz
EAI Engine Antice All Positions — 1Hz
ECYC_1 Engine Cycle 1 LSP h 0.25Hz
ECYC_2 Engine Cycle 2 LSP h 0.25Hz
ECYC_3 Engine Cycle 3 LSP h 0.25Hz
ECYC_4 Engine Cycle 4 LSP h 0.25Hz
EGT_1 Exhaust Gas Temperature 1 ∘ 4Hz
EGT_2 Exhaust Gas Temperature 2 ∘ 4Hz
EGT_3 Exhaust Gas Temperature 3 ∘ 4Hz
EGT_4 Exhaust Gas Temperature 4 ∘ 4Hz
EHRS_1 Engine Hours 1 LSP h 0.25Hz
EHRS_2 Engine Hours 2 LSP h 0.25Hz
EHRS_3 Engine Hours 3 LSP h 0.25Hz
EHRS_4 Engine Hours 4 LSP h 0.25Hz
ELEV_1 Elevator Position Left ∘ 1Hz
ELEV_2 Elevator Position Right ∘ 1Hz
ESN_1 Engine Serial Number 1 LSP — 0.25Hz
ESN_2 Engine Serial Number 2 LSP — 0.25Hz
ESN_3 Engine Serial Number 3 LSP — 0.25Hz
ESN_4 Engine Serial Number 4 LSP — 0.25Hz
EVNT Event Marker — 1Hz
FADF FADEC Fail All Engines — 1Hz
FADS FADEC Status All Engines — 1Hz
FF_1 Fuel Flow 1 lb/h 4Hz
FF_2 Fuel Flow 2 lb/h 4Hz
FF_3 Fuel Flow 3 lb/h 4Hz
FF_4 Fuel Flow 4 lb/h 4Hz
FGC3 DFGS Status 3 — 1Hz
FIRE_1 Engine Fire #1 — 1Hz
FIRE_2 Engine Fire #2 — 1Hz
FIRE_3 Engine Fire #3 — 1Hz
FIRE_4 Engine Fire #4 — 1Hz
FLAP T.E. Flap Position Counts 1Hz
FPAC Flight Path Acceleration G 16Hz
FQTY_1 Fuel Quantity Tank 1 LSB lb 1Hz
FQTY_2 Fuel Quantity Tank 2 LSB lb 1Hz
FQTY_3 Fuel Quantity Tank 3 LSB lb 1Hz
FQTY_4 Fuel Quantity Tank 4 LSB lb 1Hz
FRMC Frame Counter — 0.25Hz
GLS Glideslope Deviation DDM 1Hz
GMT_HOUR Greenwich Mean Time (Hour) Hour 2Hz
GMT_MINUTE Greenwich Mean Time (Minute) Minute 2Hz
GMT_SEC Greenwich Mean Time (Second) Second 2Hz
GPWS GPWS 1-5 — 1Hz
GS Ground Speed LSP kn 4Hz
HDGS Selected Heading ∘ 1Hz
HF1 HF Keying #1 — 1Hz
HF2 HF Keying #2 — 1Hz
HYDG Low Hydraulic Pressure Green — 1Hz
HYDY Low Hydraulic Pressure Yellow — 1Hz
ILSF Ils Frequency LSP — 1Hz
IVV Inertial Vertical Speed LSP ft/min 16Hz
LATG Lateral Acceleration G 4Hz
LATP Latitude Position LSP ∘ 1Hz

49

Parameter Description Units Rate

LGDN Gears L&R Down Locked — 1Hz
LGUP Gears L&R Up Locked — 1Hz
LMOD Lateral Engage Modes — 1Hz
LOC Localizer Deviation DDM 1Hz
LONG Longitudinal Acceleration G 4Hz
LONP Longitude Position LSP ∘ 1Hz
MACH Mach LSP MACH 4Hz
MH Magnetic Heading LSP ∘ 4Hz
MNS Selected Mach MMACH 1Hz
MRK Markers- Inner, Middle, Outer — 1Hz
MSQT_1 Squat Switch Left Main Gear — 2Hz
MSQT_2 Squat Switch Right Main Gear — 2Hz
MW Master Warning — 1Hz
N1C N1 Command LSP %RPM 4Hz
N1CO N1 Compensation — 1Hz
N1T N1 Target LSP %RPM 4Hz
N1_1 Fan Speed 1 LSP %RPM 4Hz
N1_2 Fan Speed 2 LSP %RPM 4Hz
N1_3 Fan Speed 3 LSP %RPM 4Hz
N1_4 Fan Speed 4 LSP %RPM 4Hz
N2_1 Core Speed 1 LSP %RPM 4Hz
N2_2 Core Speed 2 LSP %RPM 4Hz
N2_3 Core Speed 3 LSP %RPM 4Hz
N2_4 Core Speed 4 LSP %RPM 4Hz
NSQT Squat Switch Nose Main Gear — 4Hz
OIPL Low Oil Pressure All Engines — 1Hz
OIP_1 Oil Pressure 1 psi 1Hz
OIP_2 Oil Pressure 2 psi 1Hz
OIP_3 Oil Pressure 3 psi 1Hz
OIP_4 Oil Pressure 4 psi 1Hz
OIT_1 Oil Temperature 1 ∘ 1Hz
OIT_2 Oil Temperature 2 ∘ 1Hz
OIT_3 Oil Temperature 3 ∘ 1Hz
OIT_4 Oil Temperature 4 ∘ 1Hz
PACK Pack Air Conditioning All — 1Hz
PH Flight Phase From ACMS — 1Hz
PI Impact Pressure LSP mbar 2Hz
PLA_1 Power Lever Angle 1 ∘ 4Hz
PLA_2 Power Lever Angle 2 ∘ 4Hz
PLA_3 Power Lever Angle 3 ∘ 4Hz
PLA_4 Power Lever Angle 4 ∘ 4Hz
POVT Pylon Overheat All Engines — 1Hz
PS Static Pressure LSP IN 2Hz
PSA Avarage Static Pressure LSP mbar 2Hz
PT Total Pressure LSP mbar 2Hz
PTCH Pitch Angle LSP ∘ 8Hz
PTRM Pitch Trim Position ∘ 1Hz
PUSH Stick Pusher — 1Hz
RALT Radio Altitude LSP ft 8Hz
ROLL Roll Angle LSP ∘ 8Hz
RUDD Rudder Position ∘ 2Hz
RUDP Rudder Pedal Position Counts 2Hz
SAT Static Air Temperature ∘ 1Hz
SHKR Stick Shaker — 2Hz
SMKB Animal Bay Smoke — 1Hz
SMOK Smoke Warning — 1Hz
SNAP Manual Snapshot Switch — 1Hz

50

Parameter Description Units Rate

SPLG Spoiler Deploy Green — 1Hz
SPLY Spoiler Deploy Yellow — 1Hz
SPL_1 Roll Spoiler Left ∘ 1Hz
SPL_2 Roll Spoiler Right ∘ 1Hz
TAI Tail Antice On — 1Hz
TAS True Airspeed LSP kn 4Hz
TAT Total Air Temperature ∘ 1Hz
TCAS TCAS LSP — 1Hz
TH True Heading LSP ∘ 4Hz
TMAG True/Mag Heading Select — 1Hz
TMODE Thrust Mode — 1Hz
TOCW Takeoff Conf Warning — 2Hz
TRK Track Angle True LSP ∘ 4Hz
TRKM Track Angle Mag LSP ∘ 4Hz
VAR_1107 Sync Word for Subframe 1 — 0.25Hz
VAR_2670 Sync Word for Subframe 2 — 0.25Hz
VAR_5107 Sync Word for Subframe 3 — 0.25Hz
VAR_6670 Sync Word for Subframe 4 — 0.25Hz
VHF1 VHF Keying #1 — 1Hz
VHF2 VHF Keying #2 — 1Hz
VHF3 VHF Keying #3 — 1Hz
VIB_1 Engine Vibration 1 IN/SEC 4Hz
VIB_2 Engine Vibration 2 IN/SEC 4Hz
VIB_3 Engine Vibration 3 IN/SEC 4Hz
VIB_4 Engine Vibration 4 IN/SEC 4Hz
VMODE Vertical Engage Modes — 1Hz
VRTG Vertical Acceleration G 8Hz
VSPS Selected Vertical Speed ft/min 1Hz
WAI_1 Inner Wing Deice — 1Hz
WAI_2 Outer Wing Antice — 1Hz
WD Wind Direction True ∘ 4Hz
WOW Weight on Wheels — 1Hz
WS Wind Speed kn 4Hz
WSHR Windshear Warning — 1Hz

51

	Introduction
	Aircraft Coordinate Systems and Equations of Motion
	Coordinate Systems and Notation
	Earth-Centered, Earth-Fixed Frame
	Local Geographic Frame
	Body Fixed Frame
	Stability and Wind Axes

	Transformations Between Coordinate Systems
	Local Geographic Frame to Body Fixed Frame
	Body Fixed Frame to Stability and Wind Axes

	Equations of Motion
	Differential Equations of Force
	Differential Equations of Moments
	Differential Equations of Angular Velocity
	Differential Equations of Position

	Numerical Methods for Ordinary Differential Equations
	Euler's Method

	State-of-the-Art Flight Data Technologies
	Sensors
	Gyroscopes
	Accelerometers

	Data Buses
	Controller Area Network 2.0
	CANaerospace

	Data Acquisition and Recording
	Flight Data Recorder
	Quick Access Recorder

	Flight Data Records
	Overview
	Format

	Design of Flight Phases and Events Identification
	Preprocessing of Flight Data
	GPS Track Smoothing
	Phase Unwrapping
	Smoothing Other Parameters

	Takeoff and Landing Detection
	Takeoff Detection
	Landing Detection

	Detection of Cruise Phase and Changes of Cruise Level
	Turn Detection
	Overview of Detection Conditions

	Implementation
	Used Technologies
	Flight Data Input and Processing
	Terrain and Environment
	Mapbox SDK
	SRTM Heightmaps
	Sun Position

	Flight Playback
	User Interface

	Evaluation
	Potential Future Improvements

	Conclusion
	Bibliography
	List of Available Flight Parameters

