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Abstract. Under a fixed laboratory frame, the electro-
magnetic theory of the scattering of a plane wave of arbi-
trary polarizations incidence from arbitrary angles by 
a uniaxial anisotropic medium was obtained for the first 
time, and could be solved analytically from an eigensystem 
determined by a uniaxial anisotropic medium. By applying 
the boundary conditions at respective interfaces of the 
coated spherical structure, the unknown expansion coeffi-
cients can be obtained from the incident field and the elec-
tromagnetic fields in the anisotropic medium, and from the 
scattered field. Not only did the numerical results demon-
strate the validity of our proposed theory but this paper 
shall also provide discussions in relation to some general 
cases (under arbitrary incident angles) of bistatic radar 
cross section.  
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1. Introduction 
In the past century, the electromagnetic scattering 

theory has been developed by Lorenz and Mie [1], [2], 
respectively, however the Mie theory continues to be 
further extended [3], [4]. In the existing works, many 
numerical and theoretical analytical methods have been 
established and developed over the past few decades, for 
example, Fourier transform [5], [6], spherical wave func-
tion expansion [7] and dyadic Green’s functions [8], [9]. 
The solutions to the scattering problem of a conducting 
sphere have been discussed in the existing literature [10], 
and most methods can only present the incoming wave’s 
propagation along the z-axis (or another fixed direction). 
However, in practice, the incident wave can come from any 
direction with respect to our fixed observation coordinate. 
In this paper, a derivation of a Mie-type solution to this 
problem of the scattering was obtained successfully. Our 

work provides a general and analytical scattering method 
for a uniaxial-coated perfect electric conductor (PEC) 
sphere under an illumination at any incident angle and 
azimuthal angle, whilst keeping a fixed laboratory frame 
for observing the radar cross section (RCS). After the re-
sults were validated by comparison with the existing data, 
some new numerical results are presented and discussed. 

   

Fig. 1.  The geometry of a conducting sphere coated with 
a uniaxial anisotropic media. 

2. Formulation  

Consider a conducting sphere coated with a shell 
made of uniaxial anisotropic medium illuminated by 
an incident wave. As shown in Fig. 1, a cross section of 
coated sphere with outer radius a1 and inner radius a2 is 
located at the coordinate origin. Three distinct regions are 
divided into, namely, region 0, region 1 and region 2. The 
uniaxial anisotropic with permittivity tensor  and scalar 
permeability µs are located with thickness (a1-a2). Assume 
that the incident electric field amplitude has unity of 
amplitude. The time dependence as exp(-iωt) is assumed 
but suppressed throughout the treatment.  

The permittivity tensor of uniaxial anisotropic can be 
characterized by the following for arbitrary direction of 
propagation and polarization of the incident plane waves: 

k: incident angle 

k: azimuthal angle 

Region 0: the free space 

Region 1: uniaxial anisotropic 
media (permittivity tensor  & 
scalar permeability s ) 

Region 2: conducting sphere 
(perfect electric conductor) 
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The constitutive relations inside the uniaxial 
anisotropic medium can be expressed as: 

 int int D E int int,   s B H  (2) 

The wave equation can be obtained as follows by 
substituting (2) into the sourceless Maxwell’s equations. 
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2.1 Expansion of Electromagnetic field inside 
Region 1(the uniaxial anisotropic 
medium) 

Dint can be expanded in terms of vector spherical 
wave functions (VSWFs), we obtain 
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where k is as yet undetermined and 0 .n
mn mnE i E C

 
E0 

is the amplitude of the incident electric field, where
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Unless explicitly specified, hereinafter 

,m n

  implies that n 

runs from 1 to ∞, and m runs from –n to n for each n. In 
practice calculations, the expansion is uniformly 
convergent and can be truncated at n=nc=x+4x1/3+2 [11], 
size parameter x=k0a1. With the use of the properties of 
VSWFs, we obtain 
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where the coefficients mn
uvg , mn

uve , mn
uvf , mn

uvg , mn
uve , mn

uvf can 

be found in Appendix A. Substituting (6) into (5.1), one 
has 
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The coefficients mnc , mnd , mnw , mnv , mnu , mny , 00w , 00y  

can be found in Appendix A. 

Since VSWFs satisfy

 

 

 mn mnk M N , mn mnk N M , 0mn L  (8) 

Substituting (7) and (5.1) into (3) with simple 
manipulation, we obtain   
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Equation (9) implies mnc , mnd , mnv  and mnu  equal to 

zero, thus they can be expressed in the matrix form 
and 2 2/ ;sk k   
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The matrices are defined by the following 
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where mn and uv denoting the row and column indices, 
respectively. Equation (11.1) is an eigensystem with 
eigenvalue l.  and the eigenvectors (dmn,l, cmn,l)

T where l 
denotes the index of eigenvalues and corresponding 
eigenvectors. The new function Vl can be constructed 
based on the eigenvectors: 
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where / ;l s lk k   

Since 0l  V , (3) and (5) can be expressed as 
2 ( 2)
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The expression coefficients αl can be determined 
by matching boundary condition between the sphere 
and free space. Eint and Hint can be given by the 
following using (13). 
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2.2 Expansion of Incident Field and Scattered 
Field 

The incident fields are given as 
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where expansion coefficients pmn and qmn are 
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The regular functions are given and defined in [11]. 
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where Cmn is given in (5.2). 

The scattered fields are given explicitly as
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where 2 2
0 0 0k    .  

The coefficients amn and bmn can be determined 
by matching boundary condition between uniaxial 
anisotropic shell and free space.  

2.3 Applying Boundary Conditions 

When the boundary condition is applied on the 
surface of a conducting sphere (size parameters x0=k0a2), 
the following equations can be obtained: 

 

2
, , ,

2 2

( ) 1

( ) ( )
n l

mn l mn l mn l
n l n l

k a
v c c

k a S k a




   
 

(20.1) 

 

'
2

, , ,'
2 2

( ) 1

( ) ( )
n l

mn l mn l mn l
n l n l

k a
u d d

k a S k a




   
 

(20.2)

 

 

2
, , ,

2 2

( ) 1

( ) ( )
n l

mn l mn l mn l
n l n l

k a
y w w

k a S k a




   
 

(20.3) 

Similarly, when another boundary condition is 
applied at the interface between the free space and the 
uniaxial anisotropic shell (size parameter x=k0a1), we 
obtain
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( ) ( )n nz zj z 
 

and 
(1)( ) ( )n nz zh z  are Riccati functions 

where jn(kr) and hn
(1)(kr) are the spherical Bessel functions 

of the first kind and third kind respectively [11].  

Two new variables are introduced, namely 

, ,( ) ; ( )mn uv n nv mu mn uv n nv muS x S x        (22) 
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Thus, 
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Logarithmic derivatives of Riccati-Bessel function [12] is 
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Equation (21) can be rewritten as 
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Finally (25) can be solved 
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Thus the unknown coefficients of electromagnetic 
fields in the uniaxial anisotropic spherical medium can be 
obtained, and the coefficients of scattered fields in free 
space can be calculated using the aforementioned method. 
With the scattering coefficients obtained from (16) and 
(17), we obtain the radar cross section for the arbitrary 
incident angle. 
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where dσsca/d
 
is the differential scattering cross section 

and  f ,  is the scattering amplitude. 

3. Numerical Results and Discussion 
The numerical results obtained are shown in this 

section for a conducting sphere coated with a shell made of 
uniaxial anisotropic material. Firstly, the results in this 
paper are compared with the existing works to verify our 
theory and its accuracy, and program codes. 

Fig.2 (a) illustrates the result from [13] about the 
bistatic RCS by a conducting sphere coated with uniaxial 
anisotropic medium. This shows that the results in this 
paper agree with the existing works.  

 
Fig. 2.(a) Bistatic RCS of the uniaxial anisotropic medium 

(TiO2) coated sphere in the E plane with k0a1 =2 and 
k0a2 = 1.6. The permittivity tensor is rs=5.9130, 
s=7.1970, the incident wave propagates in 

+ ẑ direction. 
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Fig. 2.(b) RCS versus the scattering angle in both the E-plane 

and the H-plane. The radius of conducting sphere is 
assumed to be extremely small (k0a2=0.001) which 
tends to a homogenous uniaxial anisotropic sphere. 
The electric size of homogeneous uniaxial anisotropic 
sphere is chosen as k0a1= and k0a1=2 respectively. 
The permittivity tensor elements are rs = 5.3495, 
s=4.92840. 

Secondly, Geng et al [14] presented RCS for a general 
lossless uniaxial anisotropic medium. In Fig. 2 (b), it is 
seen apparently that RCS calculated by using our present 
method in this paper and the Fourier Transform method 
agrees excellently in both the E plane and the H plane. This 
agreement once again verifies the applicability of our 
theory and accuracy of the program codes developed. 

Fig. 3(a) represents the radar cross-section at two in-
cident angles with the same permittivity tensor. The radius 
of conducting sphere is assumed to be extremely small 
(k0a2=0.001) which tends to a homogeneous uniaxial 
anisotropic sphere with (k0a1=). It can be seen that the 
shape of cross section is similar as the incident angle var-
ies. The maximum and minimum in the E plane scattering 
both increase and they move rightwards, but the maximum 
in the H plane scattering decreases and minimum increases 
as the incident angle increases. Fig. 3(b) shows the varia-
tion of the radar cross section at two incident angles in the 
uniaxial anisotropic-coated PEC sphere. It can be observed 
that there is a reduction in the E plane compared with 
Fig. 3(a) at θs = 105o and θs = 115o, respectively. As the 
incident angle is increased to 30o, it is noted that a good 
convergence at θs = 180o is increased to -2dB in the E 
plane and the H plane. Both the E-plane and H-plane in 
these two figures move towards the other end of the sphere 
as the incident angle increases. 

Fig.4 illustrates the effect of anisotropic ratio on the 
RCS in both the E plane and the H plane. It is seen that the 
RCS in the E plane will have a great reduction at θs =112o 
as r increases and s remains constant, but RCS in the H 
plane will have a small rise at θs =112o. As r increases 
gradually, RCS in both the E plane and the H plane drops 
greatly at θs =180o and rises at θs =0o. 

 

 
Fig.3.  Radar cross-section (RCS) versus scattering angle at  

θk =10o and 30o in the E plane and the H plane and the 
permittivity tensors are assumed to be rs =20, s=40. 
(a) The electrical dimensions are k0a1= and 
k0a2=0.001. 

 

Fig. 3.(b) The electrical dimensions are k0a1= and 
k0a2=0.9. 

 
Fig. 4. Radar cross-section (RCS) versus scattering angle at  

θk =10o, k0a1 = and k0a2 =0.75.  (a) In the E plane 



854 YAN SONG, CHUN-MING TSE, EM SCATTERING BY A CONDUCTING SPHERE COATED WITH A UNIAXIAL LAYER … 

 
Fig. 4. (b)  In the H plane. 

 
Fig. 5.(a) Radar cross section versus scattering angle at axial ra-

tio η= (a2/a1) = 0.65 and 0.5 in lossy media. The per-
mittivity tensor is assumed to be rs= (4+0.2i)0,  
s= (2+0.1i)0, k0a1 = and the incident angle θk =10o. 

 
Fig. 5.(b) Backscattering radar cross section versus axial ratio 

range at θk =10o. rs =20, s=40. Size parameter at 
outer layer is chosen as k0a1 =0.5. 

In Fig. 5(a), it is seen that the RCS reduces greatly in 
the E plane at θs =152o as axial ratio rises but a small drop 
occurs in the H plane at θs =116o. A good convergence can 
be achieved at -1dB at θs =180o. Fig. 5(b) shows backscat-
tering RCS has the maximum in both the E plane and the H  

plane at axial ratio = 0.6. As the axial ratio starts from 0.6, 
backscattering RCS is decreasing. 

 
Fig. 6.  The backscattering RCS versus any incident angle θk 

(0o to 90o) and azimuthal angle k (0o to 360o) in 3D 
plot.  

Fig.6 depicts the performance of backscattering RCS 
on variation of the incident angle and the azimuthal angle, 
rs = 20, s = 40 and k0a1 =  and k0a2= 0.5. It shows 
how the angles θk and k

 
influence the scattering cross 

section, which has never been reported. The backscatters 
are same at θk = 0o as azimuthal angle k varies from 0o to 
360o but a greater variation of backscattering will be ob-
served as the incident angle θk increases gradually to 90o. 

4.  Conclusion 
In this paper, the problem of electromagnetic scatter-

ing by a conducting sphere coated with a uniaxial anisot-
ropic layer has been successfully modeled and solved using 
the mode expansion method. This analytical approach may 
be used for electromagnetic scattering and controlling of 
radar cross section (RCS) by manipulating the anisotropy 
and illumination angle, which can only be analytically 
treated by our approach so far. For example, in the radar 
detection, the scattering by an object was calculated under 
fixed radar wave incident direction in the existing works. 
However, this is a shortcoming to the radar detection sys-
tem in practice since the radar wave may be incident upon 
a target from any direction. Therefore, our work provides 
an analytical solution to characterize the scattering feature 
of the target and predict the scattered power around the 
target from any incident angle, which will be useful in 
reconstructing the radar image of the object more accu-
rately. On the other hand, given that a radar wave illumi-
nates an anisotropic object, our method can also be used to 
maximize or minimize the scattering by positioning the 
anisotropic object since the scattering heavily relies on the 
anisotropy and the incident angle. The present method 
might be further extended to a variety of applications in 
target shielding studies, microwave devices and also help 
in understanding wireless communication channels. 
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Appendix 

VSWFs are given by [11] 
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Two auxiliary functions are shown 
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The coefficients in (6) are given 
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The coefficients in (7) are shown 
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VSWFs when
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