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VEDOUĆI PRÁCE prof. RNDr. JAN FRANCŮ, CSc.
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Abstrakt

Numerické řešeńı matematických model̊u popisuj́ıćıch chováńı materiál̊u s jemnou struk-
turou (kompozitńı materiály, jemně perforované materiály, atp.) obvykle vyžaduje velký
výpočetńı výkon. Proto se při numerickém modelováńı p̊uvodńı materiál nahrazuje ekvi-
valentńım materiálem homogenńım.

V této práci je k nalezeńı homogenizovaného materiálu použita dvoǰskálová konvergence
založena na tzv. rozvinovaćım operátoru (anglicky unfolding operator). Tento operátor
poprvé použil J. Casado-Dı́az. V disertačńı práci je operátor definován jiným zp̊usobem,
než jak uvád́ı p̊uvodńı autor. To dovoluje pro něj dokázat některé nové vlastnosti.
Analogicky je definován operátor pro funkce definované na perforovaných oblastech a
jsou dokázány jeho vlastnosti. Na závěr je rozvinovaćı operátor použit k nalezeńı ho-
mogenizovaného řešeńı speciálńı skupiny diferenciálńıch problémů s integrálńı okrajovou
podmı́nkou. Odvozené homogenizované řešeńı je ilustrováno na numerických experi-
mentech.

Summary

The numerical solving of mathematical models describing the mechanical behavior of ma-
terials with a fine structure (composite materials, finely perforated materials etc.) usually
requires huge computational performance. Hence in numerical modeling the original ma-
terial is replaced by an equivalent homogeneous one.

In this work a two-scale convergence based on a periodical unfolding operator is used to
find the homogenized material. The operator was for the first time used by J. Casado-
Dı́az. In this Ph.D. thesis, the operator is defined in a slightly different way which allows
us to prove some of its new properties. The unfolding operator for functions defined on
a perforated domain is defined analogically and its properties are proved. Finally, this
operator is used to find the homogenized solution of a special family of problems with an
integral boundary condition; some numerical results are presented.
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List of used symbols and abbreviations

N dimension of a space

R, RN real numbers, N -dimensional real vector space

Z, ZN integer numbers, N -dimensional integer vector space

c, C constants

A×B Cartesian product of sets A, B

1A characteristic function of a set A, 1A(x) = 1 for x ∈ A, otherwise 0

Ω bounded domain (open connected set) in RN with Lipschitz boundary

Ω , ∂Ω closure and boundary of Ω

u · v scalar product of two vectors u and v in RN

V, V ′ normed linear space and its dual space

‖·‖V , |.|V norm and seminorm on V

(u, v)V scalar product of u and v on a linear space V

〈·, ·〉V ′,V duality pairing between V ′ and V

E = {εk}∞k=0 scale; descending sequence of positive numbers, such that εk ↘ 0 as k →∞

{uε} sequence of functions {uεk}∞k=0

un → u sequence {un} converges strongly to u

un ⇀ u sequence {un} converges weakly to u

C∞(Ω) space of infinitely differentiable functions u : Ω→ R

D(Ω) space of functions from C∞(Ω) with compact support

Lp(Ω) Lebesgue space, see Definition 2.16

W 1,p(Ω) Sobolev space, see Definition 2.27

H1(Ω) Hilbert space W 1,2(Ω)

H1
0 (Ω) Hilbert space H1(Ω) with zero trace on ∂Ω

∇u gradient of function u

∇yu gradient of function u = u(x1, x2, . . . , uN , y1, y2 . . . , yN) with respect to
y-variable, i.e. ( ∂u

∂y1
, ∂u
∂y2
, . . . , ∂u

∂yN
)

ix



Y reference cell; N -dimensional interval 〈0, l1) × 〈0, l2) × · · · × 〈0, lN), where
l1, . . . , lN are fixed positive numbers

Y k
ε ε-scaled system of the cells Y k

ε = ε(Y + k),

k ∈ K =
{
k ∈ RN | k = ξ · (l1, l2, . . . , lN), ξ ∈ ZN

}

Ω̂ε cells inside Ω, i.e.

(
⋃

k∈Ξε
Y k
ε

)
∩ Ω, where Ξε =

{
k ∈ RN s.t. Y k

ε ⊂ Ω
}

Λε cells crossing boundary ∂Ω, i.e. Ω \ Ω̂ε

Tε periodic unfolding operator, see Definition 3.2

T reference hole, open bounded set in RN with a smooth boundary

T jε hole, see Section 4.1

Y ∗ perforated reference cell, i.e. Y \ T

Ω∗ε part of Ω occupied by material, see (29)

T i
int, ε sets T jε which are completely inside Ω and do not intersect the boundary

∂Ω, i.e. the sets T jε ⊂ Ω

Tint, ε interior holes; i.e.
⋃m(ε)
i=1 T i

int, ε

Text, ε holes crossing the boundary ∂Ω; i.e.
(
Tε \ Tint, ε

)
∩ Ω,

∂extΩ
∗
ε exterior boundary of Ω∗ε, i.e. ∂extΩ

∗
ε = ∂Ω∗ε \ ∂Tint, ε

Ω̂∗ε Ω̂ε \ Tint, ε

Λ∗ε Ω∗ε \ Ω̂∗ε

T ∗ε periodic unfolding operator for perforated domains, see Definition 4.1

ũ extension by zero of finction u : Ω∗ε → R into Ω

MΩ mean value operator over Ω, i.e. MΩ(u) =
∫

Ω u(x) dx

Mε local average operator, see Definition 3.9
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1. INTRODUCTION

1. Introduction

Theory of homogenization was developed for modeling media with a fine periodical struc-
ture. In a physical setting, homogenization means replacing a heterogeneous material by
an equivalent homogeneous one, in mathematical setting it means approximating equa-
tions with highly oscillating coefficients by equations with constant ones.

The mathematical approach consists of considering a sequence of problems with a material
with a more and more refined structure. Hence, we get a sequence of solutions. The
principal question is: How does the sequence behave? Does the limit, the so called
homogenized solution, exists? If so, how can it be characterized? This approach was first
introduced by J.B. Keller (1973) and developed by I. Babuška (1975). More about the
homogenization can be found in the monograph [BLP78] or in the textbook [CD99].

Other problems for which a similar approach can be used are problems defined on period-
ically perforated domains. Let Ω be a domain in RN and let it be periodically perforated
by holes. We shall construct a sequence of domains with an increasing number of holes
and decreasing their volume. Again, we are interested in a behavior of the limit solution.

When we try to find the homogenized solution several difficulties occur. Some of them
are common for the case with and without holes. The following problem can illustrate
the typical situation in the setting with no holes.

For ε = 1, 1/2,
1/3, . . . , let us assume a sequence of solutions {uε} to a problem

{ −∇ · (Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1)

where Aε(x) = A
(
x
ε

)
and A(y) is a Y -periodic function satisfying 0 < α ≤ A(y) ≤ β.

Weak formulation of this problem is:




Find uε ∈ H1
0 (Ω) such that

∫

Ω
Aε(x)∇uε(x) · ∇v(x) dx =

∫

Ω
f(x) v(x) dx, ∀v ∈ H1

0 (Ω).
(2)

For Aε ∈ L∞(Ω), the domain Ω with a “good” boundary and f ∈ L2(Ω), the unique weak
solution uε exists and satisfies ‖uε‖H1

0 (Ω) ≤ C. Since the sequence {uε} is bounded in

H1
0 (Ω), it contains a weakly converging subsequence of gradients {∇uε}.

When we are tending to the limit, it turns out that the left-hand side of (2) contains
a product of two weakly converging sequences, {Aε} and {∇uε}. In this case it is not
possible to reach to the limit directly, since a limit of product need not to be a product
of two weakly converging sequences.

In the past, several approaches to overcome this problem were developed.

• Multiple-scale method is summarized in monograph by A. Bensoussan, J.-L. Lions
and G. Papanicolaou [BLP78]. The method uses the asymptotic expansion of the
solution uε to find the homogenized one.
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• Local energy method (called also the oscillating test function method) was introduced
by L. Tartar [Tar97] in the years 1977 and 1978. The method is based on a special
choice of oscillating test functions in the weak formulation of the problem.

• Two-scale convergence method introduced by G. Nguetseng [Ngu89] in 1989 and
developed by G. Allaire [All92] in 1992. In this method a new type of convergence
is defined. The limit of two-scale convergent sequence has two variables, the second
one describes local behavior. This method requires introducing a special space for
test functions.

• Periodic unfolding method is an alternative approach to the two-scale convergence.
It was introduced by J. Casado-Dı́az [CD00] in 2000 and D. Ciorănescu, A. Damla-
mian and G. Griso [CDG02], L. Nechvátal [Nec04] and J. Franc̊u [Fra10]. It removes
problems with the choice of space for test functions, therefore it is more natural.
A comprehensive survey of the application of this method to the problems in do-
mains with holes is described by Ciorănescu, Damlamian, Donato, Griso and Zaki
[Cio+12].

Let us turn our attention back to the problems defined on the domain with holes. In
this case, one more problem arises. Let Ω∗ε denotes a periodically perforated domain with
period ε Y . For ε↘ 0 the period is smaller and smaller and the domain is perforated by
more and finer holes.

A model situation looks as follows: For ε = 1, 1/2,
1/3, . . . , let us assume a sequence {uε},

where uε is a solution of the problem

{ −∆uε = f in Ω∗ε,

uε = 0 on ∂Ω∗ε.
(3)

A weak formulation of the problem (3) is:





Find uε ∈ H1
0 (Ω∗ε) such that

∫

Ω∗ε

∇uε(x) · ∇vε(x) dx =
∫

Ω∗ε

f(x) vε(x) dx, ∀vε ∈ H1
0 (Ω∗ε).

(4)

The problem is that each solution uε of problem (4) is defined on a different domain
Ω∗ε. Hence, it is not clear in which sense the convergence of the sequence {uε} can be
understood. Even if there existed some u0 for which ‖uε − u0‖H1

0 (Ω∗ε) → 0, as ε ↘ 0, one

could not speak about “convergence” (in a strong or weak sense) of the sequence {uε}.
Several methods to avoid this issue have been developed over time:

• Quite an intuitive approach is a construction of an uniformly bounded extension
operator Pε from H1

0 (Ω∗ε) to H1
0 (Ω). Then, we can transform our problem of finding

a “limit” of {uε} by another one: Find a limit of the sequence {Pε(uε)} in the fixed
space H1

0 (Ω).
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1. INTRODUCTION

This approach has a limitation. The existence of operator Pε depends on the bound-
ary conditions of the problem (in the case that they are more complicated than in
our model example) and also on the shape of the holes (for example they should
have a sufficiently smooth boundary and should not intersect the boundary of Ω).

• Another approach is to use an unfolding operator to transform functions uε, resp.
∇uε defined on Ω∗ε to the fixed domain Ω× Y .

As we can see the periodic unfolding method is the technique which solves both problems
mentioned above. This is the reason why the method is so suitable for problems defined
on perforated domains.

Goal and contribution of the thesis

Let Ω be a bounded set, and Y a reference cell in RN . The unfolding operator Tε associates
to any function in Lp(Ω) with a function in Lp(Ω× Y ).

The main disadvantage of an unfolding operator introduced in [CD00], [CDG02] is that
it does not conserve integrals. It means that in general for u ∈ L∞(Ω)

∫

Ω

u(x) dx 6= 1

|Y |
∫∫

Ω×Y
Tε(u)(x, y) dx dy. (5)

It can be shown that the left-hand side of (5), for u ≥ 0, is always grater or equal than
its right-hand side. The equality holds only in limit, i.e. for ε→ 0.

This issue was removed by redefining this operator. The operator was improved by J.
Franc̊u and N.Svanstedt in [FS12]. This change simplifies the proofs and removes sev-
eral difficulties and necessity of introducing “unfolding criterion for integrals” (see e.g.
[CDG08]).

This thesis aims to prove properties of this improved unfolding operator, mainly the con-
vergence for the sequence of gradients and applying an analogical approach to perforated
domains. Finally, our purpose is to use this new operator to find a homogenized solution
of the special family of the problems with an integral boundary condition and present
some numerical results.

The thesis intents to be self-contained work suitable as the first reading for engineers and
applied mathematicians. It is organized as follows:

In Section 2 we review some results and concepts of functional analysis and variational
elliptic problems that will be used in the sequel.

Section 3 introduces the notation, defines the improved unfolding operator for the fixed
domain (without holes), the definition is the same as in [FS12]. The properties are proved
in detail. In the end of the chapter an important result for applications is shown - a
convergence for sequences of gradients. The proofs in this section are new. Although they
follow similar reasoning as the ones in [CD00] or [CDG02], they make use of conservation
of integrals which makes them simpler and more transparent.
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Section 4 is devoted to unfolding for perforated domains. There is a new definition of an
unfolding operator for perforated domains. The operator is defined in such manner that
it conserves integrals and it transforms functions from perforated domains Ω∗ε to the fixed
domain Ω× Y (which does not depends on ε). Finally, the properties of the operator are
proved.

In Section 5 we apply the periodic unfolding method to a boundary value problem on a
perforated domain which arises from the study of a torsion of an elastic bar or a distribu-
tion of an electric field (we will call it Torsion boundary value problem). The problem is
derived in [FNJ12] and [FR15]. Homogenization of the torsion problem has been studied
by Rauch and Taylor [RT75] and Ciorănescu and Paulin [CP79], but the usage of the
periodic unfolding method to find a homogenized solution is new.

Section 6 is a continuation of the previous one and it contains a numerical examples.

Appendix describes some computational aspects of solving the homogenized problem and
problem on perforated domain.

Related works

A homogenization on a periodically perforated domain for miscellaneous boundary value
problems was treated by numerous authors. Let us mention some milestones in this area.

The Laplace equation with a homogeneous Dirichlet condition in the domain where the
holes are regularly distributed and the size of the holes decreases when the number of the
holes increases was studied by Murat and Ciorănescu [MC97]. They showed that even in
this problem an interesting behavior of the limit solution occurs.

In this problem we can identify three different situations. The first situation is when the
size of holes decreases too quickly - quicker than the size of the cell period. Then uε

converges to the solution of the Dirichlet problem in Ω. The second situation is when the
size of holes decreases too slowly. Then uε converges to the zero function. Between these
two cases there is the third one when the size of holes is critical, in that case an additional
zero order term appears in the right-hand side of the limit equation.

In [MC97] there are quite strict assumptions on the distribution and shape of the holes.
This limitation has been removed by Dal Maso and Garroni [MG94]. This break through
made possible the solving the general case of homogeneous Dirichlet problems without
any geometrical assumptions.

A problem with homogeneous Neumann boundary condition with some geometrical as-
sumptions on holes was studied by Hruslov [Hru79].

Some assumptions on the size and shape of holes which are admissible for a periodic
homogenization with Neumann boundary condition are given by Damlamian and Donato
[DD02].

A classical situation is when the holes are distributed periodically and the ratio of material
volume to the period volume is constant. This situation with a different type of boundary
conditions has been described in numerous papers. Laplace equation with homogeneous

4



1. INTRODUCTION

mixed (Dirichlet and Neumann) boundary conditions was studied by Cardone, D’Apice
and Maio [CDM02], elliptic equations with linear Robin resp. with non-linear conditions
were studied by Ciorănescu, Donato and Zaki in [CDZ06] resp. in [CDZ07], elliptic
equations with non-homogeneous mixed boundary conditions were studied by Esposito,
D’Apice and Gaudiello [EDG02].

A problem on domains with holes which are distributed periodically and their size is
diminishing with respect to the period (the so called small holes) was studied by Mu-
rat and Ciorănescu in [MC97] (homogeneous Dirichlet boundary conditions), and also
by Conca and Donato in [CD88] (non-homogeneous Neumann boundary condition), by
Ciorănescu and Ould Hammouda in [COH08] (elliptic equations with a non-homogeneous
mixed boundary conditions), by Ould Hammouda in [OH11] (elliptic equations with non-
homogeneous Neumann boundary).

A non-periodical behavior of the holes has been studied by Nguetseng in [Ngu04].
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2. Preliminaries

In this section we give a survey of some results and concepts of functional analysis that will
be used in the sequel. Namely, we recall main properties of Banach and Hilbert spaces,
especially Lebesgue and Sobolev spaces and weak convergence in them. In the end of the
section we summarize the main results of elliptic problems and conditions under which
these problems have a unique solution.

All functional spaces are considered to be real.

2.1. Banach and Hilbert spaces

Let us begin by recalling the notations of Banach and a Hilbert spaces which are the
functional spaces we work with.

Let V be a linear space. A mapping ‖·‖V : V → R+
0 is called a norm on a linear space V

if it satisfies the three following properties:

(i) separates points, i.e. ‖u‖V = 0⇔ u = 0,

(ii) absolute homogeneity, i.e. ‖αu‖V = |α| ‖u‖V ,

(iii) triangle inequality, i.e. ‖u1 + u2‖V ≤ ‖u1‖V + ‖u2‖V .

A seminorm on V is a mapping |·|V : V → R+
0 , which satisfies only properties (ii) and (iii).

The linear space V is called a Banach space, if it is endowed with the norm and it is
complete in this norm.

A mapping (·, ·)V : V × V → R is called scalar product on V if it satisfies the following
properties:

(i) symmetry, i.e. (u1, u2)V = (u2, u1)V ,

(ii) linearity in the first component, i.e. (α1u1 + α2u2, u)V = α1(u1, u)V + α2(u2, u)V ,

(iii) (u, u)V ≥ 0 and (u, u)V = 0⇔ u = 0.

A complete linear space V with scalar product is called a Hilbert space. Each Hilbert
space is also a Banach space with the norm associated to this scalar product:

‖u‖V =
√

(u, u)V .

Definition 2.1 (Bounded linear operator on Banach spaces). Let V,W be two Banach
spaces. The operator A : V → W is said to be linear, if u1, u2 ∈ V and α ∈ R satisfies
A(u1 + u2) = A(u1) + A(u2) and A(αu1) = αA(u1). The operator A is bounded if there
exists a constant C > 0 such that

‖A(u)‖W ≤ C‖u‖V ∀u ∈ V.

6



2. PRELIMINARIES

Proposition 2.2. Let A be a linear operator from V to W , then the following statements
are equivalent:

1. A is continuous at point u0 ∈ V , i.e. ∀un ∈ V, un → u0 ⇒ A(un)→ A(u0),

2. A is continuous, i.e. ∀un, u ∈ V, un → u⇒ A(un)→ A(u),

3. A is bounded, i.e. ∃C > 0 such that ‖A(u)‖W ≤ C‖u‖V ∀u ∈ V.

For proof see [Rud91] p. 24-25.

Proposition 2.3. Let V,W be a Banach spaces. The set of all continuous linear operators
from V into W , denoted by L(V,W ), with a norm

‖A‖L(V,W ) = sup
u∈V \{0}

‖A(u)‖W
‖u‖V

∀A ∈ L(V,W )

is a Banach space.

For proof see [Rud91] p. 92-93 or [Yos65] p. 111-112. From definition of the norm on
L(V,W ) one gets

‖A(u)‖W ≤ ‖A‖L(V,W )‖u‖V ∀u ∈ V,A ∈ V ′.
Moreover, the linearity of A implies

‖A‖L(V,W ) = sup
u∈V \{0}

‖A(u)‖W
‖u‖V

= sup
u∈V,‖u‖=1

‖A(u)‖W .

Definition 2.4 (Dual space). Let V be a Banach space. The set L(V,R) of all linear
continuous functionals from V into R is called the dual space of V and is denoted by V ′.
For F ∈ V ′, the image F (u) of u ∈ V is denoted by 〈F, u〉V ′,V . The bracket 〈·, ·〉V ′,V is
called duality pairing between V ′ and V .

Remark. Since R is complete the dual space is a Banach space with the norm

‖F‖V ′ = sup
u∈V \{0}

∣∣∣〈F, u〉V ′,V
∣∣∣

‖u‖V
∀F ∈ V ′.

Moreover, one has ∣∣∣〈F, u〉V ′,V
∣∣∣ ≤ ‖F‖V ′‖u‖V ∀u ∈ V.

The dual space V ′′ = (V ′)′ of the V ′ is called bidual or second dual and it is also a Banach
space.

Proposition 2.5. Let V be a Banach space and let J : V → V ′′ be the linear mapping
defined by

〈J(u), u′〉V ′′,V ′ = 〈u′, u〉V ′,V ∀u ∈ V, ∀u′ ∈ V ′.
Then, J is an isometry, i.e.:

‖J(u)‖V ′′ = ‖u‖V .
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For proof see [Rud91] p. 95 or [Yos65], p. 113. Thanks to this result V can be identified
with a subspace J(V ) ⊂ V ′′.

Definition 2.6 (Reflexive Banach space). Let V be a Banach space and J be the map
defined by Proposition 2.5. V is said to be reflexive iff J(V ) = V ′′.

If V is reflexive, we identify V and V ′′.

Proposition 2.7 (Riesz representation theorem). Let V be a Hilbert space. For each
u′ ∈ V ′ there exists a unique u ∈ V such that

〈u′, v〉V ′,V = (u, v)V ∀v ∈ V.

Moreover the mapping u′ ∈ V ′ 7→ u ∈ V is an isometric isomorphism.

For proof see [Yos65], p. 90.

Proposition 2.8. Hilbert spaces are reflexive.

Let us recall that a set S in a topological space V is called dense in a set M if the closure
of S contains M . In other words for each u ∈ M there exists a sequence {un} ∈ S such
that un → u.

Topological space having a countable dense subset is called a separable space.

2.2. Weak convergence

Definition 2.9 (Weak convergence). Let V be a Banach space and V ′ its dual space.
The sequence {un} in V is said to weakly converge to u ∈ V if

〈u′, un〉V ′,V → 〈u′, u〉V ′,V , ∀u′ ∈ V ′.

Weak convergence will be denoted by

un ⇀ u weakly in V.

Proposition 2.10. The limit of weak convergence is unique.

Proposition 2.11. Strong convergence implies weak convergence.

For proof see [Yos65], p. 120.

Proposition 2.12. Every weakly converging sequence {un} is bounded in V , i.e. there
exists a constant C such that

‖un‖V ≤ C, ∀n ∈ N.

For proof see [Yos65], p. 120, or [KF75], p. 219-220.
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2. PRELIMINARIES

Proposition 2.13 (Compactness, Eberlein–Šmulian). Let V be a reflexive Banach space.
Then every bounded sequence {un} in V contains a weakly convergent subsequence, i.e.
there exists a subsequence {unk

} ⊂ {un} and u ∈ V , such that unk
⇀ u weakly in V .

For proof see [Yos65], p. 126.

Proposition 2.14 (Eberlein–Šmulian). Let V be a reflexive Banach space. If each weakly
convergent subsequence of {un} in V has the same limit u, then the whole sequence {un}
weakly converges to u.

For proof see [Yos65], p. 124.

Proposition 2.15. Let {un} be a sequence in V , and {vn} be a sequence in V ′ such that

vn → v strongly in V ′,
un ⇀ u weakly in V.

(6)

Then
lim
n→∞〈vn, un〉V ′,V = 〈v, u〉V ′,V .

Proof. From the Remark below Definition 2.4 we get

lim
n→∞

∣∣∣〈vn, un〉V ′,V − 〈v, u〉V ′,V
∣∣∣ = lim

n→∞

∣∣∣〈vn − v, un〉V ′,V + 〈v, un − u〉V ′,V
∣∣∣ ≤

≤ lim
n→∞‖vn − v‖V ′‖un‖V + lim

n→∞

∣∣∣〈v, un − u〉V ′,V
∣∣∣.

To pass to the limit in the first term we use the following: By assumptions, sequence {un}
weakly converges, hence the sequence is bounded (see Proposition 2.12). Sequence {vn}
strongly converges. Thus

lim
n→∞‖vn − v‖V ′ ‖un‖V = 0. (7)

Both terms tend to the zero. Indeed, to pass to the limit in the second term we use
definition 2.9. If un ⇀ u weakly converges in V then, by the definition,

lim
n→∞

∣∣∣〈v, un − u〉V ′,V
∣∣∣ = 0. (8)

Summing up (7) with (8) we get the result.

2.3. Lebesgue spaces

We shell work with integrable functions.

Definition 2.16 (Lebesgue spaces, Lp spaces). Let Ω be an open bounded set in RN ,
u : Ω→ R be a measurable function on Ω and p ∈ 〈1,∞〉. Let us denote

‖u‖Lp(Ω) =
[∫

Ω
|u(x)|p dx

] 1
p

for p ∈ 〈1,∞)

9



and for p =∞
‖u‖L∞(Ω) = ess sup

x∈Ω
|u(x)|.

The spaces of integrable functions on Ω are called Lebesgue spaces and are denoted by
Lp(Ω), i.e.

Lp(Ω) =
{
u | u : Ω→ R, u is measurable on Ω and ‖u‖Lp(Ω) <∞

}
.

More precisely elements of Lebesgue spaces are the classes of functions which differ on at
most zero measure set.

Proposition 2.17. Let Ω be an open bounded set in RN and p ∈ 〈1,∞〉. The set Lp(Ω)
equipped with the norm ‖u‖Lp(Ω) is a Banach space.

Moreover, the space L2(Ω) is a Hilbert space with the scalar product

(u, v)L2(Ω) =
∫

Ω
u(x) v(x) dx.

For proof see [AF03], Theorem 2.15, p. 29.

Proposition 2.18. The space Lp(Ω) is separable for p ∈ 〈1,∞) and reflexive for p ∈
(1,∞).

For the proof of separability see [AF03], Theorem 2.21, p. 32, and for reflexivity see
[AF03], Theorem 2.46, p. 49.

Proposition 2.19 (Hölder inequality). Let u be in Lp(Ω) and v in Lp
′
(Ω), where p ∈

〈1,∞〉 and p′ is its conjugate, i.e.

p′ = p
p−1

for p ∈ (1,∞),

p′ = 1 for p =∞,
p′ = ∞ for p = 1.

(9)

Then, ∫

Ω
u(x) v(x) dx = ‖u v‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lp′ (Ω).

For p = 2 the inequality is called Cauchy-Schwartz inequality.

For proof see [Yos65], p. 33, or [AF03], Theorem 2.4, p. 24.

Definition 2.20. Let u be function Ω→ R the support of u, denoted by suppu

suppu = {x ∈ Ω | u(x) 6= 0}.

We denote by D(Ω) the set of infinitely differentiable functions whose support is a compact
set contained in Ω.

10



2. PRELIMINARIES

Proposition 2.21 (Approximation by compactly supported smooth functions). For p ∈
〈1,∞), the space D(Ω) is dense in Lp(Ω).

For proof see [KJF77], Theorem 2.6.1, p. 73.

Proposition 2.22 (Riesz Representation Theorem for Lp(Ω)). Let p ∈ (1,∞) and p′ be
its conjugate. Further let F be a linear continuous functional on Lp(Ω) (i.e. it belongs to
the [Lp(Ω)]′ - dual space of Lp(Ω)). Then for each F there exists unique f ∈ Lp′(Ω) such
that

〈F, u〉[Lp(Ω)]′,Lp(Ω) =
∫

Ω
f(x)u(x) dx ∀u ∈ Lp(Ω).

Moreover
‖F‖[Lp(Ω)]′ = ‖f‖Lp′ (Ω).

For proof see [AF03], Theorem 2.44, p. 47.

Remark. Due Riesz Representation Theorem, the space [Lp(Ω)]′ can be identified with
Lp
′
(Ω) for p ∈ (1,∞).

In Lp spaces the weak convergence is defined as follows. It is the special case of Defini-
tion 2.9.

Definition 2.23 (Weak convergence in Lp spaces). Let {un} be a sequence in Lp(Ω) with
p ∈ 〈1,∞). The sequence {un} weakly converges to u in Lp(Ω), i.e.

un ⇀ u weakly in Lp(Ω)

iff ∫

Ω
un(x) v(x) dx→

∫

Ω
u(x) v(x) dx ∀v ∈ Lp′(Ω),

where p, p′ are conjugate exponents.

Proposition 2.24. Let {un} be a sequence in Lp(Ω) and u ∈ Lp(Ω), 1 < p <∞. Further
let S(Ω) be a dense subspace of Lp

′
(Ω), with 1/p + 1/p′ = 1. Then the following properties

are equivalent:

(a) un ⇀ u weakly in Lp(Ω).

(b) (i) {un} is bounded in Lp(Ω), i.e. ‖un‖Lp(Ω) < C independently of n,

(ii)
∫

Ω

(
un(x)− u(x)

)
ϕ(x) dx→ 0 ∀ϕ ∈ S(Ω).

Proof. Suppose that (a) holds then (i) follows from Proposition 2.12 and (ii) is obtained
by testing the weak convergence for the function ϕ ∈ S(Ω) ⊂ Lp

′
(Ω).

Assume now that (b) holds. Let ψ ∈ Lp′(Ω). Since S(Ω) is dense subspace of Lp
′
(Ω), for

any positive ν there exists a function ϕν ∈ S(Ω) such that

‖ψ − ϕν‖Lp′ (Ω) ≤ ν.

11



Then,
∫

Ω

(
un(x)− u(x)

)
ψ(x) dx =

=
∫

Ω

(
un(x)− u(x)

)
ϕν(x) dx +

∫

Ω

(
un(x)− u(x)

)(
ψ(x)− ϕν(x)

)
dx (10)

Due to condition (ii) the first term converges to zero. From the (i), the definition of ϕν
and the Hölder inequality, we derive

∫

Ω

(
un(x)− u(x)

)(
ψ(x)− ϕν(x)

)
dx ≤ C ν.

Since ‖ψ − ϕν‖Lp′ (Ω) can be chosen arbitrary small, the property (a) follows from (10).

Proposition 2.25. Let {un}, {vn} be sequences in L2(Ω) such that

un → u strongly in L2(Ω),

vn ⇀ v weakly in L2(Ω).

and further let {un vn} be bounded in L2(Ω). Then,

un vn ⇀ uv weakly in L2(Ω).

The proposition follows from the previous proposition and Proposition 2.15.

Lemma 2.26 (The fundamental lemma of the calculus of variations, Du Bois-Reymond’s
lemma, Testing lemma). Let u ∈ L1(Ω) and satisfy

∫

Ω
u(x)ϕ(x) dx = 0 ∀ϕ ∈ D(Ω).

Then, u(x) = 0 almost everywhere in Ω.

For proof see [AF03], Lemma 3.31, p. 74.

2.4. Sobolev spaces

In this part we give a short presentation of W 1,p, H1 and H1
0 spaces. Let Ω be a domain

in RN with Lipschitz continuous boundary.

Definition 2.27 (Sobolev spaces W 1,p and H1). Let p ∈ 〈1,∞〉. The Sobolev space
W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u | u, ∂u

∂xi
∈ Lp(Ω), i = 1, . . . , N

}
,

where ∂u
∂xi

are taken in the sense of distribution.

For p = 2 the space W 1,2(Ω) is denoted by H1(Ω), i.e.

H1(Ω) =

{
u | u, ∂u

∂xi
∈ L2(Ω), i = 1, . . . , N

}
.
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2. PRELIMINARIES

Proposition 2.28. The Sobolev space W 1,p(Ω) with the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +
N∑

i=1

∥∥∥∥∥
∂u

∂xi

∥∥∥∥∥
Lp(Ω)

is a Banach space. For p ∈ 〈1,∞), this norm is equivalent to the following one

‖u‖W 1,p(Ω) =



∫

Ω
|u|p dx+

N∑

i=1

∫

Ω

∣∣∣∣∣
∂u

∂xi

∣∣∣∣∣

p

dx




1
p

=
(
‖u‖pLp(Ω) + ‖∇u‖p

[Lp(Ω)]N

) 1
p ,

where

∇u =

(
∂u

∂x1

, . . . ,
∂u

∂xN

)

and

‖∇u‖[Lp(Ω)]N =




N∑

i=1

∥∥∥∥∥
∂u

∂xi

∥∥∥∥∥

p

Lp(Ω)




1
p

Moreover, the space H1(Ω) is a Hilbert space with the scalar product

(u, v)H1(Ω) = (u, v)L2(Ω) +
N∑

i=1

(
∂u

∂xi
,
∂v

∂xi

)

L2(Ω)

.

For proof see [AF03], Theorem 3.3, p. 60 and Theorem 3.6, p. 61.

Sobolev space with zero trace on ∂Ω, H1
0 (Ω), is the closure of C∞0 (Ω) in H1(Ω).

Let us denote by |v|H1(Ω) a semi-norm on the space H1(Ω)

|v|H1(Ω) =




N∑

i=1

∥∥∥∥∥
∂v

∂xi

∥∥∥∥∥

2

L2(Ω)




1
2

.

Proposition 2.29 (Approximation by smooth functions). For p ∈ 〈1,∞), the space
C∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω).

For proof see [AF03] p. 65.

Proposition 2.30. W 1,p(Ω) is separable for p ∈ 〈1,∞) and reflexive for p ∈ (1,∞).

For proof see [AF03] Theorem 3.6, p. 61.

Proposition 2.31 (Poincaré inequality). For the domain Ω there exists c = c(Ω) > 0
such that

c ‖u‖L2(Ω) ≤ ‖∇u‖[L2(Ω)]N = |u|H1(Ω), ∀u ∈ H1
0 (Ω).

For proof see [AF03], Theorem 6.30, p.183.

The last theorem implies the following one.
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Proposition 2.32. On H1
0 (Ω) the seminorm |u|H1(Ω) is equivalent to the norm ‖u‖H1(Ω),

i.e. there exists a constant c = c(Ω) such that

|u|H1(Ω) ≤ ‖u‖H1(Ω) ≤ c |u|H1(Ω) ∀u ∈ H1
0 (Ω).

For that reason we set
‖u‖H1

0 (Ω) = |u|H1(Ω).

Notation 2.33 (Mean value operator over Ω). The mean value operator over Ω is denoted
by MΩ(u) and defined by

MΩ(u) =
∫

Ω
u(x) dx.

Proposition 2.34 (Poincaré-Wirtinger inequality). For a bounded domain Ω and p ∈
〈1,∞〉 there exists a constant C = C(p,Ω) > 0 such that

‖u−MΩ(u)‖Lp(Ω) ≤ C ‖∇u‖[Lp(Ω)]N ∀u ∈ W 1,p(Ω).

For proof see [Eva98], p. 275.

Functions in W 1,p(Ω) are not in general continuous and are defined “only” almost every-
where in Ω. Since ∂Ω has zero measure, “u restricted to ∂Ω” is not defined. The notion
of a trace operator resolves this problem.

Proposition 2.35 (Trace theorem). Let p ∈ (1,∞). Then, there exists unique linear
continuous operator

T : W 1,p(Ω)→ Lp(∂Ω),

such that
T (u) = u|∂Ω for ∀u ∈ C(Ω̄).

Furthermore there exists a constant C = C(p,Ω) > 0 such that

‖T (u)‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) for u ∈ W 1,p(Ω).

The operator T is called trace operator and T (u) is called the trace of u on ∂Ω.

For a proof of a slightly more general case of the trace theorem see [Eva98], p. 258.

By Riesz representation theorem (Theorem 2.7), abstract definition of the weak conver-
gence leads to the weak convergence in H1 spaces.

Definition 2.36 (Weak convergence in H1 spaces). Let {un} be a sequence in H1(Ω).
The sequence {un} weakly converges to u, i.e.

un ⇀ u weakly in H1(Ω)

if and only if {un} satisfies

∫

Ω

(
un(x) v(x) +

N∑

i=1

∂un(x)

∂xi

∂v(x)

∂xi

)
dx→

∫

Ω

(
u(x) v(x) +

N∑

i=1

∂u(x)

∂xi

∂v(x)

∂xi

)
dx ∀v ∈ H1(Ω).
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2. PRELIMINARIES

Theorem 2.37. Let {un} be a sequence in H1(Ω), such that

un ⇀ u weakly in H1(Ω).

Then,
un → u strongly in L2(Ω),

∂un
∂xi

⇀
∂u

∂xi
weakly in L2(Ω).

Proof of the strong convergence is based on the Rellich-Kondrachov compact embedding
theorem concerning Sobolev spaces (see [Eva98], §5.8.1). Proof of the weak convergence
of derivatives follows form the definition of weak convergence in the space H1(Ω).

2.5. Abstract linear problems

In this section we consider an abstract linear problem which is a typical model for many
applications.

Definition 2.38 (Bilinear form). Let V be a Hilbert space and A be a mapping, A :
V × V → R. A is called the bilinear form on V if it is linear in both variables, i.e.: for
any α1, α2 ∈ R and u1, u2, u, v1, v2, v ∈ V there is

A(α1 u1 + α2 u2, v) = α1A(u1, v) + α2A(u2, v),

A(u, α1 v1 + α2 v2) = α1A(u, v1) + α2A(u, v2).

Definition 2.39. Let A be a bilinear form on V . Then A is bounded on V if there exists
C > 0, such that

|A(u, v)| ≤ C ‖u‖V ‖v‖V , ∀u, v ∈ V.
Proposition 2.40. Let A be a bilinear form on V . Then A is bounded if and only if A
is continuous on V × V .

Consider the abstract problem: Let V be a Hilbert space, A be continuous bilinear form
on V , b be continuous linear form on V .

{
Find u ∈ V such that
A(u, v) = b(v), ∀v ∈ V. (11)

The following theorem provides conditions under which the problem (11) admits unique
solution and this solution has a stability property, namely the solution is controlled by
the data.

Proposition 2.41 (Lax-Milgram lemma). Let V be a Hilbert space with a scalar product
(·, ·) and a norm ‖·‖V . Let A be a continuous bilinear form on V × V such that A is
V -elliptic, i.e. there exists a constant α > 0, such that

A(u, u) ≥ α ‖u‖2
V , ∀u ∈ V.
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Further, let b be a bounded linear functional on V , i.e. there exists a constant β > 0, such
that

|b(u)| ≤ β ‖u‖V , ∀u ∈ V.
Then, the problem (11) has one and only one solution which satisfies a priori estimate

‖u‖V ≤
β

α
.

For proof see [Eva98], p. 297-299.
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3. PERIODIC UNFOLDING

3. Periodic unfolding

Let us introduce a notation and conventions which are used in homogenization, two-scale
convergence and periodic unfolding.

Definition 3.1 (Scale). A descending sequence E = {εk}∞k=0 of positive numbers, such
that εk ↘ 0 as k →∞, is called the scale.

In the following, as it is usual in the homogenization, all sequences will be denoted by the
subscript εk, for example {aεk}, or very often even only by the subscript ε, for example
{aε}.
In the periodic homogenization, Y denotes a reference cell in RN . Here, we will define it
as the N -dimensional interval

Y = 〈0, l1)× 〈0, l2)× · · · × 〈0, lN), (12)

where l1, . . . , lN are fixed positive numbers.

Space RN can be written as a union of the disjoint cells Yk = Y + k, which are the cell Y
shifted by vectors k, i.e.

RN =
⋃

k∈K
(Y + k), K =

{
k ∈ RN | k = (ξ1 l1, ξ2 l2, . . . , ξN lN), ξ ∈ ZN

}

Periodic unfolding has appeared in [ADH90] and [CD00]. First of all we define splitting
of each point in RN in two parts. The idea is analogical to the following one: each real
number x can be uniquely split to the integer part [x] and the fractional part {x} ∈ (0, 1).
Since the disjoint cells Yk cover whole RN , for each point x ∈ RN it holds x = [x]Y +{x}Y ,
where [x]Y denotes the shift of the cell Yk containing x, and {x}Y stands for the relative
position of x with respect to the cell Yk, i.e. [x]Y ∈ K and it is such that x− [x]Y belongs
to Y . Set {x}Y = x− [x]Y . See Figure 1.

Let Ω be a bounded domain in RN with a Lipschitz boundary ∂Ω and let ε be a positive
real number. Using ε-scaled system of the cells Y k

ε = ε(Y + k), k ∈ K, the domain Ω can
be split into two parts: Ω̂ε and Λε.

The set Ω̂ε contains cells Y k
ε lying inside Ω, while the set Λε is a strip on the boundary

composed of cells Y k
ε intersecting the boundary ∂Ω, see Figure 2. More precisely:

Ξε =
{
k ∈ RN s.t. Y k

ε ⊂ Ω
}
, Ω̂ε =

(
⋃

k∈Ξε
Y k
ε

)
∩ Ω,

Λε = Ω \ Ω̂ε, so Ω = Ω̂ε ∪ Λε .

(13)

Now, we define the unfolding operator.

Definition 3.2 (Unfolding operator). For each function u : Ω → R and ε > 0, the
unfolding operator Tε is defined as follows:

Tε(u)(x, y) =

{
u
(
ε
[
x
ε

]
Y

+ εy
)

for (x, y) ∈ Ω̂ε × Y,
u(x) for (x, y) ∈ Λε × Y.

(14)
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Y

x
[x]Y

{x}Y

(0, 0)

(l1, l2)

Figure 1: Decomposition x = [x]Y + {x}Y .

Ω

Λε

Ω̂ε

Figure 2: Domain Ω is split into two disjoint parts: Λε (light) and Ω̂ε (dark).

This definition was firstly used by Franc̊u in [Fra07] and [Fra10]. The unfolding operator
introduced in [CDG02], [Dam06] and [CDG08] is defined in a different way. It differs in
values for points [x, y] ∈ Λε×Y (incomplete cells), where in their definition Tε(u)(x, y) = 0.

Our approach conserves integrals, see Theorem 3.3 (iii), which simplifies proofs, and
removes several difficulties (for example introducing “unfolding criterion for integrals”,
see [CDG08], Proposition 2.6).

An example of unfolded functions is on Figures 4.
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3. PERIODIC UNFOLDING

3.1. Properties of unfolding operator

Let us survey properties of the unfolding operator.

Theorem 3.3. Let Tε be the unfolding operator and ε > 0. Then

(i) The operator Tε is multiplicative, i.e. for all u, v : Ω→ R it holds

Tε(u v) = Tε(u) Tε(v).

(ii) The unfolding operator Tε is linear, i.e. for all α, β ∈ R and u, v : Ω→ R we have

Tε(αu+ β v) = α Tε(u) + β Tε(v).

(iii) The unfolding operator Tε conserves the integral, i.e. for all u ∈ L1(Ω) we have

∫∫

Ω×Y
Tε(u)(x, y) dx dy = |Y |

∫

Ω

u(x) dx. (15)

Ω

Y

x

y

Ω

Λε ΛεΩ̂ε

u(ε
[
x
ε

]
Y

+ εy)

εY

Tε

u(x) u(x)

Figure 3: Example of the unfolding of a function u(x) defined on domain Ω.
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(iv) The unfolding operator Tε, conserves the norm, i.e. for every u ∈ Lp(Ω), p ∈ 〈1,∞)
it holds

‖Tε(u)‖Lp(Ω×Y ) = |Y | 1p ‖u‖Lp(Ω).

Thus the operator Tε is bounded and its norm satisfies

‖Tε‖L(Lp(Ω),Lp(Ω×Y )) = |Y | 1p .

(v) Tε is a continuous operator from Lp(Ω) to Lp(Ω× Y ), where p ∈ 〈1,∞).

Proof. (i) The property follows directly from the Definition 3.2.

(ii) The linearity of unfolding operator is obvious.

(iii) From the Definition 3.2 one gets

I =
∫∫

Ω×Y
Tε(u)(x, y) dx dy =

∫∫

Ω̂ε×Y

Tε(u)(x, y) dx dy +
∫∫

Λε×Y
Tε(u)(x, y) dx dy.

Figure 4: Functions uε(x) = 1
2

sin(2π x
ε
) + x and its unfolding Tε(uε), for ε = 1, 1/2,

1/4,
domain Ω = (0, 2) and reference cell Y = 〈0, 1).
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3. PERIODIC UNFOLDING

Using definition (13) of the Ω̂ε the first integral can be split. Thus

I =
∑

k∈Ξε

∫∫

ε(Y+k)×Y

Tε(u)(x, y) dx dy + |Y |
∫

Λε

u(x) dx.

The unfolded function Tε(u)(x, y) is constant in x on each ε(Y +k)×Y . This yields:

I =
∑

k∈Ξε

|ε(Y + k)|
∫

Y

u(ε(y + k)) dy + |Y |
∫

Λε

u(x) dx =

= εN |Y |
∑

k∈Ξε

∫

Y

u(ε(y + k)) dy + |Y |
∫

Λε

u(x) dx.

After the change of variable ε(y+ k) = x in the integral and simple calculations we
get

I = |Y |
∑

k∈Ξε

∫

ε(Y+k)

u(x) dx+ |Y |
∫

Λε

u(x, y) dx = |Y |
∫

Ω

u(x) dx.

(iv) Let us show that ‖Tε(u)‖Lp(Ω×Y ) is equal to |Y | 1p‖u‖Lp(Ω).

It follows directly from the property (iii). Indeed,

‖Tε(u)‖pLp(Ω×Y ) =
∫∫

Ω×Y
T pε (u)(x, y) dx dy =

∫∫

Ω×Y
Tε(up)(x, y) dx dy = |Y |

∫

Ω

up(x) dx.

Hence

‖Tε(u)‖Lp(Ω×Y ) =

(
|Y |

∫

Ω×Y
up(x, y) dx dy

) 1
p

= |Y | 1p‖u‖Lp(Ω).

Then the boundedness of linear operator is straightforward.

‖Tε‖L(Lp(Ω),Lp(Ω×Y )) = sup
u∈Lp(Ω)\{0}

‖Tε(u)‖Lp(Ω×Y )

‖u‖Lp(Ω)

= |Y | 1p <∞.

(v) The continuity of linear operators is equivalent to its boundedness.

3.2. Two-scale convergence

There exist two different ways for defining the two-scale convergence. The earliest ap-
proach was introduced in [Ngu89] (for L2(Ω)-space) and more developed in [All92]. It
was generalized for Lp(Ω)-space, p ∈ (1,∞), in [LNW02]. The unfolding operator de-
fined by the Definition 3.2 enables us to introduce a new definition. Comparison of both
approaches can be found in [FS12].
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Definition 3.4 (Two-scale convergence). Let Tε be the unfolding operator, E = {ε} be
a scale, {uε} be a sequence in Lp(Ω) and u0 ∈ Lp(Ω× Y ), p ∈ 〈1,∞).

A sequence {uε} is said to strongly two-scale converge to u0 in Lp(Ω) with respect to the
scale E if the sequence {Tε(uε)} converges to u0 strongly in Lp(Ω× Y ).

A sequence {uε} is said to weakly two-scale converge to u0 in Lp(Ω) with respect to the
scale E if the sequence {Tε(uε)} converges to u0 weakly in Lp(Ω× Y ).

Remark. In the definition above, the weak two-scale convergence in Lp(Ω) is transformed
to the weak convergence in Lp(Ω×Y ) of unfolded sequence. To check the weak convergence
in the space Lp(Ω × Y ) one has to use test functions from the dual space Lp

′
(Ω × Y ).

Moreover for bounded sequence in Lp(Ω× Y ) it is sufficient, due to the density property,
to check this convergence only by smooth functions from D(Ω× Y ).

Now we investigate convergence properties related to the unfolding operator. The follow-
ing results follow directly from the definition and also from the theory of Lp-spaces.

Theorem 3.5. Let {uε} be a sequence in Lp(Ω) and u0 ∈ Lp(Ω× Y ), p ∈ 〈1,∞). Then

(i) Any constant sequence {u} ∈ Lp(Ω) strongly two-scale converges to itself,

Tε(u)→ u0 strongly in Lp(Ω× Y ),

where u0(x, y) = u(x).

(ii) Any sequence {uε} two-scale converging (strongly or weakly) in Lp(Ω) is bounded in
Lp(Ω), i.e. ‖uε‖Lp(Ω) ≤ C.

(iii) If a two-scale limit u0 exists, then it is unique as an element of Lp-spaces.

(iv) If {uε} strongly converges to u∗, i.e.

uε → u∗ strongly in Lp(Ω).

Then it strongly two-scale converges to u0(x, y) = u∗(x), i.e.

Tε(uε)→ u0 strongly in Lp(Ω× Y ).

(v) If {uε} strongly two-scale converges to u0,

Tε(uε)→ u0 strongly in Lp(Ω× Y ),

Then it weakly two-scale converges to the same limit

Tε(uε) ⇀ u0 weakly in Lp(Ω× Y ).

(vi) For p ∈ (1,∞). If {uε} weakly two-scale converges to u0,

Tε(uε) ⇀ u0 weakly in Lp(Ω× Y ),

Then it converges weakly

uε ⇀ u∗ weakly in Lp(Ω),

where u∗(x) = 1
|Y |
∫
Y u0(x, y) dy =MY (u0)(x).
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3. PERIODIC UNFOLDING

Proof. (i) First of all, let us show that for ϕ ∈ D(Ω)

lim
ε→0
Tε(ϕ)(x) = ϕ(x). (16)

From the definition it follows Tε(ϕ)(x) = ϕ(x), for every ε, on the boundary strip
Λε.

Since the term
{
x
ε

}
Y

is non-negative and bounded and ε↘ 0, we get

lim
ε→0

ε
{
x

ε

}

Y
= 0.

Using this result we derive

lim
ε→0

ε
[
x

ε

]

Y
= lim

ε→0
ε
(
x

ε
−
{
x

ε

}

Y

)
= lim

ε→0
ε
x

ε
= x.

On Ω̂ε, finally,

lim
ε→0

ϕ
(
ε
[
x

ε

]

Y
+ ε y

)
= ϕ(x).

And thus we get the limit (16).

Now, let ϕ ∈ D(Ω) and u ∈ Lp(Ω). Adding and subtracting (Tε(ϕ)− ϕ), using the
Theorem 3.3 (ii), (iv) and the triangle inequality, one gets:

‖Tε(u)− u‖Lp(Ω×Y ) = ‖Tε(u− ϕ) + (Tε(ϕ)− ϕ) + (ϕ− u)‖Lp(Ω×Y ) ≤
≤ |Y | 1p ‖u− ϕ‖Lp(Ω) + |Y | 1p ‖u− ϕ‖Lp(Ω) + ‖Tε(ϕ)− ϕ‖Lp(Ω×Y ) ≤

≤ 2 |Y | 1p ‖u− ϕ‖Lp(Ω) + ‖Tε(ϕ)− ϕ‖Lp(Ω×Y ).

The space D(Ω) is dense in Lp(Ω), so for each ε > 0 there exists ϕ such that
‖u− ϕ‖Lp(Ω) < ε.

Using (16), we conclude

0 ≤ lim
ε→0
‖Tε(u)− u‖Lp(Ω×Y ) = lim

ε→0

(
2 |Y | 1p ‖u− ϕ‖Lp(Ω) + ‖Tε(ϕ)− ϕ‖Lp(Ω×Y )

)
≤

≤ lim
ε→0

(
2 |Y | 1p ε+ ‖Tε(ϕ)− ϕ‖Lp(Ω×Y )

)
= 0.

(ii),(iii) The properties follow from the fact that the weak two-scale convergence is by its
definition equivalent to the weak convergence in Lp(Ω×Y ). By the Proposition 2.10
and 2.12 these two properties hold for the weak convergence in any Banach space.

(iv) Adding and subtracting Tε(u∗), using Theorem 3.3 (ii) and (iv), we get

‖Tε(uε)− u0‖Lp(Ω×Y ) = ‖Tε(uε)− u0 + Tε(u∗)− Tε(u∗)‖Lp(Ω×Y ) ≤
≤ ‖Tε(uε)− Tε(u∗)‖Lp(Ω×Y ) + ‖Tε(u∗)− u0‖Lp(Ω×Y ) =

= ‖Tε(uε − u∗)‖Lp(Ω×Y ) + ‖Tε(u∗)− u0‖Lp(Ω×Y ) =

= |Y | 1p‖uε − u∗‖Lp(Ω) + ‖Tε(u∗)− u0‖Lp(Ω×Y ). (17)
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Now, we can pass to the limit. Since the sequence {uε} converges to u∗ strongly in
Lp(Ω), the first expression on the last line converges to zero.

From the property (i) it follows that

Tε(u∗)→ u0 strongly in Lp(Ω× Y ).

Thus, the second expression on the last line in (17) also converges to zero.

Adding this together, we get

‖Tε(uε)− u0‖Lp(Ω×Y ) → 0.

(v) Let ϕ ∈ Lp
′
(Ω × Y ), where 1

p
+ 1

p′
= 1. Using the Proposition 2.19, the result is

straightforward.

∫∫

Ω×Y
(Tε(uε)(x, y)− u0(x, y))ϕ(x, y) dx dy ≤

≤ ‖ϕ‖Lp′ (Ω×Y )‖Tε(uε)(x, y)− u0‖Lp(Ω×Y ) → 0.

(vi) Let ϕ ∈ Lp′(Ω), where 1
p

+ 1
p′

= 1. From the Theorem 3.3 (i), (iii) we obtain:

∫

Ω
uε(x) ϕ(x) dx =

1

|Y |
∫∫

Ω×Y
Tε(uε)(x, y) Tε(ϕ)(x, y) dx dy.

By the assumption, {Tε(uε)} converges weakly, and according (i), {Tε(ϕ)} converges
strongly. Thus, using the Proposition 2.15, we get

1

|Y |
∫∫

Ω×Y
Tε(uε)(x, y)Tε(ϕ)(x, y) dx dy → 1

|Y |
∫∫

Ω×Y
u0(x, y)ϕ(x) dx dy =

=
∫

Ω

(
1

|Y |
∫

Y
u0(x, y) dy

)
ϕ(x) dx =

∫

Ω
u∗(x) ϕ(x) dx.

Relations between convergences above can be expressed by the following diagram:

strong ⇒ two-scale strong ⇒ two-scale weak ⇒ weak.

Examples Let us assume a domain Ω = (0, 1), a reference cell Y = 〈0, 1) and scales
E = {ε} = {1, 1/2,

1/3,
1/4, . . . }. Then the set Λε defined by (13) is empty for every ε and

hence Ω̂ε = Ω for every ε.

Let f, g ∈ Lp(Ω) and ψ ∈ L∞per(Y ), such that
∫
Y ψ(x)dx = 0.
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3. PERIODIC UNFOLDING

1. Let us assume a sequence {uε}, where

uε(x) = f(x)ψ
(
x

ε

)
+ g(x).

Then the sequence {uε} converges to g weakly in Lp(Ω), but not strongly (unless
f(x) ≡ 0 or ψ(x) ≡ 0 ).

The unfolding Tε(uε) is

Tε(uε)(x, y) = Tε(f)(x, y)ψ(y) + Tε(g)(x, y) for (x, y) ∈ Ω× Y.

Due to the Theorem 3.5 (i), the sequence {Tε(uε)} strongly two-scale converges with
respect to the scale E in Lp(Ω) to

u0(x, y) = f(x)ψ(y) + g(x).

The example shows that the local oscillations of uε, which are lost in the weak limit,
are conserved in the strong two-scale limit.

2. Modifying the function uε to

uε(x) = f(x)ψ
(

2x

ε

)
+ g(x),

we get a sequence which converges also two-scale strongly with respect to E but the
limit is

u0(x, y) = f(x)ψ(2y) + g(x).

The weak limit is unchanged.

3. Let us make another modification of the function uε,

uε(x) = f(x)ψ
(
x

ε2

)
+ g(x).

The sequence {uε} again converges to g weakly in Lp(Ω). But its unfolding

Tε(uε)(x, y) = Tε(f)(x, y)ψ
(
y

ε

)
+ Tε(g)(x, y) for (x, y) ∈ Ω× Y.

converge only two-scale weakly with respect to E to u0(x, y) = g(x) in Lp(Ω). In
the limit the local oscillations are lost.

4. Let us assume a function

uε(x) = f(x)ψ

(√
2x

ε

)
+ g(x).

In general case the function ψ
(√

2x
ε

)
does not belong to L∞per(Y ). The sequence

{uε} converges only weakly in Lp(Ω) and neither converges two-scale strongly nor
two-scale weakly with respect to E in Lp(Ω).
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Theorem 3.6 (Compactness). Let p ∈ 〈1,∞) and {uε} be a bounded sequence in Lp(Ω).
Then there exists a subscale E ′ = {ε′}, a subsequence {uε′} in Lp(Ω) and u0 ∈ Lp(Ω× Y )
such that {uε′} two-scale weakly converges with respect to subscale E ′ to u0 in Lp(Ω), i.e.

Tε′(uε′) ⇀ u0 weakly in Lp(Ω× Y ).

Proof. If {uε} is bounded in Lp(Ω) then, thanks to Theorem 3.3 (ii), {Tε(uε)} is bounded
in Lp(Ω× Y ). Thus there exists subscale E ′, subsequence {Tε′(uε′)} and u0 ∈ Lp(Ω× Y )
such that {Tε′(uε′)} weakly converges to u0 in Lp(Ω × Y ), which is equivalent to the
two-scale weak convergence with respect to E ′ in Lp(Ω).

We will finish this section with two results which are fundamental in applications and
homogenization theory.

Theorem 3.7 (Limit of product of the sequences). Let p ∈ (1,∞). Assume a scale
E = {ε}, a sequence {uε} ∈ Lp(Ω) and {vε} ∈ Lq(Ω), where 1

p
+ 1

q
= 1

r
< 1, such that

{uε} converges two-scale strongly to u0 in Lp(Ω) and {vε} converges two-scale weakly to
v0 in Lq(Ω), both with respect to E. Then the product {uε vε} converges to the limit u0 v0

two-scale weakly in Lr(Ω).

Proof. For any ϕ ∈ Lr′(Ω× Y ), where 1
r

+ 1
r′

= 1, we have

L =
∫∫

Ω×Y
Tε(uε vε)(x, y) ϕ(x, y) dx dy =

∫∫

Ω×Y
Tε(uε)(x, y) Tε(vε)(x, y) ϕ(x, y) dx dy.

Adding and subtracting the term (u0 Tε(vε) ϕ) in the integrand leads to

L =
∫∫

Ω×Y
(Tε(uε)− u0)(x, y) Tε(vε)(x, y) ϕ(x, y) dx dy +

+
∫∫

Ω×Y
u0(x, y) Tε(vε)(x, y) ϕ(x, y) dx dy. (18)

For the first integral in (18) we have the estimate

∫∫

Ω×Y
(Tε(uε)− u0)(x, y) Tε(vε)(x, y) ϕ(x) dx dy ≤

≤ ‖Tε(uε)− u0‖Lp(Ω×Y ) ‖Tε(vε)‖Lq(Ω×Y ) ‖ϕ‖Lr′ (Ω×Y ).

As a weakly convergent sequence {Tε(vε)} is bounded and {Tε(uε)} converges to u0

strongly, thus the integral tends to zero.

Since, by assumption, {Tε(vε)} weakly converges in Lq(Ω× Y ), for the second integral in
(18) we have

∫∫

Ω×Y
u0(x, y) Tε(vε)(x, y) ϕ(x, y) dx dy →

∫∫

Ω×Y
u0(x, y) v0(x, y) ϕ(x, y) dx dy.

26



3. PERIODIC UNFOLDING

Theorem 3.8 (Limit of product of the sequences). Let p ∈ (1,∞). Assume a scale
E = {ε}, a sequence {uε} ∈ Lp(Ω) and {vε} ∈ Lp′(Ω), where 1

p
+ 1

p′
= 1, such that {uε}

converges two-scale strongly to u0 in Lp(Ω) and {vε} converges two-scale weakly to v0 in
Lp
′
(Ω), both with respect to E.

Then, ∫

Ω
uε(x) vε(x) dx→ 1

|Y |
∫∫

Ω×Y
u0(x, y) v0(x, y) dx dy.

Proof. Proof is analogical to the proof of the Theorem 3.7.

3.3. Two-scale convergence and gradients

In many applications a sequence of gradients {∇uε} appears. From the definition of
unfolding operator we derive, for u ∈ W 1,p(Ω),

Tε(∇u) =





1
ε
∇yTε(u) on Ω̂ε × Y,
∇u = ∇xTε(u) on Λε × Y.

(19)

The equality can be rewritten by means of the characteristic function 1Λε of a set Λε,

Tε(∇u) =
1

ε
∇yTε(u) +∇xTε(u) 1Λε .

The main result shown in this part is: if a sequence {uε} converges weakly in W 1,p(Ω),
then the sequence {∇uε} converges two-scale weakly in [Lp(Ω)]N , see Theorem 3.11.

The proof is based on a suitable splitting of the function uε into two parts: uε = u1
ε + εu2

ε.
The function u2

ε is designed to capture oscillations and in such a way that u2
ε = 0 on Λε.

In the first step, for a well chosen function u1
ε, we show that {∇u1

ε} converges two-scale
weakly in [Lp(Ω)]N .

In the second step we prove that {Tε(u2
ε)} converges weakly in Lp(Ω,W 1,p(Y )). This and

the equality
∇yTε(u2

ε) = ε Tε(∇(u2
ε)) = Tε(∇(ε u2

ε)) (20)

implies that the terms ∇yTε(u2
ε) = Tε(∇(εu2

ε)) converge weakly in [Lp(Ω× Y )]N .

Finally, combining these two results gives Tε(∇u1
ε) + Tε(∇(εu2

ε)) = Tε(∇uε) converge
weakly in [Lp(Ω× Y )]N and thus {∇uε} converges two-scale weakly in [Lp(Ω)]N .

The crucial part of the proof is the way of choosing the functions u1
ε and u2

ε. For that
reason let us introduce a local average operator Mε and its properties.

Definition 3.9 (Local average operatorMε). The local average operatorMε : Lp(Ω)→
Lp(Ω) for p ≥ 1 is defined by

Mε(u)(x) =





1

εN |Y |
∫

ε([xε ]
Y

+Y )
u(t) dt for x ∈ Ω̂ε,

u(x) for x ∈ Λε.
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Let us remind that MY (u)(x) = 1
|Y |
∫
Y u(x, y) dy.

Proposition 3.10 (Properties of the local average operator Mε). For any u ∈ Lp(Ω),
where p ≥ 1, it holds:

(i)

Mε(u)(x) =MY

(
Tε(u)

)
(x).

(ii)

Tε
(
Mε(u)

)
(x, y) =Mε(u)(x, y) =Mε(u)(x).

(iii) Let v ∈ Lp′(Ω), then

∫

Ω
Mε(u)(x) v(x) dx =

∫

Ω
Mε(u)(x) Mε(v)(x) dx =

∫

Ω
u(x) Mε(v)(x) dx.

(iv) Let {uε} be a sequence in Lp(Ω) for p ∈ (1,∞) such that uε ⇀ u0 weakly in Lp(Ω).
Then

Mε(uε) ⇀ u0 weakly in Lp(Ω).

Proof. (i) We prove the result separately on the domains Ω̂ε and Λε.

On Ω̂ε by the usual change of variable cell by cell one obtains

Mε(u)(x) =
1

|Y |
∫

Y
Tε(u)(x, y) dy =MY

(
Tε(u)

)
(x).

On Λε we use the fact that Tε(u)(x, y) = u(x, y) = u(x). Hence

MY

(
Tε(u)

)
(x) =MY (u)(x) =

1

|Y |
∫

Y
u(x) dy =

1

|Y | u(x)
∫

Y
1 dy =

=
1

|Y | u(x) |Y | = u(x) =Mε(u)(x).

(ii) It follows from the fact that Mε(u)(x) is piecewise constant in Ω̂ε.

(iii) Proof is obvious.

(iv) Let ϕ ∈ Lp′(Ω). Adding and subtracting Mε(u0) we get:

∫

Ω

[Mε(uε)(x)− u0(x)]ϕ(x) dx =

=
∫

Ω

[Mε(uε)(x)−Mε(u0)(x)]ϕ(x) dx+
∫

Ω

[Mε(u0)(x)− u0(x)]ϕ(x) dx. (21)
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Let us show that the first integral on the previous line converges to zero. Using the
linearity of operator Mε (which follows directly from its definition), the property
(iii) and the weak convergence of the {uε} leads to:

I1 =
∫

Ω

[Mε(uε)(x)−Mε(u0)(x)]ϕ(x) dx =
∫

Ω

Mε(uε − u0)(x)ϕ(x) dx =

=
∫

Ω

[uε(x)− u0(x)]Mε(ϕ)(x) dx→ 0 . (22)

The second integral on the last line of (21) also converge to the zero. Indeed, by
using property (i) and Theorem 3.5 (i) we get:

I2 =
∫

Ω

[Mε(u0)(x)− u0(x)]ϕ(x) dx =
∫

Ω

[
MY

(
Tε(u0)

)
(x)− u0(x)

]
ϕ(x) dx→

→
∫

Ω

[
MY

(
u0

)
(x)− u0(x)

]
ϕ(x) dx =

∫

Ω

[u0(x)− u0(x)]ϕ(x) dx = 0 . (23)

Summing up (22) and (23) provides the result.

Theorem 3.11. Let a sequence {uε} be bounded in W 1,p(Ω), for p ∈ (1,∞). i.e.

‖uε‖W 1,p(Ω) ≤ C.

Then there exists a subsequence (still denoted {uε}) and functions u0 ∈ W 1,p(Ω) and
u∗0 ∈ Lp(Ω;W 1,p

per (Y )) such that

(i) Tε(uε) ⇀ u0 weakly in Lp(Ω;W 1,p(Y )),

(ii) Tε(∇uε) ⇀ ∇u0 + ∇yu
∗
0 weakly in [Lp(Ω× Y )]N , i.e. {∇uε} converges two-scale

weakly in [Lp(Ω)]N .

Moreover, MY (u∗0) = 0.

Proof. Property (i) - To prove that there exists a subsequence of {Tε(uε)} weakly con-
verging in Lp(Ω;W 1,p(Y )) it is enough to show that the sequence {Tε(uε)} is bounded in
the same space (see Theorem 2.13).

Using definitions of the norms of the spaces Lp(Ω;W 1,p(Y )) and Lp(Ω × Y ) and in the
last step equality (19) leads to

‖Tε(uε)‖pLp(Ω;W 1,p(Y )) =
∫

Ω

((
‖Tε(uε)‖pLp(Y ) + ‖∇yTε(uε)‖p[Lp(Y )]N

) 1
p

)p
dx =

= ‖Tε(uε)‖Lp(Ω×Y ) + ‖∇yTε(uε)‖[Lp(Ω×Y )]N = ‖Tε(uε)‖Lp(Ω×Y ) + ‖εTε(∇uε)‖[Lp(Ω̂ε×Y )]
N .
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Using the Theorem 3.3, property (iv), gives us

‖Tε(uε)‖Lp(Ω×Y ) + ‖ε Tε(∇uε)‖[Lp(Ω̂ε×Y )]
N ≤ |Y | 1p ‖uε‖Lp(Ω) + |Y | 1p ε ‖∇uε‖[Lp(Ω)]N .

The last term is bounded for all ε, since according to the assumptions the sequence {uε}
is bounded in W 1,p(Ω) and ε↘ 0.

Property (ii) - The proof is carried out in several steps.

First step - splitting the function uε. Let us split the function uε. Set uε = u1
ε+ε u2

ε,
where

u1
ε =Mε(uε) and thus u2

ε =
1

ε
[uε −Mε(uε)].

Since u1
ε is piecewise constant in Ω̂ε, and using the definition 3.2 of unfolding operator,

we get

Tε(∇u1
ε)(x, y) =





0 for [x, y] ∈ Ω̂ε × Y,
∇uε(x) for [x, y] ∈ Λε × Y.

Using (19) leads to
∇yTε(u2

ε) = ε Tε(∇(u2
ε)) = Tε(∇(εu2

ε)).

Summing up these results we get

Tε(∇uε) = Tε(∇u1
ε) + Tε(ε∇u2

ε) = ∇uε 1Λε + Tε(∇uε 1
Ω̂ε

) = ∇uε 1Λε +∇yTε(u2
ε). (24)

Second step - convergence of Tε(∇u1
ε). For ε → 0 the terms ∇uε 1Λε converge to

zero because {∇uε} is bounded in [Lp(Ω)]N and |Λε| → 0, i.e.

∇uε 1Λε → 0 strongly in [Lp(Ω)]N . (25)

Third step - convergence of Tε(∇u2
ε). For u2

ε we get

Tε(u2
ε)(x, y) =





1
ε

[Tε(uε)(x, y)−Mε(uε)(x, y)] for [x, y] ∈ Ω̂ε × Y,
0 for [x, y] ∈ Λε × Y.

Let us denote by yc the vector function

yc =

(
y1 −

l1
2
, y2 −

l2
2
, . . . , yN −

lN
2

)
,

where l1, l2, . . . , lN are dimensions of the reference cell Y , see (12).

The function Tε(u2
ε)− yc · ∇u0 has mean value equals to zero. Indeed,

MY

(
Tε(u2

ε)− yc · ∇u0

)
=MY

[
1

ε

(
Tε(uε)− Tε(Mε(uε))

)]
−MY (yc · ∇u0) =

=MY

[
1

ε

(
Tε(uε)−Mε(uε)

)]
− 0 =

1

ε

[
MY

(
Tε(uε)

)
−MY

(
Mε(uε)

)]
.
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3. PERIODIC UNFOLDING

On Ω̂ε × Y it is equal to

1

ε

[
MY

(
Tε(uε)

)
−MY

(
Mε(uε)

)]
=

1

ε
[Mε(uε)−Mε(uε)] = 0

and on Λε × Y it gives

1

ε

[
MY

(
Tε(uε)

)
−MY

(
Mε(uε)

)]
=

1

ε
[MY (uε)−MY (uε)] = 0.

Applying the Poincaré-Wirtinger inequality (see Proposition 2.34) in Y to the function
Tε(u2

ε)− yc · ∇u0 we get
∥∥∥Tε(u2

ε)− yc · ∇u0

∥∥∥
Lp(Ω×Y )

≤ C
∥∥∥∇yTε(u2

ε)−∇u0

∥∥∥
[Lp(Ω×Y )]N

.

Since, due to assumptions, the term ‖∇yTε(u2
ε)−∇u0‖[Lp(Ω×Y )]N is bounded, the in-

equality above implies boundedness of {Tε(u2
ε)− yc · ∇u0}. Terefore there exists u∗0 in

Lp(Ω;W 1,p(Y )) such that, up to a subsequence,

Tε(u2
ε)− yc · ∇u0 ⇀ u∗0 weakly in Lp(Ω,W 1,p(Y )). (26)

In other words

Tε(u2
ε) ⇀ yc · ∇u0 + u∗0 weakly in Lp(Ω,W 1,p(Y )).

And thus

∇yTε(u2
ε) = Tε(∇uε) ⇀ ∇u0 +∇yu

∗
0 weakly in [Lp(Ω× Y )]N . (27)

From (24),(25) and (27) follows that {∇uε} converges two-scale weakly in [Lp(Ω)]N .

Fourth step - average of the function u∗0. Since for the expression on the left-hand

side in (26) holdsMY

(
Tε(u2

ε)− yc · ∇u0

)
= 0, the same holds for the right-hand side, i.e.

MY (u∗0) = 0.

Fifth step - Y -periodicity of u∗0. Since reference cell Y is a N -dimensional cube, u∗0
must satisfies, in the sense of traces,

u∗0(x, y1, . . . , yi−1, 0, yi+1, . . . , yN) = u∗0(x, y1, . . . , yi−1, li, yi+1, . . . , yN) for i = 1, . . . , N.

Without lost of generality, assume i = N . Set y′ = (y1, . . . , yN−1) and eN = (0, . . . , 0, 1).
For any ψ ∈ D(Ω× Y ′) we have:

Iε =
∫∫

Ω×Y ′

(
Tε(u2

ε)(x, (y
′, lN))− Tε(u2

ε)(x, (y
′, 0))

)
ψ(x, y′) dx dy′ =

=
∫∫

Ω̂ε×Y ′

1

ε

[
uε

(
ε
[
x

ε

]

Y
+ ε(y′, lN)

)
− uε

(
ε
[
x

ε

]

Y
+ ε(y′, 0)

)]
ψ(x, y′) dx dy′.
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By a change of variable one gets

Iε =
∫∫

(Ω̂ε−εlNeN)×Y ′

uε

(
ε
[
x

ε

]

Y
+ ε (y′, 0)

)
1

ε
ψ(x− ε lNeN , y′) dx dy′ −

−
∫∫

Ω̂ε×Y ′

uε

(
ε
[
x

ε

]

Y
+ ε (y′, 0)

)
1

ε
ψ(x, y′) dx dy′ =

=
∫∫

(Ω̂ε−ε lNeN)×Y ′

Tε(uε)(x, (y′, 0))
1

ε
ψ(x− ε lNeN , y′) dx dy′ −

−
∫∫

Ω̂ε×Y ′

Tε(uε)(x, (y′, 0))
1

ε
ψ(x, y′) dx dy′.

The sequence {Tε(uε)} converges weakly in Lp(Ω;W 1,p(Y )). By the trace Theorem 2.35,
the trace of Tε(uε) on Ω×Y ′ converges weakly to u0 in Lp(Ω×Y ′). Hence {Iε} converges
to

−
∫∫

Ω×Y ′
u0(x)

∂ψ

∂xn
(x, y′) dx dy. (28)

By similar arguments together with the fact that

(yc · ∇u0)(x, (y′, lN))− (yc · ∇u0)(x, (y′, 0)) =
∂u0

∂xN
(x)

we obtain
∫∫

Ω×Y ′
[(yc · ∇u0)(x, (y′, lN))− (yc · ∇u0)(x, (y′, 0))]ψ(x, y′) dx dy′ =

=
∫∫

Ω×Y ′

∂u0

∂xN
(x)ψ(x, y′) dx dy′ = −

∫∫

Ω×Y ′
u0(x)

∂ψ

∂xN
(x, y′) dx dy.

This together with (28) yields

∫∫

Ω×Y ′

(
u∗0(x, (y′, lN))− u∗0(x, (y′, 0))

)
ψ(x, y′) dx dy′ = 0 for ψ ∈ D(Ω× Y ′).

By lemma 2.26, u∗0(x, (y′, lN)) = u∗0(x, (y′, 0)) in the sense of traces, and thus u∗0 is yN -
periodic. The same holds in the others directions.

Remark. The vector function yc = (yc1, y
c
2, . . . , y

c
N) is designed in such a way to satisfy, for

i = 1 . . . N :

1.
∂yci
∂yi

= 1 and

2. MY (yci ) = 0.
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3. PERIODIC UNFOLDING

To fulfill the first condition we suggest its components in the form yci = yi − ci, ci ∈ R.

The constants ci are estimated from the second condition

MY (yci ) =
∫

Y
yi − ci dy =

∫

Y
yi dy − ci

∫

Y
1 dy =

∫

Y
yi dy − ci|Y |.

So

ci =

∫
Y yi dy

|Y | ,

which is the i-th coordinate of the centroid of the reference cell Y . For the cell Y defined
in (12) we conclude that yc =

(
y1 − l1

2
, y2 − l2

2
, . . . , yN − lN

2

)
.
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4. Periodic unfolding for perforated domains

4.1. Domain with holes

The aim of this chapter is to redefine the unfolding operator in such a way that it is
suitable for periodically perforated domains. Let us begin with defining a domain with
holes.

As in the previous chapter, let Ω be a bounded domain in RN with Lipschitz boundary.

We consider scales E = {εk}, defined by the Definition 3.1. For each ε let {T jε }
n(ε)
j=1 be a

system of disjoint bounded domains in RN representing the “holes”. Let us suppose that
they have Lipschitz boundary.

Let Ω∗ε denote the part of Ω occupied by material. It is defined as Ω without holes T jε , i.e.

Ω∗ε = Ω \ Tε, where Tε =
n(ε)⋃

j=1

T jε . (29)

We assume that Ω∗ε is a multiply connected set. Furthermore we denote by T i
int, ε, i =

1, . . . ,m(ε), the “interior holes”, they are such sets T jε which are completely inside Ω and

do not intersect the boundary ∂Ω, i.e. the sets T jε ⊂ Ω. Their union is denoted by Tint, ε,

Tint, ε =
m(ε)⋃

i=1

T i
int, ε.

Let the sets T jε which intersect the boundary be denoted by Text, ε, i.e.

Text, ε =
(
Tε \ Tint, ε

)
∩ Ω,

and ∂extΩ
∗
ε denote the exterior boundary of Ω∗ε,

∂extΩ
∗
ε = ∂Ω∗ε \ ∂Tint, ε.

4.1.1. Periodically perforated domain

Till now, the holes T jε were distributed in a very general manner. For εi 6= εj there was
not, in general, any connection between Tεi and Tεj .

In sequel, we define periodically distributed holes. In this case, for ε↘ 0, there are more
and more holes with a smaller and smaller volume.

As in the previous chapter, let reference cell Y in RN be N -dimensional interval defined
by (12).

Let T ⊂ Y be an open bounded set with a smooth boundary. This set represents reference
holes in Y . The part of the reference cell Y occupied by a material is denoted by Y ∗:

Y ∗ = Y \ T .
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS

Ω

Ω

T j
ε

T i

int, ε

Ω∗
ε

∂extΩ
∗
ε

∂T int
ε

Y ∗

Y

T

Figure 5: Periodically perforated domain. Upper: domain Ω and reference cell; lower left:
inner holes T i

int, ε; lower right: part of Ω occupied by material Ω∗ε (marked by cyan), with
its exterior boundary ∂extΩ

∗
ε and interior boundary ∂Tint, ε.

Let us introduce function r, which determines how fast the shrinking of holes is. Let r be
a positive increasing function, such that

lim
ε→0

r(ε) = 0.

Then the sets Tε (used in (29) to construct the perforated domain Ω∗ε) is defined as a
translates and scaled images of T , so

Tε =
⋃

k∈K
(r(ε)(T + k)),

where K =
{
k ∈ RN | k = (ξ1 l1, ξ2 l2, . . . , ξN lN), ξ ∈ ZN

}
.

It is necessary to choose the function r in such a way that ensures that the holes are
always inside the cells, i.e.

r(ε)T ⊂ ε Y ∀ε.

Furthermore, we suppose that, if the set T consists of more connected disjoint sets then
these sets remain disjoint for all ε.

We can distinguish three typical kinds of behaviors of the holes. For that reason let us
denote by θε the ratio of the volume of material in cell and the volume of cell, i.e.

θε =
|εY − r(ε)T |
|εY | .
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The case when r(ε) = ε is very classical, the ratio θε is constant for all ε . A case when
r(ε)
ε
→ 0 as ε → 0 is called small holes. In such case the volume of holes goes to zero

quicker than the volume of material in the cell, i.e. θε → 1 as ε → 0. In the last case
θε → 0, which means that the shrinking of the holes is slower than the shrinking of the
cells. An example of these three cases is on the Figure 6.

4.2. Unfolding operator T ∗ε in perforated domains

Analogically as for fixed domains, let us split the domain Ω∗ε in two parts. We define (see
figure 7)

Ω̂∗ε = Ω̂ε \ Tint, ε and Λ∗ε = Ω∗ε \ Ω̂∗ε, (30)

where Ω̂ε is defined by (13).

ε = 1 ε = 1
2 ε = 1

3

r(ε) = ε

r(ε) = ε2

r(ε) = 2ε− ε2

Figure 6: Example of three different behaviors of the holes depending on the choice of
function r. A case on the middle line belongs to the cases called small holes.
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS

Figure 7: Domains Λ∗ε (light) and Ω̂∗ε (dark).

In the following part, we introduce an unfolding operator T ∗ε for perforated domains and
we follow the same ideas as in Section 3. In sequel, we cover the case where the ratio of
the volume of material to the volume of cell is constant for all ε, i.e. the function r(ε) = ε.

Definition 4.1 (Unfolding operator for perforated domains). An operator T ∗ε maps a
function u : Ω∗ε → R to T ∗ε (u) : Ω× Y → R, and is defined as follows:

T ∗ε (u)(x, y) =





u
(
ε
[
x
ε

]
Y

+ εy
)

for (x, y) ∈ Ω̂ε × Y ∗,
u(x) for (x, y) ∈ Λ∗ε × Y,
0 otherwise.

(31)

For u defined on Ω∗ε we denote its extension by zero into Ω by ũ. The same notation will
be used for functions defined on Ω × Y ∗ extended by zero into Ω × Y . The relationship
between T ∗ε and Tε is given by

T ∗ε (u) = Tε(ũ). (32)

Theorem 4.2 (Properties of the unfolding operator for perforated domain). Let T ∗ε be
the unfolding operator for perforated domains defined by (31). Then for all ε ∈ E we
have:

(i) The operator T ∗ε is multiplicative, i.e. for all u, v : Ω∗ε → R we have

T ∗ε (u v) = T ∗ε (u) T ∗ε (v).

(ii) The unfolding operator T ∗ε is linear, i.e. for all α, β ∈ R and u, v : Ω∗ε → R,

T ∗ε (αu+ β v) = α T ∗ε (u) + β T ∗ε (v).

(iii) The unfolding operator T ∗ε conserves the integral, i.e. for all u ∈ L1(Ω∗ε) one has
∫∫

Ω×Y
T ∗ε (u)(x, y) dx dy = |Y |

∫

Ω∗ε

u(x) dx.
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Y

x

y

u(x)

u(ε
[
x
ε

]
Y

+ εy)

0

Ω

Ω∗
ε

Λ∗
ε Λ∗

εΩ̂∗
ε

u(ε
[
x
ε

]
Y

+ εy)

0

εY ∗

T ∗
ε

u(x)

Text, ε

Λ∗
ε Ω̂ε Λ∗

ε Text, ε

Figure 8: Example of the unfolding of a function u(x) defined on periodically perforated
domain Ω∗ε.

(iv) The unfolding operator T ∗ε conserves the norm in the sense that for every u ∈
Lp(Ω∗ε), p ∈ 〈1,∞), it holds

‖T ∗ε (u)‖Lp(Ω×Y ) = |Y | 1p ‖u‖Lp(Ω∗ε).

Thus T ∗ε is bounded and its norm satisfies:

‖T ∗ε ‖L(Lp(Ω∗ε),Lp(Ω×Y )) = |Y | 1p .

(v) T ∗ε is continuous operator for Lp(Ω∗ε) to Lp(Ω× Y ), where p ∈ 〈1,∞).

Proof. (i) It follows directly from the Definition 4.1.

(ii) The Linearity of operator T ∗ε is obvious.

(iii) From the Definition 4.1 one gets

I =
∫∫

Ω×Y
T ∗ε (u)(x, y) dx dy =

∫∫

Ω̂ε×Y ∗

T ∗ε (u)(x, y) dx dy +
∫∫

Λ∗ε×Y
T ∗ε (u)(x, y) dx dy.
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS

Using (13), the first integral can be split. In the second integral we use the equality
T ∗ε (u)(x, y) = u(x) on Λ∗ε × Y . Thus

I =
∑

k∈Ξε

∫∫

ε(Y+k)×Y ∗
T ∗ε (u)(x, y) dx dy + |Y |

∫

Λ∗ε

u(x) dx,

where Ξε is given by (13).

The unfolded function T ∗ε (u)(x, y) is constant in x on each ε(Y + k) × Y ∗. This
yields:

I =
∑

k∈Ξε

|ε(Y + k)|
∫

Y ∗

u(ε(y + k)) dy + |Y |
∫

Λ∗ε

u(x) dx =

= εN |Y |
∑

k∈Ξε

∫

Y ∗

u(ε(y + k)) dy + |Y |
∫

Λ∗ε

u(x) dx.

The change of variable ε(y + k) = x and simple calculations yields the result.

I = |Y |
∑

k∈Ξε

∫

ε(Y ∗+k)

u(x) dx+ |Y |
∫

Λ∗ε

u(x, y) dx = |Y |
∫

Ω∗ε

u(x) dx.

(iv) Because the equality (32) holds, the operator T ∗ε possesses properties which follow
directly from the Theorem 3.3.

Let us show, that the unfolding operator for perforated domains is bounded. For
the norm of an unfolded function u it holds:

‖T ∗ε (u)‖Lp(Ω×Y ) = ‖Tε(ũ)‖Lp(Ω×Y ) = |Y | 1p ‖ũ‖Lp(Ω) = |Y | 1p ‖u‖Lp(Ω∗ε).

(v) The continuity of linear operator is equivalent to its boundedness.

Definition 4.3 (Two-scale convergence for perforated domains). Let T ∗ε be the unfolding
operator for perforated domains defined by (31), E = {ε} be a scale, {uε} be a sequence
in Lp(Ω∗ε) and u0 ∈ Lp(Ω× Y ), p ∈ 〈1,∞).

A sequence {uε} is said to strongly two-scale converge to u0 in Lp(Ω) with respect to the
scale E if the sequence {T ∗ε (uε)} converges to u0 strongly in Lp(Ω× Y ).

A sequence {uε} is said to weakly two-scale converge to u0 in Lp(Ω) with respect to the
scale E if the sequence {T ∗ε (uε)} converges to u0 weakly in Lp(Ω× Y ).

Theorem 4.4. Let {uε} be a sequence in Lp(Ω∗ε) and u0 ∈ Lp(Ω× Y ), p ∈ 〈1,∞). Then

(i) Any constant sequence {u} ∈ Lp(Ω) strongly two-scale converges to itself, i.e.

T ∗ε (u)→ u0 strongly in Lp(Ω× Y ),

where

u0(x, y) =

{
u(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.
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(ii) Any sequence {uε} ∈ Lp(Ω∗ε) two-scale converging (strongly or weakly) in Lp(Ω) is
bounded in Lp(Ω∗ε), i.e.

‖uε‖Lp(Ω∗ε) ≤ C.

(iii) If a two-scale limit u0 exists, then it is unique as an element of Lp-spaces.

(iv) If {uε} strongly two-scale converges to u0 in Lp(Ω), i.e.

T ∗ε (uε)→ u0 strongly in Lp(Ω× Y ).

Then it weakly two-scale converges to the same limit

T ∗ε (uε) ⇀ u0 weakly in Lp(Ω× Y ).

(v) For p ∈ (1,∞), if {uε} weakly two-scale converges to u0 in Lp(Ω),

T ∗ε (uε) ⇀ u0 weakly in Lp(Ω× Y ).

Then its extension by zero converges weakly

ũε ⇀ u∗ weakly in Lp(Ω),

where u∗(x) = 1
|Y |
∫
Y ∗ u0(x, y) dy = |Y ∗|

|Y |MY ∗(u0)(x).

Proof.

(i)-(iv) The proof is analogical to the proof of the Theorem 3.3.

(v) Let ϕ ∈ Lp′(Ω), where 1
p

+ 1
p′

= 1. From the Theorem 4.2 (i) and the equality (iii)
we obtain:

∫

Ω
ũε(x) ϕ(x) dx =

1

|Y |
∫∫

Ω×Y
Tε(ũε)(x, y)Tε(ϕ)(x, y) dx dy.

Now, we can tend to the limit. Using the Theorem 4.4 (i) we obtain the result.

∫

Ω
ũε(x) ϕ(x) dx→ 1

|Y |
∫∫

Ω×Y ∗
u0(x, y)ϕ(x) dx dy =

=
∫

Ω

(
1

|Y |
∫

Y ∗
u0(x, y) dy

)
ϕ(x) dx =

∫

Ω
u∗(x) ϕ(x) dx.
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4. PERIODIC UNFOLDING FOR PERFORATED DOMAINS

4.3. Unfolding operator T ∗ε and gradients

Consider a function u ∈ W 1,p(Ω∗ε). As in the case without holes, it is straightforward that

T ∗ε (∇u) =





1
ε
∇yT ∗ε (u) on Ω̂ε × Y ∗,
∇u = ∇T ∗ε (u) on Λ∗ε × Y,
0 otherwise.

(33)

Now we will state the main result about the convergence of an unfolded sequence of
gradients {T ∗ε (∇uε)} in the same spirit as that of the Theorem 3.11.

Theorem 4.5. Let a sequence {uε} be bounded in W 1,p(Ω∗ε), for p ∈ (1,∞). i.e.

‖uε‖W 1,p(Ω∗ε) ≤ C.

Then, there exists a subsequence (still denoted {uε}) and functions u0 ∈ W 1,p(Ω) and
u∗0 ∈ Lp(Ω;W 1,p

per (Y )) such that

(i) T ∗ε (uε) ⇀ u weakly in Lp(Ω;W 1,p(Y )), where

u(x, y) =

{
u0(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

(ii) T ∗ε (∇uε) ⇀ ∇u0 + ∇yu
∗
0 weakly in [Lp(Ω× Y )]N , i.e. {∇uε} converges two-scale

weakly in [Lp(Ω)]N .

Moreover, MY (u∗0) = 0 and u∗0 = −yc · ∇u0 on Ω× T.

Proof. The first two properties follow from the Theorem 3.11 and property of the unfolding
operator on perforated domains, namely that T ∗ε (u) = Tε(ũ).

The proof is analogical to the one of the Theorem 3.11. Instead of Tε, resp. Mε, we use
T ∗ε , resp. M∗

ε, where

M∗
ε(ϕ)(x) =





1

εN |Y ∗|
∫

ε([xε ]
Y

+Y ∗)
ϕ(t) dt for x ∈ Ω̂∗ε,

ϕ(x) for x ∈ Λ∗ε.

It remains to prove that u∗0 = −yc · ∇u0 on Ω× T . By the same reasoning as in the proof
of the Theorem 3.11 we can show that

T ∗ε (u2
ε) ⇀ yc · ∇u0 + u∗0 weakly in Lp(Ω,W 1,p(Y )).

Further from the definition of the unfolding operator for the perforated domains it follows
that

T ∗ε (u2
ε) = 0 on Ω× T, ∀ε.

We can conclude that
yc · ∇u0 + u∗0 = 0 on Ω× T.
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5. Application

5.1. Torsion problem

Study of elastic torsion of a bar leads to a problem described in [FNJ12; FR15]. Here, a
more general problem is studied and the case of elastic torsion is obtained as an applica-
tion.

Let us start with a definition:

Definition 5.1. Let α, β ∈ R, such that 0 < α < β. We say that a matrix function
A(x) =

(
aεij(x)

)
∈ [L∞(Ω)]N×N belongs to a set M(α, β,Ω) if and only if

(i) (A(x)λ, λ) ≥ α|λ|2, (ellipticity),
(ii) |A(x)λ| ≤ β|λ|, (boundedness).

(34)

∀λ ∈ RN , a.e. in Ω.

Now we can state a boundary problem:

−∇ · (Aε∇uε) = f in Ω∗ε,

uε = 0 on ∂extΩ
∗
ε,

uε = const. on ∂T i
int, ε; i = 1, . . . ,m(ε),

∫

∂T i
int, ε

Aε(x)
∂uε
∂n

(x) dx =
∫

T i
int, ε

f(x) dx





(35)

where:

• Ω∗ε, ∂extΩ
∗
ε, T

i
int, ε, etc. are defined in the beginning of the Section 4.1.

• f ∈ L2(Ω),

• Aε(x) =
(
aεij(x)

)
i,j=1...N

is a matrix function from the set M(α, β,Ω∗ε),

• n is the outward-pointing unite normal (i.e. on the inner boundary, n is directed
inward to the holes),

• m(ε) denotes number of interior holes.

For f(x) = −2 and N = 2 we get a torsion problem derived in [FR15].

Let us introduce the linear space

Sε(Ω) =
{
v ∈ H1

0 (Ω), s.t. v = 0 in Text, ε, v = const. in T i
int, ε, i = 1, . . . ,m(ε)

}
.
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5. APPLICATION

with the norm
‖v‖Sε(Ω) = ‖∇v‖[L2(Ω∗ε)]N . (36)

Let us define the weak formulation of the problem (35):

Find uε ∈ Sε(Ω) such that
∫

Ω∗ε

Aε(x)∇uε(x) · ∇v(x) dx =
∫

Ω

f(x) v(x) dx, ∀v ∈ Sε(Ω).





(37)

Proposition 5.2. Let Aε∇uε ∈ [C1(Ω∗ε)]
N

, uε ∈ C1(Ω∗ε) and uε solves the problem (37),
then it also solves the boundary problem (35).

Proof. Let us suppose that (37) holds and let us choose v ∈ C1(Ω∗ε) ∩ Sε(Ω).

Using integration by parts of the left-hand side of (37) we get

LHS =
∫

Ω∗ε

Aε(x)∇uε(x) · ∇v(x) dx =

= −
∫

Ω∗ε

∇ ·
(
Aε(x)∇uε(x)

)
v(x) dx +

∫

∂Ω∗ε

Aε(x)∇uε(x) · n v(x) dx.

Since v is equal to zero on the exterior boundary ∂extΩ
∗
ε (it follows from the properties of

the space Sε(Ω)), it results in

LHS = −
∫

Ω∗ε

∇ ·
(
Aε(x)∇uε(x)

)
v(x) dx +

m(ε)∑

i=1

∫

∂T i
int, ε

Aε(x)∇uε(x) · n v(x) dx. (38)

Since v is equal to zero in Text, ε, right-hand side of (37) can be rewritten to the form

RHS =
∫

Ω

f(x) v(x) dx =
∫

Ω∗ε

f(x) v(x) dx+
m(ε)∑

i=1

∫

T i
int, ε

f(x) v(x) dx. (39)

Let us choose in (38) and (39) v ∈ D(Ω∗ε) extended by zero to Ω. These functions are
in Sε(Ω) and hence they can be used as a test functions and are equal to zero on all
boundary ∂Ω∗ε. Then, from (37) it follows

−
∫

Ω∗ε

∇ ·
(
Aε(x)∇uε(x)

)
v(x) dx−

∫

Ω∗ε

f(x) v(x) dx = 0. (40)

By using the Lemma 2.26, from the equation (40) we get

−∇ ·
(
Aε∇uε

)
− f = 0 a. e. in Ω∗ε. (41)
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Now, let us choose v such that v = const. on hole T i
int, ε (and let us denote this constant

by ci) and v = 0 on all other holes (i.e. on Ωj
ε, for i 6= j) Then, from (37), (38), (39) and

(41), it follows

ci

∫

∂T i
int, ε

Aε(x)∇uε(x) · n dx = ci

∫

T i
int, ε

f(x) dx for i = 1, . . . ,m(ε). (42)

Finally, from (40) and (42) together with the properties of the space Sε(Ω) it follows that
uε fulfill the problem (35).

To find the homogenized solution to problem (37) we will use as test functions rapidly
oscillating functions. The following result concerns their two-scale convergence.

Proposition 5.3 (Unfolding of rapidly oscillating function on perforated domain). Let
v ∈ Lpper(Y

∗), p ∈ 〈1,∞). Furthermore, let {vε} be a sequence defined by

vε(x) = v
(
x

ε

)
∀x ∈ Ω∗ε.

Then,

T ∗ε (vε)(x, y) =





v(y) for (x, y) ∈ Ω̂ε × Y ∗,
v(x) for (x, y) ∈ Λ∗ε × Y,
0 otherwise.

and the sequence {vε} strongly two-scale converges in Lp(Ω), i.e.

T ∗ε (vε) → v0 strongly in Lp(Ω× Y ), (43)

where v0(x, y) = ṽ(y).

Proof. The form of unfolded function T ∗ε (vε) follows directly from its definition.

The convergence (43) can be deduced from the following

‖T ∗ε (vε)− v0‖pLp(Ω×Y ) =
∫∫

Ω×Y

(
T ∗ε (vε)(x, y)− v0(x, y)

)p
dx dy =

=
∫∫

Ω̂ε×Y ∗

(
v(y)− v(y)

)p
dx dy +

∫∫

Λ∗ε×Y

(
v(x)− v(x)

)p
dx dy +

∫∫

Text, ε×Y ∗

(
0− v(y)

)p
dx dy.

The first and the second integral is equal to zero. The third one converges to zero since
|Text, ε × Y ∗| → 0 as ε→ 0 and by assumption

∫
Y ∗ u

p(y) dy <∞.

Theorem 5.4. Let uε be the solution of the problem (37). Assume that

T ∗ε (Aε) → A a.e. in Ω× Y (44)

for a matrix A = A(x, y) such that

A = (aij)i,j=1...N ∈M(α, β,Ω× Y ).
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5. APPLICATION

Then, there exists u0 ∈ H1
0 (Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

‖uε − u0‖L2(Ω∗ε) → 0,

T ∗ε (uε) ⇀ u weakly in L2(Ω, H1(Y )), where

u(x, y) =

{
u0(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

T ∗ε (∇uε) ⇀ ∇u0 +∇yu
∗
0 weakly in [L2(Ω× Y )]

N
, where

MY (u∗0) = 0 and u∗0 = −yc · ∇u0 on Ω× T.

(45)

The pair (u0, u
∗
0) is the unique solution of the problem:

Find u0 ∈ H1
0 (Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

1

|Y |
∫∫

Ω×Y ∗
A(x, y) [∇u0(x) +∇yu

∗
0(x, y)] · [∇Ψ(x) +∇yΦ(x, y)] dx dy =

∫

Ω

f(x) Ψ(x) dx,

∀Ψ ∈ H1
0 (Ω),

∀Φ ∈ L2(Ω, H1
per(Y )), such that Φ + yc · ∇Ψ is constant in y on Ω× T.





(46)

Proof. The proof is divided into 3 steps.

First step - existence and uniqueness of the homogenized solution. By Lax-
Milgram lemma, Problem (46) has a unique solution. Choosing v = uε and using (34)(i),
(37) and the Hölder inequality we can get the following estimate:

‖uε‖2
Sε(Ω) = ‖∇uε‖2

[L2(Ω∗ε)]N =
∫

L2(Ω∗ε)
∇uε(x) · ∇uε(x) dx ≤

≤ 1

α

∫

Ω∗ε

Aε(x)∇uε(x) · ∇uε(x) dx =
1

α

∫

Ω
f(x)uε(x) dx ≤ 1

α
‖f‖L2(Ω)‖uε‖L2(Ω).

Therefore

‖uε‖Sε(Ω) ≤
1

α
‖f‖L2(Ω). (47)

As seen above, {uε} is bounded in Sε(Ω). Then the Theorem 4.5 implies convergences (45)
at least for subsequences.

Second step - identification of the limit. Let Ψ ∈ D(Ω) and ϕ1 ∈ D(Y ) be period-
ically extended to RN , such that ϕ1 ≡ 1 on T . We choose in (37) the test function

vε =





Ψ [1− ϕ1 ε] +Mε(Ψ)ϕ1 ε in Ω̂ε,

Ψ [1− ϕ1 ε] in Λε,
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where ϕ1 ε(x) = ϕ1

(
x
ε

)
. The function vε belongs to Sε(Ω) since ϕ1 vanishes on ∂Y and is

constant on the holes, Mε(Ψ) is piecewise constant and Ψ vanishes on ∂Ω.

For such function vε it holds:

T ∗ε (vε)(x, y) =





T ∗ε (Ψ)(x, y) [1− ϕ1(y)] + T ∗ε (Mε(Ψ))(x, y)ϕ1(y) in Ω̂ε × Y ∗,
Ψ(x) [1− ϕ1 ε(x)] in Λ∗ε × Y,
0 otherwise.

Since
(
T ∗ε (Mε(Ψ)) − T ∗ε (Ψ)

)
1

Ω̂ε×Y ∗ → 0 uniformly on Ω × Y and |Λ∗ε × Y | → 0 we
conclude

T ∗ε (vε)→ Ψ0 strongly in L2(Ω× Y ), where Ψ0(x, y) =

{
Ψ(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

For the gradient of function vε it holds

T ∗ε (∇vε)(x, y) =





T ∗ε (∇Ψ)(x, y) [1− ϕ1(y)] +

+ 1
ε
∇yϕ1(y) T ∗ε (Mε(Ψ)−Ψ)(x, y) in Ω̂ε × Y ∗,

∇Ψ(x) [1− ϕ1 ε(x)]− 1
ε

Ψ(x) (∇ϕ1)
(
x
ε

)
in Λ∗ε × Y,

0 otherwise.

Now, our goal is to find the strong limit of {T ∗ε (∇vε)} in [L2(Ω× Y )]
N

. First, we show

that
{

1
ε
T ∗ε (Mε(Ψ)−Ψ)

}
converges to ∇Ψ · yc. Indeed,

MY

([
1

ε
T ∗ε (Mε(Ψ)−Ψ)−∇Ψ · yc

]
1

Ω̂ε×Y ∗

)
= 0,

and

∇y

([
1

ε
T ∗ε (Mε(Ψ)−Ψ)−∇Ψ · yc

]
1

Ω̂ε×Y ∗

)
=

= [T ∗ε (∇Ψ)−∇Ψ] 1
Ω̂ε×Y ∗ → 0 strongly in

[
L2(Ω× Y )

]N
.

Hence, by Poincaré-Wirtinger inequality,

[T ∗ε (∇Ψ)−∇Ψ] 1
Ω̂ε×Y ∗ → ∇Ψ · yc strongly in

[
L2(Ω× Y )

]N
.

Proving strong convergence on Λ∗ε × Y is not straightforward. Although |Λ∗ε × Y | → 0,
1
ε

Ψ (∇ϕ1)
(
·
ε

)
is not bounded on Λ∗ε × Y . Let Σε =

{
k ∈ RN , s.t. ∂Ω ∈ Y ε

k

}
. By change

of variable x
ε
− k = t, we derive
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5. APPLICATION

∥∥∥∥
1

ε
Ψ (∇ϕ1)

( ·
ε

)∥∥∥∥
2

[L2(Λ∗ε×Y )]N
=
∫∫

Λ∗ε×Y

(
1

ε
Ψ(x) (∇ϕ1)

(
x

ε

))2

dx dy =

= |Y |
∑

k∈Σε

∫

ε(Y+k)

(
1

ε
Ψ(x) (∇ϕ1)

(
x

ε

))2

dx =

= |Y |
∑

k∈Σε

∫

Y

(
εN

ε
Ψ(ε(t+ k)) (∇ϕ1)(t+ k)

)2

dt.

The function ∇ϕ1 is Y -periodic and bounded and since Ψ ∈ D(Ω), Ψ(ε(t + k)) → 0
uniformly on Y . Thus, we get

1

ε
Ψ (∇ϕ1)

( ·
ε

)
1Λ∗ε×Y → 0 strongly in

[
L2(Ω× Y )

]N
.

Using all this results above, we have

T ∗ε (∇vε)→ ∇Ψ−∇y(∇Ψ · yc ϕ1) strongly in
[
L2(Ω× Y )

]N
.

Using vε as a test function in (37) we obtain for the left-hand side

LHS =
∫

Ω∗ε

Aε(x)∇uε(x) · ∇vε(x) dx =

=
1

|Y |
∫∫

Ω×Y
T ∗ε (Aε)(x, y) T ∗ε (∇uε)(x, y) · T ∗ε (∇vε)(x, y) dx dy →

→ 1

|Y |
∫∫

Ω×Y
A(x, y) [∇u0(x) +∇yu

∗
0(x, y)] ·

[
∇Ψ(x)−∇y

(
ϕ1(y) yc · ∇Ψ(x)

)]
dx dy, (48)

and for the right-hand side

RHS =
∫

Ω

f(x) vε(x) dx =
1

|Y |
∫∫

Ω×Y
Tε(f)(x, y) Tε(vε)(x, y) dx dy →

→ 1

|Y |
∫∫

Ω×Y
f(x) Ψ(x) dx =

∫

Ω

f(x) Ψ(x) dx. (49)

Now, taking in (37) as a test function

vε =




ε
(
Ψ1 ψε +Mε(Ψ1)ϕc ε

)
in Ω̂ε,

εΨ1 ψε in Λε,

where Ψ1 ∈ D(Ω), ψ ∈ C∞per(Y ) ψ ∈ C∞per(Y ), such that ψ ≡ 0 on T , and ϕ ∈ D(Y ), ϕc is

constant on T and ψε(x) = ψ
(
x
ε

)
resp. ϕc ε(x) = ϕc

(
x
ε

)
.
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The unfolding of gradient of vε has a form

T ∗ε (∇vε)(x, y) =





ε T ∗ε (∇Ψ1)(x, y)ψ(y) + T ∗ε (Ψ1)(x, y)∇yψ(y) +

+ T ∗ε (Mε(Ψ1))(x, y)∇yϕc(y) in Ω̂∗ε × Y ∗,

ε∇Ψ1(x)ψε(x) + Ψ1(x) (∇ψ)
(
x
ε

)
in Λ∗ε × Y,

0 otherwise.

Since |Λ∗ε × Y | → 0, and further

ε T ∗ε (∇Ψ1)(x, y)ψ(y) 1
Ω̂∗ε×Y ∗

→ 0 strongly in
[
L2(Ω× Y )

]N
,

T ∗ε (Ψ1) 1
Ω̂∗ε×Y ∗

→ Ψ1 strongly in L2(Ω× Y ),

and also
T ∗ε (Mε(Ψ1)) 1

Ω̂∗ε×Y ∗
→ Ψ1 strongly in L2(Ω× Y ),

we conclude that

T ∗ε (∇vε)→ Ψ1∇y(ψ + ϕc) strongly in
[
L2(Ω× Y )

]N
.

Using vε as a test function in (37) we get

LHS =
∫

Ω∗ε

Aε(x)∇uε(x) · ∇vε(x) dx =

=
1

|Y |
∫∫

Ω×Y
T ∗ε (Aε)(x, y) T ∗ε (∇uε)(x, y) · T ∗ε (∇vε)(x, y) dx dy →

→ 1

|Y |
∫∫

Ω×Y
A(x, y) [∇u0(x) +∇yu

∗
0(x, y)] ·Ψ1(x)∇y[ψ(y) + ϕc(y)] dx dy, (50)

and
RHS =

∫

Ω

f(x) vε(x) dx→ 0. (51)

Third step - Conclusion. Let us denote by Φ the function

Φ(x, y) = Ψ1(x) [ψ(y) + ϕc(y)]− ϕ1(y) yc · ∇Ψ(x).

The results (48), (49), (50) and (51) imply

1

|Y |
∫∫

Ω×Y
A(x, y) [∇u0(x) +∇yu

∗
0(x, y)] · [∇Ψ(x) +∇yΦ(x, y)] dx dy =

∫

Ω

f(x) Ψ(x). (52)

Now, every function, which belongs to the space D(Ω) ⊗ C∞per(Y ) and is constant in y
on T can be written as a product Ψ1(x) [ψ(y) + ϕc(y)], furthermore ϕ1(y) yc · ∇Ψ(x) ∈
D(Ω) ⊗ C∞per(Y ). By the density of D(Ω) ⊗ C∞per(Y ) in L2(Ω, H1

per(Y )) the results (52) is
valid for every Ψ ∈ H1

0 (Ω) and Φ ∈ L2(Ω, H1
per(Y )), such that Φ + yc · ∇Ψ is constant in

y on Ω× T .
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6. NUMERICAL EXAMPLES

6. Numerical examples

We present numerical example for dimension N = 2.

Let x = (x1, x2) ∈ Ω and y = (y1, y2) ∈ Y , where Ω is a simple domain in R2 and
Y = 〈0, l1) × 〈0, l2), l1, l2 are real positive numbers. Vector function yc has the form
yc = ( yc1, y

c
2 ). Furthermore, let us suppose that A is a function only in variable y, i.e.

A(x, y) = A(y).

We would like to solve the problem, derived in the Theorem 5.4:





Find u0 ∈ H1
0 (Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

1

|Y |
∫∫

Ω×Y ∗
A(y) [∇u0(x) +∇yu

∗
0(x, y)] · [∇Ψ(x) +∇yΦ(x, y)] dx dy =

∫

Ω

f(x) Ψ(x) dx,

∀Ψ ∈ H1
0 (Ω), ∀Φ ∈ L2(Ω, H1

per(Y )), s. t. Φ + yc · ∇Ψ is constant in y on Ω× T,
MY (u∗0) = 0,

u∗0 = −yc · ∇u0 on Ω× T.
(53)

We will look for u0, u
∗
0 in two steps. At first, we will compute auxiliary functions denoted

χ̂1, χ̂2 and subsequently, using them, we will find homogenized solutions u0, u
∗
0.

Let us choose Ψ(x) ≡ 0 as a test function in (53). We suggest function u∗0 in the form

u∗0(x, y) = −χ̂1(y)
∂u0

∂x1

(x)− χ̂2(y)
∂u0

∂x2

(x).

Then, (53) takes the form

∫∫

Ω×Y ∗
A

[
∂u0

∂x1

∂Φ

∂y1

+
∂u0

∂x2

∂Φ

∂y2

]
dx dy =

=
∫∫

Ω×Y ∗
A

[
∂χ̂1

∂y1

∂u0

∂x1

∂Φ

∂y1

+
∂χ̂2

∂y1

∂u0

∂x2

∂Φ

∂y1

+
∂χ̂1

∂y2

∂u0

∂x1

∂Φ

∂y2

+
∂χ̂2

∂y2

∂u0

∂x2

∂Φ

∂y2

]
dx dy.

From this we see that the problem (53) is fulfilled when the auxiliary function χ̂i, i = 1, 2,
satisfies

∫

Y ∗

A
∂Φ

∂yi
dy =

∫

Y ∗

A∇χ̂i · ∇Φ dy, ∀ Φ ∈ L2(Ω, H1
per(Y )), s. t. Φ is constant in y on T.
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Rewriting this, we derive the following problem





Find χ̂i ∈ H1
per(Y ) such that

∫

Y ∗

A∇(χ̂i − yi) · ∇Φ dy = 0, ∀ Φ ∈ L2(Ω, H1
per(Y )), s. t. Φ is constant in y on T,

MY (χ̂i) = 0,

χ̂i = −yci on T.
(54)

Now, let us choose as a test function in (53) a function

Φ(x, y) = −ϕ1(y) yc ·Ψ(x),

where Ψ ∈ D(Ω) and ϕ is Y -periodic function which ϕ1|Y ∈ D(Y ), ϕ1 ≡ 1 on T .

Then, (53) takes the form

1

|Y |
∫∫

Ω×Y ∗
A

[
∇u0 +∇y

(
−χ̂1

∂u0

∂x1

− χ̂2
∂u0

∂x2

)]
· [∇Ψ−∇y(ϕ1 y

c ·Ψ)] dx dy =
∫

Ω

f Ψ dx.

Simple computations yield the problem





Find u0 ∈ H1
0 (Ω) such that

|Y ∗|
|Y |

∫

Ω

A∇u0 · ∇Ψ dx dy =
∫

Ω

f Ψ dx, ∀Ψ ∈ H1
0 (Ω).

(55)

Where matrix A is given by A = (aij)i,j=1,2

a11 =
∫

Y ∗

A

[(
1− ∂χ̂1

∂y1

)(
1− ∂(yc1 ϕ1)

∂y1

)
+
∂χ̂1

∂y2

∂(yc1 ϕ1)

∂y2

]
dy, (56)

a12 = −
∫

Y ∗

A

[(
1− ∂χ̂1

∂y1

)
∂(yc2 ϕ1)

∂y1

+
∂χ̂1

∂y2

(
1− ∂(yc2 ϕ1)

∂y2

)]
dy, (57)

a21 = −
∫

Y ∗

A

[(
1− ∂χ̂2

∂y2

)
∂(yc1 ϕ1)

∂y2

+
∂χ̂2

∂y1

(
1− ∂(yc1 ϕ1)

∂y1

)]
dy, (58)

a22 =
∫

Y ∗

A

[(
1− ∂χ̂2

∂y2

)(
1− ∂(yc2 ϕ1)

∂y2

)
+
∂χ̂2

∂y1

∂(yc2 ϕ1)

∂y1

]
dy. (59)

In the sequel, we present results of the homogenization of torsion problem derived in
[FR15]. We assume Ω = (0, 1) × (0, 1), reference cell Y = 〈0, 1) × 〈0, 1), reference hole

T =
(

1
4
, 3

4

)
×
(

1
4
, 3

4

)
. Torsion problem is obtained for A(y) = 1, f(x) = −2.

According to the behavior of the holes, we distinguish three cases. They were described
in Section 4.1.1.
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6. NUMERICAL EXAMPLES
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Figure 9: Auxiliary function χ̂1.

• First, let us present results for r(ε) = ε, as for this case the Theorem 5.4 and
all results in this chapter were derived. The sequence of domains is shown on the
upper line on Figure 6. In the first step, by solving problem (54) we get two auxiliary
functions χ̂1 (on Figure 9) and χ̂2.

In the second step the problem (55) is solved to obtain the homogenized solution.
A comparison of functions uε and homogenized solution u0 is on Figure 11. Graph
of function u1/4 is on Figure 10.

In the following two cases we only present numerical results without any theoretical result.

• For r(ε) = ε2 (so called small holes), the results are on Figure 12. The sequence of
domains is on the middle line on Figure 6.

• For r(ε) = ε(2− ε), the results are on Figure 13. The sequence of domains is on the
lower line on Figure 6.

The numerical results are obtained by finite element method implemented in MATLAB.
Some aspects of implementation are described in Appendix A.
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Figure 10: Graph of function u1/4.
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6. NUMERICAL EXAMPLES
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Figure 11: Diagonal cuts of functions uε, for ε = 1/3,
1/4,

1/5,
1/6,

1/7, and of homogenized
solution u0, the behavior of holes is described by r(ε) = ε.

53



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

u
1/3

u
1/4

u
1/5

u
1/6

u
1/7

u
0

Figure 12: Diagonal cuts of functions uε, for ε = 1/3,
1/4,

1/5,
1/6,

1/7, and solution u0 of
torsion problem on domain without holes (simply connected domain), the behavior of holes
is described by r(ε) = ε2.
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6. NUMERICAL EXAMPLES
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Figure 13: Diagonal cuts of functions uε, for ε = 1/3,
1/4,

1/5,
1/6,

1/7, the behavior of holes
is described by r(ε) = ε(2− ε).
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7. Conclusion

In problems which are set on perforated domains Ω∗ε, where the shape and distribution
of holes depends on the parameter ε, it may be difficult to define convergence for the
sequence of solutions {uε}. There exist some approaches to solve this difficulty but their
usage is usually limited. Limiting factors are usually the shape of the perforations or
boundary conditions on inner boundaries.

The two-scale convergence, the approach presented in this thesis, is based on periodic
unfolding operator for perforated domains T ∗ε . This method is suitable for periodically
distributed holes. The unfolded sequence {T ∗ε (uε)} is defined on fixed domains which
removes difficulties with the convergence.

This technique was applied to the problem describing torsion of the bar (and its more
general version). We derived a homogenized equation defined on a simply connected do-
main (without holes). We also presented numerical aspect of solving such a homogenized
problem and in the last section there are some numerical examples.

Moreover, we proved some interesting properties which make it suitable for more general
situations than that presented here. Unfolding operator T ∗ε , used in this thesis, is slightly
different than the one used in e.g. [CD00], [CDG02]. This change in definition allowed us
to prove some properties in a more elegant way.
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Appendices

A. Implementation of numerical experiments

Algorithms producing the numerical examples presented in Chapter 6 were implemented
in MATLAB. Here, we shortly describe some aspects of implementation.

A.1. Homogenized problem

Solving of problem (53) consists of three steps: firstly, two auxiliary cell problem (54)
are solved in order to find χ̂1, χ̂2. Secondly, these functions are used in (56) to evaluate
the elements of matrix A. Finally, using A, the homogenized solution is found by solving
problem (55).

Auxiliary cell problem and homogenized problem are solved by finite element method
implemented in MATLAB. The domain is decomposed into conforming unstructured tri-
angular mesh. Basis and test functions are piecewise linear. Hence, all integrals resulting
from finite element formulation can be precomputed analytically.

Periodic boundary conditions prescribed in the formulation (54) can be replaced,
in our case, by Dirichlet and homogenous Neumann condition. Let us remind that in our
model problem the reference cell Y = 〈0, l1)×〈0, l2) and reference hole T =

(
l1−a

2
, l1+a

2

)
×(

l2−b
2
, l2+b

2

)
, where 0 < a < l1 and 0 < b < l2. So perforated reference cell Y ∗ is symmetric

with respect to axes y2 = l2
2

and y1 = l1
2

.

If a function χ̂1(y1, y2) is a solution of the problem (54), then also the function −χ̂1(l1 −
y1, y2) is a solution of the same problem. Indeed, if a function w = w(y1, y2) belongs to
L2(Ω, H1

per(Y )) then also the function −w(l1 − y1, y2) belongs to the same space. Let us
choose it in (54) as a test function Φ. If a function χ̂1 solves the problem (54), then we
can derive:

∫ l2

0

∫ l1

0
∇(χ̂1(y1, y2)− y1) · ∇[−w(l1 − y1, y2)] 1Y ∗ dy1 dy2

∣∣∣∣∣∣∣∣∣∣∣

l1 − y1 = t

− dy1 = dt

y1 = 0⇒ t = l1

y1 = l1 ⇒ t = 0

∣∣∣∣∣∣∣∣∣∣∣

=

=
∫ l2

0

∫ 0

l1
∇(χ̂1(l1 − t, y2)− (l1 − t)) · ∇w(t, y2) 1Y ∗ dt dy2 =

= −
∫ l2

0

∫ l1

0
∇(χ̂1(l1 − t, y2) + t) · ∇w(t, y2) dt 1Y ∗ dy2 =

=
∫ l2

0

∫ l1

0
∇(−χ̂1(l1 − t, y2)− t) · ∇w(t, y2) dt 1Y ∗ dy2 = 0.
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Thus, the function −χ̂1(l1 − y1, y2) also solves the problem (54). From the uniqueness of
the solution of the problem (54) we get χ̂1(y1, y2) = −χ̂1(l1−y1, y2), which means that χ̂1

“odd in variable y1 with respect to point y1 = l1
2

”. Finally, since this symmetry holds and
the function χ̂1 ∈ H1

per(Y ) we can prescribe to the boundary y1 = 0 and y1 = l1 Dirichlet
conditions.

Similar reasoning leads to Neumann conditions on the boundary y2 = 0 and y2 = l2.
Indeed, let us choose in (54) as a test function Φ = w(y1, l2 − y2), which belongs to
L2(Ω, H1

per(Y )). If a function χ̂1 solves the problem (54), then we can derive:

∫ l1

0

∫ l2

0
∇(χ̂1(y1, y2)− y1) · ∇w(y1, l2 − y2) 1Y ∗ dy2 dy1

∣∣∣∣∣∣∣∣∣∣∣

l2 − y2 = t

− dy2 = dt

y2 = 0⇒ t = l2

y2 = l2 ⇒ t = 0

∣∣∣∣∣∣∣∣∣∣∣

=

= −
∫ l1

0

∫ 0

l2
∇(χ̂1(y1, l2 − t)− y1) · ∇w(y1, t) 1Y ∗ dt dy2 =

=
∫ l1

0

∫ l2

0
∇(χ̂1(y1, l2 − t)− y1) · ∇w(y1, t) 1Y ∗ dt dy2

Thus, the function χ̂1(y1, l2 − y2) also solves the problem (54). Since the solution of (54)
is unique it means that χ̂1(y1, y2) = χ̂1(y1, l2−y2), i.e. the function χ̂1 is “even in variable
y2 with respect to axis y2 = l2

2
”. Finally, because this symmetry holds and the function

χ̂1 ∈ H1
per(Y ) we can prescribe to the boundary y2 = 0 and y2 = l2 homogenous Neumann

conditions.

So, the boundary conditions for function χ̂ are:

χ̂1(y1, 0) = c, χ̂1(y1, l2) = c,

∂χ̂1

∂y2

(0, y2) = 0,
∂χ̂1

∂y2

(l2, y2) = 0,

where constant c is determined from the condition MY (χ̂i) = 0. For the function χ̂2 the
reasoning is analogical.

Due to the symmetry it would be possible to solve the auxiliary problems on one quarter
of period.

Matrix A: Integrals in the formula (56) for matrix A are computed numerically element
by element by using 2D quadrature rule of order 1, which is sufficient because χ̂1, χ̂2 are
approximated only by piecewise linear functions. Since the formula for matrix A contains
partial derivatives of functions χ̂1, χ̂2 to achieve better accuracy it would be useful to use
higher polynomial basis in finite element formulation at least for the cell problem.
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A. IMPLEMENTATION OF NUMERICAL EXPERIMENTS

T i
int ε

Figure 14: Basis function associated with vertices on the boundary of an inner hole T i
int, ε.

A.2. Problem on perforated domain

Problem (37) formulated in Chapter 5 is also solved by finite element method on triangular
mesh.

Basis and test functions are piecewise linear and belong to the space Sε(Ω) (defined by
(36)). To fulfill conditions required by definition of this space (especially requirement that
functions in Sε equal constant on each inner hole) we chose slightly different basis functions
than is usual. The basis function associate with a vertex which is not on the boundary
(neither outer nor inner) is a classical hat function, which equals one at its associated
vertex and zero at all other vertices. For all vertices belonging to the boundary of a inner
hole T i

int, ε there is the only one basis function, which equals one in all these vertices and
zero at all others, see Figure 14.

A.3. Meshes

Decomposition of domains for all problems mentioned above were generated by using
toolbox MESH2D - Automatic Mesh Generation by Darren Engwirda. The code is covered
by the BSD Licence.

MESH2D is a toolbox of 2D meshing routines that allows for the automatic generation
of unstructured triangular meshes for general 2D geometry. The resulting mesh achieves
high quality.

Mesh2D is suitable for domain with holes and also for domain with multiple connected
faces. In addition to the fully automatic settings, MESH2D allows the user to specify
sizing information, allowing for varying levels of mesh resolution within the domain.
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Figure 15: Mesh used to solve auxiliary cell problem (54).

Figure 16: Meshes used to solve problem on perforated domain (37), for ε = 1/3,
1/4.
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