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TISO ADJUSTABLE FILTER WITH
CONTROLLABLE CONTROLLED–GAIN VOLTAGE

DIFFERENCING CURRENT CONVEYOR
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The main aim of this paper is to present solution of triple-input single-output (TISO) filter with independently adjustable
pole frequency, quality factor, bandwidth and also gain. Filter is universal, operates in current mode and includes only one
active element – the so-called Controlled-Gain Voltage Differencing Current Conveyor (CG-VDCC) with two controllable
parameters: transconductance (gm ) and gain of output currents (BX ). Implementation of CG-VDCC element in 0.18µm
CMOS technology is also included and this model is used in proposed filter simulations.
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1 INTRODUCTION

There have been many controllable active elements re-
ported in recent works, brief summarization is given in [1].
Some active elements which have two externally control-
lable (by bias voltage or current) parameters have been
already published. Typical examples of active elements
with two-parameter control are modifications of the cur-
rent differencing transconductance amplifier (CDTA) [2],
where RX and gm control is implemented by DC bias
currents [3, 4]. Several active elements, based on transcon-
ductance section (OTA) [1, 5] and current conveyor of
second generation (CCII) [6, 7], have been also proposed.
For example, current conveyor transconductance ampli-
fier (CCTA) [8] also utilizes independent RX and gm con-
trol in some of its variants, for example [9]. Modification
of CCTA in [10] employs current gain control, where cur-
rent conveyor with adjustable gain from X to Z terminal
was used. Controllable current gain in frame of current
conveyor [11, 12] seems to be an interesting and valuable
advantage [13–21].

Proposed novel active element provides useful con-
trollable features. The so-called CG-VDCC consists of
OTA and CCII elements (note that CCTA consists of
the same active elements, but in reverse order). Our so-
lution presented in this paper provides electronic control
of gm and of three current gains (each of them indepen-
dently), therefore four parameters are controllable. As ob-
vious from the presented transistor structure, RX could
also be controlled but it is not required in our case. This
approach allows construction of very simple applications
with minimum passive elements.

Active elements with more than one controllable pa-
rameter are very useful. They usually allow electronic

control of more than one parameter of final filtering solu-
tion. In case of filter, it is pole frequency, quality factor,
bandwidth and pass-band or stop-band gain [22]. Only
one (more complex) active element is sufficient in many
cases.

We provided a study of several universal filtering so-
lutions and found following drawbacks concerning mainly
lack of electronically controllable features of proposed ap-
plications:

• Not all parameters of the filter are adjustable indepen-
dently and electronically [23],

• Too many active or passive elements are required
[24, 25],

• Not all passive elements are grounded or outputs are
taken from passive elements and therefore additional
buffering is required [26, 27],

• Copies or inversions of input current are required (in
case of presented filter, copies are required only for
band-stop and all-pass filtering functions) [28],

• Absorption of parasitic input resistance is not possible
[27, 29].

This paper is divided to two main parts. The first part
deals with explanation of CG-VDCC behavior which is
supported by simulations with CMOS model of proposed
element. The second part discusses application of CG-
VDCC in universal current-mode filter.

2 VOLTAGE DIFFERENCING

CURRENT CONVEYOR

CG-VDCC element consists of transconductance sec-
tion with electronically adjustable transconductance (gm)
and electronically controllable current conveyor of sec-
ond generation with several outputs with electronically
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Fig. 1. Controlled-Gain Voltage Differencing Current Conveyor
(CG-VDCC) with three controllable gains, (a) – basic structure,

(b) – schematic symbol

adjustable current gain from X terminal to ZB1-3 termi-
nals. The key feature of our solution is that current gains
can be controlled mutually independently. Basic struc-
ture of CG-VDCC active elements is shown in Fig. 1(a),
schematic symbol in Fig. 1(b).

CG-VDCC has two voltage inputs (V+ and V−),
auxiliary high-impedance port Z (output of OTA section
and voltage input of ECCII), one current input (X ) and
in this particular case three current outputs (ZB1-3 ) with
controllable current gain. Outer behavior of CG-VDCC
element is described by the following matrix



















IV +

IV −

IZ
VX

IZB1

IZB2

IZB3



















=



















0 0 0 0 0 0 0
0 0 0 0 0 0 0

−gm gm 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 B1 0 0 0
0 0 0 B2 0 0 0
0 0 0 B3 0 0 0





































V+

V
−

VZ

IX
VZB1

VZB2

VZB3



















.

(1)

Basic structure from Fig. 1(a) was the starting point
for the design of CMOS realization of CG-VDCC shown
in Fig. 2 and Fig. 3 showing the block level structure and
detailed transistor structure.

Structure has three parts (transconductor, current
conveyor of second generation and adjustable current am-
plifier). The first part is the transconductance amplifier
[5] with differential NMOS pair connected to voltage in-
put of CMOS current conveyor. Its transconductance is

controlled by Iset gm . Multiple-Output Current Conveyor
section [6] is the second part. It provides three current

outputs (to CA1, to CA2, to CA3) that are connected

to the third section (only one of them, CA1, is shown in

Fig. 3). Intrinsic resistance of X terminal of MO-CCII can

be controlled by IsetRX , but it is not used in this partic-

ular case. The third section, adjustable current amplifier

[30], provides independent current gain of output current

(by current IsetB1-3 ). One CA section has two outputs

(ZP and ZN , which means that first output is positive

and the second one is negative), but only one of them

is usually used in particular solution and therefore final

transistor structure could be simplified according to par-

ticular requirements. If both outputs are present, their

gain is the same, only the phase is inverted. If only one

of this output is to be used and it is not decided if it is

positive or negative, it is noted as ZB (B is common sign

for current gain).
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Fig. 2. Designed CMOS implementation of proposed CG-VDCC
active element; block structure

Proposed CMOS model was simulated and analyzed

with TSMC LO EPI 0.18µm technology [31]. Some of

important simulation results of CG-VDCC model are in-

cluded in this paper. Figure 4 shows DC performance of

OTA section for three values of control current Iset gm ,

Figure 5 shows AC performance of OTA section for the

same three values of control current and Fig. 6 includes

dependence of gm of OTA on control current.

Second group of graphs covers simulation results of

MO-CCII and CA sections (connected together as a sec-

ond part of a structure depicted in block diagram). Fig-

ures 7 and 8 contains DC and AC responses for three

particular values of gain control current and Fig. 9 in-

cludes dependence of current gain on control current.

DC parameters of CG-VDCC element are as follows:

RV + = RV −
> 1GΩ, RZ = 52 kΩ, RX = 450Ω

(IsetRX = 150µA), RZP = RZN = 58 kΩ (when B =

1). Transconductance can be controlled from 255µS to

1919µS (by Iset gm = 10µA to 150µA) and current gain
can be controlled from 0.36 to 3.76 (by IsetB1-3 from

100µA to 20µA).
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Fig. 3. Designed CMOS implementation of proposed CG-VDCC active element in a transistor level without CA2 and CA3 sections
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3 EXAMPLE OF FILTERING

SOLUTION WITH CG–VDCC

Proposed active element is very suitable for design of

electronically controllable filters. This section presents ex-

ample of current-mode TISO universal controllable fil-
ter with only one CG-VDCC. Its structure is shown in
Fig. 10.

Ideal transfer functions (low pass = LP, inverting band
pass = iBP, high pass = HP, band stop = BS, all pass =
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Fig. 6. Dependence of gm of OTA on control current, VDD =
−VSS = 1 V, V−,X, Z,ZPB1−3 −GND
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AP) of this filter are

KLP(s) =
IOUT

IIN1

=
B1G1gm

D(s)
, (2)

if IIN1 = −IIN and IIN2 = IIN3 = 0;

KiBP(s) =
IOUT

IIN2

=
−B1sC1G1

D(s)
, (3)

if IIN2 = IIN and IIN1 = IIN3 = 0;

KHP(s) =
IOUT

IIN3

=
s2C1C2B1

D(s)
, (4)

if IIN3 = −IIN and IIN1 = IIN2 = 0;

KBS(s) =
IOUT

IIN1 + IIN3

=
s2C1C2B1 +B1G1gm

D(s)
,

(5)

if IIN1 = −IIN and IIN3 = IIN and IIN2 = 0;

KAP =
IOUT

IIN1 + IIN2 + IIN3

=
s2C1C2B1 −B1sC1G1 +B1G1gm

D(s)
, (6)
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when B1 = 1, B2 = −1, B3 = −1 and Q = 0.9

if IIN1 = −IIN and IIN3 = IIN and IIN2 = IIN ;
where denominator is in all cases

D(s) = −B2G1gm −B3sC1G1 + s2C1C2 . (7)

It is obvious that filter is stable only for B2 < 0 and
B3 < 0, therefore output ZB2 and ZB3 has to be nega-
tive. It is also obvious that two copies of input current are

required for BS filter (one of them is inverted) and three
copies of input current are required for AP filter (one of
them has to be also inverted).

Center (pole) frequency and quality factor can be ex-
pressed as follows

f0 =
1

2π

√

−B2G1gm

C1C2

, (8)

Q =
1

B3

√

−B2gmC2

G1C1

. (9)

From the previous equations it is obvious that:

• B1 can be used for control of gain (and phase) of each
of filtering functions,

• B2 can be used for control of center frequency of iBP
function with constant bandwidth (BW),

• B3 can be used for control of quality factor of every
filtering function,

• gm = G1 can be used for control of center frequency
while keeping Q constant.

When parasitic resistance of X port (450Ω) is taken
into account, parameters of filter and passive components
are calculated as follows:
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fC = 1 MHz is starting pole frequency for gm =
690µS (Iset gm = 33µA) and G1 = 1 mS, Q = 0.707
(Butterworth approximation) for B3 = −1, C1 = 155 pF,
C2 = 78 pF. Some of simulation results are summarized
in Figs. 11–16. The first figure, Fig. 11 shows overall filter
response for starting parameters as mentioned before in
case of LP, iBP, HP and BS function, Fig. 12 shows char-
acteristics of AP filter in the same conditions. Figs. 13–
16 present possibilities of control in case of iBP response.
Figure 13 includes gain control, Fig. 14 shows control of
center frequency with constant bandwidth, Fig. 15 con-
trol of quality factor with constant center frequency and
finally, Fig. 16, tuning of center frequency with constant
value of quality factor.

4 CONCLUSION

Presented filtering solution has many advantages thank
to electronic control of four parameters: gm and of three
independent current gains, therefore four parameters are
controllable mutually independently as described briefly
in Section 3. Filter consists of one active element and
three passive elements, but G1 could be omitted if con-
trol of pole frequency independently on quality factor and
some of filtering functions is not required. From Figs. 11–
16 it is obvious that there are some parasitic influences,
for example in case of HP response (Fig. 11), pass-band
gain is not unity (0 dB). In this particular case it is caused
by RX of X terminal that acts as current divider with
G1 . Note that this is not a problem, because gain could
be fine-tuned by B1 without affecting any other parame-
ter of the filter. The same method could be used to fine-
tune gain in case of quality factor adjustment (Fig. 15).
All control processes were presented only on band pass
response but tuning is also possible in case of other fil-
tering functions. The main advantages of final filtering
solution are

• all parameters of the filter are adjustable indepen-
dently and electronically,

• not many active and passive elements are required,

• all passive elements are grounded and no output is
taken from passive element and therefore additional
buffering is not required,

• absorption of parasitic input resistance (RX ) is possi-
ble, its expected values have been taken into calcula-
tions.
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