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1 Introduction

Since Isidor Rabi (1937) declared and measured atom’s nuclear magnetic resonance
at molecular beams [40], Felix Bloch and Edward Purcell (1946) expanded it at liquid
and solid measurements [4, 39] and Paul Lauterbur (1973) introduced basal principles
of magnetic resonance imaging (MRI) [32], many different MRI sequences able to vi-
sualize different chemico-physical phenomena were invented. In biomedical imaging
applications, different chemico-physical image contrasts can provide different qualita-
tive and quantitative information about in-vivo displayed tissue. After 1990, Ogawa’s
et al. MRI sequences sensitive to blood oxygenation (BOLD signal) [37] gave raise
to the field called functional magnetic resonance imaging (fMRI) because repetitive
time of one 3D image scanning fulfills the Nyquist theorem for capturing of dynamic
cardio-vascular changes evoked by induced neuronal activity.

Practically immediately after BOLD signal discovery (blood oxygen level depen-
dence) [37], other scientists started to think about simultaneous recording of scalp
electrophysiological and functional MRI data. They solved it between 1993-1995 and
scientific field called simultaneous EEG-fMRI was born [18]. Allen et al. and Gold-
man et al. suppressed gradient artifacts from scalp EEG signals with cumulative signal
filtering techniques [2, 15] and the fusion of simultaneous EEG-fMRI data has become
to be possible[16, 31].

In simultaneous EEG-fMRI, we are trying to explain the measured delayed BOLD
signal b with immediate EEG signal changes transformed into some latent form e
(eq. 1). The impulse response function (IRF) A models the BOLD signal’s delay. The
motivation is to be able to visualize the functionally relevant brain network without
a-prior knowledge of the stimulus timings as a blind search data-driven analysis.

b=exh (1)

The fixed canonical hemodynamic response function (HRF) is the most often used
IRF for the BOLD signal delay modelling [29]. However, linear combinations of he-
modynamic response basis functions better accounts for differences in HRF shape and
timings across subjects and brain areas [35]. Alternatively, HRF may be estimated in
a data-driven manner by deconvolution of the EEG and fMRI time courses [8].

Beside the question of the IRF’s proportions, the EEG signal processing into e form
(eq. 1) becomes much more fundamental problem because we need to fulfil two basic
conditions:

1. Transform the raw EEG signal onto comparable form with the BOLD signal.

2. Still keep the advantage of better EEG’s temporal resolution inside a transformed

signal, although it was down-sampled onto fMRI timings.

Previously most often used transformations of raw EEG signal to the latent e form
can be divided at two distinct groups. The 15! approach emphasizes the detection of
previously defined EEG waveform shapes (i.e. graphoelements), including evoked or
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event-related potentials (EPs or ERPs) [3] or epileptic spikes [43]. The 2"¢ most com-
mon approach (which is in the scope of the current thesis) is to integrate EEG spectra
with fMRI BOLD signal [8, 12, 16, 23, 28, 29, 30, 31, 33, 34, 35, 41].

Motivation and main goal of the current doctoral thesis is to improve visualization
of task-related networks directly and blindly from simultaneous EEG-fMRI data wi-
thout a-prior knowledge of external stimulation timings. Kilner et al.(2005) proposed
a theoretic heuristic approach comparing EEG and BOLD signals on the level of neu-
ronal activity, since their solution (relation 2) expects that changes in BOLD signal b
are proportional to neuronal activity a which is proportional to changes in root mean
square frequency of whole normalized (relative) EEG power spectrum p(w) [23]. The
character " indicates variables during increased activity, while variables without " re-
present signal values during rest. The normalized (relative) EEG power can be more
extensively rewritten with standard spectral density g(w) with eq. 3.

o] oo fo
P(w):fj((% (3)

Rosa et al. (2010) simplified Kilner’s et al. (2005) theoretic heuristic model at re-
lation 4, when they considered the denominators of relation 2 for constant members.
The simplified heuristic model was able to visualize the stimulated primary visual
cortex from simultaneous EEG-fMRI data better than other standard used approaches
utilizing absolute EEG power fluctuations [41].

b \// w?p(w)dw 4)

It is known that different brain rhythms (frequencies) are dominant for different
cognitive states [9]. Although Miller (2010) experimentally measured the broadband
spectral changes of local field potentials and their shift to higher frequencies after
activations of neural tissue [36], the basic heuristic model (eqs. 2 and 4) [23, 41]
neglects the inconsistent changes over different frequencies which are observed e.g.
for the EEG a-band rhythm in comparison to the other EEG rhythms [25]. So, we are
expecting that it is one of the crucial limitation of the curretn state of the art which is
tested within the current doctoral thesis.

The function w? in the expression | w?p(w) represents the filtering properties em-
phasizing higher frequencies of the relative EEG power in front of the power of lover
frequencies. But if we admit the possibility that some frequencies could behave in-
consistently to the others, it means that more possible filtering solutions could exist.
And, we are getting from the basic simplified heuristic model (eq. 4) to the generalized
spectral heuristic model (eq. 5) (which we have proposed within doctoral thesis [28])
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where g(w) characterizes a general filtering function (e.g. the a-band or y-band pass
filters.

&x¢/gWWWMw )

Implementation of the generalized spectral heuristic model (eq. 5), obtained results,
its advances in front of classic absolute power fluctuations in distinct frequency bands,
comparison with classic heuristic model and other evaluations are described within
the 3" chapter "Generalized EEG-fMRI spectral heuristic model", and bring novel
knowledges into EEG-fMRI fusion methods.

Although the generalized spectral heuristic model allows more spectral patterns
with various dynamic behaviours, it is not still utilizing the advantages of multi-
channel recordings. As in case of classic absolute power fluctuations (e.g. [12, 31]),
the averaging over selected electrodes of interest is the most often used procedure
[41]. But that procedure brings very similar results over different electrode selections
as evaluated and described in 3"¢ chapter "Generalized EEG-fMRI spectral heuristic
model".

As shown before, the different EEG oscillations with different spectral properties
can have different spatial sources (e.g. [20, 42]). The incorporation of the spatial in-
formation into the generalized heuristic model seems to be the other logical step and it
can be written as relation 6 characterizing generalized spatiospectral heuristic model
(which we introduced [28]).

&XJ//Q@wm@wwmw (©)

Within the current doctoral thesis, the estimation of the generalized spatiospectral
heuristic model was designed with incorporation of Bridwell’s et al. (2013) decom-
position [8] on independent EEG spatiospectral patterns. Since the decomposition is
a quite novel technique whose stability and relevance has not been tested over set of
different datasets yet, the submitted thesis is evaluating that properties for both de-
compositions (originally used absolute EEG power decomposition, and novelly used
relative EEG power decomposition utilizing the spatiospectral heuristic model). Si-
multaneously, the relevance for the EEG-fMRI data fusion and correspondence of de-
composed signals to the external stimulation timings are evaluated and assessed too.
As the novel knowledges, all the procedures and obtained results are described in the
best details within the 4" chapter "EEG-fMRI spatiospectral heuristic model”.
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2 Doctoral thesis objectives

As summarized within the Introduction, the process of the full automatic and well-
working process of EEG-fMRI data fusion which is single-subject specific is still the
not-solved task in the area of the basal research. The main and crucial objective of
the current thesis is to try to design and find the optimal EEG-fMRI data processing
pipeline which would be able to blindly estimate and visualize the task-related brain
networks directly from the captured data, without any prior knowledge about the sti-
mulus timings inside the analysis pipeline. For that final goal, the set of listed partial
objectives was designed:

1. Select the EEG signal processing strategy which is usable for the blind search
analysis.

2. Design the models for the data fusion which could work better than current state
of the art.

3. Design the evaluation and evaluate the correspondence of obtained results with
experimental external stimulation.

4. On available real simultaneous EEG-fMRI data, estimate the fusion with de-
signed models, with previously implemented methods and compare the results
over the different approaches.

5. Evaluate the designed models and their new contributions to the current knowledge.

6. Present the obtained results in neuroscience or biomedical engineering journals
with impact factor as two original research papers (at minimum).

7. Share the implemented software libraries as the doctoral thesis attachment.

To the 1% of the seven partial objectives, we have limited on EEG signal processing
methods utilizing the EEG spectra, since a man need to know the stimulus timings for
ERP estimations in the most of temporal or spatiotemporal decompositions [3, 6]. It
1s not necessary for the EEG spectra processing or decomposition.

To the 2"? of the partial objectives, we have designed the generalized spectral and
spatiospectral heuristic models (eqs. 5 and 6) [28] which we are testing and comparing
with previous methods within the submitted thesis.

3 Generalized EEG-fMRI spectral heuristic model

3.1 Visual oddball task and EEG-fMRI acquisition

A visual oddball task was performed by 22 subjects (7 women; age 23 + 2 years; 1
left-handed man). Informed consent was obtained from all subjects after all of the pro-
cedures were fully explained, and the study received the approval of the local ethics
committee. Three stimulus types were presented randomly to each subject. Each sti-
mulus consisted of a single yellow uppercase letter shown for 500 ms on the black
background. Inter-stimulus intervals varied from 4 to 6 seconds. A total of 336 stimuli
consisted of targets (letter X, 15%), frequents (letter O, 70%) and distractors (letters
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other than X and O, 15%). Subjects were instructed to press a button held in their
right hand whenever the target stimulus appeared and not to respond to distractor or
frequent stimuli. The experiment was divided into four consequential sessions for each
person [5, 29].

The imaging was performed by a 1.5 T Siemens Symphony scanner equipped with
Numaris 4 System (MRease). Functional images were acquired using gradient echo,
echo-planar imaging sequence: TR = 1660 ms; TE = 45 ms; FOV = 250 x 250 mm;
FA = 80 degrees ; matrix size = 64 x 64 (3.9 x 3.9 mm); slice thickness = 6 mm;
15 transversal slices per scan. The whole task was divided into four equal runs of
256 scans and 84 stimuli. An anatomical T1-weighted high-resolution brain scan (160
sagittal slices, resolution 256 x 256 resampled to 512 x 512, slice thickness = 1.17
mm) was added to the functional data of each subject.

The scalp EEG data, with reference electrode between Cz and Fz electrodes, were
acquired simultaneously during the fMRI scanning by a 30-electrode MR compatible
EEG system (BrainProducts, Germany) with a sampling frequency of 5 kHz [29].

3.2 Semantic decision task and EEG-fMRI acquisition

A semantic decision task was performed by 42 healthy subjects (22 right-handed men,
2 left-handed men, 18 right-handed women; age 25 + 5 years). Informed consent was
obtained from all subjects after all of the procedures were fully explained, and the
study received the approval of the local ethics committee. The task was designed with
a block stimulation paradigm which elicits robust language network activation [14].
During the probe block, sentences with semantic error created by a phonemic ex-
change (e.g. The cat was chased by fog) were presented randomly among semantically
correct sentences. The sentences were replaced with a series of the X’s or O’s, (e.g.
‘Xxxx xx xxxx xxx.”) during the control block. Nine control and eight probe blocks
alternated during the experiment. Each block lasted 24s, and consisted of six different
control or probe stimuli presented for 3.5s followed by a black screen for 0.5s. Sub-
jects viewed the stimuli through a mirror mounted on the head coil. Responses were
not requested from the subjects during the task. After the session, no subjects reported
any problems with reading the sentences [27, 35].

The imaging was performed by a 1.5 T Siemens Symphony scanner equipped with
Numaris 4 System (MRease). High-resolution anatomical T1-weighted MPRAGE images
were acquired (160 sagittal slices, matrix size 256 x 256 resampled to 512 x 512, slice
thickness = 1.17mm, TR = 1700ms, TE = 3.96ms, FOV = 246mm, FA = 15 degrees).
Parameters of fMRI acquisition using gradient echo, echo-planar imaging sequence
were: 230 scans, TR = 1850ms, TE = 40ms, FA = 80°, voxel size =3.9 x 3.9 x 6 mm 3
, no gap between slices, 20 transversal slices. The field of view covered supratentorial
regions.

Simultaneously, scalp EEG data were recorded with a 30-electrode MR compatible
EEG system (BrainProducts, Germany). ECG were recorded to remove physiological
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artifacts from EEG. Signals were sampled at 5 kHz with 0.5V resolution for EEG,
and 10uV for ECG [28].

3.3 EEG and fMRI data preprocessing

EEG preprocessing was done using BrainVision Analyzer 2.0 (BrainProducts, Ger-
many) software. The raw EEG data were corrected for the gradient artifacts [1] and
down-sampled to 250 Hz. Thereafter, the IIR filter with the pass-band of 1 Hz to 40
Hz was applied. Cardiac artifacts were suppressed by mean artifact subtraction. For
the visual oddball EEG data, eye-blinking artifacts were removed using decomposi-
tion by temporal ICA [11, 22] and back reconstruction without the eye-blink related
component, which were chosen according to specific temporal and spatial topography.

FMRI data were preprocessed in the SPM8 (Statistical Parametric Mapping ver-
sion 8, Wellcome Trust Centre for Neuroimaging, UK). The first preprocessing step
was motion artifact minimization, done by aligning all brain scans with registering
process utilizing linear rigid geometric transformations [21]. Functional images were
co-registered with the high-resolution anatomical image with linear affine geometric
transformations [21]. To enable later group studies, the images were normalized to the
standardized template of the head in MNI' coordinates with non-linear registrations
[13] and re-sampled to 3 x 3 x 3 mm isotropic resolution. Images were smoothed by
an isotropic spatial filter with a Gaussian profile of FWHM? = 8 mm to increase the
signal to noise ratio (SNR) and to make the random errors more normally distribu-
ted. Finally, the time series of each voxel was filtered to discard the component of the
BOLD signal with time periods longer than 128 s which mostly contains slow drifts
and physiological noise [29].

3.4 EEG regressor deviations for the distinct frequency bands

EEG regressors were calculated with our EEG Regressor Builder software. Signals
measured at the electrodes of interest were selected from the pre-processed EEG data.
Each of these signals was segmented onto TR long epochs with corresponding tem-
poral resolution, where TR is the fMRI repetition time. Each EEG signal epoch was
transformed into the spectral domain by Discrete Fourier Transform. The frequency
band of interest for a given epoch was filtered by zeroing spectral lines outside the
band of interest. The absolute or relative power values were calculated from each
filtered band for every epoch. The analysed frequency range was from 0O to 40 Hz di-
vided at typical different frequency bands of interest, i.e. §(0 — 4Hz), 0(4 — 8Hz),
a(8 —12Hz), f(12 — 20Hz) and (20 — 40H z).

Temporal power changes were convolved with canonic HRF to respect the similar
convolution of the neural events producing the BOLD signals. Only valid samples

"Montreal Neurological Institute
2Full Width at Half Maximum
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without convolution edge effects were used. Convolved vectors were then normalized
to mean 0 and variance 1.

3.5 Experiments with visual oddball EEG data

In order to determine the sensitivity of the regressor calculation to the task-related
variability with respect to the choice of the above and below mentioned parameters,
the EEG regressors were calculated for several types of parameter settings, and the in-
fluence on the resulting group statistical parametric EEG-fMRI maps was monitored.
The studied parameters were electrodes of interest, frequency bands of interest and
types of power values (absolute/relative).

The regressors were calculated for the following parameter combinations: three
groups of electrodes (O1-O2-0Oz, C3-CP1-CP5 and all 30 electrodes), both types of
power values (absolute and relative), and five frequency bands of interest §(0—4 Hz),
0(4-8 Hz), a(8—12 Hz), 5(12-20 Hz) and y(20—40 Hz). Altogether 30 regressors were
calculated for each subject. The selection of electrodes was substantiated as follows:
01-02-0z electrodes were chosen because primarily the visual cortices were stimu-
lated during the experiment. C3-CPI-CP5 electrodes are near to the motor cortices
which should be activated in reaction to the target stimulus. The global signal power
is defined by all 30 electrodes [29].

3.6 Joint EEG-fMRI analysis

The derived EEG regressors were compared with single-subject fMRI data within
voxel-wise general linear modelling (GLM) separate for each EEG regressor calcu-
lation settings. The model matrix contains four EEG regressors from four separate
sessions and constant terms in BOLD signals for each session. To preserve task-related
variability in the data, regressors describing the stimulation event were not used.

Since 30 EEG regressors were calculated for 22 subjects it means that 660 separate
GLM estimations were performed with the SPMS8 scripts. For each person, 30 SPMs
were estimated. Because the analysis examines only their mutual influence, one SPM
represents 3D correlation map between local BOLD signal and EEG regressor with a
given parameter setting for corresponding subject.

During the second analytical phase, group analyses were estimated from SPMs of
subjects via a one-sample t-test, always using (for the whole group) a particular chosen
parameter setting for EEG regressor calculation. The whole analysis output was 30
group-averaged SPMs describing above mentioned correlations.

3.7 Assesment of group-averaged EEG-fMRI SPMs

Different parameter analysis settings (e.g. frequency band, power value,...) can bring
different or similar resulting group activation maps. The assessment of similarity of
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topology of group activation maps with different parameter sittings was based on joint
histogram with 8-bit coding and not-normalized mutual information (MI) [21] be-
tween two different 3D activation maps [21, 29].

3.8 Assesment of task-related variability in EEG regressors

The assesment was performed with GLM. EEG regressors for different parameter
settings were in data matrix and the model signals in model matrix were the stimulus
vectors with convolved canonical HRF. Group analyses across subjects were perfor-
med via one sample t-tests separately for each type of stimulation [29].

3.9 Results

Within the current subsection, all mentioned results were obtained only from visual
oddball dataset. The semantic decision dataset was not investigated for observing of
the same result properties. Figure 1 visualize that different group SPMs are obtained
with absolute and relative EEG power regressors with the same setting of other para-
meters (frequency band of interest, electrode selection). It indicates that relative power
provides different information about brain activity than that conveyed by the absolute
power [29].

Figure 2 shows that the relative EEG power in different frequency bands of interest
correlates with the BOLD signal in different brain areas when other parameters (type
of power value, electrode selection) are identical. Relative o band and relative o band
depict similar activation map with 2 differences: positively correlated clusters with
BOLD signal for relative ¢ band are negatively correlated for relative « band and vice
versa. Relative o band has higher t-values in SPMs opposite to the relative 6 band
[29].

Absolute EEG power correlates in very similar way across different frequency
bands and contains some broad spectrum component.

MICs in table 1 truly confirm that all three properties observed with visual in-
spection applies. The EEG-fMRI SPMs of different frequency bands share higher

For absolute power values For relative power values
7y

& 220302
000 200009
OO0000N ©OO00D
0000004 000000

Obrazek 1: Correlations between BOLD signal and EEG power fluctuations in o band for all
30 electrodes of interest (p < 0.001 uncorrected) [29].
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Obrazek 2: Correlations between relative power values of EEG and BOLD signal for 9, 0, o
and 7 band from 01-02-0z electrodes (p < 0.001 uncorrected; for relative 5 band, statistically
significant clusters were not observed) [29].

Tabulka 1: MICs between EEG-fMRI SPMs over different power types and frequency bands:
01-02-0z electrodes of interest; On diagonal, there are entropies of given SPMs. Except the
diagonal, values higher than (.75 are highlighted in bold [29].

Absolute power Relative power
1 6 « B o' 4 6 a B 0

462 115 048 077 0.70 | 047 055 049 040 052
479 052 085 066 | 040 0.78 049 037 055
468 0.80 069 | 040 036 049 033 048

467 082 | 033 043 039 030 0.56

459 | 032 036 037 033 035

Abs. p.

435 041 099 038 030
449 0.62 030 0.35

470 036 0.33

4.04 0.30

4.32

Rel. p.

QLWL TITL|R O >

mutual information for absolute EEG power than for relative EEG power where the
values are much lower. Other words, EEG-fMRI SPMs trully differs for relative power
over different frequency bands (except relative ¢ and « bands where the similarity was
observed). And finally the third property, all absolute and relative EEG-fMRI SPMs
differ mutually, except absolute and relative ¢ bands.

Visual inspection and MICs (not-shown in short version) confirm, that different
selection of electrodes of interest does not affect and does not change the final group-
averaged EEG-fMRI results.
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Tabulka 2: The relationship between task-related regressors and EEG-derived regressors: The
group t-values show effect of each stimulus type on EEG-derived regressors derived from all
30 electrodes. The significance level set to p < 0.05 uncorrected. Significant t-values are highli-
ghted in bold [29].

Stimulus | Absolute power Relative power

6 9 « ﬁ Y ‘ 5 0 (63 ﬁ o

389 525 181 284 076 | 3.07 476 -513 -2.69 -4.79
1.10 054 014 042 -088 | 209 -026 -212 -0.65 -2.69
142 159 -047 061 -042 | 209 199 401 -056 -3.02

Target
Frequent
Distractor

The GLM between EEG regressors and stimulus vectors with following group-
averaging t-test indicates that relative EEG power consist more task-related variability
than absolute EEG power (table 2). That means that heuristic approaches should be
more usable for visualization of task-related networks from EEG-fMRI data than ab-
solute EEG power fluctuations. Since classic heuristic model (eq. 4) [23, 41] assume
only one possible solution in relative EEG power filtration and since we have found
heterogeneous EEG-fMRI SPMs for different frequency bands of relative EEG power,
generalized spectral heuristic model (eq. 5) could be more accurate for task-related ne-
twork visualizations.

Visual inspection and MICs were used for evaluations of similarities and differen-
ces between EEG-fMRI SPMs estimated with classic heuristic model or with some
frequency band of interest of relative EEG power (i.e. generalized spectral heuristic
model [28]). The assessment was performed on both datasets (visual oddball and se-
mantic decision tasks).

The EEG-fMRI SPM for classic heuristic model (eq. 4) on visual oddball data-
set and seems to be the most similar to the result of relative v band (Fig. 2). Such
observation is consistent with the fact, that both filters reach maximal gain in the
same frequency range 20-40Hz. Activated supra-thresholded sensory-motor cortices
are truly contralateral to the right-handed pushed button on target stimuli [28]. That
brain network can be considered as task-related based on relative v band results (Tab.
2 and Fig. 2). Mutual information coefficients (Tab. 3) confirm the conclusion that the
classic heuristic model result is the most similar to the relative v band result.

Except sensory-motor network, relative 0 and « band patterns demonstrate task-
related visual network to be activated (Fig. 2 and Tab. 2). Classic heuristic model
1s insensitive to that network. Other words based on visual oddball data results, the
generalized spectral heuristic model is able to visualize more task-related networks
than classic heuristic model. The matrix of MICs over freqquency bands and heuristic
model for semantic decision data (shown in full.length thesis) has same properties as
the same matrix for visual oddball task (Tab. 3).
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Tabulka 3: MICs between EEG-fMRI SPMs over different frequency bands and classic heuris-
tic model for visual oddball task: all 30 electrodes of interest; On diagonal, there are entropies
of given SPMs. Except the diagonal, values higher than 0.75 are highlighted in bold [28].

1) 0 o B ~ HM |

428 049 110 048 048 0.70
426 070 033 038 0.64
456 043 043 0.65

388 045 051

432 0.98

4.45

Eamg > o

3.10 Conclusion

The conclusions are predominantly declared based on visuall oddball data results,
since the semantic decision data results were possibly damaged by the eye-blinking
artifact.

The visual oddball data results show that the absolute and relative EEG powers
are indicators of different brain processes, and that they are associated differently
with fMRI data. From that point of view transformation between absolute and re-
lative EEG power fluctuations can be considered as non-linear operation. While the
absolute power showed dominantly a broad spectrum component in task-unrelated ne-
tworks, the relative power showed activity in the visual, sensory-motor, and motor
networks. Simultaneously it has been showed that relative power describes the task-
related activity better than absolute power and that it is able to suppress the broad
spectrum component. From this point of view, it has been shown that relative EEG
power appears to be a better indicator of task-related activations for joint EEG-fMRI
analysis [29].

Matrices of mutual informations between EEG-fMRI SPMs of different heuristic
models has similar structure over both tested datasets. Classic heuristic model visua-
lized similar EEG-fMRI SPMs which are observed with generalized spectral heuristic
model for v frequency band. More on visual oddball data, the generalized spectral
heuristic model demonstrated task-related visual network for o band pattern, which
were not observable with the classic heuristic model. From that point of view, genera-
lized spectral heuristic model was able to see more task-related networks and should
be preferred because of that before the classic model, since the v band pattern is able
to see similar activations as the classic model.

The current analyses and experiments brought two main novelties into the current
state of the art. Relative EEG power could be more usable in task-related networks
visualizations from simultaneous EEG-fMRI data. And, generalized spectral heuristic
model could visualize more task-related networks than the classic model.
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4 EEG-fMRI spatiospectral heuristic model

4.1 Visual oddball and semantic decision datasets

Same EEG-fMRI datasets with same acquisition parameters was used as described
within previous subchapters 3.1 “Visual oddball task and EEG-fMRI acquisition”
and 3.2 “Semantic decision task and EEG-fMRI acquisition”

4.2 Resting-state paradigm and EEG-fMRI acquisition

Fifty healthy subjects participated in a 15 min “resting-state” experiment (30 right
handed men, 20 right-handed women; age 25 + 5 years). Subjects were instructed
to lie still within the fMRI scanner with their eyes closed, not to think of anything
specific, and not to fall asleep.

The imaging was performed by a 1.5 T Siemens Symphony scanner equipped with
Numaris 4 System (MRease). High-resolution anatomical T1-weighted MPRAGE images
were acquired (160 sagittal slices, matrix size 256 x 256 resampled to 512 x 512, slice
thickness = 1.17mm, TR = 1700ms, TE = 3.96ms, FOV = 246mm, FA = 15°).

Functional images were acquired using gradient echo, echo-planar imaging sequence:
TR = 3000 ms; TE = 40 ms; FOV = 220 x 220 mm; FA = 90°; matrix size 64 x 64
(3.9 x 3.9 mm); slice thickness = 3.5 mm; and 32 transversal slices which covered the
whole brain excluding part of the cerebellum. 300 functional scans were acquired in 1
continuous session.

Simultaneously, scalp EEG data were recorded with a 30-electrode MR compatible
EEG system (BrainProducts, Germany). ECG were recorded to remove physiological
artifacts from EEG. Signals were sampled at 5 kHz with 0.5,V resolution for EEG,
and 10V for ECG.

4.3 EEG and fMRI data preprocessing

The preprocessing steps were the same as in previous sub-chapter 3.3 “EEG and fMRI
data preprocessing”. The eye-blinking artifact was not removed from resting-state
EEG dataset, since the subjects had closed eyes.

4.4 EEG spatiospectral decomposition

For each session, the preprocessed EEG signal from each lead was normalized such
that the time course was normally distributed N (0, 1), and divided into 1.66 s (the
shortest repetition time of fMRI scanning TR) epochs without overlap. Each epoch
was transformed to the spectral domain with fast Fourier transform (FFT), generating
a vector (length = 67) of complex valued spectral coefficients between 0-40Hz. Com-
plex values were converted to absolute/relative power. The output vector of 67 real
absolute/relative power values comprised a 3D matrix E with dimensions n; , n. and
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n,. Dimension ny is the total number of EEG epochs (ny = 540 for RST; ny = 255
for SDT; ny = 256 for VOT), dimension n.. is the total number of leads (n,. = 30) and
dimension n,, is the total number of spectral coefficients (n, = 67). The 3D matrix
E(nr,n.,n,) was transformed into a 2D matrix E(np, n.*n,). Matrix D is estima-
ted with two-stage PCA from E matrices of all subjects and used as input into group
spatiospectral ICA decomposition (eq. 7) [8], returning a group aggregated mixing
matrix A with dimensions A(ny, m) and a group aggregated source matrix S with
dimensions S (m, n. * n,). The dimension m is the number of set and decomposed
independent components [27].

D=H-=AS (7)

The first stage PCA reduced dimensionality of single-subject matrices E at 50 di-
mensions from original 540 dimensions for RST, 255 for SDT and 256 for VOT. The
second stage PCA reduced the group variability at 20 principal components. Group
spatiospectral ICA was conducted separately for each paradigm and power type, and
the data were decomposed to m = 20 independent spatiospectral components. The
PCA data reduction and whole group ICA decomposition were performed using the
GIFT toolbox [10] with the INFOMAX optimizing algorithm [7]. The reproducibility
of group components was examined using 10 ICASSO itterations when the cluster
quality index evaluated the cluster’s stability [17]. R R

The analysis outputs are group-derived aggregated matrices A and A for each pa-
radigm and separate A and S matrices generated by back reconstruction against each
individual subject’s data. The spatiospectral matrices S were collected across subjects
and paradigms for clustering (separately for each power type), as described below.
The relationship between spatiospectral components/sources and task dynamics were
examined by relating the source time course (i.e. mixing matrix) A with the respective
stimulus time course [27].

4.5 Clustering of spatiospectral maps across paradigms

For each subject, paradigm and session (4 sessions for VOT data), we have one matrix
S with dimensions S(20, 2010) containing 20 back-reconstructed spatiospectral pat-
terns. For similarity/dissimilarity assessment of the spatiospectral patterns across para-
digms, we have performed k-means clustering, a conventional algorithm belonging to
multivariate methods for dimensionality reduction. Because we had 50 single-subject
S matrices for “rest”, 42 single-subject S matrices for semantic decision task and
21x4 = 84 single-subject S matrices for visual oddball task, there are (50 + 42+ 84) %
20 = 3520 different spatiospectral patterns comprising matrix C', with dimensions
C' (3520, 2010) for input into k-means clustering. K-means clustering was performed
with Pascual-Marqui et al. (1995) optimizing method [38] with set 40 final clusters.
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Clustering was repeated 50 times with random initial conditions and the result with
minimal residuals was selected as the final clustering result [27].

4.6 Spatiospectral pattern dynamics and stimuli vectors

For each subject, paradigm and session, we have got one matrix A with dimensions
A(nr, 20) containing the back-reconstructed time course of each spatiospectral com-
ponent. Relationships between these dynamics and stimulus vector timings were as-
sessed with a single-subject general linear model and a continuous group one-sample
t-test for the each stimulus vector as we have implemented previously [29, 27].

4.7 EEG-fMRI GLM with variable HRF's

Relationships between fMRI voxel time courses and spatiospectral map time courses
(columns in individual A matrices) were examined using the GLM with the individual
time course convolved with the canonical HRF (regressor 1), convolved with the 1%
temporal derivative of the HRF (regressor 2) or convolved with the 2"? temporal deri-
vative of the HRF (regressor 3) as in [35]. Using the canonical HRF and 1%’ and 2"¢
temporal derivatives helps account for variability in the IRF’s shape across subjects,
tasks, and voxels.

Separate GLMs were performed for each stable spatiospectral pattern, paradigm
and subject. In addition to the three EEG regressors, the model matrix contained a
DC component. Regression matrices were estimated over all GLMs with the ReML
algorithm (Restricted Maximum Likelihood) implemented in SPM12 software (Well-
come Trust Centre for Neuroimaging, London, UK) in the MATLAB programming
environment (MathWorks, Natick, USA).

Group-averaged EEG-fMRI results were estimated with a one-way ANOVA test
(implemented in SPM12) of 3 EEG-derived single-subject spatial regression-maps for
each of 3 EEG regressors. The regression-map weights served as dependent variables
in separate ANOVA tests conducted for each paradigm and spatiospectral pattern (i.e.
3 paradigms * 14 stable spatiospectral patterns = 42 tests), generating group-averaged
spatial EEG-fMRI F-maps.

4.8 Results

Visual inspection among the spatiospectral maps generated across paradigms suggests
that similar components may be observed across all three datasets [27]. Similar visual
observations you may find also among the relative EEG power components. Since
we have visually observed similar group-averaged spatiospectral patterns, we have
designed single-subject k-means clustering of the patterns and tested whether some
patterns are really stable over datasets.
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The k-means clustering was performed separately for each power type with same
algorithm settings. For each power type, the original 3520 dimensions (i.e. 3520 spati-
ospectral patterns) were reduced to 40 representative cluster centroids. Forty output
clusters were selected after examining the compactness. The simplified result visuali-
zation is shown in Fig. 3, where representative spatiospectral map is demonstrated for
each cluster and radial dendrogram projection is included. K-means clustering ana-
lysis indicates that similar EEG spatiospectral patterns appear across different tasks.
Fifteen clusters (cl. numbers 2, 4, 5, 9, {13;3}, 16, {17;27}, {18;20}, 30, 32, 37,
39) define 12 different spatiospectral patterns which are observable in all tasks, with
more than 89% of subjects from each dataset present within each cluster. In general,
these spatiospectral maps appear consistent with maps generated in previous studies
[8, 7] and appear biologically plausible, demonstrating power within characteristic
EEG frequency bands [27].

Two spatiospectral patterns which are observable in all datasets were divided at
six disjunctive clusters where each cluster belongs to one specific dataset. The ra-
dial dendrogram projection (Fig. 3), these clusters form 2 different but neighbouring
groups and each group corresponds to an unique spatiospectral pattern (cl. numbers
{6;29; 38} and {19; 22; 33}). As demonstrated, 21 of 30 clusters characterize 14 di-
fferent spatiospectral patterns which are observable and relatively stable in all three
datasets. For exceptions, we note that clusters 25 and 31 contain some spatiospectral
patterns which are present only during task, while the patterns of clusters 10 and 15
were present only during “rest” [27].

For the relative EEG power, we have got following k-means clustering results.
Twenty-one of the 40 output clusters were organized into 16 final K-means clus-
ters (Fig. 4) whose spatiospectral patterns appear to be of physiological origin. Thir-
teen clusters were not included since their patterns consisted of single-frequency peak
which appeared artefactual, and which was not present over the 3 paradigms. The re-
maining 6 excluded clusters contained less than 5% of single-subject patterns of at
least one paradigm and are thus considered noise. Twelve of the sixteen patterns deri-
ved from relative EEG power were stable over all three paradigms (Fig. 4a,b). Of these
twelve stable sources, ten appeared visually similar to patterns that were observed for
absolute EEG power (Fig. 4a). Two stable «y-band patterns (Fig. 4b) were present with
relative power but not with absolute power. One cluster representing S-band activity
(~20Hz) was present for SDT and VOT data but not RST (Fig. 4c). Three clusters con-
tained maps (one #-band and two y-band patterns) which were present during RST but
not SDT or VOT (Fig. 4d) [26].

The t-values of relationships between EEG spatiospectral pattern time-courses A
and stimulus vectors are listed in Table 4. The critical t-values rejecting the null hypo-
thesis, that there is no evidence between compared signals, is 2.1 for p<0.05 uncorrec-
ted, 3.0 for p<0.05 corrected (FWE correction) and 3.22 for p<0.001 uncorrected for
multiple comparisons. Although significant relationships with stimulus vectors were

19



14 EEG spatiospectral patterns stable over all paradigms

FF; ; F7 F7 08 F7
p: Fp2 Fp2 Fp2 03
8 Fc2 M Src2 06 Brco 06 Brc2
O c3f S c 04 O C3 04 9O C3 02
B CP6 05 Fcpe 5 CP6 G CP6
D TP9 © TP9 02 & TP 02 @ TP9 0.1
T P4 o O P4 ° T P4 o O P4
oz z oz o
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
w[Hz] cl.n. 2 w[Hz]  cl.n. {3;13} w[Hz] cl. n. {17;27}

0 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

10
w[HzZ] cl. n. {6;29;38} w[HZ] cl. n. {19;22;33} w[Hz] cl.n. 37

30 40
w[Hz] ¢l n. {18;20} | n. ] w[Hz] cl.n.30

0 10 20 30 40

)

25

37

w[Hz] cl.n. 39

2 EEG spatiospectral patterns stable over SDT and VOT 25

F7 6
3 4 38
e
©
o
[5}
~ 9
0 10 20 30 0 33,
w[Hz] cl.n. 25 w[Hz] cl.n. 31
32 19,
1 EEG spatiospectral pattern stable over RST and SDT 22
F7 10,
] 04
B 30) 12
E 0.2 24 1
O P4 0
Oz 15, 31
[ 20 30 40 18 20 21

10
w[HZ] cl.n.8

Spatiospectral patterns stable over single paradigm (3 left patterns - RST, 1 right pattern VOT)

F7 08 F7 F7 o F7 0s
Fp2 Fp2 Fp2 Fp2 -
3 Fo2 06 JFc2 08 Sk ; 0 3 rez 03
S c3 04 c3 04 9O C3 o c3 02
3 CP6 CP6 S CP6 | 01 B©CP6 §
© TPo 02 DP9 02 @TP9 @ TPo 04
T pa . P4 © P4 0o © pa o
oz oz 0 oz i oz

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
w[HZ] cl.n. 15 w[HZ] cl.n. 10 w[HZz] cl.n. 21 w[Hz] cl.n. 1

electro

Obrazek 3: Simplified absolute EEG power k-means clustering result visualization over all
tested paradigms [27].

found for both power types, there appears to be no statistically significant difference in
the distribution of Itl-values computed between power types. The difference between
absolute or relative power relationships with the stimuli is p < 0.162 based on two-
sample t-test between distributions or p < 0.150 based on a 10 000 sample bootstrap
test [26]. The most of the tests did not reach statistical significance using conservative
corrections for multiple comparisons. And probably, it is more true for the absolute
EEG power than for the relative EEG power, where we observe some supra-threshold
values after the correction.

We have made some observations suggesting that relative power overcomes the ab-
solute power again. Since the table of relationships between EEG spatiospectral pat-
tern timecourses and stimulus vectors demonstrate higher relationships for the relative
power (Table 4) and since several spatiospectral patterns appear to be stable for both
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Obrazek 4: Relative EEG power k-means clustering result visualization [26].

Tabulka 4: Relationships between timecourses A and stimulus vectors: The black bold high-
lighted values are t-values with p < 0.05 uncorrected. The green bold highlighted values are
t-values with pry 5 < 0.05.

Absolute power Relative power
ClL n. ‘ frequent  target  distractor  sentences | Cl. n. ‘ frequent  target  distractor  sentences
2 -1.13 0.43 -0.52 0.93 1 -0.58 -1.86 0.21 0.08
5 -0.81 1.77 0.31 -0.63 2 -3.74 -1.40 -1.31 -0.05
3;13 -1.45 243 0.21 -0.09 4 0.12 0.21 0.40 -2.88
17;27 -2.09 0.24 -2.24 - 5 -0.13 1.14 -1.50 0.76
19:38;6 -0.34 2.37 -0.25 -1.63 14 -3.28 -1.44 -0.97 0.26
22;33;19 -0.27 -0.23 -0.97 -0.25 24 -2.03 2.17 0.01 0.24
37 -1.13 -0.40 0.56 -0.73 29 -0.08 0.57 0.47 0.33
16 -2.47 1.20 -0.83 -0.72 8;23 -1.45 2.46 -0.35 0.01
18:;20 0.39 0.39 -1.00 -1.45 34;39 -0.92 2.63 1.30 -0.86
4 1.72 2.62 0.56 -0.86 18;26 -1.01 1.45 -0.43 1.00
32 1.67 0.73 0.12 -1.10 6;28 -4.32 1.04 -1.46 -0.29
30 2.48 0.58 -0.34 -1.87 30;36 2.59 1.82 1.65 -1.67
9 -3.23 -0.52 -0.61 0.21 3 2.06 -0.86 -1.86 0.27
39 -0.17 -0.06 -0.61 0.21

power types (Figs. 3 and 4), we have compared EEG-fMRI results for the pattern ap-
pearing for both power types with the highest evidence to the stimulus vectors (Fig. 5).
On the first view, it could seems that both powers visualize the same large scale brain
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Obrazek 5: Absolute versus relative EEG-fMRI results for the low /-band spatiospectral pat-
tern with the highest evidence to the task: VOT task, both EEG-fMRI maps threshold at
prwe < 0.05, the colorbar between F-maps is the same for both F-maps.

network involving sensory-motor cortices and basal ganglia working together. But re-
lative power results are statistically stronger over almost all observations. The F-values
are higher, the supra-threshold areas are larger (or the amount of supra-threshold vo-
xels 1s higher), the evidence to the frequent stimulus is higher and supra-threshold
after correction for multiple comparisons. The estimated impulse response functions
between EEG and fMRI signals appear to be almost the same.

Other three clusters (cl. n. {34;39}, {8;23} and 24; Fig. 4) dispose with signifi-
cant relationship to the target stimulus with p<0.05 uncorrected for multiple compa-
rison errors (Table 4). Clusters n. {34;39} and {8;23} did not show any significant
EEG-fMRI correlates at significance level pryyp < 0.05. Oppositely, the cluster n. 24
demonstrate significant EEG-fMRI associations at significance level pryyp < 0.05 in
left-side lateralized sensory-motor networks (i.e. contralateral to right handed pushed
button) and in left Putamen (Fig. 6).

Timecourses of the spatiospectral pattern of cluster n. 4 are significantly related to
the sentence stimulus during the semantic decision task (Table 4 and Fig. 4). Although
we have reported that our SDT EEG data are distorted with eye-blinking artifact and
that it possibly decreases the strength of EEG-fMRI couplings, we are observing de-
activations in Wenricke’s areas (part of the speech cortex reliable for the speech un-
derstanding) after the c-band pattern (cl. n. 4) increase (Fig. 7). As you can see on the
scalp topology, the decrease in a-band corresponds with Wenricke’s area location. we
have not noticed with any other approach suprathreshold EEG-fMRI relationships in
stimulated speech areas.
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Obrazek 6: EEG-fMRI results for the /-band spatiospectral pattern related to the target sti-
mulus: VOT task, EEG-fMRI F-map threshold at pzy z < 0.05.
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Obrazek 7: EEG-fMRI results for the a-band spatiospectral pattern related to the semantic
blocked sentence stimulus: SDT task, EEG-fMRI F-map threshold at p < 0.001 uncorrected
for multiple comparison errors.

4.9 Novelty in EEG decomposition and following EEG-fMRI fusion

To the best of our knowledge and knowledge of other scientists [19], the present doc-
toral thesis and publications related to the thesis are the first to demonstrate the sta-
bility of EEG independent spatiospectral patterns over different datasets. These fin-
dings further validate the approach for future studies, and motivate investigation of
the functional role of the distinct spatiospectral patterns. Subdividing spectral respon-
ses in a data driven manner will be useful for future studies that decompose separate
signals with potentially distinct functional roles (i.e. generating more robust results)
and separating signals from artifact (i.e. enhancing signal over noise) [27].

This is the first study examining EEG-fMRI correlates after group-derived EEG
spatiospectral decomposition over different experimental datasets. The voxel-wise
EEG-fMRI approach revealed F-statistic fMRI overlays whose supra-threshold voxels
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organized into functional large scale brain networks (LSBNs) consistent with previ-
ous literature. In addition, we have modelled spatially variable group-averaged HRFs
often with shorter latency peaks than the canonical HRF.

We have designed the generalized EEG-fMRI spatiospectral heuristic model and
proposed how to solve the model with the spatiospectral group-ICA method [28].
Since the model demonstrates the most significant task-related EEG-fMRI associati-
ons over the range of tested approaches (i.e. absolute power fluctuations, generalized
spectral heuristic model, fluctuations of absolute power spatiospectral patterns), its
application can be expected in future research of blind visualizations of task-related
networks directly from simultaneous EEG-fMRI data. Obtained statistical significance
of EEG-fMRI results for the VOT task-related networks is one of the highest which
can be observed over literature nowadays.

The knowledge, that relative EEG power spatiospectral patterns are stable over dif-
ferent paradigms [26] is also novel and unique.

4.10 Conclusion

As the first in the world, we have shown and published that spatiospectral group-
ICA of EEG spectra estimates stable independent spatiospectral patterns over datasets
and possibly also over subjects. That applies for both power types (i.e. absolute and
relative powers). Obtained higher statistical significance for EEG-fMRI results with
EEG spatiospectral F-maps proves that better incorporation of the channels together
with modelled spatially and timely variable hemodynamic response improved the me-
thod of the data fusion. Our designed generalized spatiospectral heuristic model dis-
pose with the highest evidence in task-related network visualizations and it possibly
will become to be used in future simultaneous EEG-fMRI data fusion research. The
inter-subject variability of significant obtained results were not investigated within the
current thesis and it should be done within the near future research.

5 Doctoral thesis outcomes and conclusions

We have set seven partial goals necessary for the successful defense of the current
doctoral thesis (see 2"¢ chapter "Doctoral thesis objectives").

Ad. 1.: Because the goal was to visualize task-related brain networks without in-
formation about the stimulus timings inside the EEG-fMRI fusion, we have selected
the EEG processing via power spectral changes instead of the event related potentials,
where timings of the trial beginnings are necessary.

Ad. 2.: The literature review uncovered that the most of EEG-fMRI data fusion
processes use absolute EEG power fluctuations which are compared with delayed
fMRI-BOLD signals. The usage of the relative EEG power fluctuations in distinct
frequency bands were not commonly used, although Klimesch 1999 and Kilner et
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al. (2005) [23, 24] claim it corresponds more with evoked neuronal activity. Kilner
et al. (2005) proposed and Rosa et al. (2010) simplified the classic heuristic appro-
ach (eq. 4) [23, 41] which expects same global changes over whole relative power
frequency range after evoked neural activity, although e.g. inhibition hypothesis was
tested and confirmed for the a-band pattern [25] (i.e. it behaves antagonistic to the
other frequency bands). To overcome this limit, we have designed generalized spectral
heuristic model (eq. 5), which we are testing within the current doctoral thesis. The ge-
neralized spectral heuristic model has still limit in utilizing unique informations from
different EEG leads, as evaluated in 3" chapter of the current thesis. To overcome this
issue, we have proposed generalized spatiospectral heuristic model (eq. 6) and de-
signed how to solve it with spatiospectral group-ICA. Since the group-ICA belongs to
the family of blind source separation algorithms and stability of its estimates over di-
fferent runs/datasets/etc. is still speculative, we have used existing k-means clustering
algorithm and estimated the stability of the EEG spatiospectral sources over different
datasets and subjects. Following EEG-fMRI associations were then evaluated and tes-
ted only for the stable spatiospectral patterns. For the EEG-fMRI data fusion, general
linear model was used for both proposed and tested models. The BOLD signal delay
in EEG power fluctuations was modelled as fixed canonical hemodynamic response
function for the generalized spectral heuristic model, and as spatially and temporally
variable hemodynamic response function for the generalized spatiospectral heuristic
model.

Ad. 3.: To evaluate the correspondence with external stimulation, general linear
model between EEG power fluctuations and stimulus vectors was implemented with
following group one-sample t-tests. The stimulus vectors were regressors and EEG
power fluctuations were the measured data.

Ad. 4.: We have implemented the EEG-fMRI fusion for the original absolute power
fluctuations, classic heuristic model, generalized spectral heuristic model, time-courses
of stable absolute power spatiospectral patterns and stable patterns of generalized
spatiospectral heuristic model. Simultaneous EEG-fMRI data were acquired for vi-
sual oddball, semantic decision and resting-state experiments, and were more or less
used for the evaluation of differences over different fusion approaches.

Ad. 5.: It was shown that both proposed models (i.e. generalized spectral and spati-
ospectral heuristic models) visualize task-related networks from EEG-fMRI data bet-
ter than previous available approaches. The spectral model did not ignore the a-band
inhibition properties of the EEG signal. And the spatiospectral model utilized better
the information about different sources over different leads. The spatiospectral heuris-
tic model disposed with highest statistical significance of the task-related results for
visual oddball data. For semantic decision data, it was the only one approach which
was able to show supra-threshold activated voxels in speech areas, although the se-
mantic decision EEG data were distorted with eye-blinking artifact. Beyond the ori-
ginal objectives, we have found that EEG absolute and relative power spatiospectral
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patterns are stable over different paradigms and subjects, and that the stability is much
higher than other concurrent actually used ICA decompositions of EEG signal.

Ad. 6.: First, we have presented in Journal of Neuroscience Methods that relative
EEG power in distinct frequency bands (i.e. the generalized spectral heuristic mo-
del) is better for visualizations of task-related brain networks than originally com-
monly used absolute power [29]. Then we have proposed generalized spectral and
spatiospectral heuristic models with a preliminary results on 13" International Sym-
posium on Biomedical Imaging: From Nano to Macro [28]. During the testing of the
spatiospectral group-ICA as the method for EEG signal processing into the form com-
parable with BOLD signals, we have noticed that the estimates are stable and similar
over different paradigms for both power types (i.e. absolute and relative). For the ab-
solute power, we have reported this acquired knowledge in Brain Topography journal
within the special issue Multisubject Decomposition of EEG — Methods and Appli-
cations [27]. For the relative power, we have submitted the obtained results as confe-
rence proceedings on World Congress on Medical Physics & Biomedical Engineering
[26]. The proceedings is under review now. The EEG-fMRI results for the stable abso-
lute power spatiospectral sources are summarized within prepared manuscript "EEG
spatiospectral patterns and their link to fMRI BOLD signal via variable hemodyna-
mic response functions" which will be submitted into a journal in several following
weeks. Since we have got the most significant EEG-fMRI task-related networks for
the generalized spatiospectral heuristic model, we are expecting that this result could
be written as an other manuscript and submitted to a journal. Except these published or
prepared or planned papers related to the current doctoral thesis, I was helpful during
testing the stability of EEG-fMRI fusion after EEG signal PARAFAC decomposition
(parallel factor analysis). The PARAFAC results were presented in Neural Compu-
tation journal [34].

Ad. 7.: The list of attached functions is given within appendix B of the full-length
Doctoral Thesis.
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6 Abstract

Lots of different data fusion strategies have been developed during last 15 years of
simultaneous EEG-fMRI research. The current doctoral thesis summarizes the actual
state of the art in EEG-fMRI data fusion research and puts a goal to improve task-
related network visualizations blindly directly from the acquired data. Two different
models which should improve it have been proposed within the thesis (i.e. generalized
spectral heuristic model and generalized spatiospectral heuristic model). Generalized
spectral heuristic model utilizes relative EEG power fluctuations in distinct frequency
bands averaged over electrodes of interest and compares the fluctuations with delayed
BOLD signal fluctuations via general liner model. The obtained results shows that
the model visualizes several different frequency dependent task-related EEG-fMRI
networks. The model overcomes the absolute power fluctuation approach and classic
heuristic approach too. The absolute power visualized a task-not-related broadband
EEG-fMRI component and classic heuristic model was insensitive to visualize the
task-related visual network which was observed for the relative a-band pattern for vi-
sual oddball task data. For the semantic decision task EEG-fMRI data, the frequency
dependence was not so evident in final results. Since all the bands visualized only
visual network and any areas of speech network, the results were possibly corrupted
by not-suppressed eye-blinking artifact in EEG data. Mutual information coefficients
between different EEG-fMRI statistical parametric maps showed that the similari-
ties over different frequency bands are similar over different tasks (i.e. visual oddball
and semantic decision). More, the coefficients proved that averaging over different
electrodes of interest does not bring any new information into the joint analysis, i.e.
the signal on one single lead is very smoothed signal from the whole scalp. For that
reasons, better incorporation of the channel information into the EEG-fMRI analy-
sis started to be necessary and we have proposed more general spatiospectral heuristic
model and designed how to estimate the model with spatiospectral Group Independent
Component Analysis of EEG spectra relative power. The obtained results show that
spatiospectral heuristic model visualizes the statistically most significant task-related
networks (compared to absolute power spatiospectral pattern results and generalized
spectral heuristic model results). The spatiospectral heuristic model was the only one,
which observed task-related activations in a speech areas for semantic decision data.
Beyond the fusion of EEG spatiospectral patterns with fMRI data, we have tested the
stability of the spatiospectral pattern estimates over different paradigms (i.e. visual
oddball, semantic decision and resting-state) with k-means clustering algorithm. We
have got 14 stable patterns for the absolute EEG power and 12 stable patterns for the
relative EEG power. Although ten of the patterns appear similar over the power types,
the relative power spatiospectral patterns (i.e. spatiospectral heuristic model patterns)
have higher evidence to tasks.
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