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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract  

Attention has been paid to fatigue cracks in steel structures and bridges for a long time. In spite of efforts to eliminate the creation 
and propagation of fatigue cracks throughout the designed service life, cracks are still revealed during inspections. There is some 
limitation of crack sizes which are detectable on  structure (from 2 up to 10 mm). Note that depending on the location of the initial 
crack, the crack may dominantly propagate from the edge or from the surface. The theoretical model of fatigue crack progress is 
based on linear elastic fracture mechanics. Steel specimens are subjected to various load types (tension, three- and four-point 
bending, pure bending etc.). The calibration functions for short edge cracks that are near the hole for a rivet or bolt are compared 
for various loads and the discrepancies are discussed. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ICSI 2017. 
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1. Introduction 

The residual life prediction of old riveted steel bridges will be a relatively difficult task. Riveting is no longer 
common practice, consequently finding good equipment and skilled riveters is difficult (see e.g. de Jesus at al. 2011, 
Correira et al 2017). Holes for rivets or screw connections in steel plates are prepared according to the 
recommendations of e.g. Eurocode 3 (2006), Simones da Silva et al. (2010). The bolts or screws are subjected to shear 
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or tension loading and it is supposed that they are weak points of joints. Nevertheless, in each structural element of a 
bridge, inhomogeneity, intrusion or scratch etc. can be assumed. A fatigue crack could start from these general stress 
concentrators . The detection of cracks depends on the used equipment, but usually the detectable crack length is from 
1 up to 5 mm, see e.g. Dexter & Ocel (2013). The prediction of fatigue crack propagation and the estimation of 
remaining serviceable life can be implemented to e.g. software FCProbCalc (Fatigue Crack Probability Calculation) 
Krejsa et al. (2016a, 2016b, 2017a, 2017b) or sensitivity analysis Kala (2008), Kala & Valeš (2017) etc. 

In this paper, calibration curves for short edge cracks that grow near a hole are proposed for several load regimes, 
see Fig. 1. They are the normal tension load and three cases of a bending load: pure bending, three point bending and 
four point bending. Calibration curves can be used as input information for software used for a refined prediction of 
fatigue life.  Calibration curves are mostly used for the evaluation of data from experimental measurement and the 
accuracy fits are usually done for the relative crack lengths a/W from 0.2 to 0.8. In this analysis, calibration curves 
from a numerical solution for relatively short edge cracks (a/W from 0.05 to 0.13 according to the EN 1993-1-8 
Eurocode 3: 2006 and from 0.05 to 0.17 according to Correia et al. (2017)) are presented and compared with calibration 
curves for similar cases but without  holes. . The limit values a/W = 0.13 and 0.17 are maximum crack lengths where 
the crack tips reach the hole edge. 

 
 

Nomenclature 

2D two-dimensional 
3PB three point bending 
4PB four point bending 
FEM finite element method 
SIF stress intensity factor 
K stress intensity factor 
W width of the specimen 
B thickness of the specimen 
a crack length 
S span 
P load force 
M bending moment 
da/dN crack growth per cycle 
K range of stress intensity factor 
C, m material properties from Paris’ law 
E Young’s modulus 
 Poisson’s ratio 
 stress applied on specimen 
 range of stress 
max maximal value of applied stress 
min minimal value of applied stress 

2. Theoretical background 

Paris-Erdogan’s law  
In order to describe the propagation of a crack, linear elastic fracture mechanics (Anderson 1991, Klesnil & Lukáš 

1992, Suresh 1998) is typically applied. This method uses Paris-Erdogan’s law (Paris & Erdogan 1963) and defines 
the relation between the propagation rate of the crack size a, and the range of the stress rate coefficient, K, in the 
face of the crack: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚,   (1) 

where C and m are material constants for a particular material and environment (temperature, humidity, etc..), N is the 
number of loading cycles and K is the range of the stress intensity factor in front of the crack tip and it is defined as 
follows: 

∆𝐾𝐾 = ∆𝜎𝜎√𝜋𝜋𝜋𝜋𝑓𝑓(𝑎𝑎 𝑊𝑊⁄ ),  (2) 

where  is the constant stress range (the value of  = max-min corresponding to each way of loading is shown in 
Table 1.), a is the crack length and f(a/W) is the calibration curve which represents various boundary conditions. 

The value of fracture toughness can be determined by substituting the critical loading C (when crack growth starts) 
in place of  in eq (2) and setting K to KIC. 

 

Fig. 1. Various loads used for a numerical simulation of introduced configurations: (a) tension load; (b) pure bending moment load (c) three point 
bending load and (d) four point bending load. 

Table 1. An explanation of  for the various loading modes investigated. 

Type of load  Tension Pure bending Three-point bending Four-point bending  

Stress   = 𝑃𝑃
𝑊𝑊𝑊𝑊 

6𝑀𝑀
𝑊𝑊2𝐵𝐵 

3𝑃𝑃𝑃𝑃
2𝑊𝑊2𝐵𝐵 

2𝑃𝑃𝑃𝑃
𝑊𝑊2𝐵𝐵 
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The calibration curves f(a/W) for standard specimens or well-known configurations can be found in Handbooks 
proposed by Murakami (ed.) (1987), Tada et al.(2000). For the studied configurations similar ones are the single edge 
notch specimen and the pure bending specimen, see e.g. Tada et al. (2000): 

𝑓𝑓(𝑎𝑎/𝑊𝑊) = 1.122 − 1.40(𝑎𝑎/𝑊𝑊) + 7.33(𝑎𝑎/𝑊𝑊)2 − 13.08(𝑎𝑎/𝑊𝑊)3 + 14.0(𝑎𝑎/𝑊𝑊)4. (3) 

Accuracy 0.2% for a/W0.6 
or 

𝑓𝑓(𝑎𝑎/𝑊𝑊) = √2𝑊𝑊
𝜋𝜋𝜋𝜋 𝑡𝑡𝑡𝑡𝑡𝑡

𝜋𝜋𝜋𝜋
2𝑊𝑊

0.923+0.199(1−𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝜋𝜋2𝑊𝑊)4

𝑐𝑐𝑐𝑐𝑐𝑐𝜋𝜋𝜋𝜋2𝑊𝑊
.  (4) 

Accuracy better than 0.5% for any a/W. 

3. Finite element model 

With the geometry presented in Fig. 1, finite element (FE) models were meshed with the element type PLANE183 
from the software ANSYS. The above-mentioned element is used in order to take the crack tip singularity (KSCON) 
into account and the stress intensity factors were calculated from displacements of nodes at the crack tip by means of 
the implemented procedure KCALC, see Fig. 2a detail in Fig. 2b.The FE model was modelled as a 2D model with 
plane strain conditions. The following step was the application of the boundary conditions, according to Tab. 1.  

3.1. Material properties 

The material properties of steel used as inputs for the FE analysis were Young’s modulus and Poisson’s ratio, E= 
210 GPa and ν = 0.3, respectively.  

 

(a)     (b)     (c)  

Fig. 2. Finite element model (a) example of pure bending with holes; (b) detail of a crack tip (KSCON) and (c) used boundary conditions. 
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Table 2. Reference values of f(a/W) for pure and three point bending. 

Type of load  Pure bending Three-point bending 

a/W Tada et al 
2000 

Guinea et al. 
1998 

Bakker 
1995 

Present 

study 
Tada et al 

2000 
Bakker 
1995 

Present 

study 

0.1 1.041 1.027 1.047 1.048 1.007 0.980 0.981 

0.3 1.098 1.092 1.124 1.125 1.045 1.045 1.041 

3.2. Accurate finite element analyses of pure bending 

In this first part of the study, convergence analyses were performed in order to obtain accurate stress intensity factor 
values. According to Tada et al. 2000, the non-dimensional stress intensity factor (calibration curves) for an edge 
crack loaded by pure bending is defined in eqs. (3-4). For this configuration, a 2D model using 2800 elements was 
performed. 

Comparisons of the results from this study and several of those extracted from the literature for pure and three point 
bending, are shown in Table 2. The data from this paper agree very well and could be subjected to analysis. 

4. Results and discussion 

4.1. Tension load 

Typical geometry functions determined for a tensile load can be introduced as follows: 
a) for a crack in an infinite plate it holds f(a/W) = 1, note that the whole fracture mechanics theory was postulated 

for this kind of crack configuration, e.g. Anderson (1991), Suresh (1998), Tada et al. (2000). 
b) for an edge crack in a semi-infinite plate f(a/W) = 1.12, e.g. Murakami et al. (1987), Anderson (1991), Suresh 

(1998), Tada et al. (2000). 
c) for an edge crack in a finite plate for the a/W interval from 0.01 to 0.3, (Seitl et al 2018), see Fig.3 and 4. 

𝑓𝑓(𝑎𝑎/𝑊𝑊) = 1.122 + 0.1444(𝑎𝑎/𝑊𝑊) + 5.3578(𝑎𝑎/𝑊𝑊)2 + 0.5477(𝑎𝑎/𝑊𝑊)3 (5) 

d) for an end edge crack in a finite plate with a hole (the EN 1993-1-8 Eurocode 3: 2006) for an interval from 
0.01 to 0.13, see Fig. 3 

𝑓𝑓(𝑎𝑎/𝑊𝑊) = 0.9919 − 16.94(𝑎𝑎/𝑊𝑊) + 1095.6(𝑎𝑎/𝑊𝑊)2 − 15122(𝑎𝑎/𝑊𝑊)3 − 72020(𝑎𝑎/𝑊𝑊)4 (6) 

e) for an end edge crack in a finite plate with a hole (Correia et al. 2017) for an interval from 0.01 to 0.17, see 
Fig. 4 

𝑓𝑓(𝑎𝑎/𝑊𝑊) = 1.061 − 9.83(𝑎𝑎/𝑊𝑊) + 461.19(𝑎𝑎/𝑊𝑊)2 + 5164.5(𝑎𝑎/𝑊𝑊)3 − 19667(𝑎𝑎/𝑊𝑊)4 (7) 
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Fig. 3 Comparison of calibration curves for  a short edge crack loaded by tension with and without a hole, the hole edge starts at the distance 
a/W=0.13 (the EN 1993-1-8 Eurocode 3: 2006) 

 

Fig. 4 Comparison of calibration curves for a short edge crack loaded by  tension with and without a hole, the hole starts at the distance a/W=0.17 
(Correia et al. 2017) 

4.2. Bending load 

Figs. 5 and 6 compare the obtained calibration curves from FEM for various load types: pure, three and four point 
bending for edge cracks propagation in a specimen with a hole and without a hole, the hole edge starts at a/W=0.13 
and 0.17, respectively. The curves used for the plate without a hole have a lower slope than for the plate with a hole. 
The types of bending loads are not negligible either, that can be seen in Figs 5 and 6, where the difference increases 
in comparison for the plate without a hole. 

The calibration curves can be given by the following polynomial functions: 
for a hole edge in a/W=0.13 

𝑓𝑓(𝑎𝑎/𝑊𝑊)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.1963 − 16.195(𝑎𝑎/𝑊𝑊) + 847.57(𝑎𝑎/𝑊𝑊)2 − 11555(𝑎𝑎/𝑊𝑊)3 + 54644(𝑎𝑎/𝑊𝑊)4 (8) 

𝑓𝑓(𝑎𝑎/𝑊𝑊)3𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=4 = 1.0622 − 14.373(𝑎𝑎/𝑊𝑊) + 753.35(𝑎𝑎/𝑊𝑊)2 − 10274(𝑎𝑎/𝑊𝑊)3 + 48598(𝑎𝑎/𝑊𝑊)4 (9)
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𝑓𝑓(𝑎𝑎/𝑊𝑊)3𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=8 = 1.1293 − 15.284(𝑎𝑎/𝑊𝑊) + 800.45(𝑎𝑎/𝑊𝑊)2 − 10914(𝑎𝑎/𝑊𝑊)3 + 51620(𝑎𝑎/𝑊𝑊)4 (10)

𝑓𝑓(𝑎𝑎/𝑊𝑊)4𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=4 = 1.2305 − 16.564(𝑎𝑎/𝑊𝑊) + 860.97(𝑎𝑎/𝑊𝑊)2 − 11732(𝑎𝑎/𝑊𝑊)3 + 55468(𝑎𝑎/𝑊𝑊)4 (11)

𝑓𝑓(𝑎𝑎/𝑊𝑊)4𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=8 = 1.1972 − 16.208(𝑎𝑎/𝑊𝑊) + 848.04(𝑎𝑎/𝑊𝑊)2 − 11560(𝑎𝑎/𝑊𝑊)3 + 54670(𝑎𝑎/𝑊𝑊)4 (12)

for a hole at a/W=0.17 

𝑓𝑓(𝑎𝑎/𝑊𝑊)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.17 − 9.6362(𝑎𝑎/𝑊𝑊) + 348.7(𝑎𝑎/𝑊𝑊)2 − 3836.9(𝑎𝑎/𝑊𝑊)3 + 14488(𝑎𝑎/𝑊𝑊)4 (13) 

𝑓𝑓(𝑎𝑎/𝑊𝑊)3𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=4 = 1.0735 − 8.7796(𝑎𝑎/𝑊𝑊) + 314.69(𝑎𝑎/𝑊𝑊)2 − 3464.2(𝑎𝑎/𝑊𝑊)3 + 13097(𝑎𝑎/𝑊𝑊)4 (14)

𝑓𝑓(𝑎𝑎/𝑊𝑊)3𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=8 = 1.1218 − 9.1768(𝑎𝑎/𝑊𝑊) + 330.8(𝑎𝑎/𝑊𝑊)2 − 3641.7(𝑎𝑎/𝑊𝑊)3 + 13766(𝑎𝑎/𝑊𝑊)4 (15)

𝑓𝑓(𝑎𝑎/𝑊𝑊)4𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=4 = 1.2041 − 9.8225(𝑎𝑎/𝑊𝑊) + 352.6(𝑎𝑎/𝑊𝑊)2 − 3879.4(𝑎𝑎/𝑊𝑊)3 + 14.656(𝑎𝑎/𝑊𝑊)4 (16)

𝑓𝑓(𝑎𝑎/𝑊𝑊)4𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆/𝑊𝑊=8 = 1.1707 − 9.5852(𝑎𝑎/𝑊𝑊) + 347.27(𝑎𝑎/𝑊𝑊)2 − 3823.1(𝑎𝑎/𝑊𝑊)3 + 14447(𝑎𝑎/𝑊𝑊)4 (17)

 

Fig. 5 Comparison of calibration curves for a short edge crack loaded by bending with and without a hole, the hole edge starts at the distance 
a/W=0.13 (the EN 1993-1-8 Eurocode 3: 2006) 

These dependences can be important for sensitivity analysis of civil engineering steel structures under fatigue load, 
when calibration curves are utilized as input parameters. 

5. Conclusions 

A parametric study of the influence of various loads on the values of calibration functions was performed for an 
edge crack in a plate with holes. The following conclusions can be drawn from the results obtained:  

The influence of riveted or screw holes is dominant for the values of calibration curves. The types of bending loads 
are not negligible, that could be seen in Figs 5and 6. 
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Fig. 6 Comparison of calibration curves for a short edge crack loaded by bending with and without a hole, the hole edge starts at the distance 

a/W=0.17 (Correia et al. 2017) 
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