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ON THE POLYHEDRAL CONES

OF CONVEX AND CONCAVE VECTORS

STEPHAN FOLDES and LASZLO MAJOR

Abstract. Convex or concave sequences of n positive terms, viewed as vectors in
n-space, constitute convex cones with 2n − 2 and n extreme rays, respectively.

Explicit description is given of vectors spanning these extreme rays, as well as of

non-singular linear transformations between the positive orthant and the simplicial
cones formed by the positive concave vectors. The simplicial cones of monotone

convex and concave vectors can be described similarly.

In this note a sequence (vector) a = (a1, . . . , an), n ≥ 1, of real numbers is
called positive if, for all 1 ≤ i ≤ n, 0 ≤ ai, increasing if for all 1 ≤ i < n,
0 ≤ ai+1−ai and convex if, for all 1 < i < n, 0 ≤ ai+1− 2ai +ai−1. The sequence
a is negative, decreasing, or concave, when −a is positive, increasing, or convex,
respectively. The vector a is unimodal if for some (not necessarily unique) index i,
(a1, . . . , ai) is increasing and (ai, . . . , an) is decreasing. All increasing, decreasing
and concave vectors are unimodal. The question of unimodality of the members
of certain sequence classes extensively studied in combinatorics can be difficult
(e.g. Whitney numbers [2,7] and face vectors of certain classes of polytopes [5,8]).
The proof of unimodality of a = (a1, . . . , an), when all ai > 0, is sometimes based
on proving the stronger property of concavity of (log a1, . . . , log an), called log-
concavity [1, 2, 5, 9]. In turn, to prove that log-concavity is preserved in certain
constructions of sequences, ordinary concavity of some coefficient sequences may
be used [3]. These connections motivate our interest in the geometric description of
the sets of vectors possessing one or another of the properties mentioned. Each of
the sets of positive, negative, increasing, decreasing, convex, and concave vectors,
and various intersections of these sets form closed cones (sets containing the null
vector and closed under linear combinations with non-negative coefficients, called
conic combinations). The cone of positive vectors is the positive orthant in Rn.
The cone of positive increasing vectors was described implicitly by Lovász ([4],
p. 248, last equation) and by Marichal and Mathonet [6] in terms of its intersection
with the unit hypercube (one of the n! simplices of the standard triangulation of
the hypercube). In this note we describe the cones of positive concave and positive
convex vectors by determining their extreme rays. When this cone is simplicial,
we describe a standardized matrix realizing the transformation of the orthant to
the cone in question.
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Recall that the set of vectors in Rn is partially ordered by the componentwise
order in which (a1, . . . , an) ≤ (b1, . . . , bn) if and only if ai ≤ bi for all 1 ≤ i ≤ n.

Proposition 1. (Lovász) Every non-null positive vector c can be written u-
niquely as

c = λ1a
(1) + · · ·+ λka

(k),

where λ1 . . . , λk > 0 and a(1) ≥ a(2) ≥ · · · ≥ a(k) are distinct non-null zero-one
vectors.

Essentially due to the above proposition and as apparent from [6], every positive
increasing vector c ∈ Rn can be written uniquely as

c = λ1a
(1) + · · ·+ λna

(n),

where λ1 . . . , λn ≥ 0 and a(1) ≥ a(2) ≥ · · · ≥ a(n) are distinct increasing zero-one
vectors. The cone of positive increasing vectors is the image of the positive orthant
under the linear transformation v 7→ vZ represented by the matrix Z whose ith

row is the vector a(i) (1 ≤ i ≤ n). The matrix Z−1, whose non-zero entries are
Z−1(i, i) = 1 (1 ≤ i ≤ n) and Z−1(i, i+ 1) = −1 (1 ≤ i < n), transforms the cone
of positive increasing vectors to the positive orthant. For n = 5, for example, we
have

Z =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 , Z−1 =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 .
Within Rn, let C be the set of positive concave vectors having a maximal

component value of at least 1, i.e.

C =
{

(c1, . . . , cn) ∈ Rn : (∀i ci ≥ 0) and (∃i ci ≥ 1)
}
.

The partially ordered set C (for the componentwise order) has exactly n mini-
mal members, called minimal standard concave vectors. We shall denote these

c(1), . . . , c(n), where c(i) is the vector whose jth component c
(i)
j (1 ≤ j ≤ n) is

given by

min
(j − 1

i− 1
,
n− j
n− i

)
if 1 < i < n,

j − 1

n− 1
if i = n,

n− j
n− 1

if i = 1.

For n = 6 and i = 3,for instance,

c(3) =
(

0, 1/2, 1, 2/3, 1/3, 0
)

For any vector c = (c1, . . . , cn), an index i, 1 < i < n, is called singular if
2ci > ci−1 + ci+1.
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Proposition 2. The n minimal standard concave vectors c(1), . . . , c(n) form
a basis of Rn. Every positive concave vector c can be written uniquely as

c = λ1c
(1) + · · ·+ λnc

(n) (1)

with λ1, . . . , λn ≥ 0.

Proof. We prove only the second statement, which implies the first. For a given
positive concave vector c = (c1, . . . , cn), c−c1c(1)−cnc(n) is still a positive concave
vector and has 0 as its first and last components. Thus, it is sufficient to prove that
any positive concave vector c = (c1, . . . , cn) with c1 = cn = 0 is a unique conic
combination of c(2), . . . , c(n−1). We will proceed by induction on the number of
singular indices. This number is 0 if and only if c is the null vector, in which case
the assertion is obvious. Otherwise, let i be the first singular index in c. There is
a unique positive real number λi such that i is not a singular index in c− λic(i).
Every index j 6= i is singular in c if and only if it is singular in c−λic(i). Applying
the induction hypothesis to c− λic(i) completes the proof. �

It follows from the above that the cone of positive concave vectors is the image of
the positive orthant under the (non-singular) linear transformation represented by
the matrix M whose rows are the minimal standard concave vectors c(1), . . . , c(n),
which span the extreme rays of the cone. The matrix M is centrally symmetric,
i.e., c(i) is the reverse sequence of c(n−i+1) (or, equivalently, M(i, j) = M(n− i+
1, n − j + 1)). In fact, M can be defined as the only centrally symmetric matrix
with ones on the main diagonal, for which the entries M(i, j) under the main

diagonal (i > j) are given by M(i, j) = j−1
i−1 . The linear transformation mapping

the positive orthant to the positive concave vectors is then given, with the notation
λ = (λ1, . . . , λn) as in (1), by λ 7→ λM = c.
The inverse ofM (also centrally symmetric) is the n×nmatrix whose only non-zero
entries are given by

(i) the main diagonal 1, . . . , 2(i−1)(n−i)
n−1 , . . . , 1,

(ii) for 1 < j < n, the entries M−1(j − 1, j) = M−1(j + 1, j) = − 1
2M

−1(j, j).

For n = 5, for example, we have

M =
1

12
·


12 9 6 3 0
0 12 8 4 0
0 6 12 6 0
0 4 8 12 0
0 3 6 9 12

 , M−1 =
1

12
·


12 −9 0 0 0
0 18 −12 0 0
0 −9 24 −9 0
0 0 −12 18 0
0 0 0 −9 12

 .
It is easy to verify that the product of M and M−1 is indeed always the identity
matrix. For this, we compute the product of the ith row of M and the jth column
of M−1 for each i and j. For 1 ≤ i < j ≤ n (or 1 ≤ j < i ≤ n), we have
M(i, j − 1) +M(i, j + 1) = 2M(i, j), therefore, the product in question equals 0.

For 1 < i = j < n, the three non-zero terms of this product are − j−2
j−1 ·

(j−1)(n−j)
n−1 ,

2(j−1)(n−j)
n−1 , and −n−j−1

n−j ·
(j−1)(n−j)

n−1 and the sum of these is 1. The remaining

cases i = j = 1 and i = j = n are obvious.
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The matrix M−1 transforms the cone of positive concave vectors to the positive
orthant. All non-zero entries of M−1 are on three diagonals. For comparison, the
non-zero entries of the matrix Z−1 are on two diagonals. Both Z−1 and M−1 have
column sums equal to 0, except for the first column of Z−1 and the first and last
columns of M−1.

For 1 ≤ i < n let Ci (Di) be the set of those positive increasing (decreasing)
convex vectors with maximal component value 1 that have exactly i components
equal to 0. Then Ci (Di) has a unique maximal vector ai (bi) with respect to
the componentwise ordering, called the ith standard increasing (resp. decreasing)
convex vector. Note that 1 > a(1) > · · · > a(n−1) and 1 > b(1) > · · · > b(n−1)

where 1 = (1, . . . , 1). For example, for n = 6 and i = 2,

a(2) =
(

0, 0, 0.25, 0.5, 0.75, 1
)
,

b(2) =
(

1, 0.75, 0.5, 0.25, 0, 0
)
.

Proposition 3. The n−1 standard increasing convex vectors are linearly inde-
pendent and, together with 1, form a basis of Rn. Every positive increasing convex
vector c can be written uniquely as

c = λ1a
(1) + · · ·+ λn−1a

(n−1) + λn1

with λ1, . . . , λn ≥ 0.

Proof. The first statement is obvious. It is sufficient to prove the second state-
ment for c = (c1, . . . , cn) with c1 = 0 (because c11 can be subtracted). We proceed
by induction on the number of singular indices. This number is 0 only in the ob-
vious case of c being the null vector. Otherwise, let i be the first singular index
in c. There is a unique positive real number λi such that i is not a singular index
in c− λia(i) and, to this vector, we can apply the induction hypothesis. �

Corollary 4. The n − 1 standard decreasing convex vectors are linearly inde-
pendent and, with 1, form a basis of Rn. Every positive decreasing convex vector
c can be written uniquely as

c = λ1b
(1) + · · ·+ λn−1b

(n−1) + λn1

with λ1, . . . , λn ≥ 0.

Proposition 5. In Rn, the cone of positive convex vectors has 2n− 2 extreme
rays spanned by the standard increasing and standard decreasing convex vectors.

Proof. Every positive convex vector can be written (not uniquely) as the sum
of an increasing and a decreasing positive convex vector. The vector 1 equals
a(1) +b(n). Further, since none of the a(i) can be a conic combination of the other
vectors a(j) and the various b(k) and, similarly, none of the b(i) is a combination
of the other vectors, all the rays generated by the standard convex vectors are
extremal. �

Obviously, the representation of a positive convex vector as a conic combination
of standard convex vectors is not unique. However, every positive convex vector
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c in Rn can be written with coefficients λ1 . . . , λn−1 and θ1 . . . , θn−1, uniquely
determined by c, in the form

c = (min c)1 +
∑

λia
(i) +

∑
θib

(i)

where the vectors a(i) and b(i) are the standard convex vectors. Not all possible
combinations of coefficients λi, θi can appear in such a representation.

The cone of positive increasing convex vectors is the image of the positive
orthant under the (non-singular) linear transformation represented by the ma-
trix N whose rows are the vector 1 and the standard increasing convex vectors
a(1), . . . ,a(n−1). For all 1 ≤ i < n, the first i components of the vector a(i) equal

0, and (a
(i)
i , . . . ,a

(i)
n ) is an increasing arithmetic progression from 0 to 1. Thus,

the matrix N is an upper triangular matrix, whose first row is the vector 1 and,
for all 1 < i ≤ j ≤ n, N(i, j) = j−i+1

n−i+1 .

The inverse matrix N−1 is the n × n upper triangular matrix for which
N−1(i, i) = (N(i, i))−1 (1 ≤ i ≤ n), N−1(i, j) 6= 0 for 0 ≤ j − i ≤ 2 only,
and all column sums and row sums are equal to 0, except for the first column and
the last row. For example, for n = 5, we have

N =
1

12
·


12 12 12 12 12
0 3 6 9 12
0 0 4 8 12
0 0 0 6 12
0 0 0 0 12

 , N−1 =


1 −4 3 0 0
0 4 −6 2 0
0 0 3 −4 1
0 0 0 2 −2
0 0 0 0 1

 .
Similarly to the case of matrices M and M−1, one can show that the product of
N and N−1 is indeed always the identity matrix.

The cone of positive decreasing convex vectors, its n extreme rays, and the
transformation matrix between that cone and the positive orthant have entirely
analogous descriptions. The same can be done for the cones of positive increasing
concave and positive decreasing concave vectors. These cones are all simplicial
cones, images of the positive orthant under a linear transformation, whose inverse
is represented by a special form matrix, as the matrices M−1 and N−1 above. This
matrix is almost diagonal, in the sense that all non-zero entries are on two or three
diagonals. Moreover, the row as well as the column sums of these inverse matrices
are constant with the exception of a single special row and a single column.
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