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Abstrakt
Práce je zaměřena na vytvořeńı numerického modelu 1D experimentálńıho reaktoru pro
spalováńı tuhých paliv. Metodou konečných objemů je provedena diskretizace ř́ıd́ıćıch
rovnic a takto formulovaná úloha je implementována do programu v prostřed́ı MATLAB.
V závěru jsou uvedeny výsledky několika simulaćı hořeńı slámy.

Summary
The thesis is focused on numerical model development of one-dimensional experimental
reactor for combustion of solid fuels. The finite volume method is used for discretizing
the governing equations and the resulting formulation is implemented in the MATLAB
code. Some illustrative simulation results of straw combustion are included as well.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) stands in the foreground of present-day methods
for analysis and solution-finding of engineering problems that involve fluid flows. It has
become the main tool of predicting flow fields, chemical driven processes as well as inves-
tigating and eliminating the causes of undesirable process behaviour, optimizing technolo-
gies, etc., [1]. Of course, the list of branches where CFD is being utilized is much longer
than this. In spite of this, it is important to stress that CFD computer programs are able
to solve only a limited set of problems, while the rest of problems must be adapted to the
scope of the solver in a way (e.g. by stating some additional assumptions), or solved by
another tool.

However, advanced softwares like Fluent provide to users a way of handling such
situations by attaching their own source codes to the solver. Via the so called user defined
functions (UDF) one can extend standard solvers by setting up some special conditions,
procedures, functions, etc. in his own (for instance) C-programming language source code
and upload it into the existing model, see [2].

1.1 State of the art

Modelling of grate combustion as a basic technology of heat production by burning fuels
is not possible with commercial CFD code only. It is possible to solve gas phase processes
above the fuel, but both physical and chemical processes occuring inside the fuel bed
cannot be modeled using the CFD code itself. A stand-alone computer program solving
the interactions between the solid and gas phases during combustion in the bed must be
developed to carry out simulation of the processes. For further development of a grate
furnace such a program is used in conjuction with a CFD program. The bed model
determines the gas phase boundary conditions for the CFD model which can predict
processes in the furnace.

A large model of this kind with moving bed has succesfully been developed by Kær [3].
The model presented there considers the bed as a number of three dimensional volumes,
each of which is considered not to exchange heat with other volumes through the side
walls. Thus the heat transfer can be modeled as one-dimensional problem. Also a lot of
work has been done on description of gas phase reactions and turbulence [4].

The work on detailed description of fixed bed biomass combustion so far has been
focused on straw [5], [6], [7], [8]. Their theoretical results obtained from computer simula-
tions and parametric studies indicate that the effective heat conductivity, straw packing
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conditions, and heat capacity of the straw have considerable effects on the model predic-
tions of such combustion. These conclusions also have been confirmed by experimental
measurements.

1.2 Significance of 1-D models

It has already been mentioned that theoretical results are compared with experimental
ones. Development of industrial furnaces is based on results from 2-D or 3-D simulations.
Such simulations require high quality of input data, mainly the packing conditions which
are expressed in terms of the bed porosity and its effects on the flow, detailed description of
convection/conduction and radiation mechanisms via the effective thermal conductivity,
and the contents of moisture, char, volatiles, and ash in biomass which influence the
effective heat capacity of the fuel [6].

Since data are better collected and evaluated from small-scalled laboratory reactors,
the research is focused on 1-D modeling of processes in the mentioned experimental reac-
tors. The results help in getting an insight into the mechanisms governing the combustion,
and can be used in further development of higher-dimensional models.

1.3 Objectives of the thesis

This thesis is aimed at constructing a numerical model simulating grate combustion of
solid fuels in a one-dimensional experimental reactor. It is not intended to write the UDF
for Fluent in this stage. The program should verify the mathematical model and thus
serve for validation of the theoretical description approach and empirical parameters.

1.4 Scope of the thesis

Physical and mathematical models are presented in the second section. The mathematical
model includes the description of particular processes that are considered in combustion,
i.e. moisture evaporation, devolatilization, and char oxidation. Then the interaction
between gas and solid phases is described by a system of temperature-coupled partial
differential equations where the process rate parameters and other physical quantities
obtained from the three processes mentioned before play an important role.

A numerical method for solving the governing equations is discussed in the third
section. The solution algorithm is proposed and results from computer simulation are
shown. The work is concluded by a paragraph where suggestions for future work are
stated.
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Chapter 2

Mathematical model

The main purpose of this thesis is to verify the mathematical model of grate combustion
which has been described in detail in [9]. Although this model is valid for any kind of solid
fuels, the description of combustion processes is aimed at straw combustion due to the
best data availability. For detailed mathematical description of the problem the physical
model is briefly outlined first.

2.1 Physical model

Figure 2.1 shows a schematic diagram of an experimental furnace with a fixed bed. It is
a vertical thick cylinder that consists of an air preheating section at the bottom, fuel bed
combustion chamber and a secondary combustion chamber where gases from the primary
chamber burn out. An electrical heater placed on the top of the bed serves as the source
of radiation heat flux for heating and ignition of the fuel. The air is supplied from the
bottom and is preheated to a certain temperature. Then it enters the bed consisting of
small pieces of cut straw, and flows upward. Gas samples are collected from just above
the top of the bed. On the other hand, the ignition starts at the top of the bed and the
flame front travels the opposite direction. There are several thermocouples along the bed
to measure the bed temperatures at different heights and both the primary air and flue
gas temperatures.

2.2 Main assumptions

Mathematical description of a problem begins with stating all assumptions. These as-
sumptions usually simplify the model in a sense, but at the same time they should reflect
behaviour of the real system being modeled.

The furnace is relatively high with respect to its other dimensions. The air passes
through an air preheating section into the fuel bed with a grate at the bottom. The
bed is stationary when the primary air-flow rate is less than 0,3 kg·m−2·s−1 [6]. The
gas is supposed to be ideal and it is in plug-flow. Due to this facts, the system can
be mathematically described as one-dimensional. The gas pressure is assumed constant.
Also the combustion chamber is supposed to be adiabatic, i.e. no heat loss along the bed
wall occurs during the combustion.
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Figure 2.1: Experimental furnace

According to [6], bed volume reduction during combustion can be neglected. The
gas-phase species included in the model are CO, CO2, H2O, O2, H2, N2 and a single com-
pound CxHy representing higher hydrocarbons. Some research teams distinguish several
hydrocarbons, namely methan (CH4), higher hydrocarbons represented by an artificial
substitute CxHy and tar (which is a complex mixture of condensable hydrocarbons [6])
and model them as independent gas-phase species, too. For the purpose of the thesis, it
is sufficient to represent the hydrocarbons by an arbitrary compound, namely C2H6. Gas
phase reactions are not included in the model, so physically, the ethane participates only
in overall mass balance and carries some sensible heat.

The char remaining in the fuel and all combustible gas-phase species react with O2.
The rates of oxidation depend on the temperature. Although oxidation in the gas phase
becomes very significant when the temperature is high (above 1000 K [5]), the model
presented here does not take it into account (assuming that combustion of volatiles takes
place only above the fuel layer). The only reaction with O2 is oxidation of char (solid-state
carbon) fixed in the solid residual.

The following enumeration sums up all assumptions that have been stated.

• The system is one-dimensional, the gas is ideal and in plug-flow, its pressure is
constant, and the combustion chamber is assumed to be adiabatic.

• The bed is stationary, there are no changes of packing conditions (volume reduction)
during the process.

• Gas-phase species included in the model: CO, CO2, H2O, O2, H2, N2, C2H6.
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• Oxidation of char fixed in the solid residual is the only reaction with O2.

Note that this list includes only the most important assumptions, whereas many others
are implicit to the details of process rate models (e.g. shape and dimensions of fuel
particles, overall properties of the fuel bed like thermal conductivity, physical properties
of the gases like specific heat, etc.).

2.3 Combustion processes

The combustion of biomass is a combination of several processes. These sub-processes
include evaporation of moisture from the fuel, devolatilization, burning of the volatiles,
and the oxidation of char particles. However, combustion of the volatiles (gas products
of devolatilization process) is assumed to take place only above the fuel bed, i.e. outside
of the modelled domain. The description of the modelled processes via process rate
equations is provided in the following. All equations in this section are taken from [6]
for the sake of consistency, but alternative expressions and constants published by other
authors are mentioned throughout the text. Note that the model has been designed for
straw combustion.

2.3.1 Moisture evaporation

Biomass contains moisture as liquid water stored in the pores due to capillary forces and
water bound to the biomass structure by intra-molecular forces. The volumetric rate of
moisture release (due to fuel drying) is determined by

rH2O = kdS(Cw,s − Cw,f ), (2.3.1)

where kd is the mass transfer coefficient, Cw,s and Cw,f are the concentrations of moisture
at the straw surface and in the gas flow, respectively, and

S =
2ρsrext

ρstraw(r2
ext − r2

in)
(2.3.2)

is the particle surface area per unit volume. Here, rext and rin is external and internal
radius of the straw, respectively, and ρs, ρstraw is the bulk density of straw and the density
of straw wall, respectively. These densities are defined more precisely in the following.

2.3.2 Devolatilization

After moisture evaporation, the dried fuel is pyrolised (devolatilised). Fuel consists of
moisture, volatiles, char, and ash. Typical fuel composition is shown in the figure 2.2.
The devolatilization (pyrolysis) can be described by the following scheme (adapted from
[6]):

straw −→ char + volatiles
volatiles = γ1·CO + γ2·CO2 + γ3·C2H6 + γ4·H2
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Figure 2.2: Example of fuel composition (straw)

Figure 2.3: Yields of pyrolysis of dry straw

Coefficients γi represent mass fractions of different species formed during pyrolysis. Yields
of pyrolysis products of dry straw are shown in the figure 2.3.

The rate of formation of volatiles from pyrolysis is expressed as:

rvol = kvolmvol, kvol = 1, 56 · 1010 exp

(
−16 600

Ts

)
, (2.3.3)

where kvol is the rate constant of devolatilization, depending on the temperature of the
solid fuel Ts, and mvol is the mass of volatiles remaining in the fuel.

2.3.3 Char oxidation

Char forms as volatiles escape from the biomass particles. The primary products of char
oxidation are CO and CO2. Under the assumption that char contains carbon only, the

8



char oxidation reaction is:

C +
1

Θ
O2 −→

(
2− 2

Θ

)
CO +

(
2

Θ
− 1

)
CO2, (2.3.4)

where

Θ =
1 + 1

rc

0.5 + 1
rc

(2.3.5)

is the stoichiometric ratio for char combustion, rc is the ratio of CO
CO2

formation rates,
which can be calculated using the following formula:

rc = 12 exp

(
−3 300

Ts

)
. (2.3.6)

The rate of consumption of O2 during char oxidation follows from the chemical reaction
(2.3.4) and it is given by

rO2 =
1

Θ

MO2

MC

rchar, (2.3.7)

where MO2 and MC is molar mass of oxygen and carbon, respectively. Finally, the overall
reaction rate of char oxidation is:

rchar = komcharpO2 , (2.3.8)

where mchar is the mass of char remaining in the straw, pO2 is partial pressure of O2 in
the gas, and

ko =
ΘWcharkdkc

(rext − rin)ρcharRTskc + ΘWcharkd
(2.3.9)

is the overall reaction rate constant. Here, ρchar is the char density in the straw wall,
Wchar is the molecular weight of carbon, R is the ideal gas constant, and

kc = 8620 exp

(
−15 900

Ts

)
(2.3.10)

is the rate constant of char oxidation. Since

rchar + rO2 = rCO + rCO2 = rcrCO2 + rCO2 = rCO2(1 + rc), (2.3.11)

the rate of CO2 production due to the char combustion is

rCO2,c =
rchar + rO2

1 + rc
. (2.3.12)

The corresponding rate of CO production from the char combustion rCO,c is then calcu-
lated using (2.3.6).

It is now good to note that a huge amount of effort has been spent on finding good
(mostly empirical) relations for coefficients such as kv, kd, kc, Θ that would well represent
all processes. These relations are derived using Arrhenius expression. Various authors
(like [3], [6], [10]) propose different pre-exponential factors and activation energies which
appear in Arrhenius expression, so the resulting rate constants are also different. As
will be shown later, these coefficients play an important role during the tuning of the
computational model. .
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2.4 Governing equations

The overall combustion process is governed by a system of partial differential equations
(PDE), two of which describe the mass and energy conservation laws for the solid phase,
while the rest of the equations are the continuity equations for the gas and individual
gas-phase species, and energy equation of the gas phase [6]. The governing equations are
nonlinear, thus a suitable numerical method has to be implemented to find the solution
of the system. The independent variables are time t ∈ 〈0, τ〉, and one space variable
x ∈ 〈0, hb〉, where x = 0 is set at the bottom of the bed, and hb is the bed height. More
detailed analysis of each equation is provided in the following.

2.4.1 Solid phase PDE’s

1. Mass conservation equation

∂ρs
∂t

= −rf (2.4.13)

The equation describes the rate of change of the bulk density of straw bed. The
source term rf is the conversion rate from solid to gas due to moisture evaporation,
devolatilization, and char oxidation. Therefore,

rf = rH2O + rvol + rchar. (2.4.14)

The bulk density of straw bed is defined as

ρs =
ms

V
, ms = mH2O +mvol +mchar +mash, (2.4.15)

where ms is the mass of the solid fuel in the volume V , V = Vf + Vs, where Vf and
Vs are those parts of volume V occupied by the gas and the solid fuel, respectively.
Since both V and mash are constant, equation (2.4.13) can be rewritten in the form

∂ms

∂t
=
∂mH2O

∂t
+
∂mvol

∂t
+
∂mchar

∂t
= −rfV. (2.4.16)

Individual rates of mass changes are given by

∂mH2O

∂t
= −rH2OV,

∂mvol

∂t
= −rvolV,

∂mchar

∂t
= −rcharV. (2.4.17)

Equations (2.4.17) describe the rates of changes of individual mass components of
the fuel. Hence solving these equations the bulk density ρs is solved as well.

2. Energy equation

∂ (ρshs)

∂t
=

∂

∂x

(
keff

∂Ts
∂x

)
+ hS(Tf − Ts) +Qs +QH2O +Qr (2.4.18)

The equation expresses the law of conservation of energy in the solid phase. Beside
a number of coefficients and source terms, it introduces two thermodynamic state
quantities - namely the specific enthalpy hs and temperature Ts. Since

dh = cpdT, (2.4.19)
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where cp is specific heat capacity at constant pressure, holds for ideal gases and
incompressible substances [11], the energy equation (2.4.18) can be rewritten into
the form

∂ (ρshs)

∂t
=

∂

∂x

(
keff
cp,s

∂hs
∂x

)
+ hS(Tf − Ts) +Qs +QH2O +Qr. (2.4.20)

Through the relation (2.4.19) one can choose whether to solve the energy equation
with respect to hs or Ts. According to [12], for a perfect polytropic gas, cp is constant
and the equation (2.4.19) becomes

h = cpT, (2.4.21)

and so rewriting of the equation (2.4.18) to be solved for the temperature is straight-
forward. However, gases are rarely described as perfect in practice. Instead, they
are treated as ideal, so the state equations still hold, but physical quantities such as
cp are not constant [13]. This implies that the relation (2.4.19) must be integrated
from a reference state to the final one. The next step is to use the mean integral
value to obtain

∆h = hfinal − href =

∫ Tfinal

Tref

cp dT = c̄p∆T. (2.4.22)

The specific heat capacity of the solid phase cp,s, and its mean value c̄p,s are:

cp,s = 977, 75 lnTs − 4144, 4 [6], c̄p,s =
1

∆Ts

∫ Ts,final

Ts,ref

cp,s dTs. (2.4.23)

The relation (2.4.22) can be used to obtain either temperature Ts on the right hand
side of (2.4.20) or the enthalpy hs in (2.4.18). If the enthalpy href is defined to be
zero at the temperature state Tref , then

Ts =
hs
c̄p,s

+ Ts,ref , hs = c̄p,s∆Ts (2.4.24)

The energy equation (2.4.18) can now be expressed in terms of temperature:

∂ (ρsc̄p,s(Ts − Ts,ref ))
∂t

=
∂

∂x

(
keff

∂Ts
∂x

)
+ hS(Tf − Ts) +Qs +QH2O +Qr. (2.4.25)

There are however other quantities in the energy equation of the solid phase, that
have not been described yet. The h is the gas-solid heat transfer coefficient. The
effective thermal conductivity keff is expressed as [6]:

keff = keff,0 +
0, 5kfPrRe

εb
, (2.4.26)

where keff,0 is the thermal conductivity for no fluid flow, kf is the thermal con-
ductivity of the gas phase, and Pr is the Prandtl number. The keff,0 is given [5]
by

keff,0 = 2, 27 · 10−6 · T 1,85
s . (2.4.27)
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The Reynolds number Re is given by

Re =
2ρfvfrext

νf
, (2.4.28)

where vf is the gas velocity, and νf is the gas viscosity depending on the gas tem-
perature Tf [9]

νf = 1, 98 · 10−5

(
Tf
300

) 2
3

. (2.4.29)

The porosity of the bed εb is defined as

εb =
Vf
V

= 1− ρs
ρstraw

, (2.4.30)

where ρstraw is the density of the straw wall (i.e. material density of the fuel). The
assumption of no volume reduction is important here. It means that the porosity εb
is constant. The source terms QH2O, Qs, Qr represent the heat loss due to moisture
evaporation, the heat gain due to the char combustion, and the radiative heat source,
respectively. It is important to note that, in fact, QH2O < 0.

2.4.2 Gas phase PDE’s

1. Continuity equation
∂ (εbρf )

∂t
+
∂ (ρfvf )

∂x
= rf (2.4.31)

The equation describes the rate of change of mass of the gas phase. The source
term rf is defined by (2.4.14), ρf is the gas density, which can be expressed via
thermodynamic state equation as

ρf =
p

r Tf
, (2.4.32)

where p is the gas pressure, Tf is the gas temperature, and r is the specific gas
constant. The continuity equation (2.4.31) is solved to obtain the gas velocity vf .

Due to the assumption of plug-flow and knowledge of the rates of mass conversion,
the velocity vf can also be calculated via the mass flow rate. In a steady one-
dimensional flow, the mass flow rate through an arbitrary cross-sectional area is
constant [13]. The problem given here is unsteady, so it is not constant, but still
must be conserved. If ṁS1 is the mass flow rate through the cross-sectional area
S1 and ṁS2 the mass flow rate through the cross-sectional area S2 that is placed in
the upstream direction from S1, then the difference ṁS2 − ṁS1 is equal to the mass
flow rate from the solid phase to the gas phase caused by the moisture evaporation,
devolatilization, and the char combustion occuring in the volume in between the
cross-sectional areas S1 and S2. Thus,

ṁS2 = ṁS1 + rfVS1S2 . (2.4.33)

If the cross-sectional areas are perpendicular to the flow direction, the velocity vf,S
at x = xS can be obtained by

vf,S =
ṁS

ρfSεb
. (2.4.34)
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It is clear that under these conditions the equation (2.4.31) needs not to be solved.
Instead, one can choose to obtain the velocity field via (2.4.34).

2. Gas species continuity equation

∂ (εbρfXi)

∂t
+
∂ (ρfvfXi)

∂x
=

∂

∂x

(
εbρfDa,eff

∂Xi

∂x

)
+ εbri (2.4.35)

This PDE describes the mass transfer of individual gas species subscripted by i,
i ∈ {CO, CO2, O2, N2, C2H6, H2O, H2}. The source term ri represents the rate of
mass production of the gas species during moisture evaporation, devolatilization,
and the char combustion, Da,eff is a so-called effective axial dispersion coefficient
[6]:

Da,eff = Di + 0.5vfdex, (2.4.36)

where dext = 2rext is the external diameter of straw, and Di is the molecular diffusion
coefficient [14]. Due to data unavailabilty, the coefficients DC2H6 and DH2 are taken
as DCH4 and DN2 , respectively. The species continuity equation is solved with
respect to the mass fraction of the species Xi. The specific gas constant r used in
(2.4.32) is a function of the unknowns Xi:

r = R
∑
i

Xi

Mi

. (2.4.37)

Here, R is the ideal gas constant, and Mi is the molar mass of the species.

3. Energy equation

∂ (εbρfhf )

∂t
+
∂ (ρfvfhf )

∂x
=

∂

∂x

(
εbkf

∂Tf
∂x

)
+ hS(Ts − Tf ) (2.4.38)

This equation is similar to the one of the solid phase. Furthermore, the result in
(2.4.24) is applicable again (with corresponding subscripts for the gas phase - fluid),
and one can make a choice to solve the equation either for the specific enthalpy hf
(2.4.39) or temperature Tf (2.4.40):

∂ (εbρfhf )

∂t
+
∂ (ρfvfhf )

∂x
=

∂

∂x

(
εb
kf
cp,f

∂hf
∂x

)
+ hS(Ts − Tf ) (2.4.39)

∂ (εbρf c̄p,f (Tf − Tf,ref ))
∂t

+
∂ (ρfvf c̄p,f (Tf − Tf,ref ))

∂x
=

∂

∂x

(
εbkf

∂Tf
∂x

)
+ hS(Ts − Tf )

(2.4.40)

The specific heat capacity cp,f and its mean value c̄p,f are given by:

cp,f =
(
0, 99 + 1, 22 · 10−4Tf − 5.68 · 103T−2

f

)
· 103 [6], (2.4.41)

c̄p,f =
1

∆Tf

∫ Tf,final

Tf,ref

cp,f dTf . (2.4.42)
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The thermal conductivity kf in (2.4.38) can be obtained [6] by:

kf = 4, 8 · 10−4T 0,717
f . (2.4.43)

Now it is important to say a word about the gas thermal conductivity (2.4.43) as
well as the specific heat capacities (2.4.23) and (2.4.41) which all have been cited
from [6]. The author introduces (2.4.43) with different exponent, namely with 104.
Such an exponent makes the coefficient (2.4.43) extremly large. At least, one would
expect the order of value of kf to be comparable with orders of some common gases
that can be found for instance in [15]. Zhou [6] also introduces similar temperature
relation for the air thermal conductivity with the exponent 10−5. This leads to the
conclusion that the relation for kf was originally intended to be written as (2.4.43).

A similar situation arises with the heat capacities which are expressed in [J mol−1K−1]
units, while other quantities in the energy equations have physical dimension of
[kg m−3]. Therefore either capacity or all corresponding quantities must be recal-
culated by use of molar masses. These again results in much larger values for the
heat capacity (the same reference can be used for comparison) than it would be
expected from a gas at ambient conditions. Without any recalculation the relation
(2.4.41) gives expected values, so it is probably already expressed in desirable units.
Although values of the heat capacity of straw (2.4.23) have not been compared with
another reference, the relation (2.4.23) is assumed to be expressed in [J kg−1K−1]
units.

2.5 Initial and boundary conditions

To complete the system of PDE’s it is necessary to formulate initial and boundary condi-
tions, which determine a unique solution. While the initial conditions do not give much
trouble, stating the boundary conditions is sometimes problematic. Even for a simple
linear ordinary differential equation with boundary conditions it can happen that the so-
lution to the equation does not exist or there are infinitely many of them [16]. Because of
the physical nature of the given problem, such a situation however cannot arise, therefore
boundary conditions should reflect the system’s behaviour to give a unique solution. For
both types of conditions, conditions for specific enthalpies are not explicitely written,
since they can be calculated from given temperatures using (2.4.22).

2.5.1 Initial conditions

These conditions describe the states of the solid and gas phases at the beginning of the
process, i.e. for t = 0. Usually, they correspond with the ambient conditions.

For ∀x ∈ 〈0, hb〉 = 〈A, B〉

solid phase: ms(x, 0) = ms,0, Ts(x, 0) = Ts,0

gas phase: vf (x, 0) = vf,0, Xi(x, 0) = Xi,0, Tf (x, 0) = Tf,0
(2.5.44)
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2.5.2 Boundary conditions

At the bottom of the bed the Dirichlet conditions for the mass flow rate (or velocity),
gas temperature and the mass fractions of gas species are given by operating conditions,
while for the solid temperature Neumann boundary condition is applied and its value is
assumed to be zero. At the top surface of the bed, gradients of all unknown functions are
also set to zero.

For ∀t ∈ 〈0, τ〉)
solid phase: ∂Ts(A,t)

∂x
= 0, ∂Ts(B,t)

∂x
= 0

gas phase: vf (A, t) = vf,A,
∂vf (B,t)

∂x
= 0

Xi(A, t) = Xi,A,
∂Xi(B,t)

∂x
= 0

Tf (A, t) = Tf,A
∂Tf (B,t)

∂x
= 0

(2.5.45)

As it has been mentioned the boundary conditions must be reflecting the real behaviour
of the system on the boundaries of the computational domain. The energy equation
(2.4.20) takes into account the radiation heat source Qr which is usually placed on the top
of the bed. However, this would not coincide with the zero-gradient Neumann boundary
conditions at x = B, since obviously there would be a nonzero heat influx. Some authors
like Zhou [6], Yang [10], formulate the boundary condition via the ignition temperature
as the over-bed radiation source (i.e. Dirichlet b.c. for solid). The approach used in the
thesis is that the heat source is placed somewhere inside the bed, so zero gradients at the
outflow can be used. If it was placed on the top of the bed, it would influence gradients
of other quantities, too.

2.6 Summary

The mathematical model formed by governing and process rate equations, and completed
by initial and boundary conditions has been presented. The system of PDE’s is nonlinear,
so the solution must be found by a numerical method. The selection of the method as
well as numerical formulation of the problem and implementation with interpretation of
results are the objectives of the next chapter.
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Chapter 3

Numerical model

The previous chapter has described the mathematical model of the grate combustion
processes occuring in a furnace with a fixed bed. These processes are governed by a system
of several PDE’s that, together with process rate equations, form quite a complex system
of equations. Due to the complexity the solution cannot be obtained by an analytical
method.

3.1 Selection of the method

Numerical mathematics plays an important role in the field of engineering calculations
and provides a number of ways for finding the solution of complex problems. Generally,
there are three basic groups of numerical methods for solving PDE’s - the finite differ-
ence method (FDM), the finite volume method (FVM) and the finite element method
(FEM). The FDM is the oldest one among them, but is still being utilized in problems
defined in domains like a line segment, square, rectangle etc. While the FEM is mostly
used in mechanics of solids, the FVM has endeared on solving problems concerning the
prediction of fluid flow. It is caused mainly by the simplicity of the method and its simple
and straightforward compliance with the conservation laws even for the most complex
equations, that is of the biggest importance [12], [16]. This is the key reason to choose
the FVM for discretizing fluid flow governing equations. Moreover, for purposes of the
future generalization and extension of the model up to three dimensions where the use of
the FDM is very limited, this also gives the priority to use the FVM.

3.2 Discretization

There are many books written on the topic of fluid dynamics. A comprehensive descrip-
tion of discretization techniques and numerous finite volume schemes with stability and
convergence analysis can be found in [17], [18]. Also the book written by Patankar [19]
has become very popular among CFD users. The discretization of the governing equations
in the present work is based mostly on this book.

Since the unknowns are functions of the time variable t and spatial variable x, the
discretization must be carried out for both of these dimensions.
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3.2.1 General transport equation

Mass, momentum and heat transfer is generally described by a system of PDE’s, which
includes the continuity equation, the Navier-Stokes equations of motion of viscous fluids
(in case of inviscid fluids, we have the Euler equations), and the energy equation. All
dependent variables appearing in the system seem to obey a generalized conservation
principle [19]. The governing equations can be expressed by a single PDE called general
transport equation. Its one-dimensional form is given by:

∂(ρφ)

∂t
+
∂(ρuφ)

∂x
=

∂

∂x

(
Γ
∂φ

∂x

)
+ Sφ. (3.2.1)

Of course, the unknown φ, the diffusion coeficient Γ as well as the source term Sφ must be
given appropriate meanings with respect to the equation represented by (3.2.1). Therefore
there is no need to discretize all governing PDE’s alone. Instead, the discretization concept
will be shown on (3.2.1) and the result will be directly applied to particular equations
described before.

3.2.2 Spatial discretization

The FVM is based on dividing the computational domain into a finite number of nonover-
lapping subdomains called control volumes or cells1, and integrating PDE’s over each cell.
First, the so called basic mesh is defined by a set of points (nodes) from the domain, and
then a dual mesh is constructed upon the basic mesh, so that to each node a control
volume is assigned.

The computational domain in this work is a line segment Ω = 〈A, B〉 (note that A = 0
and B = hb as mentioned before in the section with initial and boundary conditions). Let
xi = (i− 1

2
)∆x, i = 1, . . . , N be a set of equidistant nodes, where ∆x = B/N . To simplify

the notation, letters W, P, E will denote the nodes xi−1, xi, xi+1, respectively, according
to the standard notation widely used in books on the subject (also in [19]). The interval
〈A, B〉 is uniformly divided into N subintervals, each of which is assigned to a node. So,
Ω = ∪Ni=1

〈
xi−1/2, xi+1/2

〉
, where xi−1/2 = xi − 1

2
∆x, x1/2 = A, xN+1/2 = B. Also here a

simplified notation will be used, so that the points xi−1/2, xi+1/2 at the cell faces will be
denoted by letters e, w, respectively2. The situation is shown in the figure 3.1. The goal
is to evaluate an unknown function at the nodes P .

The equation (3.2.1) is integrated over each control volume. This yields:∫ e

w

∂(ρφ)

∂t
dx+ (ρuφ)e − (ρuφ)w =

(
Γ
∂φ

∂x

)
e

−
(

Γ
∂φ

∂x

)
w

+ S̄∆x, (3.2.2)

where S̄ is the average value of Sφ over the control volume. The subscript φ has been
ommited for simplicity of notation. Since each PDE is going to become a system of
discretized equations that are solved by the techniques of linear algebraic equations, the
source term which often depends on the unknown φ must be linearized into the form

S̄ = SC − SPφP , (3.2.3)

1Proper mathematical definitions of the discretization technique can be found in [12]. Here, the term
nonoverlapping subdomains means that the intersection of any two control volumes is either an empty
set, or common boundary of the two cells, or exactly one common point.

2The letters E, W stand for the eastern and western neighbours of the point P , respectively; the
letters e, w are the eastern and western cell faces, respectively.
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Figure 3.1: Discretization of the computational domain

where SC is the constant part of S̄, and SP is the coefficient of φP . The relation (3.2.3)
should represent the true dependence of S̄ on φ as well as possible. A good way to
approximate such dependence is to expand S̄ into the Taylor series of the first order.
However, if S̄ is a complicated function of φ, the expansion could be very time-consuming.
In such cases it is always possible to linearize the whole S̄ as SC . Using the central-
difference scheme for derivatives in the diffusion term,(

Γ
∂φ

∂x

)
e

−
(

Γ
∂φ

∂x

)
w

=
Γe
∆x

(φE − φP )− Γw
∆x

(φP − φW ) , (3.2.4)

where Γe, Γw is the value of the diffusion coefficient Γ at the eastern and western cell face,
respectively. The simpliest way to calculate these values is linear interpolation of values
of the neighbouring nodes, i.e.

Γe =
ΓP + ΓE

2
, Γw =

ΓP + ΓW
2

. (3.2.5)

To simplify the notation, let D = Γ/∆x. Then the right side of the equation (3.2.4)
becomes

Γe
∆x

(φE − φP )− Γw
∆x

(φP − φW ) = De(φE − φP )−Dw(φP − φW ). (3.2.6)

Since central differencing used for discretization of the convective term suffers from
boundedness for values of the Peclet number Pe > 2, and has no transportiveness (it
does not propagate information about the flow in the flow direction), it is not suitable for
further use [1]. Instead, the first order upwind scheme has been selected for discretization
of the convective term. For simplicity of notation, let F = ρu.

(Fφ)e− (Fφ)w = max (Fe, 0)φP −max (−Fe, 0)φE−max (Fw, 0)φW + max (−Fw, 0)φP ,
(3.2.7)

where Fe, Fw are to be obtained by linear interpolation again as in (3.2.5). Since

a = max(a, 0)−max(−a, 0) (3.2.8)

holds for any quantity a, the equation (3.2.7) can be rewritten into the form

(Fφ)e − (Fφ)w =
(

max(Fw, 0) + max(−Fe, 0) + Fe − Fw
)
φP−

−max (Fw, 0)φW −max (−Fe, 0)φE. (3.2.9)
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The time term from (3.2.2) is discretized in space using a constant profile over the cell as
follows: ∫ e

w

∂(ρφ)

∂t
dx =

∂(ρPφP )

∂t
∆x. (3.2.10)

Fot further use it is worth to rearrange all discretized terms in this way:

∂(ρPφP )

∂t
∆x+

(
max(Fw, 0) + max(−Fe, 0) + Fe − Fw +De +Dw + SP∆x

)
φP =

=
(

max(−Fe, 0) +De

)
φE +

(
max(Fw, 0) +Dw

)
φW + SC∆x.

(3.2.11)

3.2.3 Temporal discretization

The time interval (0, τ) has been divided into M subintervals of the same length, so the
time step ∆t = τ/M . Temporal discretization has been carried out by the implicit Euler
method. The advantage of the method is its unconditional stabilty with respect to the
chosen time step. On the other hand, this also brings a problem to solve a system of
algebraic equations in contrast to the explicit Euler method, which requires nothing but a
simple enumeration. The equation (3.2.11) is integrated over a time step and then divided
by ∆t:

∆x

∆t

(
ρPφP − ρ0

Pφ
0
P

)
+
(

max(Fw, 0) + max(−Fe, 0) + Fe − Fw +De +Dw + SP∆x
)
φP =

=
(

max(−Fe, 0) +De

)
φE +

(
max (Fw, 0) +Dw

)
φW + SC∆x,

(3.2.12)

where the superscript 0 denotes the known value of the quantity at the previous time
t, while the values of quantities without the superscript are evaluated at the new time
t+ ∆t, thus they are unknown. Again, to simplify the notation,

aE =
(

max(−Fe, 0) +De

)
, aW =

(
max (Fw, 0) +Dw

)
, (3.2.13)

and so (3.2.12) turns into(
aE + aW + Fe − Fw + SP∆x+

∆x

∆t
ρP

)
φP = aEφE + aWφW + a0

Pφ
0
P + SC∆x, (3.2.14)

where a0
P = ∆x

∆t
ρ0
P .

3.2.4 Final discretization equation

It is important to say that while solving the discretization equation (3.2.14), the flow field
must satisfy the continuity equation

∂ρ

∂t
+
∂(ρu)

∂x
= R̃, (3.2.15)

where R̃ is the source term such as rf from (2.4.14). Fluent [2] uses two types of solvers,
namely the pressure-based solver and the density-based solver. The first one is based on
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the SIMPLE algorithm [19], in which the velocity field is calculated from the momentum
equations and corrected by the pressure correction obtained from the continuity equation.
Afterwards, the other scalar quantities like enthalpy, chemical species, etc. are obtained.
Such a procedure is inapplicable here, since no momentum equation is given and the
pressure is assumed to be constant. To obtain the scalar quantity φ while satisfying the
continuity equation, the equation (3.2.15) is discretized:

∆x

∆t
(ρP − ρ0

P ) + Fe − Fw = R̃C∆x, (3.2.16)

where R̃C is the linearization of R̃ by a constant. Subtracting R̃C∆x from the equation
(3.2.16) and multiplying the equation by φP leads to(∆x

∆t
ρP −

∆x

∆t
ρ0
P + Fe − Fw − R̃C∆x

)
φP = 0, (3.2.17)

and subtracting (3.2.17) from (3.2.14) gives(
aE + aW + a0

P + SP∆x+ R̃C∆x
)
φP = aEφE + aWφW + a0

Pφ
0
P + SC∆x. (3.2.18)

Indeed, the last few steps made for derivation of the final discretization equation
have a physical interpretation. When the flow field is correct (i.e. it satisfies (3.2.15)),
the solution obtained from (3.2.14) is also correct and satisfies the multiplied continuity
equation (3.2.17). Since this equation is a part of (3.2.14), (3.2.18) and (3.2.14) both
yield the same solution. On the other hand, if the continuity equation is not satisfied,
these two equations lead to different solutions. Preferable solution is the one obtained
from (3.2.18), since it takes into account the continuity equation.

Before writing the final form of the general discretization equation, a simplification
of coefficients aE, aW can be made. The assumption of plug-flow determines the flow
direction, so max(−Fe, 0) = 0, and max(Fw, 0) = Fw.

The final form of the general discretization equation is given by

aPφP = aEφE + aWφW + a0
Pφ

0
P + SC∆x (3.2.19)

aE = De (3.2.20)

aW = Fw +Dw (3.2.21)

a0
P =

∆x

∆t
ρ0
P (3.2.22)

aP = aE + aW + a0
P + (SP + R̃C)∆x (3.2.23)

The equation (3.2.19) represents a sparse tridiagonal system of N algebraic equations.
Such a system is better solved iteratively rather than by a direct method, since the iterative
procedure utilizes the sparsity of the system, and so uses less computer memory. It follows
that the system matrix should have the properties that guarantee the convergence of an
iterative process. For the point-by-point Gauss-Seidel method, the matrix should be
diagonally dominant [20], i.e.

|aP | >
∑
|anb|, for ∀P, where nb denotes the neighbouring points. (3.2.24)
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It is sufficient to satisfy the so called Scarborough criterion, in which the strict inequality
(3.2.24) is required only for one point at least [19]. If R̃C ≥ 0, then the given inequality

is always satisfied. If R̃C < 0, then the coefficient aP might become smaller than the sum
of other neighbouring coefficients, or even negative. To avoid this, if R̃C < 0, then it is
removed from aP , R̃CφP∆x is linearized by a constant, and added to the right hand side of

(3.2.19). However, if the absolute value
∣∣∣R̃C

∣∣∣ is small compared to the value of SP , there

is no need to do such modifications, since the diagonal dominance (or the Scarborough
criterion) is satisfied.

3.2.5 Boundary conditions

The system of algebraic equations (3.2.19) is completed by applying the boundary condi-
tions. Two cases are considered:

Dirichlet b.c.: φ(A, t) = φA Neumann b.c.: ∂φ(A,t)
∂x

= 0

∂φ(B,t)
∂x

= 0

(3.2.25)

The boundary conditions determine the values at the cell faces on the boundaries of the
computational domain. Therefore they appear in the coefficients De, Dw, Fe, Fw defined
only for the first and the last control volumes. The corresponding equations in the system
(3.2.19) are given by:

• Dirichlet boundary condition
x = A:

aPφP = aEφE + aAφA + a0
Pφ

0
p + SC∆x (3.2.26)

aE = De (3.2.27)

aA = FA + 2DA (3.2.28)

a0
P =

∆x

∆t
ρ0
P (3.2.29)

aP = aE + aA + a0
P + (SP + R̃C)∆x (3.2.30)

• Neumann boundary conditions
x = A:

aPφP = aEφE + a0
Pφ

0
P + SC∆x (3.2.31)

aE = De (3.2.32)

a0
P =

∆x

∆t
ρ0
P (3.2.33)

aP = aE + a0
P + (SP + R̃C)∆x (3.2.34)
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x = B:

aPφP = aWφW + a0
Pφ

0
P + SC∆x (3.2.35)

aW = Fw +Dw (3.2.36)

a0
P =

∆x

∆t
ρ0
P (3.2.37)

aP = aW + a0
P + (SP + R̃C)∆x (3.2.38)

3.3 Iterative procedure

The system of PDE’s is nonlinear. Thus, during each time step of the numerical solution,
several iterations must be carried out until convergence is reached. Mathematics provides
numerous approaches for solving nonlinear equations (or systems of equations). One of
the basic methods recommended for solving a nonlinear system of equations obtained from
the discretization of differential equations by an implicit method is the Newton method.
However, Patankar [19] describes an iterative procedure that corresponds rather with the
simple fixed-point iterative method. Such method is also used here. The coefficients of
matrix of the system as well as the source terms are recalculated in each iteration from
the values obtained in the previous iteration. The advantage is its simple implementation.

The criterion of convergence of the method is usually hard to verify in practice due to
the complexity of all relations incident in the problem. Therefore, a control of how the
discretization equations are satisfied by the current solution is a good way of measuring
the convergence, too. This approach does not suffer from heavy underrelaxation which
might cause an illusion of convergence, when examined just by the relative change of
two successive solutions. The only exception is made for equations (2.4.17) where the
implementation of the Newton method is quite simple due to the nature of these equations.

3.4 Application to the system of PDE’s

Results from the previous sections is now applied to the governing equations described in
the chapter 2.

3.4.1 Solid phase

1. Mass transfer equation

The conversion of mass of the solids is governed by (2.4.17). Due to the simplicity
of the equations, it is possible to write discretized equations directly without any
formulas derived in the previous sections.

mH2O,P = m0
H2O,P

− rH2O,PV∆t

mvol,P = m0
vol,P − rvol,PV∆t

mchar,P = m0
char,P − rchar,PV∆t (3.4.39)

The equation for mvol will be treated first. The rate of volatile release is a linear
function of mvol according to (2.3.3), so the new value of volatile mass can be
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obtained without the use of an iterative method by

mvol,P =
m0
vol,P

1 + kvol,PV∆t
. (3.4.40)

For the rest of equations (3.4.39) the Newton method is implemented. The general
scheme of the method for finding the roots of a function f(x) is given in [20] by

xk+1 = xk − f(xk)

f ′(xk)
, (3.4.41)

where k denotes the iteration. The function f(x) for equations (3.4.39) is given by

f(x) ≡ f(mi,P ) = mi,P −m0
i,P + ri,PV∆t, (3.4.42)

where subscript i stands for H2O, vol, char. The derivative of f(mi,P ) with respect
to mi,P is

f ′(mi,P ) = 1 + r′i,PV∆t. (3.4.43)

These derivatives are evaluated numerically by the first order forward difference
scheme. Considering ri,P to be a function of mi,P , the scheme reads

f ′(mi,P ) ≈ 1 +
ri,P (mi,P + δi,P )− ri,P (mi,P )

δi,P
V∆t, (3.4.44)

where δi,P is a sufficiently small step (change of mass mi,P ).

2. Energy equation

A discretized form of the equation (2.4.20) will be shown. To simplify the notation,

subscripts P will be ommited in all source terms. First of all, the term R̃C = −rf
comes from the equation (2.4.13). Also, the source term S̄ = hS(Tf −Ts) +QH2O +
Qs +Qr is linearized to

S̄ = hS(Tf − Ts,ref ) +QH2O +Qs +Qr︸ ︷︷ ︸
SC

− hS

c̄s︸︷︷︸
SP

hs, (3.4.45)

and comparing the orders of expected values of terms SP with R̃C , R̃Chs,P∆x should
be treated as a constant and thus assigned to the right hand side of (3.2.19). The
overall discretization equation is:

aPhs,P = aEhs,E + aWhs,W + a0
Ph

0
s,P + (SC − R̃Ch

∗
s,P )∆x, (3.4.46)

where h∗s,P is the value of the specific enthalpy from the previous iteration, and

aE =

(
keff
cp,s∆x

)
e

, aW =

(
keff
cp,s∆x

)
w

, a0
P =

∆x

∆t
ρ0
s,P (3.4.47)

SC = hS(Tf − Ts,ref ) +QH2O +Qs +Qr, R̃C = −rf , SP =
hS

c̄p,s
(3.4.48)
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aP = aE + aW + a0
P + SP∆x (3.4.49)

Boundary conditions: (only those equations that differ from (3.4.46)-(3.4.49))

x = A :

aPhs,P = aEhs,E + a0
Ph

0
s,P + (SC − R̃Ch

∗
s,P )∆x

aW = 0

aP = aE + a0
P + SP∆x (3.4.50)

x = B :

aPhs,P = aWhs,W + a0
Ph

0
s,P + (SC − R̃Ch

∗
s,P )∆x

aE = 0

aP = aW + a0
P + SP∆x (3.4.51)

3.4.2 Gas phase

Gas velocities are calculated from (2.4.34), so only the gas species and energy equations
will be discretized.

1. Gas species equation

All gas species equations will be discretized as one equation for Xi. There is no need
to solve (2.4.35) for XN2 , since

∑
i

Xi = 1. The rates of production or consumption

of individual gas species are expresed for each species. The overall discretization
equation is:

aPXi,P = aEXi,E + aWXi,W + a0
PX

0
i,P + SC∆x, (3.4.52)

aE =

(
εbρfDa,eff

∆x

)
e

, aW = (ρfvf )w +

(
εbρfDa,eff

∆x

)
w

, a0
P =

∆x

∆t
εbρ

0
f,P (3.4.53)

SC = εbri, R̃C = rf , SP = 0 (3.4.54)

aP = aE + aW + a0
P + (SP + R̃C)∆x (3.4.55)

The rates of production of H2,C2H6,CO,CO2 from the devolatilization and char
combustion processes are defined in the sections 2.3.2 and 2.3.3. Total rates of
production of different species ri follow.

rCO = γ1rvol + rCO,c, rC2H6 = γ3rvol
rCO2 = γ2rvol + rCO2,c, rH2 = γ4rvol

(3.4.56)

The rate of O2 consumption is given by (2.3.7), but it has a negative value in the
equation (2.4.35), since it describes the consumption of O2. Finally, rH2O is given by
(2.3.1). It is important to note here that rH2O is a linear function of XH2O and so it
should be linearized according to (3.2.3). It results in nonzero SP and modified SC as
shown in (3.4.57). Concentrations Cw,s and Cw,f are defined as mass of water matter
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per volume of the solid phase and gas phase, respectively. Then the linearization is
given by:

εbrH2O = εbkdSCw,s − εbkdSCw,f = SC − εbkdSρf︸ ︷︷ ︸
SP

XH2O (3.4.57)

Boundary conditions:

x = A :

aPXi,P = aEXi,E + aAXi,A + a0
PX

0
i,P + SC∆x

aA = (ρfvf )A + 2

(
εbρfDa,eff

∆x

)
A

aP = aE + aA + a0
P + (SP + R̃C)∆x (3.4.58)

x = B :

aPXi,P = aWXi,W + a0
PX

0
i,P + SC∆x

aE = 0

aP = aW + a0
P + (SP + R̃C)∆x (3.4.59)

2. Energy equation

Treatment of the equation is similar to that one of the solid phase. The difference
is in the source term R̃C which is now positive. The overall discretization equation
is:

aPhf,P = aEhf,E + aWhf,W + a0
Ph

0
f,P + SC∆x, (3.4.60)

aE =

(
εbkf
cp,f∆x

)
e

, aW = (ρfvf )w +

(
εbkf
cp,f∆x

)
w

, a0
P =

∆x

∆t
εbρ

0
f,P (3.4.61)

SC = hS(Ts − Tf,ref ), R̃C = rf , SP =
hS

c̄p,f
(3.4.62)

aP = aE + aW + a0
P + (SP + R̃C)∆x (3.4.63)

Boundary conditions:

x = A :

aPhf,P = aEhf,E + aAhf,A + a0
Ph

0
f,P + SC∆x

aA = (ρfvf )A + 2

(
εbkf
cp,f∆x

)
A

aP = aE + aA + a0
P + (SP + R̃C)∆x (3.4.64)

x = B :

aPhf,P = aWhf,W + a0
Ph

0
f,P + SC∆x

aE = 0

aP = aW + a0
P + (SP + R̃C)∆x (3.4.65)
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3.5 Overall algorithm

The numerical formulation of the mathematical model has been presented so far. For
effective implementation of discretized equations into a computer program, it is necessary
to specify an overall algorithm with the order of execution of particular steps. The overall
algorithm is outlined in the firure 3.2.

After initialization of all variables by values defined in a data file outside the program,
the time loop starts with the first time step. In the beginning of each time step the
coefficients a0

P must be calculated from the values obtained in the previous time step,
i.e. a0

P ’s are given by initialized values loaded in the very beginning. Each time step is
iterated until the convergence is reached. The coefficients from process rate equations are
recalculated in each iteration before the discretized governing equations are solved.

It should be pointed out that when checking the convergence the number of iterations
also may indicate divergence in a sense. It can happen that each pair of two successive
solutions may not change as less as it is required for getting the convergence, so the
iteration loop might become an endless cycle. Thus it is good practice to state a maximum
number per a time step which, when exceeded, stops the iteration loop. If such a case
arises, the time step can be shorten and the algorithm can continue from the time where
it has been interrupted. If the time step becomes too small, the computer run is stopped
and the method is said to have not converged. After a successful time step the solution
is saved. Due to the length of the time step which often happens to be as low as a
thousandth of second, it is not necessary to save solution after each time step. Instead,
it can be saved in some representative times.

3.6 Program implementation

To get some results and make conclusions about suitability of the mathematical model
the overall algoritm has been implemented in the MATLAB code. This environment
is very suitable for numerical simulations. It provides a vast of built-in functions on
numerical algorithms as they are known from the theory. Via the M-files one can write a
code according to his needs and let it build by the MATLAB compiler (or better to say
builder) to an executable.

Programming of numerical algorithms in MATLAB becomes even more practical when
the obtained solution does not seem to be correct in accordance to the expectations.
Final tunning can be done by the MATLAB debugger, in which all variable values can be
watched during the execution by setting breakpoints in the code, and changed to another
value to see if the new values produce the expected result. A lot of inspiration on effective
implementation of numerical methods can be found in [21], [22].

3.6.1 Data and M-file organization

The program consists of several M-files and a data file where all values necessary for
the initialization are defined. The main M-file from which the others are called is
grateCombustMain.m. The time loop is represented by the while cycle and it runs until
it reaches the end of the given time interval. During this loop, several other M-files are
executed in the order that corresponds with the overall algorithm shown in the figure
3.2. The script coeff.m contains definitions of all coefficients needed for evaluating the
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Figure 3.2: Overall algorithm

discretized equations. These are solved by the function solve.m which accepts diffusion,
convective, and source terms as well as the type of boundary values, the values themselves,
previous time and iteration solutions, and the spatial step ∆x as its arguments and re-
turns the new values of the variable for which it has been called. Inside the function,
coefficients ai from (3.2.19) are calculated. Since the domain is discretized into a hundred
of cells at most, the matrix of the system of equations is not that large not to effectively
utilize the Gauss elimination method (GEM) using the sparse representation of the matix.
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The Gauss-Seidel method has also been tried, but due to very slow convergence it has
been commented out and replaced by GEM. The function solve.m has also been tested in
such stationary convection-diffusion problems for which the analytical solutions are easy
to find, so the results have been compared to make sure there is no mistake.

The time step is controled and modified in a simple way whenever a larger (more than
10) or fewer number of iterations is needed to obtain the time solution. This control is
very important during the solution, since it helps the program adapt to sometimes very
fast changing values of variables.

3.6.2 Program tunning and simulation results

It can hardly be expected that the first or second program run will be without complica-
tions. Even after tens of simulations it has shown some difficulties which have been hard
to smooth away. The resulting MATLAB program is not fully functional to be used for
prediction of straw combustion. However, it has prooved all results mentioned in articles
on this topic, namely the strong dependence of processes on the mass transfer coefficient
and convective heat transfer coefficient.

Two different scenarios have been used to simulate combustion. The first one has
modeled the situation where no radiation heat source has been used and the biomass has
been heated and dried up only by air preheated to the temperature 900 K, at which the
devolatilization starts to be very significant. The second scenario has taken into account
the heat source which has been placed in the middle of the fuel bed in order not to violate
the boundary conditions as mentioned in 2.5.2. These situations are analysed in detail in
the following.

Scenario 1: preheated air without heat source

The purpose of this simulation is to examine the moisture evaporation and devolatilization
caused by hot air flow, and possibly state the reasons of resulting values. As it has been
mentioned, one of the most influential coefficient is the mass transfer coefficient kd. The
relation for the mass transfer coefficient taken from [5] results in large values of the
coefficient which causes excessive moisture evaporation (unrealistic cooling) and after
several time steps the program breaks down with a message of matrix singularity. The
reason of such behaviour has not been identified, but an arbitrary smaller constant value
of kf (several orders of magnitude) does not produce the same behaviour.

The figure 3.3 shows distributions of temperatures in both fluid and solid phases after
1000 s of the simulation run. It may be observed that the solid temperature at the bottom
of the bed reaches above the fluid temperature as the simulation has been stopped at the
moment of the onset of char combustion. Along the bed the both temperatures decrease
due to heat consumed in fuel drying and devolatilization. The progress of devolatilization
may be observed in the figure 3.4 where it is seen that significant amount of volatiles
have been released from the first few control volumes of the fixed bed. The impact of the
arbitrarily chosen value of kd which controls the rates of evaporation and char combustion
may be seen from the low drop of the mass. It is important to note that the mass transfer
coefficient, and by extension the evaporation and char combustion rates should depend on
the solid temperature as well as on instantaneous composition. This requirement is not
satisfied in the present model, because the expression for kd taken from the literature [5]
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Figure 3.3: Temperature distributions

Figure 3.4: Mass fractions in solid

has proven to contain an unknown error. The constant value used instead does not reflect
the dependence of the coefficient on the solid temperature. To illustrate the composition
of the gas phase, figure 3.5 is displayed, showing the gas composition along the bed height.
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Figure 3.5: Mass fractions of gas species

Scenario 2: radiation heat source in the middle of the bed

This simulation is done in order to validate the model in a situation similar to the practical
intended use. For the sake of simplicity it has been decided to keep the same boundary
conditions in all simulations which in turn prevents the possibility to heat the solid bed
by radiation from the top. Therefore the heat source was placed in the middle of the fuel
bed (arbitrarily). This change provides for simple implementation while leading to a very
similar physical situation. The reasons for doing that have been explained in the section
(2.5.2).

The same facts as discussed in the scenario 1 regarding the mass transfer coefficient and
subsequently evaporation and char combustion rates apply for the second scenario as well.
Namely, the heat release by the char combustion process and heats consumed in drying
and devolatilization of the fuel are not in harmony which is reflected by the mass loss rate
history in figure 3.6. The figure 3.6 shows that the mass loss is far from being smooth
and contains a number of very sharp peaks. The individual peaks correspond to the
instance of intense char oxidation in individual control volumes. This again demonstrates
the imbalance of the three main processes (moisture evaporation, devolatilization, char
oxidation).

The figure 3.7 displays the instantaneous composition of the solid in vertical cross-
section of the bed. The most curious feature in the figure is the profile of the water content.
The peak of water mass fraction coincides with the position of the heat source which is
very hard to explain by physical reasoning. Furthermore, the region of devolatilized fuel
has very sharp boundaries which neither seems to be realistic. The reason for this strange
behaviour must be sought in the expressions used for process rates within the bed.

The last two figures show the temperatures of solid and gas phases and mass fractions
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Figure 3.6: Mass loss rates

Figure 3.7: Mass fractions in solid

of the gas phase.
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Figure 3.8: Gas and solid tempertures

Figure 3.9: Mass fractions of gas species

3.7 Summary

Discretization of the general transport equation has been presented. This result has been
applied to the governing equations, so the numerical model has been described. The
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overall algorithm has been proposed and two different scenario simulations have been
presented with discussion on the results.
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Chapter 4

Conclusion and future work

The thesis has explained the significance of one-dimensional modelling of grate combus-
tion of solid fuels. A detailed description of a mathematical model has been given. The
partial differential equations governing the overall process have been discretized by the
finite volume method and the resulting numerical model has been implemented in the
MATLAB code. Numerous simulations have been done, and the results of two scenar-
ios have been shown. These results have proved the strong dependence of combustion
simulations accuracy on the quality of data inputs and mainly on proper relations that
describe processes occuring in the bed. Some mistakes that have accidentally appeared
in literature have been found out and corrected.

However, there are doubts about some relations which deserve more future attention,
investigation and testing using the software. This should be the subject of future work
and studies. Also there is much to do with developing the computer program to serve as
a reliable tool for prediction of biomass combustion.
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Nomenclature and acronyms

cp,f specific heat capacity of the gas phase [J·kg−1K−1]
cp,s specific heat capacity of the solid phase [J·kg−1K−1]
c̄p,f mean specific heat capacity of the gas phase [J·kg−1K−1]
c̄p,s mean specific heat capacity of the solid phase [J·kg−1K−1]
Cw,f concentration of moisture in the gas phase [kg/m3]
Cw,s concentration of moisture at the solid surface [kg/m3]
dex external diameter of straw [m]
Da,eff effective axial disspersion coefficient [m2·s]
Di molecular diffusion coefficient of species i [m2·s]
F flux (in discretization equation)
h gas-solid heat transfer coefficient [W·K−1m−2]
hb bed height [m]
hf gas phase specific enthalpy [J/kg]
hs solid phase specific enthalpy [J/kg]
kc rate constant of char oxidation [s−1Pa−1m−3]
kd mass transfer coefficient [m/s]
keff effective thermal conductivity [W· m−1K−1]
keff,0 thermal conductivity for no fluid flow [W·m−1K−1]
kf gas thermal conductivity [W·m−1K−1]
ko rate constant of char overall reaction [s−1m−3]
kvol rate constant of devolatilization [s−1]
ṁ mass flow rate [kg/s]
mash mass of ash [kg]
mchar mass of char [kg]
mvol mass of volatiles [kg]
MC molar mass of carbon [kg/mol]
MO2 molar mass of oxygen [kg/mol]
p gas pressure [Pa]
r specific gas constant [J·kg−1K−1]
pO2 oxygen partial pressure [Pa]
Pe Peclet number [-]
Pr Prandtl number [-]
QH2O vaporization heat loss [W/m3]
Qr radiation heat source [W/m3]
Qs heat gain due to the char combustion [W/m3]
rc reaction rate of char oxidation [kg·s−1m−3]
rf conversion rate from solid to gas [kg·s−1 m−3]
rchar overall char reaction rate [kg·s−1 m−3]
rext external radius of the hollow straw [m]
rH2O rate of moisture release [kg·s−1 m−3]
rin internal radius of the hollow straw [m]
rO2 oxygen reaction rate [kg·s−1 m−3]
rvol rate of devolatilization [kg·s−1 m−3]
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rCO carbon monoxide reaction rate [kg·s−1 m−3]
rCO2 CO2 reaction rate [kg·s−1 m−3]
rCO2,c rate of CO2 production due to the char combustion [kg·s−1 m−3]
R ideal gas constant [J· mol−1K−1]
Re Reynolds number [-]
S particle surface area per unit volume [m2/m3]
Sφ source term (in discretization equation)
t time [s]
Tf gas (fluid) temperature [K]
Ts solid temperature [K]
∆t time step [t]
u velocity (in discretization equation)
vf gas velocity [m·s−1]
V volume [m3]
Vf gas volume [m3]
Vs solid volume [m3]
Wchar molecular weight of carbon [kg/mol]
x spatial coordinate [m]
Xi gas phase species [kg/kg]
∆x space step [m]
γi mass fraction of volatile i [kg/kg]
Γ diffusion coefficient
εb bed porosity [-]
φ an unknown function
νf gas viscosity [Pa·s]
ρchar density of char in straw wall [kg/m3]
ρf gas density [kg/m3]
ρs bulk density of straw [kg/m3]
ρstraw density of the straw wall [kg/m3]

CFD: Computational Fluid Dynamics
FDM: Finite Difference Method
FEM: Finite Element Method
FVM: Finite Volume Method
GEM: Gauss Elimination Method
PDE: Partial Differential Equation
UDF: User Defined Function
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