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ABSTRACT 

This master thesis is developing the idea of using lossless compression algorithms 

as a mean of classification of biological sequences. At first an overview of lossless data 

compression algorithms is presented, based on which the dictionary algorithm created 

by A. Lempel and J. Ziv in 1976 (LZ77) has been selected. This algorithm, that 

commonly serves for data compression, has been modified in order to enable the 

classification of biological sequences. Further modifications have been introduced to 

enhance the classification capabilities of the algorithm. Several datasets of biological 

sequences have been collected enabling a correct assessment of the LZ algorithm 

capability. The algorithm was compared to the classical alignment based methods: 

Jukes-Cantor, Tamura and Kimura. It has been proven that the algorithm has 

comparable results in the field of classification of biological sequences and even 

surpasses the alignment methods in 20% of the datasets. Best results are especially 

achieved with distant sequences.  

KEYWORDS 

Data compression, DNA, Lempel-Ziv, LZ77, phylogenetic, classification 

ABSTRAKT 

Tato diplomová práce se zabývá možností využití bezeztrátových kompresních 

algoritmů ke klasifikaci biologických sekvencí. Nejdříve je představena literární rešerše 

o bezeztrátových kompresních algoritmech, která byla využita k výběru slovníkového 

algoritmu vytvořeného A. Lempelem a J. Zivem v roce 1976 (LZ77). Tento algoritmus 

je běžně používán k datové kompresi a v předkládané práci byl modifikován tak, aby 

umožnil klasifikaci biologických sekvencí. K algoritmu byly navrženy další modifikace, 

které rozvíjí jeho klasifikační možnosti. V průběhu práce byla sestavena sada datasetů 

biologických sekvencí, která umožnila podrobné testování algoritmu. Algoritmus byl 

porovnán s klasickými zarovnávacími metodami: Jukes-Cantor, Tamura a Kimura. Bylo 

ukázáno, že algoritmus dosahuje srovnatelných výsledků v oblasti klasifikace 

biologických sekvencí a dokonce je u 20% datasetů překonává. Lepší výsledky 

dosahuje zejména u sekvencí, jež jsou si vzájemně vzdálené. 

KLÍČOVÁ SLOVA 

Datová komprese, DNA, Lempel-Ziv, LZ77, fylogenetika, klasifikace 
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INTRODUCTION 

This master thesis discusses about the possibility of classifying biological sequences 

with the use of lossless compression techniques and is focused on the dictionary 

algorithm created by Abraham Lempel and Jacob Ziv during the year of 1976 – LZ77.  

The way of determining biological sequence similarities has been in the past 

mostly alignment based, meaning the sequences gathered via the Sanger method had 

first to be aligned between themselves before the actual algorithm of comparison was 

used. [1, 5] With the evolution of sequencing technologies and the reads becoming 

longer and longer, these alignment algorithms of computing complexity of, at best, o(n2) 

became very time consuming. More important than time, alignment methods are very 

susceptible to sequence noise. The Next Generation Sequencing methods, which 

replaced the Sanger method of DNA sequence construction, such as Illumina, Roche 

454 etc. are fast at building sequences. On the other hand they sometimes have to 

compensate their speed with the usage of a reference sequence, to fill the gap created 

during the sequence reconstruction. These manual additions create sequence noise and 

therefore the alignment can be inaccurate. [1, 8] 

New approaches are being worked on to resolve presented problems creating a 

new category of sequence analysis – the alignment free methods [32]. These methods 

are often based on nucleotide (or group of nucleotides) frequencies, such as Yang’s 

method, or compression technics, such as the LZ77 algorithm. [1, 2] 

In order to be able to understand the reasoning behind the usage of the LZ77 

algorithm for classifying biological sequences, the fundamentals of information theory 

need to be lay out.  The basis of information theory is introduced in the first chapter, 

both from the classical point of view of Shannon theory and the later Kolmogorov 

complexity. The following chapters present different approaches of generalized 

compression algorithms and those specified for biological compression. The last 

theoretical chapter focuses on compression algorithms that are not only used for data 

compression but are also specialized in the analysis of biological data – concretely DNA 

and amino acid sequences. 

Compression algorithms can estimate the evolutionary distance between two 

sequences by calculating the degree of compression of a sequence, when the algorithm 

is given another sequence as model. If the sequence is well compressed, the model 

sequence contained most of the information, which means the sequences are 

evolutionary close. The applied part of this master thesis is divided into two parts. The 

first part focuses on implementing the LZ77 algorithm in the MATLAB environment 

and testing it’s functionality to classify biological sequences. Several datasets of 

biological sequences have been collected over the course of this study, enabling a 

correct assessment of the algorithm capacities. In the second part, based on the gathered 

results, new methods are implemented to improve the algorithm. The first modification 

changes the core of the algorithm itself: the dictionary used by the LZ algorithm is 

modified from dynamic to static – a necessity to avoid the falsification of results by 

sequence repeats. The rest of the modifications are weighting methods adjusting the 

outcome of the LZ algorithm. 
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1 GENERAL COMPRESSION THEORY 

The first chapter starts by introducing the basis of compression theory. The information 

theory and the term of entropy is explained, followed by the Kolmogorov complexity 

and Huffman coding. The last part of the chapter goes through some examples of 

lossless compression algorithms. 

1.1 Information theory 

Information theory is concerned with the transmission of information between a sender 

and a receiver through a communication channel. As sending data is costly, it is natural 

that theories dealing with data compression have been developed, leading to two main 

categories, lossy and lossless data compression. Compression without a loss of 

information brings questions such as how much information can be encoded in a single 

word or by how much can a message be compressed so that no information is lost. Two 

different approaches to describe this phenomenon are reproduced in this paper, entropy 

via the standard Shannon Theory and Kolmogorov complexity. [3, 4] 

1.1.1 Shannon Theory  

Information theory as such has been created by the American mathematician Claud 

Elwood Shannon. His motivation was to describe means of measuring the quantity of 

information in a symbol (or group of symbols) based on their frequency of occurrence. 

His research led him to discover a connection between the logarithmic function and the 

amount of information - the Entropy of information. [4] 

The Entropy of an information source is dependent on the statistical nature of the 

source: the relations of the characters of the alphabet between themselves and their 

likelihood of occurrence. For the goals of this paper, best is to consider the source to be 

of the first order, meaning the characters of such a source are statistically independent 

and each of them has its own probability of occurrence. The entropy of such a source is 

described by the formula below: 

 𝐻(𝑋) = −∑ 𝑝(𝑥)log⁡(
1

p(x)
)𝑥∈𝑋

 
 (1) 

In this formula H(X) is the entropy of X where X is a discrete random variable 

that belongs to a finite alphabet X and p(x) is the probability of appearance of a symbol 

belonging to the alphabet X. It is determined that if p(x) = 0, the term is considered as 0. 

The base of the logarithm is usually set as 2, as it enables to measure the quantity of 

information in bits.[3, 4] 

It is possible to deduce from the formula, that if for some x ϵ X, p(x) = 1, then all 

the others x ϵ X must have their probability of occurrence p(x) = 0 and thus there is no 

uncertainty and the entropy is equal to zero. A message sent by such a source wouldn’t 

be of much use. 
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On the other hand, the highest entropy is achieved in the case that p(x) = 1/N, 

where N is the cardinality of the alphabet X. [3] 

For lossless compression reasoning entropy is a very important entity as it 

provides a limit to the best possible compression of an information source. It is a value 

that cannot be exceeded and therefore a value that lossless compression algorithms try 

to reach. [3, 4] 

1.2 Kolmogorov complexity  

Kolmogorov complexity is a different point of view on the information content than 

Entropy. It is based on the difficulty of data description, meaning the length of a 

computational procedure or algorithm that has to be created to describe the data. One of 

the definitions of Kolmogorov complexity is simply: the length of the code of the 

shortest program that generates the string it is supposed to generate. It is important to 

keep in mind, that there is always a finite program that can generate any finite string – 

the simple print statement e.g. print(“ACTG”). [3, 4] 

It is interesting to note that the idea behind Kolmogorov’s complexity was 

discovered independently by 3 scientists, Ray Solomonoff, Andrei Kolmogorov and 

Gregory Chatin at approximately the same time – the 1960s. Andrei Kolmogorov, being 

a renowned Russian mathematician, got his name attached to the theory. [3] 

Since many compression algorithms and especially the DNA compression 

algorithms involve in some way or other the idea of Kolmogorov complexity and 

because the Kolmogorov complexity lead Lempel and Ziv to introduce the LZ 

complexity, discussed later, the basic principles of this theory will be explained in this 

chapter. [5, 13] 

Since the Kolmogorov complexity is defined by the length of the program needed 

to describe the data, it could be said that it is dependent on the programming language 

that is going to be used. A number e.g. 1099511627776 that would take 40 bits to be 

simply printed out, could be also described by 240 if the power function would be 

defined in the programing language. If said power function wouldn’t be described, then 

the program generating the number would indeed be longer. Fortunately this difference 

turns out not be so great. It is certainly possible to define the power function (and other 

functions) in different languages and so the final difference in computing code length 

would only be a constant depending on the two programs we are comparing as 

described by the invariance theorem below [3]: 

𝐶𝑓(𝑥) − 𝐶𝑔(𝑥) ≤ 𝑐𝑓,𝑔 

 
 

   (2) 

 

Cf(x) and Cg(x) are the Kolmogorov complexities of x defined by the programming 

languages f and g, cf,g is a constant that that depends only on f and g.  

As the difference is only a constant, we can say that for large numbers, or large 

data input, the percentual difference will minimize. [3] 
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1.2.1 Conditional complexity 

The Shannon information theory most commonly works with prefix codes. A prefix 

code is an organization of code words, that for all code words in the alphabet, none is 

the prefix of another. This property allows the sender to expedite the information string 

of words concatenated to the receiver and the message will still be uniquely decoded. 

Kolmogorov complexity can in general theory work with non-prefix codes, but it leads 

to complications. For this reason the prefix-free Kolmogorov complexity is introduced 

as K(x). For the means of sequence comparison it is important to introduce 

Kolmogorov’s conditional complexity, K(x|y). This measure is to be understood as the 

Kolmogorov complexity of x when y is provided to the program for free. Meaning that 

if the program discovers similarities between the sequences x and y, it may use this 

knowledge to save computational time and space, by simply pointing to the provided 

sequence y. [1,3,5]  

1.3 Relation between Shannon theory and Kolmogorov 

complexity 

Even thought that these two theories have very different fundamentals, they are almost 

in complete agreement in the field of information content. Given a Source of 

information S that can generate a set of strings x1, x2 … xn, and their probabilities of 

occurrence being accordingly P1, P2… Pn its information content can be described by 

both: H(X) = −∑ 𝑃𝑖log⁡(𝑃𝑖)
𝑛
𝑖=1  and 𝐾̅(𝑆) = ∑ 𝑝𝑖𝐾(𝑥𝑖)

𝑛
𝑖=1 . It can be proven that the 

relation between those two values is: 

 lim
𝑛→∞

(
𝐾̅(𝑆)

𝐻(𝑋)
) = 1 (3) 

The mathematical proof itself is of no interest for this paper but can be found in [3]. 

The meaning of the equation (3) is that even though Shannon theory analysis the 

source based on probabilities of occurrences and Kolmogorov’s complexity is based on 

the analysis of concrete strings, they yield almost same results and therefore can both be 

used as valuable indicators of information content. [3] This relation is the reason 

compression algorithms can be used to classify biological sequences, as it will be 

showed later in this paper. 

1.4 Lossless Compression algorithms 

In this chapter the most common data compression approaches are introduced. These 

techniques serve as the basis for genetic data compression and in order to compare 

compression algorithms the quality of compression has to be estimated. There are two 

different values that can describe the quality of compression. It can be described by how 

many bits it takes to encode a character or by the ratio of the resulting compressed file 

size to the original file size.  
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1.4.1 Huffman coding 

For data to be transferred from the sender to the receiver through a channel, they need to 

be encoded into a set of 0s and 1s. Huffman coding attributes different code lengths to 

each symbol of the alphabet according to their probability of occurrence. In order to be 

able to decode the message flawlessly, the codebook that the Huffman algorithm creates 

is a prefix code. What is perhaps the most important is that from all the possible ways of 

creating a codebook for an alphabet, Huffman coding is the algorithm that finds the 

optimal codebook. The code length will be of minimal possible length. In lossless 

compression the goal of the code is to reach the entropy of the source, if the coding 

algorithm doesn’t reach entropy, the difference in bits is called redundancy. It can be 

proven that Huffman code‘s redundancy is at most 0.086 +p1 where p1 is the probability 

of the most-common symbol in the alphabet. [3, 4]  

The Huffman algorithm follows several steps in order to create its codebook. The 

knowledge of the probability of occurrence of all characters is needed. In the first step 

the characters are sorted in descending order of their probabilities. Once this done, the 

algorithm starts constructing a tree with the symbols of the alphabet being the leaves. 

The algorithm choses the two symbols with the lowest probabilities and connects them 

together, creating a new branch. The algorithm continues until all of branches are 

interconnected and then goes from top to bottom, assigning a 1 to the top edges and a 

zero to the bottom edges. Following this way from top to bottom, a specific code is 

associated to each symbol, creating thus the codebook. A complete tree can be seen on 

figure 1 [3,4]. 

 

Figure 1: A tree created by the Huffman algorithm. The tree has been taken from [4]. 

The Huffman coding algorithm is very easy to implement and leads to very good 
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results. There are several modifications of this algorithm such as adaptive Huffman 

coding, but these won’t be discussed in this text, as they are not related to the topic of 

this paper. 

1.4.2 Dictionary algorithms  

Dictionary algorithms store strings of symbols and encode each of these as code words. 

The dictionary can store these strings either permanently or the content of the dictionary 

can vary, leading to two categories: static and dynamic dictionaries. Static dictionaries 

allow additions of code words but no deletions, whereas the dynamic version allows 

even deletions. [3, 4] 

Dictionary based compression methods can be considered to be entropy encoders 

for very large datasets. With H being the entropy of a string of n symbols, the dictionary 

should be able to compress the string to nH bits [3]. We can consider a dictionary 

supposed to compress English texts. Such a dictionary will be static and will contain 

about half million words. Since it needs to be coded in a binary table, a 19-bit token 

could seem to be ideal, since 219 = 524288, but the coding method should also consider 

the possibility that the word in the input string does not match any of the code words in 

the dictionary. Such a word has then to be coded manually, character by character. 

Considering this a better chosen token size would be 20-bits, with the first bit being an 

indicator of the presence or absence of the input string in the dictionary. In the case that 

a word is not found in the dictionary, the output will be encoded as 1|7bits to encode the 

number of characters in the unknown word | 8 bits for each ASCII character in the 

unknown word. By such encoding a 5 character word would be encoded by 20 bits if 

defined in the dictionary and 1+7+8*5 = 48bits if not. [4] 

In general adaptive dictionaries are the better choice, because undefined words can 

appear often and bit length of such a word is larger as seen in the previous example. 

1.4.3 Lempel-Ziv compression algorithm – LZ77 

The LZ77 algorithm is the main topic of this master thesis and it also belongs to the 

group of dictionary based compression algorithms and will be described in this section. 

This method focuses on redundancies in the input string, finding parts of strings that 

match those that were already computed, and uses pointers to code the new incoming 

words. 

LZ77 is a dynamic dictionary algorithm. The dictionary can be empty at first and is 

filled with 3 instances during the algorithm: a pointer to the location of the last 

occurrence of the currently analyzed string, the length of the string and the last added 

character. At each step of the analysis, the algorithm will check if the currently analyzed 

character of the input string can be found in the already analyzed string. If it is not, then 

the location pointer is set to 0, the length is set to 0 and the character is saved in the 

dictionary. Contrariwise if the character is found (possibly at multiple locations) then 

the next character of the input string is compared with the character following the 

position of the previous matches. This process repeats until no more matches are found, 

the location pointer is set up to the location of the first character in the already analyzed 

string, the length is set to the length of the matching string and lastly a new character is 

added. [3, 4] An example of the first 7 steps of the algorithm is described below: 
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Let us consider the sequence A: “LEA-LETS-LEAVE” – the spaces were replaced 

by – for better visibility 

Table 1: Example of the first 7 steps of the LZ algorithm 

 Processed string Incoming string Dictionary added content 

Step 1  LEA-LETS-LEAVE (0,0,L) 

Step 2 L EA-LETS-LEAVE (0,0,E) 

Step 3 LE A-LETS-LEAVE (0,0,A) 

Step 4 LEA -LETS-LEAVE (0,0,-) 

Step 5 LEA- LETS-LEAVE (4,2,T) 

Step 6 LEA-LET S-LEAVE (0,0,S) 

Step 7 LEA-LETS -LEAVE (5,3,A) 

 

If we consider the production process of the processed string in the example and 

store the string that has been added at each step, the so called exhaustive history HE(A)  

is created. When the algorithm finishes the whole string, the exhaustive history would 

be [13]:  

HE(A)  = L►E►A►-►LET►S►-LEA►V►E  

The number of components in the exhaustive is called the LZ complexity, noted 

c(A), and for this example would be 9. The concept of exhaustive history and LZ 

complexity is the base of the biological comparison algorithm using LZ77 and will be 

used in the ensuing chapters. 

 There are several modifications of the LZ algorithm, but for biological data 

compression, the LZ77 algorithm is the preferred method. [13,15] 

1.4.4 The arithmetic method 

The Huffman coding is a simple and efficient method that provides the best coding for 

individual symbols. The problem with this method, however is, it can only assign an 

integer number of bits to each symbol. According to the definition of Entropy it would 

be ideal for a word with a probability of occurrence of 0.4 to be assigned a 1.32 bit code 

(log2(0.4) = 1.32) – this is something the Huffman coding can’t do and so the word will 

be most probably assigned 1 or 2 bits. The arithmetic coding overcomes this flaw by 

assigning one code to the entire file. [3, 4, 7] 

The arithmetic coding needs to have the input of the probability of occurrence of 

each symbol in the analyzed alphabet. A cumulative distribution can be created by 

adding these probabilities one by one. The sum of the distribution should be equal to 1, 

as it is the sum of probabilities of the symbols in the alphabet. In each step the 

cumulative distribution will see an increase its value: 
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 𝑐(𝑚) = ∑ 𝑝(𝑠)

𝑚−1

𝑠=0

 (4) 

c(m) stands for the cumulative probability considering m-1 characters and p(s) 

represents the probabilities of symbols.  

The cumulative probability enables to create an interval [0,1], with subintervals 

belonging to each symbol. The most probable symbol the bigger the interval. The 

coding system can be described by the following steps: 

1) The algorithm starts with the full interval [0,1) 

2) The current interval is divided into subintervals proportional to the 

probabilities. 

3) Locating the subinterval belonging to the currently analyzed symbol and 

defining it as the new current interval and go to step 2. Do until all symbols 

of the analyzed string are read. 

4) The output will be one number that defines the input string unmistakably.  

With each step the interval becomes smaller and smaller so it takes more bits to 

express it, but what is important to realize is that the output is a single number e.g. 

0.542642169841. The algorithm is explained on the figure taken from [7]. The example 

considers the probabilities of occurrences of the nucleotides as follows: A, T = 0.3,       

C, G = 0.2 the encoded sequence is TCA [3, 7]. 

 

Figure 2: Example of arithmetic coding, image taken from [7] 

As it can be seen on the figure 2, the unique interval of TCA is [0.48, 0.498) and 

so the sequence has been encoded in a unique way achieving lossless 

compression.  
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2 COMPRESSION OF BIOLOGICAL 

SEQUENCES 

In the past years, the interest in processing biological sequences has been steadily 

growing and thus the need of transmitting and storing them has appeared. [6, 13] In 

general they consider DNA sequences and proteomic sequences. The length of the 

former varies a lot between species, the length of the human genome is around three 

billion symbols out of the alphabet {A, C, T, G} while the latter has an average length 

of only 450 symbols out of the alphabet of more than 20 amino acids [18].  

Since the length of the analyzed DNA sequences is in general greater than those of 

protein sequences this paper considers the DNA string as input for the compressions. 

Having this in mind, it is important to realize that since the DNA contains only 4 

different characters it is possible to encode each character with a 2 bits. Therefore the 

length of the binary computer code will be only two times longer than the actual 

sequence. The compression algorithms have to overcome this upper limit. [10]  

2.1.1 Horizontal and Vertical mode 

Two different approaches can be applied to the compression of biological sequences: 

horizontal and vertical mode. The horizontal mode can be understood as the 

compression of one sequence with no additional information. The sequence is 

compressed using only the information the sequence contains, working with substrings 

of the sequence itself. The Vertical mode compresses a sequence with an input 

information of a set of other sequences. In this mode the information contained in the 

other sequences helps to achieve a higher compression rate. If a long substring is found 

in one of the model sequences that matches the compressed sequence, the substring can 

simply be coded as a pointer to the model sequence substring, saving a lot of space. The 

vertical mode is of high importance for the classification of biological sequences using 

the compression algorithms, because the amount of similarity between the model 

sequence and the compressed sequence can be understood as a parallel to the 

evolutionary distance. [6, 9, 13] 

2.1.2 Expert Model 

The Expert Model (XM), developed by Cao et al. is a compression algorithm based on 

arithmetic encoding and Markov models. The arithmetic encoding method has been 

described in the previous chapter. A unique interval is attributed to the sequence based 

on the probability of occurrence of the next character. When only the arithmetic method 

is used the compression for genomic data is about 2 bits per character, which is 

unsatisfactory. For that reason Cao et al. include Markov models into the equation. In 

general, Markov models allow predicting the next state of a model, based on the current 

state. For the XM algorithm it means predicting the next character probability on the 

base of previous characters. The arithmetic compression using the XM model will have 

different interval ranges at each step. When the algorithm detects that an Adenine 

follows another Adenine, the probability intervals for the next nucleotides could be e.g. 
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A = 0.2, C = 0.35, G = 0.3, T = 0.15, meanwhile if an Adenine follows a Cytosine the 

intervals for the next nucleotide could be A = 0.3, C = 0.35, G = 0.2, T = 0.15. The 

attribution of these specific intervals is at each step calculated by the so called Expert 

Models. The algorithm starts with a population of Expert Models which are basically 

Markov models. Each expert has his own estimate for the probability distribution of the 

next character. These estimates are combined and are given to the arithmetic coder. The 

expert models also receive different weights based on their accuracy in estimating 

probability in the previous steps. On human genome the XM algorithm achieves a 

compression of 1.75 bits per character. [6, 7, 11, 16] 

2.1.3 Biocompress, Biocompress-2, cFact 

The Biocompress algorithms have been invented by Grumbach S. and Tahi F. and are 

based on two typical characteristics of the genome: tandem repeats and complementary 

palindromes. A tandem repeat is a short sequence of nucleotides that is repeated 

numerous times. The repeats are concatenated to each other. An example of a tandem 

sequence would be TAGTTTAGTTTAGTTTAGTT – the sequence TAGTT is repeated 

four times with the repeats being adjacent. Complementary palindromes are sequences 

of a certain length that match their reversed transcripts. For example TAGTTAACTA, 

when transcribed, leads to ATCAATTGAT, which matches the original sequence when 

reversed. The complementary palindromes can lead to hairpin structures of the DNA. 

Because these two features are common in the DNA, it is advantageous to encode them 

through a dictionary. The Biocompress methods are LZ77 based. First the maximum 

length of the tandems and palindrome is established. Then a complete 4-ary tree (there 

are 4 nucleotides) is formed that allows mapping the presence of palindromes and 

tandems. The difference between Biocompress and Biocompress-2 is on how the 

algorithms handle the parts of the sequences that do not contain repetitions. 

Biocompress simply codes the nucleotides using two bits per base while Biocompress-2 

uses an arithmetic encoder. These two methods achieve up to 32% compression rate but 

only on the regions that are rich in described repeats. [3, 8, 9] 

The research of the Biocompress algorithm led to the cFact algorithm. The 

approach is similar to its predecessor, but the maximum length of the repeats doesn’t 

have to be input. The algorithm first constructs a suffix tree which allows discovering 

the longest palindrome and tandem repeat. The sequence is then encoding using the 

LZ77 algorithm and the non-repeat regions are encoded by two bits per base. [3, 8, 9] 

2.1.4 Gencompress 

The Gencompress algorithm by Chen et al. is also a dictionary based method that 

focuses on repeats in the human genome. The repeats do not have to be exact matches. 

This method comes from the fact that the human genome is rich with repeats that have a 

small percentage of differences. Most commonly these differences, called also edit 

operations, are only single nucleotide replacements, but insertions and deletions can 

also occur. The Gencompress algorithm finds all the approximate matches in LZ77 

style, with a fixed maximum of differences (mutations). The algorithm searches the 

already compressed part for the longest x-nucleotide difference sequence coming up in 

the uncompressed part. The location and the length of the discovered string are saved, 

as well as the pointer to the mutation and the description of the mutation. [3, 8, 10] The 
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compression ratio can attain the value of 44%. [3] 

If more than one mutation between the sequences is allowed the following problem 

occurs: The difference between a sequence ACTGT and ACAGT can be described as 

one replacement of the third character T to A or as one insertion and one deletion: 

ACTGT 

ACAGT 

Or 

ACT-GT 

AC-AGT 

With these possibilities the number of approximate matches could get out of hand 

and the algorithm could take a very long time to compute. For this reason a threshold is 

introduced, which limits the length of the compared strings and the number of edit 

operations allowed. For DNA the best time/compression results are length – 12 and 

maximum 3 edit operations. [10] 

2.1.5 COMRAD – COMpression using RedundAncy of Dna 

COMRAD is a vertical compression algorithm – meaning it uses a set of sequences to 

encode a concrete sequence. As it was stated, a single sequence possesses redundancies 

in the form of tandem repeats and complementary palindromes. The third type of 

genome redundancy is the redundancy between sequences. There is a high similarity in 

between species and even a higher similarity between individuals of one species. By 

analyzing the set of sequences it is possible to discover long strings, reaching even 

thousands of bases that are common to the majority of the sequences. The sequences 

may not be exact matches as the influence of evolution allows for mutations, which the 

COMRAD algorithm accounts for. The COMRAD algorithm is basically a copy of the 

RAY algorithm, except it is modified for DNA sequences. For that reason the RAY 

algorithm is presented below [11]: 

The algorithm is divided into 4 steps that repeat until a terminating condition is 

reached. In the first step the frequencies of all adjacent symbols (words) of determined 

length is evaluated and even the overlapping occurrences are counted. During the 

second step the goal is to discover the word with the highest non-overlapping 

frequencies. The most frequent word from the first pass is chosen and the non-

overlapping occurrences are counted for this word. If this new frequency doesn’t drop 

below the word with the second highest overlapping frequency, the process is ended and 

the first word is chosen to encode the sequence. Else the non-overlapping frequency of 

the second highest word from the first step is counted and the process is repeated until 

the word with the highest non-overlapping frequency is determined. Once the word 

established, it is replaced by a symbol that doesn’t belong to the alphabet of the 

analyzed string at every position of its occurrence. In the fourth and last step the word 

frequencies are updated to the new alphabet (since a new symbol has been added) and 

the algorithm repeats the steps 2-4 until the termination condition is reached. The 

termination condition is often chosen to be the moment when none of the words has the 

frequency of occurrence higher than 2. [11]  
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An example of the algorithm follows. Let us consider the input string 

“ACTCTACT” and the length of the words being 2.  

Step 1) The overlapping frequencies are calculated: AC = 2; CT = 3; TC = 1;  

TA = 1;  

Step 2) The highest frequency possess the word CT and it can be seen its non-

overlapping frequency is still the highest. 

Step 3)  A new character is attributed to the word: x = CT and the string is 

modified: “AxxAx”  

Step 4)  The frequency occurrences are recalculated: Ax = 2; xx = 1; xA = 1; 

Depending on the termination condition the algorithm would stop now or continue 

again at Step 2. 

The COMRAD algorithm makes some modifications so that it is more suitable for 

use on DNA sequences. Because the DNA dataset, COMRAD works with, is a huge 

input, the minimal length of the word in the first iteration is set to 16 concrete 

nucleotides. The reasoning behind this step is that 16 nucleotides long words occur with 

a reasonable frequency in a large DNA collection and so by this step the algorithm 

saves numerous iterations. The second large modification is to account in the 

complementary palindromes. Other modifications handle sequence recognition when an 

evolutionary modification has affected the sequence. [11] This method achieves very 

different compression values depending on the dataset but even though the compression 

rate may vary the best published results achieve 0.04 bits per base when comparing 

around a thousand sequences of the human chromosome 20. [11] 

2.2 Compression algorithms for classification of biological 

sequences 

In this last theoretical chapter two methods that use compression algorithms for 

biological sequences classification are introduced. They are both based on the 

Kolmogorov complexity.  

2.2.1 Universal Similarity Metric 

The Universal Similarity Metric (USM) method is based on the Kolmogorov 

complexity. As stated in chapter 1.2, we can denote the conditional Kolmogorov 

complexity of a string x given y as K(x|y). This conditional complexity can be 

considered as a measure describing the distance between x and y. Unfortunately the 

Kolmogorov complexity isn’t something computable therefore in order to establish 

K(x|y) an approximation needs to be used. [3, 4, 5] 

As shown in the chapter 1.3, there is a close relation (limitedly equivalence for 

large strings) between the entropy of the information source and Kolmogorov 

complexity. This means that evaluating the entropy of the information source can 

provide an accurate estimate of the Kolmogorov complexity. Furthermore it can be 

proven that the conditional Kolmogorov complexity of x given y is the same as the 

Kolmogorov complexity of x concatenated with y up to a logarithmic precision.[5] 
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Therefore it is possible to estimate the Kolmogorov complexity by calculating the 

compression rate of the concatenated sequence. Even though that the entropy of the 

source information is defined as being the lowest possible limit of compression rate, the 

entropy isn’t possible to be calculated as easily. The idea behind the USM algorithm is 

to use the best existing compression methods for biological sequences and estimate the 

entropy – the compression ratio becomes the compressive estimate of Entropy. [5]  

The outcome of the USM analysis yields good results but is dependent on the 

quality of the compressor and if the dataset is well chosen for said compressor. [5] 

2.2.2 Lempel-Ziv for biological sequences 

The principle of the LZ77 (LZ) has been outlined in the chapter 1.4.3. There is basically 

no modification for the biological sequence analysis, apart from the difference in the 

alphabet used. In order to analyze the distance between two sequences, they need to be 

concatenated one to another and the number of steps needed to generate their exhaustive 

history can be calculated. The principle explaining why the measure of the number of 

steps can be used as an estimation of the evolutionary distance is described by the 

example below, taken from [13]: 

Let us consider the following three sequences: 

A = “AACGTACCATTG”; B = ”CTAGGGACTTAT”; C =  “ACGGTCACCAA” 

Their individual exhaustive histories would be: 

HE(A): ►A►AC►G►T►ACC►AT►TG 

HE(B): ►C►T►A►G►GGA►CTT►AT 

HE(C): ►A►C►G►GT►CA►CC►AA 

As all of the histories contain 7 components their respective LZ complexities      

c(A) = c(B) = c(C) = 7. Let now be the concatenated sequences AC and BC with their 

respective exhaustive histories HE (AC) and HE (BC). 

HE(AC): ►A►AC►G►T►ACC►AT►TG►ACGG►TC►ACCAA 

HE(BC): ►C►T►A►G►GGA►CTT►AT►ACG►GT►CA►CC►AA 

The LZ complexities are different this time with c(AC) = 10 and c(BC) = 12. The 

reason for this difference is that the sequence C has been encoded only in three steps 

when given the information of A, while it has been encoded in five steps given the 

sequence B. The cause is the sequence A and C share the strings ACG and ACCA and 

therefore are closer to each other. The number of steps S it takes to generate the 

sequence C using the sequence A can be calculated by the following simple equation: 

 S = c(AC) – c(A) (5) 

This is how the similarity between the sequences is estimated. 
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3 EXPERIMENT LAYOUT 

The objective of this master thesis is to assess if the compression techniques based on 

the Lempel-Ziv (LZ) algorithm can be used for the classification of biological 

sequences. The focus is set on DNA sequences, but proteomic data are also briefly 

analyzed.  

The experiment is divided into 4 parts. The first part takes 4 datasets of different 

length and similarity level. The compression algorithm is left as designed by the authors 

of [13], in order to gain a rough estimate to validate or deny the LZ approach. As the 

results were positive with ¾ of the datasets, the LZ approach has been validated.  

The second part of testing has been designed in order to inquire how the similarity 

level of sequences influences the outcome of the algorithm. In this part 7 datasets of 

complete mitochondrial DNA have been used. The datasets were chosen according to 

the taxonomy tree of the NCBI database and are always comparing two groups of 

different taxonomy branch. The species in the main groups are chosen randomly. The 

first dataset compares two groups of bony vertebrates – Euteleostomi, and the next 

datasets descend the taxonomic tree till the last dataset which compares two groups of 

Primates.  

The third part of testing works with fixed species, and concentrates on short 

sequences. The range goes from several hundreds of nucleobases to a thousand. Two 

proteomic sequences are also tested in this chapter, as they belong to the category of 

short sequences as well. The parts 2 & 3 were designed to determine the strength and 

weaknesses of the algorithm. 

The fourth part implements modifications of the LZ77 algorithm, based on the 

previous results, in order to achieve higher precision in biological sequence 

classification. 

3.1 Estimating the algorithm functionality 

Four different datasets have been used to get a rough estimate of the possibilities of the 

LZ technique in the classification of biological sequences: 

3.1.1 Datasets  

Table 2: Datasets used for the first part of testing. 

Dataset no. Dataset specification Dataset average length [bp] 

1st dataset 16S rRNA sequences of 13 primates. 1500 

2nd dataset Mitochondrial DNA of chosen 

animals.  

16500 

3rd dataset Hepatitis A virus variants from across 

the world - 25 sequences. 

7500 

4th dataset Rhabdovirus variants, including 7 

subgroups. 

12000 



 16 

The complete list of sequences can be found in the appendix of this paper. 

3.1.2 Metric system  

Four different, but similar, metrics have been used in this master thesis to estimate the 

evolutionary distance, the metrics were left as designed in [13]. The main idea behind 

the proposed metrics is that the number of steps necessary to create the exhaustive 

histories of concatenated sequences AB and BA are usually different, which needs to be 

taken into account. 

Let’s consider the individual and concatenated exhaustive histories of sequences A and 

B: c(A), c(B), c(AB), c(BA).  

First metric:  

𝑑1 = max⁡{𝑐(𝐴𝐵) − 𝑐(𝐴), 𝑐(𝐵𝐴) − 𝑐(𝐵)}    (6) 

The first metric, leading to the distance measure d1, chooses the longest 

concatenated exhaustive history, subtracted by the provided sequence’s history.  

Second metric: 

𝑑2 =
max⁡{𝑐(𝐴𝐵) − 𝑐(𝐴), 𝑐(𝐵𝐴) − 𝑐(𝐵)}⁡⁡⁡

max⁡{𝑐(𝐴), 𝑐(𝐵)}
   (7) 

It can be imagined that longer sequences will statistically have larger exhaustive 

histories and thus could falsify the result. This reasoning leads to the second metric. 

Compared to the first metric, the distance measure d2 has been normalized and so the 

effect of variable sequence length has been diminished. [13] 

Third metric: 

𝑑3 = 𝑐(𝐴𝐵) − 𝑐(𝐴) + 𝑐(𝐵𝐴) − 𝑐(𝐵)    (8) 

 In the previous two cases one of the histories has been chosen to represent the 

relativeness of the sequences A and B. The d3 approach is to take both of the variants, 

meaning c(AB) and c(BA), into consideration. This leads to the third metric system with 

the distance measure d3. [13] 

 

Forth metric: 

𝑑4 =
𝑐(𝐴𝐵) − 𝑐(𝐴) + 𝑐(𝐵𝐴) − 𝑐(𝐵)⁡⁡⁡

1
2 ⁡{𝑐

(𝐴𝐵) + 𝑐(𝐵𝐴)}
 (9) 

The last metric is the normalized version of d3. [13] 

Those four metric systems have been used to analyze the datasets. 
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3.1.3 Algorithm specification 

The algorithm is divided into 2 parts. In the first part the exhaustive history of each of 

the single input sequences (c(A)) is calculated. The number of steps needed for the 

construction of the exhaustive history is saved. The exhaustive history itself, the 

location pointer, length of the words and the new characters, as explained in the 

theoretical part of this work, are not saved. They would serve no purpose in the 

phylogenetical analysis. Even though the new character is not saved, it is still skipped at 

each step of the exhaustive history construction and therefore the next string matching 

step starts at the position “last character of the last longest common word +1”. In the 

second part of the algorithm two sequences at a time are concatenated together and their 

conditional exhaustive history is calculated. As the first half of the sequence has been 

calculated in the first step, it is not necessary to recalculate it. The process starts with 

the first sequence (A) filling the left window and the second sequence (B) filling the 

right window. Once the number of steps to form the exhaustive history of B using A has 

been calculated, the number of steps of A known from the first step of the algorithm is 

added, and therefore c(AB) is reached. These steps are repeated for all the combination 

of sequence pairs in the dataset. The resulting matrix is then used as an input for the 

metric systems, and the four phylogenetical trees are constructed. The flowchart of the 

algorithm is presented on the figure 3. 
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Figure 3: The flowchart of the program 
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3.1.4 Results and discussion 

Thorough the testing of the algorithm it has been successfully confirmed that the 

LZ77 algorithm can be used for the classification of biological sequences. On the other 

hand the phylogenetical trees calculated with the four metrics possess all long branches 

from the leaf to the first nod and very short branches from nods to nods. This effect is 

due to the form of proposed metrics. The distances vary too little compared to their 

nominal value and so it appears the subjects are distant to each other. The reason is that 

the LZ77 algorithm isn’t an algorithm to measure the exact evolutionary distance but a 

simple classification algorithm.  

To compare the generated trees via LZ77 with the standard approach, a reference 

tree has been constructed from the set of sequences using the Jukes-Cantor distance [20]. 

In order to create a phylogenetic tree, a construction method had to be chosen. For 

simplicity in the first part of the experiment the UPGMA has been chosen [19]: 

 

The reference tree for the first dataset (16S rRNA of 13 primates) is presented on 

the figure below:

 

Figure 4: Reference phylogenetic tree constructed via J-C and UPGMA from the first dataset. 

 The two extreme values of the reference phylogenetic, from figure 4, are going 

to be examined first. The sequences of the Neanderthal and Human are the ones closest 

to each other. On the other hand the most distant sequence, connected directly to the 

root of the tree, is the Common brown lemur. The sequences were analyzed by the four 

metrics and the distance measures yielding the best phylogenetic tree for this concrete 
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dataset – the distance d3, is presented below. The Common brown lemur, Neanderthal 

and Homo sapiens are stored under the variables 2, 10 and 11 respectively. 

 

Figure 5: The distance matrix d3 with highlighted values of the closest and most distant 

individuals. 

 The distance measure based on LZ77 correctly distinguished that the 

Neanderthal and Human are the closest species from the dataset, as their relative 

distance value is the minimum of all the distances. The distance measure also agrees 

with the premise that the Common brown lemur is the most distant individual, as the 

column belonging to the sequence contains the highest numbers of the distance matrix. 

The phylogenetical tree created from this metric is presented on the figure 6: 

 

Figure 6: Phylogenetic tree constructed from the first dataset using the d3 metric.  
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 As explained in the introduction of this chapter, the distances between the leaves 

and the nods are considerable – longer than in the reference tree. The trees have been 

compared via the Robinson-Foulds metric (RF distance) [21], which describes the total 

of wrongly formed uncommon nods in between the two trees. The RF distance for the 

first dataset is equal to 8. Meaning that out of the 22 nodes (not counting the root) 14 

are correct, yielding a 63% success rate. The sequences are analyzed in detail in the 

following figure. For an easier comparison the trees haven been turned into cladograms 

[22] – meaning the calculated distances have been ignored and the trees have been 

constructed out of the nods from the precedent figures: 
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Figure 7: Comparison of the reference to the d3metric. On the top of the figure is the 

cladogram made out of d3 metric and at the bottom the reference. Three common 

large groups of Primates have been highlighted.  

The first dataset didn’t yield a very good result considering the RF distance but 

has proven that the algorithm is classifying in a correct manner. Figure 7 shows, that the 

LZ algorithm has correctly identified the three major groups of primates. 
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The second dataset containing the mitochondrial genome yields the best results 

with the distances d3 and d4. As the reference tree and the LZ d3 tree is very similar, the 

comparison figure is showed directly: 

 

Figure 8: Cladograms of the third dataset. Distance d3 on the top and reference on the bottom. 

The sole wrongly associated sequence is highlighted in the red box. 
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The second dataset contains only one misplaced sequence: the Human. Apart of 

that the phylogenetic tree has been generated correctly. The RF distance is 4, leading to 

a 75% success rate. It can be seen that even with a higher sequence length the LZ77 

algorithm doesn’t identify very similar sequences correctly but manages to group the 

close sequences together, not interfering with the other groups. 

 The reference phylogenetic tree for the third dataset can be viewed on the figure 

8. The hepatitis A virus sequences are highly similar and the Jukes-Cantor algorithm 

doesn’t classify the sequences correctly. For this reason the reference tree has been 

constructed as in the original paper [16].  

 

 

Figure 9: Reference tree for the hepatitis A virus as in [16] 

This dataset contains 4 groups of the hepatitis virus differentiated by numbers on 

the figure 9. The group number 1 is abundant in sequences and is divided into two 

subgroups 1A and 1B. In order to highlight the closeness of the sequences the 

phylogenetical tree created via Jukes-Cantor and Neighbor-joining [23] is presented 

below:  
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Figure 10: phylogenetic tree constructed based on JC from the second dataset. 

The figure 10 shows that the distances are in many cases very similar, especially 

the sequences belonging to the groups 1A and 1B are very close to each other. The third 

dataset has been chosen to be a hard test for the LZ77 algorithm. The Jukes-Cantor 

algorithm fails to place the groups 2, 3 and 4 correctly, if compared to the reference 

from [16], and the group 1A is split into two parts, therefore this is a dataset that is 

challenging even for the alignment based methods. 

The LZ77 algorithm has been tested for all of the four metrics. Metrics 1, 2 and 

3 yield almost the same result with their maximum RF distance being 2. The fourth 

metric has a slightly worst result with the RF distance to the other 3 metric being 8. As 

the datasets are chosen to be difficult to classify, the simple UPGMA method is no 

longer sufficient, for this reason the phylogenetical trees in the rest of this paper are 

constructed via neighbor-joining.  The resulting tree from the metric 3 is presented 

below: 
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Figure 11: Phylogenetical tree of hepatitis A virus variants made from the 3rd metric.  

It can be seen from the figure 11 that the LZ77 algorithm has managed to 

differentiate the main groups of hepatitis virus variants. The generated distances 

between the sequences (the length of the branches) are greater than in the tree generated 

by Jukes-Cantor, especially in the very similar groups such as 1A and 1B. This is a very 

positive discovery as the sequences that look similar to an alignment algorithm seem to 

be different enough for the LZ algorithm, which means the classification should be 

more precise. The next figure compares the reference from [16] with the phylogenetical 

tree created by the metric 3. For a better visibility the LZ tree has been turned into a 

cladogram. 
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Figure 12: Comparison of the cladogram from d3 and the reference for the second dataset. The 

three major traits have been highlighted. 

The analysis of Figure 12 leads to the discovery that only 1 nods is classified 

incorrectly, leading to the RF distance of 2 between the reference and the LZ algorithm, 

which corresponds to 96 % success rate – a very good result for such a difficult dataset. 

The fourth dataset consist of 35 different Rhabdoviruses belonging to 7 different 

subgroups. The specific sequences have been chosen from [17]. This is the most 

difficult dataset on which the LZ algorithm has been tested. The distances between the 

sequences are very similar. Before presenting the JC tree, the taxonomical tree of 

Rhabdoviruses as proposed by the authors of [17] is showed: 
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Figure 13: Reference phylogenetical tree of Rhabdoviruses [17] 
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The 7 different subgroups of the Rhabdovirus can be seen on the figure 13. The 

cladogram created via Jukes and neighbor joining can be seen below: 

 

Figure 14: Jukes-Cantor’s phylogenetical tree of the Rhabdoviruses variants. 

The figure 14, shows that the classical Jukes-Cantor alignment based method 

manages to separate the Rhabdoviruses into the 7 subgroups almost correctly, only the 

drosophila sequences are not grouped together. On the other hand there are several 

mismatches compared to the reference, the biggest being the misplacement of the whole 

Ephemerovirus and Novirhabdovirus group. The Ephemerovirus should have the same 

ancestor as the Vesiculovirus, while the Novirhabdovirus subgroup should be the most 

distant one to the rest of the sequences. Once again this dataset is challenging even for 

the alignment based methods.  

The dataset has been analyzed by the LZ algorithm and the table below shows the 

Robinson-Foulds distance between the 4 metrics: 

 

 

 



 30 

Table 3: RF distances of the Rhabdovirus dataset between the 4 metrics 

 Metric 1 Metric 2 Metric 3 Metric 4 

Metric1 0 34 38 50 

Metric2 34 0 36 52 

Metric3 38 36 0 50 

Metric4 50 52 50 0 

 

The table 3 shows that the resulting trees from the 4 metrics differ largely between 

themselves. The reason of this failure is that the LZ complexity is very similar between 

the sequences. To back up this statement the first 11 entries from the variable, that 

contains the LZ complexity matrix modified by the metric 2, is showed below: 

 

Figure 15: Variable containing the LZ complexity modified by the metric 2, first 11 entries. 

Only 11 entries have been shown for a good visibility, but the data are similar 

thorough the whole variable. Since the closeness of the sequences is this great and that 

the difference in the LZ complexity between the sequences is almost inexistent, the 

approach fails to classify the sequences properly. The high similarity can be visually 

seen on the phylogenetic tree of the distance 2 below:  
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Figure 16: Graphical display of LZ complexity similarities between the sequences. 

The result for the Rhabdoviruses is disappointing but expected. The LZ complexity 

with similar sequences is susceptible to variance. Even if the sequences are very similar, 

theoretically the ones closer to each other should still yield a better result. Unfortunately 

it cannot be said that there will always be more mutations, in slightly more distant 

sequences, which are the reason for an iteration of the algorithm to restart and thus 

increase the LZ complexity. Also in some cases a well-placed mutation can lead to a 

longer common word between two sequences. For this reason the sole LZ distance is 

not sufficient for sequences with similar distances in between them.  

Throughout the whole testing the metric distance d3 has had the best results and 

even in this case the same can be said. After analyzing all the phylogenetical trees, the 

distance d3 manages to separate the Rhabdovirus families similarly to the JC tree, the 

cladogram is presented below: 
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Figure 17: Cladogram of the Rhabdovirus dataset by the LZ alg. with the distance metric d3. 

The Ephemerovirus and the Novirhabdoviruses groups are not in the correct place, 

but overall the classification into groups has been successful. 

3.1.5 Conclusion of the first part of testing 

The direction of research in the field of compression data algorithms to be used to 

classify biological sequences is justified. Even though the algorithm doesn’t show the 

best results with closely related sequences, it manages to group together the closest 

sequences and in the case of hepatitis A, the LZ algorithm outclasses the Jukes-Cantor 

alignment method. It is important to keep in mind that the algorithm used has been the 

LZ77 algorithm without any modification. It is a simple algorithm which hasn’t been 

adapted for the classification of biological sequences apart from the fact of introducing 

the four different metric systems.  

3.2 Sequence disparity testing 

As it has been shown in the previous chapter, the algorithm as it stands cannot be used 

universally. The second part of testing has been designed in order to test the LZ 

algorithm’s resolution. Species belonging to two different taxonomy branch groups are 

chosen in each datasets. The datasets are descending the taxonomic tree from very 
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distant to closer groups from the evolutionary point of view.  

3.2.1 Algorithm specifications 

The algorithm uses the same metric system and base algorithm as proposed in [17]. The 

tree construction the UPGMA method, which is old and unprecise, is changed to 

neighbor-joining. The reference trees used for this method will be based on the 

taxonomic classification of the NCBI database. For this part of testing the interest lies in 

the ability of the algorithm to separate the species in two groups and not necessarily to 

reach the perfect phylogenetical tree. As the NCBI tree is a cladogram, it doesn’t use 

evolutionary distances. For this reason more species can be at the same taxonomic level. 

When evaluating the RF distance between the constructed tree and the reference tree, 

this fact could lead to falsification as the constructed trees are bifurcating trees. In order 

to correct this possible falsification the following rule, when evaluating the RF distance, 

is set. Both of the variants of the branches on figure 16 are going to be considered 

correct.  

 

Figure 18:  NCBI reference tree on the left side and the two correct variants that can occur on 

the right side. 

3.2.2 Datasets 

7 datasets of mitochondrial DNA have been prepared. Each dataset is composed of 

around 13 species belonging to two different groups of a taxonomical family. The 

number of sequences in a dataset varies due to the accessibility of sequenced species in 

the analyzed family. Once the main groups are chosen, the concrete species inside the 

groups are the ones that are accessible on NCBI, which means that they may differ a lot 

from each other, even inside of the groups. With this said, the difference shouldn’t 

surpass the difference between the species from group to group. The last dataset is the 

concatenation of the last 3 datasets. The figure below displays the groups that have been 

chosen: 
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Figure 19: display of the families chosen for the second round of testing. 

3.2.3 Results and discussion  

The first taxonomic level contains species from the Actinopteri and Sarcopterigii groups.  

The phylogenetical trees are presented in the following order: NCBI reference, 

Jukes-Cantor and LZ. The computed phylogenetical trees are displayed as cladograms 

for a better visibility: 
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Figure 20: NCBI reference tree of Actinopteri and Sarcopterigii 

 

Figure 21: Jukes-Cantor cladogram of Actinopteri and Sarcopterigii 
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Figure 22: LZ cladogram based on metric no. 3. of Actinopteri and Sarcopterigii  

The first dataset is made of two very foreign groups Actinopteri and Sarcopterigii. 

The tree using the metric no. 3 has been presented as it is the best for this group, but all 

the other metrics yield very similar results. The only sequence that poses problem is 

Mantella madagascariensis, which is sometimes classed with the wrong group or 

classified outside of the Amniota group. This is not too surprising as Mantella 

Madagascariensis belongs to the amphibia family while all the other sequences from 

Sarcopterygii belong to Amniota. Mantella Madagascariensis is very distant from both 

the Actinopteri and the Amnoita and therefore could be interpreted wrongly by the LZ 

algorithm. Apart from this sequence, all of the other species are classified in the correct 

groups, and so it can be confirmed that the algorithm works well at the taxonomic level 

of Euteleostomi. The table of RF distances of the four metrics, and three alignment 

algorithms from the NCBI reference (RFDREF) is displayed below. Two alignment 

methods, Kimura [24] and Tamura [25] have been added in order to have a better 

comparison between the LZ algorithm and the alignment technics. 

Table 4: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of the Euteleostomi. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 4 4 2 6 10 4 4 

Success 

rate: 

82% 82% 91% 73% 55% 82% 82% 

 

Out of the analyzed techniques the LZ algorithm in combination with the metric 3 

has the best result. The Jukes-Cantor distance is the most inconsistent, the distances are 

too foreign from each other and therefore the necessary alignment becomes problematic. 
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The JC reference fails at classifying the sequences in the two groups. 

The second dataset is at the taxonomic level of Tetrapoda and the analyzed groups 

are the Amphibia and the Amniota.  

The phylogenetical trees from the second dataset are presented below, as the NCBI 

database is the reference, the alignment methods won’t be displayed but their RF 

distance to the reference is going to be presented in the table 5: 

 

Figure 23: NCBI reference tree of Amphibia and Amniota 

 

Figure 24: LZ cladogram based on metric no. 3. of Amphibia and Amniota. 
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Table 5: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of the Tetrapoda. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 10 6 6 8 8 8 8 

Success 

rate: 

55% 73% 73% 64% 64% 64% 64% 

 

The second dataset results are similar to the first dataset. The LZ algorithm 

manages to correctly recognize the Amniota group with all of the metrics but has a 

problem with the Amphibia group – it classifies the Triturus sequences wrongly, as if it 

would be a family on its own. The reason for this behavior is that once again the 

Triturus karelinii sequence is very distant from both – the Amniota and the rest of the 

Amphibia group. The alignment methods fail to classify the sequences correctly for the 

same reason. Once again the metric no. 3 has the best result.  

The third dataset is at the taxonomical level of Boreoeutheria and compares the 

group of Laurasiatheria and Euarchontoglires.  

 

 

The phylogenetical trees from the third dataset are presented below: 

 

Figure 25: NCBI reference tree of Laurasiatheria and Euarchontoglires. 
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Figure 26: LZ cladogram based on metric no. 3 Laurasiatheria and Euarchontoglire. 

 

Table 6: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of the Boreoeutheria. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 2 2 2 2 8 2 2 

Success 

rate: 

92% 92% 92% 92% 66% 92% 92% 

 

The third dataset leads to the same cladogram for all of the LZ metrics. The final 

tree is in accordance with the NCBI tree in every branch, but the Mus musculus 

sequences. It can be seen that the LZ algorithm can differentiate well between the 

groups and even inside of the families is able to classify the correct sequences together. 

The problem that repeats itself is when the algorithm has to classify a sequence that is at 

a similar distance to the two groups. In this case the Mus musculus sequence is the only 

one belonging to the subfamily of Glires, the immediate subdivision after 

Euarchontoglires. All of the other Euarchontoglires sequences belong to the group of 

Primates. As the Glires are distant from the Primates the LZ algorithm classifies it as a 

standalone group – the same case as with mantilla madagascariensis and the Titrus 

family. The alignment based methods of Kimura and Tamura yield the same result as 

the LZ algorithm, while the Jukes-Cantor method is failing to classify the sequences 

correctly, mixing the two taxonomical groups together. 

The fourth dataset is at the taxonomical level of Primates and compares the group 

of Strepsirrhini and Haplorrhini. 

The phylogenetical trees from the fourth dataset are presented below: 
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Figure 27: NCBI reference tree of Strepsirrhini and Haplorrhini. 

 

Figure 28: LZ cladogram based on metric no. 3 Strepsirrhini and Haplorrhini. 

Table 7: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of the primates. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 0 0 0 0 0 0 0 

Success 

rate: 

100% 100% 100% 100% 100% 100% 100% 
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The fourth dataset is in accordance in between the NCBI model and all of the 

computed phylogenetical trees, be it by the LZ algorithm or the alignment method. The 

LZ algorithm yields the same phylogenetical tree in ¾ metrics, but is at the same RF 

distance for all of the metrics. The only aberrance that occurs is in the classification of 

the Lepilemur Hubbardorum and Microcerbus murinus, which are at the same 

taxonomical level according to NCBI and therefore it is not considered an error.  

The fifth dataset is at the taxonomical level of Catarrhini and compares the group 

of Cercopithecoidea and Hominoidea.  

 The phylogenetical trees from the fifth dataset are presented below: 

 

Figure 29: NCBI reference tree of Cercopithecoidea and Hominoidea. 

 

Figure 30: LZ cladogram based on metric no. 3 Cercopithecoidea and Hominoidea. 
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Table 8: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of the Catarrhini. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 0 0 0 0 0 0 0 

Success 

rate: 

100% 100% 100% 100% 100% 100% 100% 

 

The evolutionary distance of the fifth dataset sequences is fairly close but the 

results created by the different metrics are the same. The only missclassifications that 

occur in between the trees are the placement of Pan troglodytes, the Homo, the Gorilla 

subgroup and the placement of Mandrillys leucophaeus, Cercocebus atys and the 

Macaca group. According to the NCBI database the three species in both cases are a 

direct descendent of their common parent, meaning that for the NCBI database they are 

at the same level. For the reason described above, the results of the 5th dataset can be 

considered flawless. 

The sixth dataset is at the taxonomical level of Hominoidea and compares the 

group of Hylobatidae and Hominidae. There are only 4 mitochondrial DNA sequence 

accessible from the family of the Hylobatidae and therefore the sixth dataset contains 

only 9 species.  

The phylogenetical trees from the sixth dataset are presented below: 

 

Figure 31: NCBI reference tree of Hylobatidae and Hominidae. 
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Figure 32: LZ cladogram based on metric no. 3 Hylobatidae and Hominidae. 

Table 9: RF distance between the 4 metrics and the alignment based algorithms compared to the 

NCBI reference of the Hominoidea. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 0 0 0 0 0 0 0 

Success 

rate: 

100% 100% 100% 100% 100% 100% 100% 

 

The results from the last dataset are similar to the previous one. The families are 

separated correctly with small variance inside of the families that are according to the 

NCBI reference: a flawless result. 

The last dataset is the concatenation of the last three datasets, meaning it contains 

sequences belonging to the primate family. There are altogether 26 unique sequences. 
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Figure 33: NCBI reference off all the sequences belonging to the taxonomic group of Primates. 

 

Figure 34: LZ cladogram based on metric no. 3 of all the sequences belonging to the taxonomic 

group of Primates. 
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The result of the last dataset is very positive. All of the sequences are classed 

correctly despite their large count: 

Table 10: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference of all of the primates. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 0 0 0 0 0 0 0 

Success 

rate: 

100% 100% 100% 100% 100% 100% 100% 

3.2.4 Conclusion of the second part of testing 

In all of the different taxonomical level the LZ algorithm recognized the two different 

taxonomic branches and classed the majority of the sequences correctly. The LZ 

algorithm outclassed the alignment algorithms in the first three datasets, while 

equivalent in the last three datasets. The result of this testing shows, that the LZ 

algorithm as left as designed by [17] can distinguish different taxonomic families up to 

the level of Hominoidea. 

While having positive results, an important flaw of the algorithm has been 

confirmed. The alignment based algorithms are able to estimate the evolution distance 

between the sequences by identifying the type of mutation that occurred in the sequence. 

This classification is simple as the sequences are aligned. This allows the alignment 

based algorithms such as Tamura or Kimura to surpass their predecessor Jukes-Cantor. 

They can weight the result by the type of mutation that occurred, which is additional 

information for the analysis, and leads to more precise result. The LZ algorithm as it 

stands doesn’t have any such additional information. This leads to a misclassification 

when three groups are very distant from each other, even if two of them belong to the 

same taxonomic tree. In the second and the third dataset Mus musculus, Triturs karelinii 

and Mantella madagascariensis have been wrongly classified for this reason. 

Modifications to the LZ algorithm are described in the chapter 3.5. 

3.3 Short sequences and proteomic sequences 

It can be questioned, if the LZ algorithm performs consistently with different sequence 

length, especially if it is to be used on short proteomic sequences. With very short 

sequences the LZ complexity will be very small and therefore could be similar. In some 

cases due to variance a more distant sequence could yield a better result than a closer 

sequence. The table below displays the number of different combinations that can be 

created with n number of nucleotides and amino acids: 
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Table 11: Number of existing words for an n length string of nucleotides and amino acids 

Number of 

nucleotides/amino acids: 

Total nucleotide 

combinations: 

Total amino acids 

combination: 

1 4 21 

2 16 441 

3 64 9261 

4 256 194481 

5 1024 4084101 

6 4096 85766121 

7 16364 1801088541 

8 65536 37822859361 

 

The table 11 shows the number of different words that exist for a certain length of 

nucleotides/amino acids. The meaning of this table is, that if the biologically sequences 

were randomly generated, the probability of finding a certain word of a length of e.g. 6 

in another sequence would be 1/4096, increased by the sequence length, for nucleotides 

and 1/85766121 for amino acids. As the number of combinations grows rapidly the 

algorithm is expected to work well even for short sequences. 

3.3.1 Algorithm specification 

The algorithm is left as designed by the authors of [17]. The reference sequences are 

taken from the NCBI database and are compared to the 4 metrics and the alignment 

methods.  

3.3.2 Datasets 

This dataset is composed of 5 sets of sequences of similar species. The sequences are 

coding regions of genes of apolipoprotein M (APOM), heat shock protein family A 

(HSPA8) and interleukin 2 (IL2). As the proteomic sequences of APOM and IL2 are 

available the algorithm will be tested on proteomic sequences as well. Some of the 

sequences are not sequenced yet and are only “predicted” sequences based on NCBI 

prediction algorithms. As the datasets were tested by the alignment algorithms and 

compared to the NCBI reference with positive result, this poses no problem. As some 

sequences are not available on the NCBI database, there are little differences, amongst 

the species, across the datasets. 

The rounded average length of the sequences can be seen in the table below: 
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Table 11: Length of the sequences in the third part of testing 

Gene Nucleotide seq. length Amino acid seq. length 

APOM 576 191 

IL2 466 154 

HSPA8 1823 Unavailable 

 

As the algorithm has been tested thoroughly with mitochondrial DNA, of 

approximately 16000bp, the sequences in this dataset have been chosen specifically 

short. 

3.3.3 Results and discussion  

As the species in the 5 datasets are similar, only one NCBI reference that includes 

all of the species will be shown and can be seen on the figure below: 

 

Figure 35: NCBI reference for the short sequence testing. 

The species of this dataset belong to the class of Boreotheria. There are species 

such as the killer whale, the big brown bat, the house mouse or the gorilla, representing 

different subgroups. Amongst these groups several species have been added, therefore 

the dataset contains differences and similarities and can test the LZ algorithm on short 

sequences.  

The phylogenetical tree of the APOM gene, constructed from nucleotides, is 

presented below, followed by the tables of the RF distances of nucleotide and proteomic 

sequences: 
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Figure 36: LZ phylogenetical tree based on the 3rd metric of the APOM gene.  

Table 12: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference for nucleotide sequences of the APOM gene. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 4 4 4 4 4 4 4 

Success 

rate: 

85% 85% 85% 85% 85% 85% 85% 

 

Table 13: RF distance between the 4 metrics and the Jukes-Cantor algorithm compared to the 

NCBI reference for proteomic sequences APOM gene. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

RFDREF: 4 4 4 4 4 

Success 

rate: 

85% 85% 85% 85% 85% 

 

The phylogenetical trees of all the LZ metrics and alignment algorithms are the 

same for both, the nucleotide and proteomic sequences. The RF distance from the NCBI 

reference is 4 in all of the cases. The reason for the difference being, the misplacement 

of the two groups of Glires (Mus musculus and Rattus norvegicus) and Chirpoteras 

(Myotis lucifugus and Eptesicus furscus). The trees constructed from the nucleotide and 

amino acids are compared in the next figure: 
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Figure 37: Comparison of the tree of the APOM gene constructed based on the proteomic 

sequences (left) and the nucleotide sequences (right) by the LZ algorithm and the 

distance metric d3.  

The phylogenetical trees are in accordance nods to nods and by the distances 

evaluated by the LZ algorithm, leading to two similarly shaped trees. The Person 

correlation coefficient [26] has been calculated based on the non-null values of the 

distance matrix’. The Person correlation coefficient is 0.9526 with the p-value of 

8.11*10-63, meaning the two variables (distance matrix’) are directly proportional with a 

high significance value.   

 

The phylogenetical tree of the IL2 gene, constructed from nucleotides, is presented 

below, followed by the tables of the RF distances of nucleotides and proteomic 

sequences: 
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Figure 38: LZ phylogenetical tree based on the 3rd metric of the IL2 gene.  

Table 14: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference for nucleotide sequences of the IL2 gene. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF: 8 8 8 8 0 4 4 

Success 

rate: 

72% 72% 72% 72% 100% 85% 85% 

 

Table 15: RF distance between the 4 metrics and the Jukes-Cantor algorithm compared to the 

NCBI reference for proteomic sequences IL2 gene. 

Methods 

compared: 

LZ 

Metric 1 

LZ 

Metric 2 

LZ 

Metric 3 

LZ 

Metric 4 

Jukes-

Cantor 

RFDREF: 6 6 6 6 4 

Success 

rate: 

79% 79% 79% 79% 85% 

 

 

The result of the IL2 gene is worse than for the APOM gene. The groups of Glires 

and Chirportes are placed outside of their respective groups as previously but this time 

even the specie of Equus Cabellus is misplaced for the nucleotide generated tree. The 

trees constructed from the nucleotide and amino acids are compared in the next figure: 
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Figure 39: Comparison of the tree of the IL2 gene constructed based on the proteomic 

sequences (left) and the nucleotide sequences (right) by the LZ algorithm and the 

distance metric d3. 

Apart from the different placement of Equus caballus, the trees are in accordance.  

The Person correlation coefficient is 0.9724 with the p-value of 2.18*10-9 meaning the 

two variables (distance matrix’) are directly proportional with a high significance value.   

The last dataset of the HSPA8 gene corresponds to the reference in all of the cases 

but the Glires group. As this result has already been reported before only the table of the 

RF distances is presented: 

Table 16: RF distance between the 4 metrics and the alignment based algorithms compared to 

the NCBI reference for nucleotide sequences of the HSPA8 gene. 

Methods 

compared: 

LZ  

Metric 1 

LZ  

Metric 2 

LZ  

Metric 3 

LZ  

Metric 4 

Jukes-

Cantor 

Kimura Tamura 

RFDREF 2 2 2 2 2 2 2 

Success 

rate: 

93% 93% 93% 93% 93% 93% 93% 

 

3.3.4 Conclusion of the third part of testing 

The third phase of testing confirmed that the LZ algorithm is able to classify even short 

sequences with length around 400bp for nucleotides and 150 for amino acids. The 

resulting phylogenetical trees are not identical, but share the same baseline with their 

Person correlation coefficient being over 0.95 in both cases. The figures 37 and 39 

prove that the algorithm is able to work with proteomic sequences as well as with 

nucleotide sequences. The reason being, as showed in the preface of this chapter, that 

even thought that the proteomic sequences are overall shorter, the size of the alphabet 



 52 

compensates for this lack of length.  

The best results were for the HSPA8 sequence, while the worst for the proteomic 

sequence of IL2. The main reason why the data are not exactly in accordance with the 

reference is the placement of the Mus musculus and Rattus norvegicus sequence. 

Altogether it has been confirmed, throughout the first 3 parts of testing, that the LZ 

algorithm can distinguish between sequences up to the taxonomical level of 

Hominoidae, can work with proteomic sequences and is able to classify both, long and 

short sequences. In all of the cases the distance metric d3 has had the best results. For 

this reason, in the following part of the paper, only the metric d3 is going to be 

considered. The weaknesses of the algorithm are especially its inability to predict real 

evolutionary distance. This leads to misclassifications when sequences are as close as 

the Rhabdoviruses or when a group of sequences have a similar LZ complexity between 

themselves. These flaws will be looked upon in the next part of this paper. 

3.4 Modifications of the LZ algorithm 

This chapter proposes modifications to the original algorithm from [17]. Two different 

approaches were used. The first approach changes the algorithm itself to specialize it for 

the classification of biological sequences while the second introduces possibilities to 

weight the result of the algorithm  

3.4.1 Static dictionary 

This paper’s main idea, as stated earlier, is that the conditional Kolmogorov complexity 

can be considered a measure describing the distance between two sequences. Moreover 

the equation (3) proves that there is a connection between Kolmogorov complexity and 

entropy for long strings and therefore the Kolmogorov complexity can be estimated via 

compression ratio. The chapter 2.2.1 points out via the Universal Similarity matrix that 

better the compression algorithm better the entropy estimate. This is the logic behind 

the algorithm in [17], which has been used for the previous analysis.  

This statement is applicable to all compression algorithms, however it is possible to 

modify the compression algorithm to suit better the biological sequences. The LZ 

algorithm as used by the authors of [17], adds new words into the dictionary at every 

step and extends the left window sequence. With this configuration it will take less steps 

to generate the second sequence, as if the same word appears again, it will already be in 

the dictionary. The figure 40 demonstrates this phenomenon.  
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Figure 40: Two sequences being encoded by the original LZ algorithm 

The black line on the figure represents the input sequence Q and the red and blue 

line represents the second sequence S, which is to be compressed. The red part of the 

sequence S symbolizes a string of the sequence that repeats itself twice at different 

locations. As the repeated sequence isn’t part of the sequence Q, it will take many steps 

to the algorithm to generate the first red part of the sequence and reach the status in 2). 

The algorithm continues and adds the blue part of the sequence S, which also takes 

several steps, depending on the similarities between the two sequences. Once the blue 

part is generated, the red string is to be coded again, only this time it will only take one 

step to generate it, as it is already present in the dictionary. While this approach is very 

advantageous in compression, it can be seen that for biological comparison this 

approach is flawed. As the sequence Q did not possess the red part of the S sequence, 

the number of steps to generate S from Q should be larger.  

This flaw can lead to the fact that if very distant sequences that are repetitive are to 

be compressed, their LZ distance will be small. For sequence comparison this feature is 

unwanted and therefore the following modification has been proposed: 

The algorithm will no longer add new words to the dictionary from the second 

sequence (S) but will work only with a static dictionary generated from the sequence Q. 

This way even if the same sequence repeats many times, the algorithm will take the 

same amount of steps to generate each repeat, not leading to data falsification. The other 

benefit of this approach is that the algorithm become less time-consuming and is overall 

simpler. As the dictionary is no longer dynamic, new string search algorithms can be 

used for coding the dictionary, for instance the sequence Q could be encoded as a suffix 

tree in the first step, which would then lead to a very fast pattern search and could open 

a doorway to whole genome comparison [27, 28, 29, 30, 31]. 

This approach has been tested on all of the sequence presented in the first three 

parts and it leads to same or slightly better results than the algorithm used previously. 

The computing time difference between the two algorithms depends on the sequence 

length, as the implemented string pattern search isn’t linear. The table below displays a 

selection of sequences used previously. The relevant parameters of the computer the 

algorithm run on were: processor: AMD FX(tm)-6100 Six-Core Processor 3.30GHz and 

RAM: 6,00GB Dual-Channel DDR3. 
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Table 17: Table of speed and accuracy of the LZ algorithm, modified LZ algorithm and Jukes-

Cantor. 

Sequence name: Average 

sequence 

length: 

Original 

alg. (1) 

Time 

[s] 

% of 

correct 

nods 

based 

on RF 

distance 

of (1) to 

JC. Ref. 

Modified 

algorithm 

(2) time 

[s]: 

% of 

correct 

nods 

based 

on RF 

distance 

of (2) to 

JC. Ref. 

Alignment 

algorithm 

time [s]: 

Mitochondrial 

DNA of Primates  

13seq 

16743 552 92% 215 92% 259 

1st mitochondrial 

10 species 

16468 241 100% 131 100% 149 

Hepatitis A virus 

variants, 25 

sequences 

7400 441 96% 213 96% 218 

MT 16S rRNA of 

13 primates 

1559 7.8 82% 5.1 82% 2.44 

APOM 16 seq 575 3.63 85% 2.4 85% 0.7 

APOM protein 190 1.1 85% 0,7 85% 0.25 

IL2protein 16seq 154 0.87 72% 0.74 72% 0.27 

 

The table 17 proves that the modified algorithm has a better computing time and 

comparable results to the original algorithm. For this reason the modified algorithm is 

going to be used in the next parts of this paper. A deeper analysis shows, that the 

modified algorithm has overall same result with “simple” sequences, meaning that the 

distances between the species varies and is not to close. The problematic sequence 

amongst these datasets is the Rhabdovirus variants. The figure below displays the 

outcome of the modified LZ algorithm: 
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Figure 41: Cladogram of the rhabdovirus dataset computed by the modified LZ algorithm. 

Both the original algorithm and the modified algorithm  manage to separate the 

main classes of viruses, but fail to group the classes correctly between themselves. In 

the modified algorithm case the Nucleorhabdoviruses are wrongly conencted to the 

Ephemeroviruses and the vesiculoviruses and lysavirues are no longer clearly separeted 

from the other groups. On the other hand the Ephemeroviruses are no longer the most 

distant group, which is an improvement to the original. 

Overall the modified algorithm has proved consistency on all the datasets with 

same results as the original. The computing time varies depending on the sequence, but 

for mitochondrial sequences is about two times faster than the original and even slightly 

faster than the alignment method.  

3.4.2 Weighting the LZ complexity 

For complex datasets the LZ algorithm can lead to very similar distance estimates in-

between the sequences. The LZ complexities being close can generate flaws in the 

construction of the tree. In these cases the algorithm needs some other way to 

differentiate between the sequences. It is natural to question what other information can 

be mined from the LZ algorithm. This paper works with two approaches: the maximum 

length of words and the tranisition/transversion ration value. 
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 The principle of the maximum length of words is very simple. At each step of 

the computation, when the algorithm finds the longest common string in both of the 

sequences, it saves the length of the string. At the end of the whole algorithm the words 

are ordered by their length and the n largest values are averaged. The algorithm shows 

best results for 5 longest words, therefore n is 5. At this point each couple of sequences 

possesses new information: the value of their averaged 5 longest words (the method is 

going to be referred as AV5). An AV5 matrix is created for all combinations of two 

sequences in the dataset. Once the whole dataset processed, the largest value of AV5 is 

selected, and the whole AV5 matrix is divided by the largest value, meaning that the 

values are in the range of 0 to 1, with 1 representing the combination of sequences with 

the highest AV5 value. In the next step the values are inverted, and therefore their range 

becomes from 1 to a theoretical infinite. The LZ complexity matrix is then multiplied by 

the AV5 matrix. After these steps the two sequences with the highest AV5 have their 

distance unchanged while the others are weighted. The sequences that had their AV5 

value similar to the maximum AV5 value will see their LZ distance modified just 

slightly, while the sequences with a low value will see their LZ distance modified 

greatly. It is important to state that the premise for this modification is that the 

sequences that are closer from the evolutionary view point will share longer identical 

strings than the ones that are more distant. This can occur only if the mutations are 

localized on certain parts of the DNA sequence. The following figure shows the 

phylogenetical tree of the Rhabdovirus dataset after the implication of the AV5 for the 

third metric. 
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Figure 42: Cladogram of the rhabdovirus dataset computed by the modified LZ algorithm 

The figure 42 should be compared with the figure 13 from chapter 3.1. where the 

original LZ distances can be seen. The families of Rhabdoviruses on the figure 42 are 

better differentiated than the ones on figure 13. The resulting figure, modified by AV5, 

is a big improvement to the previous classifications. The Ephemerovirus group, which 

has been previously placed as the furthest group of the dataset is now correctly grouped 

with the Vesiculoviruses. The groups of Novirhabdoviruses and Nucleoviruses are very 

distant from the rest of the groups, which corresponds to reality. Inside of the subgroups 

there are still a lot of transpositions, but overall implementing AV5 has been a big 

improvement. 

The AV5 approach has been tested on the other datasets. It has similar results with 

the mitochondrial DNA, but as the results beforehand were already very good, the RF 

difference is usually only 2. For the datasets with short sequences the algorithm 

manages to classify the big families but makes some transpositions at the lowest 

taxonomic level. The results are overall acceptable, even placing the Mus musculus and 

Rattus norvegicus correctly, which were two problematic sequences in all of the 

datasets, but has worse results than the algorithm without AV5.  

The only case where the AV5 clearly worsens the outcome is the Hepatitis A 

dataset. The phylogenetical tree of the Hepatitis A with LZ77&AV5 is presented next: 
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Figure 43: Cladogram of the hepatitis dataset computed by the modified LZ algorithm and AV5. 

The main hepatitis groups are well recognized, even the two subgroups from the 

family denoted 1A have been correctly recognized, but inside of the groups, what has 

previously matched the reference is now in disorder. Almost every nod is wrong. 

The difference between the Hepatitis A dataset to the others is that the sequences 

are very similar to each other. The other datasets sometimes also possess very similar 

LZ complexities, but their nominal value is larger. The hepatitis virus has not only very 

similar LZ complexities but also very small nominal values.  Overall the AV5 approach 

works well to accentuate differences between groups, but is the reason of 

misclassifications inside of the groups. Therefore the AV5 weight should be used only 

on the right occasion.  

The second weighting approach works with one of the important ideas behind the 

LZ algorithm for biological sequences. During the computation at each step, the LZ 

algorithm finds the longest common word for the two analyzed sequence and it adds 

one extra character to the string before continuing the building process. This mechanism 

is explained in the chapter 1.4.3. The original algorithm for data compression saves a lot 

of space by this mean, but it has a big meaning for the algorithm specialized for the 

classification of biological sequences as well The next example explains the value of 

this approach: 
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 Let’s consider the following two sequences: 

Sequence 1): ACATAGTGACCCTCAGTAGGTAG 

Sequence 2): ACATAGTGACCCACAGTAGGTAG 

 The Hamming distance between these two sequences is 1 and the difference is 

highlighted in red. Two scenarios will be considered onwards, the first scenario works 

with the classical LZ algorithm and the second scenario doesn’t add the extra character 

to the sequence once the longest common word is found. The scenarios are presented in 

the following text: 

Scenario 1:  

Sequence 1): ACATAGTGACCCTCAGTAGGTAG 

Sequence 2): ACATAGTGACCCACAGTAGGTAG 

 

Step 1) The algorithm finds the longest common word: ACATAGTGACCC 

Step 2) The algorithm adds the extra letter A to the string: ACATAGTGACCCA 

Step 3) The algorithm finds the next longest common word: CAGTAGGTAG 

The sequence 2) is encoded in two steps. 

 

Scenario 2: 

Sequence 1): ACATAGTGACCCTCAGTAGGTAG 

Sequence 2): ACATAGTGACCCACAGTAGGTAG 

Step 1) The algorithm finds the longest common word: ACATAGTGACCC 

Step2) The algorithm doesn’t add the extra letter A and continues searching                 

Starting from A. 

Step 3) The algorithm finds the next longest common word: ACA 

Step 4) The algorithm finds the next longest word: GTAGGTAG 

The sequence 2) is encoded in 3 steps. 

 

This example does not only show that the number of steps (the LZ complexity) 

is influenced by adding one character to create a unique word but moreover in the 

first scenario the algorithm detects a mutation location. It can be expected, that if a 

word of more than 10 characters is found in both sequences, it is not a question of 

luck as the number of possible combination of nucleotides are 1048576, especially 

if the sequences are up to the length of mitochondrial DNA. This realization leads 

to the fact the nucleotide place following right after the long word has been found 

has a high probability to be a place where a mutation occurred.  

 Unfortunately as the algorithm cannot decide whether the mutation was an 

insertion, deletion or a substitution, all the mutations are considered as substitutions. 
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This is a weakness of the algorithm, but as LZ77 it is not an alignment based 

method it is not possible to decide which mutation occurred. For this reason this 

weight is an approximation and can be used only in specific situations. 

 Once the mutation point discovered, the algorithm saves the type of substitution 

in a variable. At the end of the algorithm a matrix of the frequencies of different 

substitution is at disposal. An example of such matrix can be seen below: 

Table 18: An example of a mutation matrix 

 A C G T 

A 0 24 64 14 

C 23 0 23 12 

G 5 12 0 12 

T 25 54 24 0 

 

The next step is inspired by the Kimura alignment method, which is based on the 

fact that amongst substitutional mutations transitions occur more often than 

transversions. This leads to the fact, that higher the ration of transversions/transitions is 

(the abbreviation TTr is going to be used), the more time there must have been for the 

transversions to occur and so the more distant the sequences are from each other. 

The algorithm modified based on TTr simple multiplies the LZ complexity by this 

ratio. In this method the important factor is from which length of the longest common 

word should the algorithm consider the following nucleotide position to be a mutation 

(constant K). If the constant K is set too big, there won’t be enough data and the result 

could be random. For this reason the constant K is chosen as follows: Length of the 

sequence ~= 4K. 

If the AV5 method and TTr are compared, the AV5 method works well for 

separating and correctly classifying big families of species that have a similar LZ 

complexity and the final outcome can be modified greatly. TTr is a decent method that 

changes the LZ value only slightly and is useful for classing sequences inside of the 

classes. Overall there is no big advantage to use the TTr modification as standalone. 

This approach shows good results with mitochondrial sequences from the taxonomic 

level of Primates and lower, but fails to classify the more distant mitochondrial 

sequences correctly, the standalone LZ algorithm is better. The TTr modification has 

slightly worse results with short sequences such as APOM and IL2. When tested on the 

Rhabdovirus dataset the outcome is not better than the simple LZ77 as can be seen on 

the figure below. 
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Figure 44: Cladogram of the rhabdovoris dataset computed by the modified LZ algorithm and 

TTr. 

After the application of the TTr weight the algorithm mixes together some of the 

families. The TTr algorithm as a standalone doesn’t bring good results. 

The methods AV5 and TTr were designed in order to find additional information in 

the LZ77 algorithm that could describe the evolutionary distance for problematic 

sequences. The methods were designed so that one separates the main groups with a 

similar LZ complexity and the second one was designed as a light modification at the 

lowest taxonomical level. The methods can be used together in order to enhance these 

two aspects. The figure below displays the outcome with the most problematic -

Rhabdovirus - dataset: 
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Figure 45: Cladogram of the rhabdovoris dataset computed by the modified LZ algorithm, TTr 

and AV5. 

The result of the combination of AV5 and TTr on the Rhabdovirus dataset is a 

success. The family of the Vesiculoviruses is correctly associated with the 

Ephemeroviruses, as when AV5 was used, but this time even the classes of Drosophilia, 

Novirhbadobiruses and Nucleorhabdoviruses are grouped together correctly. There are 

still flaws remaining in the phylogenetical tree, such as the two sequences of 

Cytoviruses not being grouped together but the improvement compared to the first 

result is undeniable. 

3.4.3 Conclusion of the new modifications 

Three new approaches have been introduced in this chapter. Modification of the core of 

the LZ algorithm and two weighting methods. 

The modification of the LZ algorithm works with a static rather than a dynamic 

dictionary, which fits better the biological classification methodology. This 

modification has proven to perform faster than the original algorithm and with same 

results. The LZ modified algorithm can be used universally. 

Two weighting methods have been designed to work with problematic sequences. 

There is no reason to use them in normal cases, as the modified LZ algorithm performs 
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well as a standalone. The AV5 algorithm works with the maximum common words 

length and has successful results with the majority of sequences, improving the 

problematic Rhabdovirus sequence by a good margin. The strength of AV5 is 

accentuating differences between big groups of sequences. The TTr method is a lighter 

weight and is designed to improve the classification at a lower taxonomical level. As a 

standalone the algorithm doesn’t perform well, but when combined with AV5, leads to 

good results for the Rhabdovirus sequence.  

4  GRAPHICAL USER INTERFACE 

In order to ease the usage of the developed methods a graphical user interface has been 

created. This chapter will describe the program. 

 

 

Figure 46: Grahical user interface for the usage of the LZ algorithm. 

The figure 46 displays the whole GUI. At the start of the program the user is 

prompted to select a fasta file, which will be later processed. The path to the file and its 

file name is displayed on the top right side, so that when the files are changed or the 

user is multitasking, one does always know the working file. Once the file loaded the 
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user has the option to compute one of three methods, the original LZ algorithm, the 

modified LZ algorithm or the Jukes-Cantor reference. As throughout this paper the 

distance metric d3 has always yielded the best results, the program is working only with 

the distance metric d3 and there is no option to select a different metric. In the case of 

choice of the modified LZ algorithm, the AV5 and TTr weights are calculated as well. 

The user has the option to change the minimum common word length in the edit box.  

Once the selection of methods is finished, the user should click on the compute 

button in order to calculate the distance matrixes. As the process of calculating can take 

several minutes, the text fields below the method checkboxes shows the current status 

of the algorithm and the last text field will display “finished” once the last selected 

method has been computed. The calculated data is used to compute the phylogenetical 

trees based on the neighbor-joining algorithm and the RF distance between all of the 

computed trees is displayed in the table at the very bottom of the GUI. Depending on 

the number of trees calculated the size of the table changes.  

In the next step the user has the option to display the phylogenetical trees. Two 

choices are offered: either to display the phylogenetical tree as constructed by neighbor-

joining or as cladograms. In order to visualize the tree, one has to click on one of the 

fields in the listbox on the right hand side. If the element the user clicks on hasn’t been 

computed, nothing will happen. 

The GUI automatically recognizes if the input sequence is a nucleotide sequence or 

amino acid sequence and works for both. In the case of the input being an amino acid 

sequence the TTr methods are unavailable and therefore aren’t computed.  
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5 CONCLUSION 

This master thesis deals with the problematic of classifying biological sequences 

utilizing the non-alignment based methods of lossless data compression. As numerous 

different methods of data compression exist a literal research has been made and the 

original Lempel-Ziv dictionary method has been chosen. This method allows estimating 

the entropy of two concatenated sequences by the LZ complexity, a measure based on 

the counts for one sequence to be built from another sequence.  

The chapters following the literal research are testing the LZ approach thoroughly. 

15 datasets haven been acquired from the NCBI database. The datasets were chosen in 

order to test a particular aspect of the LZ algorithm in each part of the testing.  

A quick assessment of the LZ method has been made in the first part of the testing. 

4 datasets of different length and different complexity were chosen. The outcome of the 

chapter showed that the LZ complexity is a measure that can describe evolutionary 

distances, but that in some cases a mismatch of equally distant groups of species can 

occur.  

The second part of testing has been designed to inspect the ability of the LZ 

algorithm to classify sequences of different taxonomical levels, starting at the level of 

Euteleostomi and finishing at the level of Hominoidea. Out of the 6 datasets of 

mitochondrial DNA the LZ algorithm performed equally or better than its alignment 

based counterparts. In the first three very foreign datasets the LZ algorithm outclassed 

the Jukes-Cantor method by a large margin. The LZ algorithm had the success rate of 

classifying the species correctly, according to the RF distance compared to the NCBI 

reference, of 91%, 73% and 92% while the Jukes-Cantor algorithm only 55%, 64% and 

66% respectively. The alignment methods of Kimura and Tamura performed similarly 

to the LZ algorithm. The three last datasets of Primates to Hominoidea were flawless for 

all of the methods. 

As the mitochondrial sequences’ length is of order of 16000bp, the LZ algorithm 

has been tested on shorter sequences. This has been accomplished in the third part of 

testing where 3 different genes of length between 400bp – 1800bp were chosen. The LZ 

algorithm once again performed as well as its alignment counterparts, except for the IL2 

gene, where the result is slightly worse. This chapter also tested two proteomic 

sequences of the same genes. The results were in accordance to the NCBI reference. 

The Pearson correlation coefficient to the sequences computed from nucleotides was 

over 0.95 with a very high significance value. The fact that the LZ algorithm can work 

with amino acid sequences has been confirmed.  

The fourth part of testing proposes innovations to the LZ algorithm. The algorithm 

has been modified in order to work with a static dictionary rather than with a dynamic 

one. This approach has been tested on all of the datasets with results equal to the 

original LZ algorithm. As the method is around two times faster than the original 

method and that the algorithm performs better with repetitive sequences, the modified 

algorithm has proven it can be utilized universally. Two weighting methods have been 

introduced to try to bring additional information into the algorithm, so that problematic 

sequences can be classified properly. The first method utilizes the average length of the 

5 longest common words (AV5), while the second one utilizes the 
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transition/transversion ratio (TTr). The AV5 weight has been designed to separate 

groups of species while the TTr is a lighter weight, designed to specify the classification 

of the closest sequences. These weighting methods were designed to differentiate 

between sequences in problematic datasets and therefore change the outcome of the 

original LZ classification. A great improvement has been achieved while combining the 

AV5 and TTr method for the Rhabdovirus dataset, with the resulting tree’s correctness 

outclassing all the other tested methods. On the other hand the TTr method yields very 

bad results when used alone and the AV5 method rarely improves the result of the LZ 

algorithm for well differentiated species. For this reason the AV5 and TTr methods 

cannot be used universally.  

The last chapter of the paper presents the Graphical User Interface that has been 

implemented in order to ease the usage of the described methods. 

This master thesis has proven that the compression technique based on the LZ 

algorithm can be used to classify both DNA and proteomic sequences. The algorithm is 

particularly strong when comparing very distant species, as the algorithm outclassed the 

alignment algorithms. The algorithm’s speed at its current state is comparable to the 

alignment based techniques but the modification of the algorithm to use a static 

dictionary opens the option to implement advanced string matching techniques and 

further improve the speed of the algorithm.   
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APPENDIX 

Sequences used in this master thesis: 

 

MT 16S RNA dataset: 

gi|459485530:1089-2650   Papio papio mitochondrion, complete 

genome; 

gi|238866918:1095-2669   Eulemur fulvus mayottensis mitochondrion, 

complete genome; 

gi|49146236:1624-3181   Macaca mulatta mitochondrion, complete 

genome; 

gi|5835834:1095-2654   Pongo abelii mitochondrion, complete 

genome; 

gi|5835820:1089-2646  Hylobates lar mitochondrion, complete 

genome; 

gi|408772040:1092-2649   Nomascus gabriellae mitochondrion, 

complete genome; 

gi|529217390:1092-2648   Nomascus leucogenys mitochondrion, 

complete genome; 

gi|5835163:1094-2651   Pongo pygmaeus mitochondrion, complete 

genome; 

gi|195952353:1091-2648   Gorilla gorilla gorilla mitochondrion, 

complete genome; 

gi|196123578:1667-3224   Homo sapiens neanderthalensis 

mitochondrion, complete genome; 

gb|HQ260949.1|:1621-3179   Homo sapiens isolate S1 mitochondrion, 

complete genome; 

gi|5835135:1091-2649   Pan paniscus mitochondrion, complete 

genome; 

gi|5835121:1090-2647   Pan troglodytes mitochondrion, complete 

genome; 

 

 

Sequences from the first part of testing mitochondrial dataset:  

gi|643689|dbj|D38114.1|GORMTC   Gorilla gorilla mitochondrial DNA, 

complete genome  

gi|12772|emb|X61145.1|   Balaenoptera physalus mitochondrial 
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complete genome 

gi|644494|dbj|D38115.1|ORAMTD   Pongo pygmaeus mitochondrial DNA, 

complete sequence 

gi|2052151|emb|Y07726.1|   Ceratotherium simum complete 

mitochondrial DNA sequence 

gi|414126|emb|X72204.1|  Balaenoptera musculus mitochondrial 

DNA complete genome 

gi|13003|emb|V00662.1|    H.sapiens mitochondrial genome' 

gi|1632801|emb|X99256.1|   Hylobates lar complete mitochondrial DNA 

sequence 

gi|854269|emb|X14848.1|    Rattus norvegicus mitochondrial genome 

gi|577571|emb|X79547.1|   Equus caballus mitochondrial DNA 

complete sequence 

gi|13838|emb|V00711.1|    Mus musculus mitochondrial genome 

 

Hepatitis A dataset: 

gi|222597|dbj|D00924.1|SHVAGM27  Simian hepatitis A virus gene for 

polyprotein, complete cds; 

gi|4001732|dbj|AB020564.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate AH1; 

gi|4001734|dbj|AB020565.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate AH2; 

gi|4001736|dbj|AB020566.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate AH3; 

gi|52789965|gb|AY644676.1|   Hepatitis A virus isolate CF53/Berne, 

complete genome; 

gi|33324701|gb|AF512536.1|   Hepatitis A virus isolate DL3, complete 

genome; 

gi|603025|emb|X83302.1|    Hepatitis A virus complete genome; 

gi|4001738|dbj|AB020567.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate FH1; 

gi|4001740|dbj|AB020568.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate FH2; 

gi|4001742|dbj|AB020569.1|   Hepatitis A virus genomic RNA, complete 

sequence, isolate FH3; 

gi|443846|emb|X75215.1|    Hepatitis A virus GBM/WT RNA; 

gi|443844|emb|X75214.1|    Hepatitis A virus GBM/FRhK RNA; 

gi|443848|emb|X75216.1|    Hepatitis A virus GBM/HFS RNA; 
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gi|8810242|gb|AF268396.1|   Hepatitis A virus polyprotein precursor, 

gene, complete cds; 

gi|329582|gb|M14707.1|HPA   Hepatitis A virus (wild-type) RNA, 

complete genome; 

gi|9626732|ref|NC_001489.1|   Hepatitis A virus, complete genome; 

gi|329594|gb|M16632.1|HPAA   Hepatitis A virus (attenuated) RNA, 

complete genome; 

gi|62310|emb|X15464.1|   Human hepatitis A virus (HAV) strain 

HAS-15 mRNA for viral proteins VP1-4, 

2A, 2B and 2C; 

gi|109390447|gb|DQ646426.1|   Hepatitis A virus strain IVA, complete 

genome; 

gi|329596|gb|K02990.1|HPAACG   Human hepatitis A virus, complete genome; 

gi|19550900|gb|AF485328.1|   Hepatitis A virus isolate LY6, complete 

genome; 

gi|62526564|gb|AY974170.1|   Hepatitis A virus strain M2 polyprotein 

mRNA, complete cds; 

gi|329606|gb|M20273.1|HPACG   Human hepatitis virus type A RNA, 

complete genome; 

gi|74381880|emb|AJ299464.3|   Hepatitis A virus polyprotein, genomic 

RNA, strain NOR-21; 

gi|50295436|gb|AY644670.1|   Hepatitis A virus strain SLF88, complete 

genome; 

Rhabdovirus dataset: 

gi|9633477|ref|NC_000903.1|  Snakehead rhabdovirus complete genome 

gi|948298106|ref|NC_028255.1|  Cocal virus Indiana 2, complete genome 

gi|947834932|ref|NC_028246.1|  Adelaide River virus isolate DPP61, 

complete genome 

gi|946699517|ref|NC_028235.1|  Flanders virus isolate BE AN 781455, 

complete genome 

gi|761546856|ref|NC_009528.2|  European bat lyssavirus 2 isolate RV1333, 

complete genome 

gi|55770806|ref|NC_006429.1|   Mokola virus, complete genome 

gi|9635147|ref|NC_002251.1|  Northern cereal mosaic virus, complete 

genome 

gi|701219253|ref|NC_025385.1|  Khujand lyssavirus, complete genome 

gi|700075168|ref|NC_025377.1|   West Caucasian bat virus, complete genome 

gi|700074710|ref|NC_025353.1|  Vesicular stomatitis Alagoas virus Indiana 

3, complete genome 
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gi|667699573|ref|NC_024487.1|  Drosophila subobscura Nora virus, 

complete genome 

gi|664651929|ref|NC_024473.1|  Vesicular stomatitis New Jersey virus 

isolate NJ1184HDB, complete genome 

gi|149944272|ref|NC_009608.1|  Orchid fleck virus genomic RNA, segment 

RNA 1, complete sequence 

gi|256535775|ref|NC_013135.1|  Drosophila melanogaster sigma virus AP30 

N, P, X, M, G and L genes, genomic RNA, 

isolate AP30 

gi|471237017|ref|NC_020810.1|  Duvenhage virus isolate 86132SA, 

complete genome 

gi|471237011|ref|NC_020809.1|  Irkut virus, complete genome 

gi|471237005|ref|NC_020808.1|  Aravan virus, complete genome 

gi|471236999|ref|NC_020807.1|  Lagos bat virus isolate 0406SEN, complete 

genome 

gi|471236993|ref|NC_020806.1|  Isfahan virus N gene, P gene, M gene, G 

gene and L gene, genomic 

gi|471236987|ref|NC_020805.1|  Chandipura virus isolate CIN 0451, 

complete genome 

gi|20428615|ref|NC_003746.1| Rice yellow stunt virus, complete genome 

gi|216967209|ref|NC_011639.1|   Wongabel virus, complete genome   

gi|148724425|ref|NC_009527.1|   European bat lyssavirus 1, complete 

genome 

gi|116536721|ref|NC_008514.1|   Siniperca chuatsi rhabdovirus, complete 

genome 

gi|83659771|ref|NC_007642.1|   Lettuce necrotic yellows virus, complete 

genome 

gi|134305391|ref|NC_001615.2|   Sonchus yellow net virus 

gi|62327479|ref|NC_006942.1|   Taro vein chlorosis virus, complete genome 

gi|50234098|ref|NC_005974.1|   Maize fine streak virus, complete genome 

gi|34610114|ref|NC_005093.1|   Hirame rhabdovirus, complete genome 

gi|17158068|ref|NC_003243.1|   Australian bat lyssavirus, complete genome 

gi|14336454|ref|NC_002803.1|   Spring viraemia of carp virus, complete 

genome 

gi|10086561|ref|NC_002526.1|   Bovine ephemeral fever virus, complete 

genome 

gi|9628892|ref|NC_001724.1|   Snakehead retrovirus, complete genome 

gi|9627229|ref|NC_001560.1|   Vesicular stomatitis Indiana virus, complete  
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gi|9627197|ref|NC_001542.1|   Rabies virus, complete genome genome 

 

Sequences used for the second part of testing: 

gi|1002164154|ref|NC_029423.1|   Triplophysa dorsalis mitochondrion, 

complete genome 

gi|1011057294|ref|NC_029722.1|   Chanodichthys ilishaeformis 

mitochondrion, complete genome'  

       

gi|107736076|ref|NC_008066.1|   Chlorocebus sabaeus mitochondrion, 

complete genome' 

gi|148543101|ref|NC_009510.1|   Ammotragus lervia mitochondrion, 

complete genome 

gi|194277529|ref|NC_011053.1|   Propithecus coquereli mitochondrion, 

complete genome 

gi|240266584|ref|NC_012837.1|   Limnonectes bannaensis mitochondrion, 

complete genome 

gi|281188575|gb|GU189676.1|   Pan paniscus isolate PP30 mitochondrion, 

complete genome 

gi|304322880|ref|NC_014453.1|   Lepilemur hubbardorum mitochondrion, 

complete genome 

gi|307777727|dbj|AP011544.1|   Euphlyctis hexadactylus mitochondrial 

DNA, complete genome'  

gi|308746468|gb|HQ287897.1|   Homo sapiens isolate Ir4_10799_H 

mitochondrion, complete genome 

gi|315142259|gb|HQ622775.1|   Hylobates lar isolate T11 mitochondrion, 

complete genome 

gi|318039968|gb|HQ697277.1|   Triturus karelinii voucher 2360 

mitochondrion, complete genome 

gi|33438943|ref|NC_005055.1|   Fejervarya limnocharis mitochondrion, 

complete genome 

gi|339906278|ref|NC_015792.1|   Triturus karelinii mitochondrion, complete 

genome 

gi|3668119|emb|Y12025.1|    Struthio camelus complete mitochondrial 

genome 

gi|394831045|ref|NC_018115.1|   Aotus azarai azarai mitochondrion, 

complete genome 

gi|408772040|ref|NC_018753.1|   Nomascus gabriellae mitochondrion, 

complete genome 

gi|41216035|gb|AY524977.1|   Synodus variegatus mitochondrion, 
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complete genome 

gi|435856991|ref|NC_020039.1|   Cnemaspis limi mitochondrion, complete 

genome 

gi|457866490|dbj|AP013031.1|   Mus musculus mitochondrial DNA, 

complete genome, clone: P29mtC3H 

gi|47156210|gb|AY612638.1|   Macaca mulatta mitochondrion, complete 

genome 

gi|478432541|gb|KC603863.1|   Homo sapiens mitochondrion, complete 

genome 

gi|507473161|gb|KC757404.1|   Nomascus leucogenys mitochondrion, 

complete genome 

gi|507473259|gb|KC757411.1|   Symphalangus syndactylus mitochondrion, 

complete genome 

gi|511347879|ref|NC_021391.1|   Scomberomorus semifasciatus strain 

GREY-SsPD211135 mitochondrion, 

complete genome 

gi|511347893|ref|NC_021392.1|   Scomberomorus munroi x Scomberomorus 

semifasciatus strain Grey-SsCRC0703 

mitochondrion, complete genome 

gi|558479077|gb|KF680163.1|   Trachypithecus pileatus mitochondrion, 

complete genome 

gi|568192363|ref|NC_023100.1|   Homo heidelbergensis mitochondrion, 

complete genome 

gi|578003732|gb|KF914214.1|   Gorilla gorilla gorilla mitochondrion, 

complete genome 

gi|5834995|ref|NC_001601.1|   Balaenoptera musculus mitochondrion, 

complete genome 

gi|5835009|ref|NC_001602.1|   Halichoerus grypus mitochondrion, 

complete genome 

gi|5835205|ref|NC_001700.1|   Felis catus mitochondrion, complete 

genome 

gi|5835345|ref|NC_001788.1|   Equus asinus mitochondrion, complete 

genome 

gi|5835568|ref|NC_001945.1|  Dinodon semicarinatus mitochondrion, 

complete genome 

gi|5835820|ref|NC_002082.1|   Hylobates lar mitochondrion, complete 

genome 

gi|604159100|gb|KJ179950.1|   Dinodon rufozonatum mitochondrion, 

complete genome 

gi|619329278|gb|KJ631049.1|   Jacana jacana mitochondrion, complete 
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genome 

gi|619856195|gb|KF914213.1|   Gorilla beringei graueri mitochondrion, 

complete genome 

gi|62184368|ref|NC_006915.1|   Mus musculus molossinus mitochondrion, 

complete genome 

gi|628971407|ref|NC_024068.1|   Jacana spinosa voucher STRI:BC3332 

mitochondrion, complete genome 

gi|659104616|gb|KJ681495.1|   Capreolus pygargus isolate Cp8 

mitochondrion, complete genome   

gi|67082892|gb|DQ069713.1|   Cercopithecus aethiops sabaeus 

mitochondrion, complete genome  

gi|683418040|gb|KM262190.1|   Chlorocebus cynosuros mitochondrion, 

complete genome 

gi|699049576|ref|NC_025271.1|   Capreolus pygargus isolate Cp5 

mitochondrion, complete genome 

gi|71658036|ref|NC_007229.1|   Cobitis sinensis mitochondrion, complete 

genome 

gi|722489592|ref|NC_025513.1|   Macaca fuscata mitochondrion, complete 

genome 

gi|746000265|ref|NC_026120.1|   Macaca nigra mitochondrion, complete 

genome 

gi|755573649|gb|KJ508413.2|   Panthera tigris isolate Malayan 

mitochondrion, complete genome 

gi|757813536|gb|KP317203.1|   Pan troglodytes troglodytes, complete 

genome 

gi|758374618|gb|KM679363.1|   Macaca silenus mitochondrion, complete 

genome 

gi|769829586|ref|NC_026714.1|   Triplophysa strauchii mitochondrion, 

complete genome 

gi|817526666|ref|NC_026976.1|   Macaca nemestrina mitochondrion, 

complete genome 

gi|87299381|dbj|AB212225.1|   Mantella madagascariensis mitochondrial 

DNA, complete genome 

gi|884997387|ref|NC_027449.1|   Macaca cyclopis isolate Mc-

mitogm12060805 mitochondrion, complete 

genome 

gi|906476668|ref|NC_027658.1|   Callithrix kuhlii mitochondrion, complete 

genome 

gi|918020940|ref|NC_027740.1|   Propithecus tattersalli mitochondrion, 

complete genome 
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gi|944542639|ref|NC_028210.1|   Propithecus verreauxi mitochondrion, complete genome 

gi|953245206|ref|NC_028442.1|   Mandrillus leucophaeus mitochondrion, 

complete genome 

gi|955665322|gb|KR911720.1|   Lycodon flavozonatus mitochondrion, 

complete genome 

gi|959125180|ref|NC_028592.1|   Cercocebus atys mitochondrion, complete 

genome 

gi|966202078|ref|NC_028718.1|   Microcebus murinus isolate 920FAG 

mitochondrion, complete genome 

gi|966202868|ref|NC_028730.1|   Lycodon flavozonatus mitochondrion, 

complete genome 

 

Sequences used for the third part of testing: 

CDS /gene="APOM     Capra hircus goat 

CDS /gene="APOM     Eptesicus fuscus big brown bat 

CDS /gene="APOM     Physeter catodon sperm whale 

CDS /gene="APOM     bos taurus 

CDS /gene="APOM     camelus ferus 

CDS /gene="APOM     gorilla gorilla gorilla 

CDS /gene="APOM     horse equus caballus 

CDS /gene="APOM     human 

CDS /gene="APOM     macaca mulatta 

CDS /gene="APOM     myotis lucifugus little brown bat 

CDS /gene="APOM     ovis aries sheep 

CDS /gene="APOM     pan troglodytes 

CDS /gene="APOM     ursus maritimus polar bear 

CDS /gene="APOM    orcinus orca -killer 

CDS /gene="APOM     mus musculus 

CDS /gene="APOM    rattus norvegicus 

CDS /gene="HSPA8     Myotis lucifugus 

CDS /gene="HSPA8     Physeter catodon 

CDS /gene="HSPA8     bos taurus 

CDS /gene="HSPA8     camelus ferus 

CDS /gene="HSPA8     capra hiracus goat 

CDS /gene="HSPA8     eptesicus fuscus 
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CDS /gene="HSPA8     equs caballus 

CDS /gene="HSPA8     gorilla gorilla gorilla 

CDS /gene="HSPA8     human 

CDS /gene="HSPA8     macaca mulatta 

CDS /gene="HSPA8     ovis aries sheep 

CDS /gene="HSPA8     pan troglodytes 

CDS /gene="HSPA8     ursus maritimus 

CDS /gene="Hspa8     mus musculus 

'CDS /gene="Hspa8     rattus norvegicus 

'CDS /gene="IL2     Pan troglodytes 

'CDS /gene="IL2     Physeter catodon 

CDS /gene="IL2     bos taurus 

CDS /gene="IL2     camelus ferus 

CDS /gene="IL2     capra hircus 

CDS /gene="IL2     eptesiscus fuscus 

CDS /gene="IL2     equus caballus 

CDS /gene="IL2     gorilla gorilla 

CDS /gene="IL2     human 

CDS /gene="IL2     macaca mulatta 

'CDS /gene="IL2     myotis brandtii 

CDS /gene="IL2     orcinus orca 

CDS /gene="IL2     ovis aries 

CDS /gene="IL2    ursus maritimus 

CDS /gene="Il2     mus musculus 

CDS /gene="Il2     rattus norvegicus 

gi|109733492|gb|AAI16846.1|   Il2 protein [Mus musculus] 

gi|114052044|ref|NP_001040595.1|   interleukin-2 precursor [Macaca mulatta] 

gi|117582508|gb|ABK41601.1|   interleukin-2 [Ovis aries] 

gi|146198786|ref|NP_001078902.1  | interleukin-2 precursor [Equus caballus] 

gi|149048754|gb|EDM01295.1|   interleukin 2 [Rattus norvegicus] 

gi|28178861|ref|NP_000577.2|   interleukin-2 precursor [Homo sapiens] 

gi|33330683|gb|AAQ10670.1|   interleukin-2 [Bos taurus] 

gi|33330685|gb|AAQ10671.1|   interleukin-2 [Capra hircus] 

gi|426345397|ref|XP_004040401.1|   PREDICTED: interleukin-2 [Gorilla gorilla  
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      gorilla] 

gi|465981812|ref|XP_004265151.1|   PREDICTED: interleukin-2 [Orcinus orca] 

gi|554541783|ref|XP_005865519.1|   PREDICTED: interleukin-2 [Myotis 

brandtii] 

gi|114606419|ref|XP_518354.2|   PREDICTED: apolipoprotein M isoform 

X1 [Pan troglodytes] 

gi|109070476|ref|XP_001112572.1|   PREDICTED: apolipoprotein M isoform 

X1 [Macaca mulatta]' 

 

gi|148694705|gb|EDL26652.1|   apolipoprotein M [Mus musculus] 

gi|149732042|ref|XP_001490472.1|   PREDICTED: apolipoprotein M [Equus 

caballus] 

'gi|22091452|ref|NP_061974.2|   apolipoprotein M isoform 1 [Homo sapiens] 

gi|426352431|ref|XP_004043716.1|   PREDICTED: apolipoprotein M isoform 1 

[Gorilla gorilla gorilla] 

gi|466089401|ref|XP_004286652.1|   PREDICTED: apolipoprotein M isoform 

X2 [Orcinus orca] 

gi|548517981|ref|XP_005696653.1|  PREDICTED: apolipoprotein M isoform 

X2 [Capra hircus] 


