BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF BIOMEDICAL ENGINEERING

USTAV BIOMEDICINSKEHO INZENYRSTVI

BIOLOGICAL SEQUENCE CLASSIFICATION UTILIZING
LOSSLESS DATA COMPRESSION ALGORITHMS

KLASIFIKACE BIOLOGICKYCH SEKVENCI S VYUZITIM BEZEZTRATOVE KOMPRESE

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Ondiej Kruml
AUTOR PRACE
SUPERVISOR Ing. Helena Skutkova, Ph.D.

VEDOUCI PRACE

BRNO 2016

EEI FACULTY OF ELECTRICAL |
TN\ 0ad ENGINEERING |
IR s]K[3 AND COMMUNICATION |

Master's Thesis

Master's study field Biomedical Engineering and Bioinformatics
Department of Biomedical Engineering
Student: Bc. Ondfej Kruml ID: 147506

Year of

study: Academic year: 2015/16

TITLE OF THESIS:
Biological sequence classification utilizing lossless data compression
algorithms

INSTRUCTION:

1) Prepare a literature review of lossless compression algorithm focusing on biological sequence compression. 2)
Design an algorithm for genomic and proteomic sequence classification implementing at least three metrics using
lossless character encoders. 3) Implement an algorithm for biological sequence classification based on Lempel-
Ziv compression algorithm in Matlab. 4) Create software with graphical user interface for sequence classification
by at least three metrics using character compression. 5) Assemble set of genomic and proteomic sequences
from public databases suitable for statistical testing of developed methods. 6) Perform statistic evaluation of
classification results with NCBI taxonomy and standard phylogenetics methods.

RECOMMENDED READING:

[1] OTU H. H. a K. SAYOOD. A new sequence distance measure for phylogenetic tree construction.
Bioinformatics, Nov 2003, 19(16), 2122-2130.

[2] GIANCARLO R., D. SCATURRO a F. UTRO. Textual data compression in computational biology: a synopsis.
Bioinformatics, July 1, 2009 2009, 25(13), 1575-1586.

Date of project 4, ;16 Deadline for submission: 20.5.2016
specification:

Leader: Ing. Helena Skutkova, Ph.D.

Consultant Master's Thesis:

prof. Ing. Ivo Provaznik, Ph.D., Subject Council chairman

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

This master thesis is developing the idea of using lossless compression algorithms
as a mean of classification of biological sequences. At first an overview of lossless data
compression algorithms is presented, based on which the dictionary algorithm created
by A. Lempel and J. Ziv in 1976 (LZ77) has been selected. This algorithm, that
commonly serves for data compression, has been modified in order to enable the
classification of biological sequences. Further modifications have been introduced to
enhance the classification capabilities of the algorithm. Several datasets of biological
sequences have been collected enabling a correct assessment of the LZ algorithm
capability. The algorithm was compared to the classical alignment based methods:
Jukes-Cantor, Tamura and Kimura. It has been proven that the algorithm has
comparable results in the field of classification of biological sequences and even
surpasses the alignment methods in 20% of the datasets. Best results are especially
achieved with distant sequences.

KEYWORDS

Data compression, DNA, Lempel-Ziv, LZ77, phylogenetic, classification

ABSTRAKT

Tato diplomova prace se zabyva mozZnosti vyuZiti bezeztratovych kompresnich
algoritmt ke klasifikaci biologickych sekvenci. Nejdiive je predstavena literarni reserse
0 bezeztratovych kompresnich algoritmech, kterd byla vyuzita k vybéru slovnikového
algoritmu vytvofeného A. Lempelem a J. Zivem v roce 1976 (LZ77). Tento algoritmus
je bézné pouzivan k datové kompresi a v predkladané praci byl modifikovan tak, aby
umoznil klasifikaci biologickych sekvenci. K algoritmu byly navrzeny dals$i modifikace,
které rozviji jeho klasifika¢ni moznosti. V prib&hu prace byla sestavena sada datasett
biologickych sekvenci, kterd umoZznila podrobné testovani algoritmu. Algoritmus byl
porovnan s klasickymi zarovnavacimi metodami: Jukes-Cantor, Tamura a Kimura. Bylo
ukazano, ze algoritmus dosahuje srovnatelnych vysledkia v oblasti Klasifikace
biologickych sekvenci a dokonce je u 20% datasetd piekonava. Lepsi vysledky
dosahuje zejména u sekvenci, jez jsou si vzajemné vzdalené.

KLICOVA SLOVA
Datova komprese, DNA, Lempel-Ziv, LZ77, fylogenetika, klasifikace

KRUML, O. Biological sequence classification utilizing lossless data compression
algorithms. Brno: Brno university of technology, Faculty of electrical engineering and
communication, 2016 78p. Supervisor Ing. Helena Skutkova, Ph.D.

PROHLASENI

Prohlasuji, ze svou diplomovou praci na téma Klasifikace biologickych sekvenci s
vyuzitim bezeztratové komprese jsem vypracoval samostatné pod vedenim vedouciho
diplomové prace a s pouzitim odborné literatury a dalSich informacnich zdrojt, které
jsou vSechny citovany v praci a uvedeny v seznamu literatury na konci prace.

Jako autor uvedené diplomové prace dale prohlasuji, Ze v souvislosti s vytvorenim
této diplomové prace jsem neporusil autorska prava tietich osob, zejména jsem nezasahl
nedovolenym zptsobem do cizich autorskych prav osobnostnich a/nebo majetkovych a
jsem si plné¢ védom nasledkii poruSeni ustanoveni § 11 a nasledujicich zékona
¢. 121/2000 Sb., o pravu autorském, o pravech souvisejicich s pravem autorskym
a 0 zmeéné nekterych zdkond (autorsky zdkon), ve znéni pozdéjSich predpist, veetné
moznych trestnépravnich dasledkd vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI
dil 4 Trestniho zdkoniku ¢. 40/2009 Sb.

V Brné dne 20. kvétna 2016
(podpis autora)

PODEKOVANI

Mé diky patii doktorce Helené Skutkové, vedouci mé diplomové prace, za rady a
doporuceni, které mi béhem studia udélila. Velice trpélivé a rychle odpovidala na mé
dotazy i pies to, ze byla sama velice zaneprazdnéna.

V Brné dne 20. kvétna 2016 e
(podpis autora)

INDEX

Index
Figure Index
Table Index

Introduction

1 General compression theory

1.1 INFOrMation theorYccveiieiiee e 3
1.1.1 Shannon TREOMYcceiiiiiieieie e 3
1.2 Kolmogorov COMPIEXILYeeiueiieieeiicie e 4
1.2.1 Conditional COMPIEXITY.......ccveviiriiiiiiiiii e 5
1.3 Relation between Shannon theory and Kolmogorov complexity 5
1.4 Lossless Compression algorithms...........cocovvirieienene e, 5
1.4.1 HUffman CodiNGccoeiiiiiiieie e 6
1.4.2 Dictionary algorithms ..ot 7
1.4.3 Lempel-Ziv compression algorithm — LZ77.........c.cccevevieeveiic e 7
1.4.4 The arithmetic Methodcccovieiieiece s 8

2 Compression of biological sequences 10
2.1.1 Horizontal and Vertical Mode..........ccccovevviieiienice e 10
2.1.2 EXPErt MOc.viieieieeee e 10
2.1.3 Biocompress, BioCOMPress-2, CFaCt........ccoocvvvereeieiieneee e e 11
2.1.4 GENCOMPIESS .. eieitiieiiiieaiete ettt e steeesbeeessbeesssbeesssbeesssbeeaseeeaseeeenseeeanes 11
2.1.5 COMRAD - COMpression using RedundAncy of Dna............c.c...... 12
2.2 Compression algorithms for classification of biological sequences....... 13
2.2.1 Universal Similarity MetriCccocoovviiiiiiiicee e 13
2.2.2 Lempel-Ziv for biological SEQUENCEScceevvvviiiiiieiieecie e 14

3 Experiment layout 15
3.1 Estimating the algorithm functionalityccccocoeviiiiii e, 15
00 R B =L £ TSP 15
3.1.2 MELIIC SYSEEIM...eiiiiiiiie et 16
3.1.3 Algorithm SPecCifiCationccccooerereneiiiiieeee e, 17
3.1.4 Results and diSCUSSIONccviiieriieiiiieiieie et 19

3.1.5 Conclusion of the first part of testingcccccevvvevviieiiiere e 32

3.2 Sequence diSparity tEStINGcccoereriiiriiieieee e, 32

3.2.1 Algorithm specCifiCatioNS..........ccccvveveiiiiieeie e 33

3.2.2 DALASELS ...ttt 33

3.2.3 Results and diSCUSSIONccviieieiiriesie s e 34

3.2.4 Conclusion of the second part of teSting.........cccoevereninienieninieee, 45

3.3 Short sequences and ProteomIc SEQUENCEScceevveeruereerreereeseesieernenns 45

3.3.1 Algorithm SPecifiCationccccooeiiiiiiiiiiiieeeee e, 46

3.3.2 DALASELS ...t 46

3.3.3 Results and diSCUSSIONcccueiieiierieiieieesie e 47

3.3.4 Conclusion of the third part of testingccceeveveiveiiiere e 51

3.4 Modifications of the LZ algorithm.ccccooeiiininineee 52

3.4.1 StatiC diCIONANYccveeviiiecieee et 52

3.4.2 Weighting the LZ cOmPIeXity ..o, 55

3.4.3 Conclusion of the new modifiCationsccccevererene s, 62

4 Graphical User Interface 63
5 Conclusion 65
References 67
APPENDIX 69

FIGURE INDEX

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31

A tree created by the Huffman algorithm ... 6
Example of arithmetic COdING.......c.ccoveiiiieiieece e 9
The flowchart of the Program ... 18
Reference phylogenetic tree constructed from the first dataset. 19
The distance matrix dz with highlighted values of individuals........................ 20

Phylogenetic tree constructed from the first dataset using the ds metric........ 20

comparison of the reference to the d3 MetricC.cccccevvvievviice e, 22
Cladograms of the third datasetccccceviiieiiciecccee e, 23
Reference tree for the hepatitis A virus as in [16]cccocoeviininininiicnne 24
: phylogenetic tree constructed based on JC from the second dataset. 25
- Phylogenetical tree of hepatitis A virus variants made from the 3™ metric. 26
: Comparison of the cladogram from ds and the reference, 2" dataset.......... 27
: Reference phylogenetical tree of Rhabdoviruses [17]ccccovvvviiiienennn, 28
: Jukes-Cantor’s phylogenetical tree of the rhabdoviruses variants. 29
: Variable containing the LZ complexity modified by the 2" metric.............. 30
: Graphical display of LZ complexity similarities between the sequences. 31
: Cladogram of the rhabdovirus dataset with the distance metric da. 32
 NCBI reference tre FUIEc.eoveieece e 33
- display of the families chosen for the second round of testing.................... 34
- NCBI reference tree of Actinopteri and Sarcopterigii.............cccccvevveivienenn. 35
: Jukes-Cantor cladogram of Actinopteri and Sarcopterigii..........c.ccccveveneen. 35
: LZ cladogram based on metric no. 3. of Actinopteri and Sarcopterigii....... 36
: NCBI reference tree of Amphibia and AmNiota...........ccocceveniriniiiiienieen, 37
: LZ cladogram based on metric no. 3. of Amphibia and Amniota................. 37
: NCBI reference tree of Laurasiatheria and Euarchontoglires..................... 38

: LZ cladogram based on metric no. 3 Laurasiatheria and Euarchontoglires39

: NCBI reference tree of Strepsirrhini and Haplorrhini.............ccccoovnnnnen. 40
: LZ cladogram based on metric no. 3 Strepsirrhini and Haplorrhini. 40
: NCBI reference tree of Cercopithecoidea and Hominoidea.c.c........ 41

: LZ cladogram based on metric no. 3 Cercopithecoidea and Hominoidea... 41
: NCBI reference tree of Hylobatidae and Hominidae.ccccccoecveveiiennen, 42

Vi

Figure 32:
Figure 33:
Figure 34:
Figure 35.
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:

LZ cladogram based on metric no. 3 Hylobatidae and Hominidae. 43
NCBI reference of seq. belonging to the taxonomic group of Primates....... 44

LZ cladogram of seq. belonging to the taxonomic group of Primates. 44
NCBI reference for the short sequence testing.cccccevereierininiinicienn, 47
LZ phylogenetical tree based on the 3rd metric of the APOM gene. 48
Comparison of the of the APOM gene based on NT or AA.ccceevvvienens 49
LZ phylogenetical tree based on the 3rd metric of the IL2 gene.................. 50
Comparison of the tree of the IL2 gene based on NT or AAcccovevveenne. 51
Two sequences being encoded by the original LZ alg.........c.cccccoeiveiivennne. 53
Cladogram of the rhabdovirus computed by the modified LZ algorithm. 55

Cladogram of the rhabdovirus computed by the modified LZ algorithm..... 57
Cladogram of the hep. computed by the modified LZ algorithm and AV5... 58
Cladogram of the rhabdovoris by the modified LZ algorithm and TTr........ 61
Cladogram of the rhabdovori by the modified LZ algorithm, TTr and AV5.62
Grabhical user interface for the usage of the LZ algorithm...............c.......... 63

vii

TABLE INDEX

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:

Example of the first 7 steps of the LZ algorithm..........cccccooiiiiiiiniicen, 8
Datasets used for the first part of testing.cccccvvvveviivi i, 15
RF distances of the Rhabdovirus dataset between the 4 metrics...................... 30
RF distance between the phyl. trees at the level of Euteleostomi. 36
RF distance between the phyl. trees at the level of the Tetrapoda. 38
RF distance between the phyl. trees at the level of the Boreoeutheria. 39
RF distance between the phyl. trees at the level of the Primates...................... 40
RF distance between the phyl. trees at the level of the Catarrhini. 42
RF distance between the phyl. trees at the level of the Hominoidea................ 43
RF distance between he phyl. trees at the level of the Primates..................... 45
Number of existing words for of nucleotides and amino acids. 46
Length of the sequences in he third part of testing...........cccccevviveiieiecieenen, 47
RF distance between the phyl. trees for nucl. sequences of the APOM gene. 48
RF distance between the phyl. trees for prot. sequences of the APOM gene. 48
RF distance between the phyl. trees for nucl. sequences of the IL2 gene.50
RF distance between the phyl. trees for prot. sequences of the IL2 gene.50
RF distance between the phyl. trees for nucl. seq. of the HSPAS gene. 51
Table of speed and accuracy of the algorithmsccccoevveviiiciiccice, 54
An example of @ MULAtioN MALFIX.coeiviiiiiiii e 60

INTRODUCTION

This master thesis discusses about the possibility of classifying biological sequences
with the use of lossless compression techniques and is focused on the dictionary
algorithm created by Abraham Lempel and Jacob Ziv during the year of 1976 — LZ77.

The way of determining biological sequence similarities has been in the past
mostly alignment based, meaning the sequences gathered via the Sanger method had
first to be aligned between themselves before the actual algorithm of comparison was
used. [1, 5] With the evolution of sequencing technologies and the reads becoming
longer and longer, these alignment algorithms of computing complexity of, at best, o(n?)
became very time consuming. More important than time, alignment methods are very
susceptible to sequence noise. The Next Generation Sequencing methods, which
replaced the Sanger method of DNA sequence construction, such as Illumina, Roche
454 etc. are fast at building sequences. On the other hand they sometimes have to
compensate their speed with the usage of a reference sequence, to fill the gap created
during the sequence reconstruction. These manual additions create sequence noise and
therefore the alignment can be inaccurate. [1, 8]

New approaches are being worked on to resolve presented problems creating a
new category of sequence analysis — the alignment free methods [32]. These methods
are often based on nucleotide (or group of nucleotides) frequencies, such as Yang’s
method, or compression technics, such as the LZ77 algorithm. [1, 2]

In order to be able to understand the reasoning behind the usage of the LZ77
algorithm for classifying biological sequences, the fundamentals of information theory
need to be lay out. The basis of information theory is introduced in the first chapter,
both from the classical point of view of Shannon theory and the later Kolmogorov
complexity. The following chapters present different approaches of generalized
compression algorithms and those specified for biological compression. The last
theoretical chapter focuses on compression algorithms that are not only used for data
compression but are also specialized in the analysis of biological data — concretely DNA
and amino acid sequences.

Compression algorithms can estimate the evolutionary distance between two
sequences by calculating the degree of compression of a sequence, when the algorithm
IS given another sequence as model. If the sequence is well compressed, the model
sequence contained most of the information, which means the sequences are
evolutionary close. The applied part of this master thesis is divided into two parts. The
first part focuses on implementing the LZ77 algorithm in the MATLAB environment
and testing it’s functionality to classify biological sequences. Several datasets of
biological sequences have been collected over the course of this study, enabling a
correct assessment of the algorithm capacities. In the second part, based on the gathered
results, new methods are implemented to improve the algorithm. The first modification
changes the core of the algorithm itself: the dictionary used by the LZ algorithm is
modified from dynamic to static — a necessity to avoid the falsification of results by
sequence repeats. The rest of the modifications are weighting methods adjusting the
outcome of the LZ algorithm.

1 GENERAL COMPRESSION THEORY

The first chapter starts by introducing the basis of compression theory. The information
theory and the term of entropy is explained, followed by the Kolmogorov complexity
and Huffman coding. The last part of the chapter goes through some examples of
lossless compression algorithms.

1.1 Information theory

Information theory is concerned with the transmission of information between a sender
and a receiver through a communication channel. As sending data is costly, it is natural
that theories dealing with data compression have been developed, leading to two main
categories, lossy and lossless data compression. Compression without a loss of
information brings questions such as how much information can be encoded in a single
word or by how much can a message be compressed so that no information is lost. Two
different approaches to describe this phenomenon are reproduced in this paper, entropy
via the standard Shannon Theory and Kolmogorov complexity. [3, 4]

1.1.1 Shannon Theory

Information theory as such has been created by the American mathematician Claud
Elwood Shannon. His motivation was to describe means of measuring the quantity of
information in a symbol (or group of symbols) based on their frequency of occurrence.
His research led him to discover a connection between the logarithmic function and the
amount of information - the Entropy of information. [4]

The Entropy of an information source is dependent on the statistical nature of the
source: the relations of the characters of the alphabet between themselves and their
likelihood of occurrence. For the goals of this paper, best is to consider the source to be
of the first order, meaning the characters of such a source are statistically independent
and each of them has its own probability of occurrence. The entropy of such a source is
described by the formula below:

H(X) = = Zxex (0)log(5 (1)

In this formula H(X) is the entropy of X where X is a discrete random variable
that belongs to a finite alphabet X and p(x) is the probability of appearance of a symbol
belonging to the alphabet X. It is determined that if p(x) = 0, the term is considered as 0.
The base of the logarithm is usually set as 2, as it enables to measure the quantity of
information in bits.[3, 4]

It is possible to deduce from the formula, that if for some x € X, p(x) = 1, then all
the others x € X must have their probability of occurrence p(x) = 0 and thus there is no
uncertainty and the entropy is equal to zero. A message sent by such a source wouldn’t
be of much use.

On the other hand, the highest entropy is achieved in the case that p(x) = 1/N,
where N is the cardinality of the alphabet X. [3]

For lossless compression reasoning entropy is a very important entity as it
provides a limit to the best possible compression of an information source. It is a value
that cannot be exceeded and therefore a value that lossless compression algorithms try
to reach. [3, 4]

1.2 Kolmogorov complexity

Kolmogorov complexity is a different point of view on the information content than
Entropy. It is based on the difficulty of data description, meaning the length of a
computational procedure or algorithm that has to be created to describe the data. One of
the definitions of Kolmogorov complexity is simply: the length of the code of the
shortest program that generates the string it is supposed to generate. It is important to
keep in mind, that there is always a finite program that can generate any finite string —
the simple print statement e.g. print(“ACTG”). [3, 4]

It is interesting to note that the idea behind Kolmogorov’s complexity was
discovered independently by 3 scientists, Ray Solomonoff, Andrei Kolmogorov and
Gregory Chatin at approximately the same time — the 1960s. Andrei Kolmogorov, being
a renowned Russian mathematician, got his name attached to the theory. [3]

Since many compression algorithms and especially the DNA compression
algorithms involve in some way or other the idea of Kolmogorov complexity and
because the Kolmogorov complexity lead Lempel and Ziv to introduce the LZ
complexity, discussed later, the basic principles of this theory will be explained in this
chapter. [5, 13]

Since the Kolmogorov complexity is defined by the length of the program needed
to describe the data, it could be said that it is dependent on the programming language
that is going to be used. A number e.g. 1099511627776 that would take 40 bits to be
simply printed out, could be also described by 2 if the power function would be
defined in the programing language. If said power function wouldn’t be described, then
the program generating the number would indeed be longer. Fortunately this difference
turns out not be so great. It is certainly possible to define the power function (and other
functions) in different languages and so the final difference in computing code length
would only be a constant depending on the two programs we are comparing as
described by the invariance theorem below [3]:

Cf(X) — Cg (X) < Cf,g (2)

Ct(x) and Cgy(x) are the Kolmogorov complexities of x defined by the programming
languages f and g, crq is a constant that that depends only on f and g.

As the difference is only a constant, we can say that for large numbers, or large
data input, the percentual difference will minimize. [3]

1.2.1 Conditional complexity

The Shannon information theory most commonly works with prefix codes. A prefix
code is an organization of code words, that for all code words in the alphabet, none is
the prefix of another. This property allows the sender to expedite the information string
of words concatenated to the receiver and the message will still be uniquely decoded.
Kolmogorov complexity can in general theory work with non-prefix codes, but it leads
to complications. For this reason the prefix-free Kolmogorov complexity is introduced
as K(x). For the means of sequence comparison it is important to introduce
Kolmogorov’s conditional complexity, K(x|y). This measure is to be understood as the
Kolmogorov complexity of x when y is provided to the program for free. Meaning that
if the program discovers similarities between the sequences x and vy, it may use this
knowledge to save computational time and space, by simply pointing to the provided
sequencey. [1,3,5]

1.3 Relation between Shannon theory and Kolmogorov
complexity

Even thought that these two theories have very different fundamentals, they are almost
in complete agreement in the field of information content. Given a Source of
information S that can generate a set of strings xi, X2 ... xn, and their probabilities of
occurrence being accordingly P1, P2... Py its information content can be described by
both: H(X) = — X, Plog(P;) andK(S) = X, p;K(x;). It can be proven that the
relation between those two values is:

(R©) _ ;
i () =1 <

The mathematical proof itself is of no interest for this paper but can be found in [3].

The meaning of the equation (3) is that even though Shannon theory analysis the
source based on probabilities of occurrences and Kolmogorov’s complexity is based on
the analysis of concrete strings, they yield almost same results and therefore can both be
used as valuable indicators of information content. [3] This relation is the reason
compression algorithms can be used to classify biological sequences, as it will be
showed later in this paper.

1.4 Lossless Compression algorithms

In this chapter the most common data compression approaches are introduced. These
techniques serve as the basis for genetic data compression and in order to compare
compression algorithms the quality of compression has to be estimated. There are two
different values that can describe the quality of compression. It can be described by how
many bits it takes to encode a character or by the ratio of the resulting compressed file
size to the original file size.

1.4.1 Huffman coding

For data to be transferred from the sender to the receiver through a channel, they need to
be encoded into a set of Os and 1s. Huffman coding attributes different code lengths to
each symbol of the alphabet according to their probability of occurrence. In order to be
able to decode the message flawlessly, the codebook that the Huffman algorithm creates
is a prefix code. What is perhaps the most important is that from all the possible ways of
creating a codebook for an alphabet, Huffman coding is the algorithm that finds the
optimal codebook. The code length will be of minimal possible length. In lossless
compression the goal of the code is to reach the entropy of the source, if the coding
algorithm doesn’t reach entropy, the difference in bits is called redundancy. It can be
proven that Huffman code‘s redundancy is at most 0.086 +p1 where pz is the probability
of the most-common symbol in the alphabet. [3, 4]

The Huffman algorithm follows several steps in order to create its codebook. The
knowledge of the probability of occurrence of all characters is needed. In the first step
the characters are sorted in descending order of their probabilities. Once this done, the
algorithm starts constructing a tree with the symbols of the alphabet being the leaves.
The algorithm choses the two symbols with the lowest probabilities and connects them
together, creating a new branch. The algorithm continues until all of branches are
interconnected and then goes from top to bottom, assigning a 1 to the top edges and a
zero to the bottom edges. Following this way from top to bottom, a specific code is
associated to each symbol, creating thus the codebook. A complete tree can be seen on
figure 1 [3,4].

a1 04 0 | ¢—1.0

12345
1

(2345 11

1
az 0.2

a345 0%
as 0.1 —1 0

a45 9753

as 0.1

0

Figure 1: A tree created by the Huffman algorithm. The tree has been taken from [4].

The Huffman coding algorithm is very easy to implement and leads to very good

results. There are several modifications of this algorithm such as adaptive Huffman
coding, but these won’t be discussed in this text, as they are not related to the topic of
this paper.

1.4.2 Dictionary algorithms

Dictionary algorithms store strings of symbols and encode each of these as code words.
The dictionary can store these strings either permanently or the content of the dictionary
can vary, leading to two categories: static and dynamic dictionaries. Static dictionaries
allow additions of code words but no deletions, whereas the dynamic version allows
even deletions. [3, 4]

Dictionary based compression methods can be considered to be entropy encoders
for very large datasets. With H being the entropy of a string of n symbols, the dictionary
should be able to compress the string to nH bits [3]. We can consider a dictionary
supposed to compress English texts. Such a dictionary will be static and will contain
about half million words. Since it needs to be coded in a binary table, a 19-bit token
could seem to be ideal, since 2° = 524288, but the coding method should also consider
the possibility that the word in the input string does not match any of the code words in
the dictionary. Such a word has then to be coded manually, character by character.
Considering this a better chosen token size would be 20-bits, with the first bit being an
indicator of the presence or absence of the input string in the dictionary. In the case that
a word is not found in the dictionary, the output will be encoded as 1|7bits to encode the
number of characters in the unknown word | 8 bits for each ASCII character in the
unknown word. By such encoding a 5 character word would be encoded by 20 bits if
defined in the dictionary and 1+7+8*5 = 48bits if not. [4]

In general adaptive dictionaries are the better choice, because undefined words can
appear often and bit length of such a word is larger as seen in the previous example.

1.4.3 Lempel-Ziv compression algorithm — LZ77

The LZ77 algorithm is the main topic of this master thesis and it also belongs to the
group of dictionary based compression algorithms and will be described in this section.
This method focuses on redundancies in the input string, finding parts of strings that
match those that were already computed, and uses pointers to code the new incoming
words.

LZ77 is a dynamic dictionary algorithm. The dictionary can be empty at first and is
filled with 3 instances during the algorithm: a pointer to the location of the last
occurrence of the currently analyzed string, the length of the string and the last added
character. At each step of the analysis, the algorithm will check if the currently analyzed
character of the input string can be found in the already analyzed string. If it is not, then
the location pointer is set to 0, the length is set to 0 and the character is saved in the
dictionary. Contrariwise if the character is found (possibly at multiple locations) then
the next character of the input string is compared with the character following the
position of the previous matches. This process repeats until no more matches are found,
the location pointer is set up to the location of the first character in the already analyzed
string, the length is set to the length of the matching string and lastly a new character is
added. [3, 4] An example of the first 7 steps of the algorithm is described below:

Let us consider the sequence A: “LEA-LETS-LEAVE” — the spaces were replaced
by — for better visibility

Table 1: Example of the first 7 steps of the LZ algorithm

Processed string Incoming string Dictionary added content
Step 1 LEA-LETS-LEAVE (0,0,L)
Step 2 L | EA-LETS-LEAVE (0,0,E)
Step 3 LE | A-LETS-LEAVE (0,0,A)
Step 4 LEA | -LETS-LEAVE (0,0,-)
Step 5 LEA- | LETS-LEAVE (4,2,1)
Step 6 LEA-LET | S-LEAVE (0,0,S)
Step 7 LEA-LETS | -LEAVE (5,3,A)

If we consider the production process of the processed string in the example and
store the string that has been added at each step, the so called exhaustive history He(A)
is created. When the algorithm finishes the whole string, the exhaustive history would
be [13]:

He(A) = LP-EP-AP-BLET»-SP--LEAD»-VPE

The number of components in the exhaustive is called the LZ complexity, noted
c(A), and for this example would be 9. The concept of exhaustive history and LZ
complexity is the base of the biological comparison algorithm using LZ77 and will be
used in the ensuing chapters.

There are several modifications of the LZ algorithm, but for biological data
compression, the LZ77 algorithm is the preferred method. [13,15]

1.4.4 The arithmetic method

The Huffman coding is a simple and efficient method that provides the best coding for
individual symbols. The problem with this method, however is, it can only assign an
integer number of bits to each symbol. According to the definition of Entropy it would
be ideal for a word with a probability of occurrence of 0.4 to be assigned a 1.32 bit code
(log2(0.4) = 1.32) — this is something the Huffman coding can’t do and so the word will
be most probably assigned 1 or 2 bits. The arithmetic coding overcomes this flaw by
assigning one code to the entire file. [3, 4, 7]

The arithmetic coding needs to have the input of the probability of occurrence of
each symbol in the analyzed alphabet. A cumulative distribution can be created by
adding these probabilities one by one. The sum of the distribution should be equal to 1,
as it is the sum of probabilities of the symbols in the alphabet. In each step the
cumulative distribution will see an increase its value:

m—1
e = D p(s) @

c(m) stands for the cumulative probability considering m-1 characters and p(s)
represents the probabilities of symbols.

The cumulative probability enables to create an interval [0,1], with subintervals
belonging to each symbol. The most probable symbol the bigger the interval. The
coding system can be described by the following steps:

1) The algorithm starts with the full interval [0,1)

2) The current interval is divided into subintervals proportional to the
probabilities.

3) Locating the subinterval belonging to the currently analyzed symbol and
defining it as the new current interval and go to step 2. Do until all symbols
of the analyzed string are read.

4) The output will be one number that defines the input string unmistakably.

With each step the interval becomes smaller and smaller so it takes more bits to
express it, but what is important to realize is that the output is a single number e.g.
0.542642169841. The algorithm is explained on the figure taken from [7]. The example
considers the probabilities of occurrences of the nucleotides as follows: A, T =0.3,

C, G = 0.2 the encoded sequence is TCA [3, 7].

03 0.39 0.48 054 0.6

0.48 0.498 0.516 0.528 0.54

Figure 2: Example of arithmetic coding, image taken from [7]

As it can be seen on the figure 2, the unique interval of TCA is [0.48, 0.498) and
so the sequence has been encoded in a unique way achieving lossless
compression.

2 COMPRESSION OF BIOLOGICAL
SEQUENCES

In the past years, the interest in processing biological sequences has been steadily
growing and thus the need of transmitting and storing them has appeared. [6, 13] In
general they consider DNA sequences and proteomic sequences. The length of the
former varies a lot between species, the length of the human genome is around three
billion symbols out of the alphabet {A, C, T, G} while the latter has an average length
of only 450 symbols out of the alphabet of more than 20 amino acids [18].

Since the length of the analyzed DNA sequences is in general greater than those of
protein sequences this paper considers the DNA string as input for the compressions.
Having this in mind, it is important to realize that since the DNA contains only 4
different characters it is possible to encode each character with a 2 bits. Therefore the
length of the binary computer code will be only two times longer than the actual
sequence. The compression algorithms have to overcome this upper limit. [10]

2.1.1 Horizontal and Vertical mode

Two different approaches can be applied to the compression of biological sequences:
horizontal and vertical mode. The horizontal mode can be understood as the
compression of one sequence with no additional information. The sequence is
compressed using only the information the sequence contains, working with substrings
of the sequence itself. The Vertical mode compresses a sequence with an input
information of a set of other sequences. In this mode the information contained in the
other sequences helps to achieve a higher compression rate. If a long substring is found
in one of the model sequences that matches the compressed sequence, the substring can
simply be coded as a pointer to the model sequence substring, saving a lot of space. The
vertical mode is of high importance for the classification of biological sequences using
the compression algorithms, because the amount of similarity between the model
sequence and the compressed sequence can be understood as a parallel to the
evolutionary distance. [6, 9, 13]

2.1.2 Expert Model

The Expert Model (XM), developed by Cao et al. is a compression algorithm based on
arithmetic encoding and Markov models. The arithmetic encoding method has been
described in the previous chapter. A unique interval is attributed to the sequence based
on the probability of occurrence of the next character. When only the arithmetic method
is used the compression for genomic data is about 2 bits per character, which is
unsatisfactory. For that reason Cao et al. include Markov models into the equation. In
general, Markov models allow predicting the next state of a model, based on the current
state. For the XM algorithm it means predicting the next character probability on the
base of previous characters. The arithmetic compression using the XM model will have
different interval ranges at each step. When the algorithm detects that an Adenine
follows another Adenine, the probability intervals for the next nucleotides could be e.g.

10

A=0.2,C=0.35 G =0.3, T =0.15, meanwhile if an Adenine follows a Cytosine the
intervals for the next nucleotide could be A =0.3, C = 0.35, G = 0.2, T = 0.15. The
attribution of these specific intervals is at each step calculated by the so called Expert
Models. The algorithm starts with a population of Expert Models which are basically
Markov models. Each expert has his own estimate for the probability distribution of the
next character. These estimates are combined and are given to the arithmetic coder. The
expert models also receive different weights based on their accuracy in estimating
probability in the previous steps. On human genome the XM algorithm achieves a
compression of 1.75 bits per character. [6, 7, 11, 16]

2.1.3 Biocompress, Biocompress-2, cFact

The Biocompress algorithms have been invented by Grumbach S. and Tahi F. and are
based on two typical characteristics of the genome: tandem repeats and complementary
palindromes. A tandem repeat is a short sequence of nucleotides that is repeated
numerous times. The repeats are concatenated to each other. An example of a tandem
sequence would be TAGTTTAGTTTAGTTTAGTT — the sequence TAGTT is repeated
four times with the repeats being adjacent. Complementary palindromes are sequences
of a certain length that match their reversed transcripts. For example TAGTTAACTA,
when transcribed, leads to ATCAATTGAT, which matches the original sequence when
reversed. The complementary palindromes can lead to hairpin structures of the DNA.
Because these two features are common in the DNA, it is advantageous to encode them
through a dictionary. The Biocompress methods are LZ77 based. First the maximum
length of the tandems and palindrome is established. Then a complete 4-ary tree (there
are 4 nucleotides) is formed that allows mapping the presence of palindromes and
tandems. The difference between Biocompress and Biocompress-2 is on how the
algorithms handle the parts of the sequences that do not contain repetitions.
Biocompress simply codes the nucleotides using two bits per base while Biocompress-2
uses an arithmetic encoder. These two methods achieve up to 32% compression rate but
only on the regions that are rich in described repeats. [3, 8, 9]

The research of the Biocompress algorithm led to the cFact algorithm. The
approach is similar to its predecessor, but the maximum length of the repeats doesn’t
have to be input. The algorithm first constructs a suffix tree which allows discovering
the longest palindrome and tandem repeat. The sequence is then encoding using the
LZ77 algorithm and the non-repeat regions are encoded by two bits per base. [3, 8, 9]

2.1.4 Gencompress

The Gencompress algorithm by Chen et al. is also a dictionary based method that
focuses on repeats in the human genome. The repeats do not have to be exact matches.
This method comes from the fact that the human genome is rich with repeats that have a
small percentage of differences. Most commonly these differences, called also edit
operations, are only single nucleotide replacements, but insertions and deletions can
also occur. The Gencompress algorithm finds all the approximate matches in LZ77
style, with a fixed maximum of differences (mutations). The algorithm searches the
already compressed part for the longest x-nucleotide difference sequence coming up in
the uncompressed part. The location and the length of the discovered string are saved,
as well as the pointer to the mutation and the description of the mutation. [3, 8, 10] The

11

compression ratio can attain the value of 44%. [3]

If more than one mutation between the sequences is allowed the following problem
occurs: The difference between a sequence ACTGT and ACAGT can be described as
one replacement of the third character T to A or as one insertion and one deletion:

ACTGT
ACAGT
Or
ACT-GT
AC-AGT

With these possibilities the number of approximate matches could get out of hand
and the algorithm could take a very long time to compute. For this reason a threshold is
introduced, which limits the length of the compared strings and the number of edit
operations allowed. For DNA the best time/compression results are length — 12 and
maximum 3 edit operations. [10]

2.1.5 COMRAD - COMpression using RedundAncy of Dna

COMRAD is a vertical compression algorithm — meaning it uses a set of sequences to
encode a concrete sequence. As it was stated, a single sequence possesses redundancies
in the form of tandem repeats and complementary palindromes. The third type of
genome redundancy is the redundancy between sequences. There is a high similarity in
between species and even a higher similarity between individuals of one species. By
analyzing the set of sequences it is possible to discover long strings, reaching even
thousands of bases that are common to the majority of the sequences. The sequences
may not be exact matches as the influence of evolution allows for mutations, which the
COMRAD algorithm accounts for. The COMRAD algorithm is basically a copy of the
RAY algorithm, except it is modified for DNA sequences. For that reason the RAY
algorithm is presented below [11]:

The algorithm is divided into 4 steps that repeat until a terminating condition is
reached. In the first step the frequencies of all adjacent symbols (words) of determined
length is evaluated and even the overlapping occurrences are counted. During the
second step the goal is to discover the word with the highest non-overlapping
frequencies. The most frequent word from the first pass is chosen and the non-
overlapping occurrences are counted for this word. If this new frequency doesn’t drop
below the word with the second highest overlapping frequency, the process is ended and
the first word is chosen to encode the sequence. Else the non-overlapping frequency of
the second highest word from the first step is counted and the process is repeated until
the word with the highest non-overlapping frequency is determined. Once the word
established, it is replaced by a symbol that doesn’t belong to the alphabet of the
analyzed string at every position of its occurrence. In the fourth and last step the word
frequencies are updated to the new alphabet (since a new symbol has been added) and
the algorithm repeats the steps 2-4 until the termination condition is reached. The
termination condition is often chosen to be the moment when none of the words has the
frequency of occurrence higher than 2. [11]

12

An example of the algorithm follows. Let us consider the input string
“ACTCTACT” and the length of the words being 2.

Step 1) The overlapping frequencies are calculated: AC = 2; CT = 3; TC = 1,
TA=1;

Step 2) The highest frequency possess the word CT and it can be seen its non-
overlapping frequency is still the highest.

Step 3) A new character is attributed to the word: x = CT and the string is
modified: “AxxAx”

Step 4) The frequency occurrences are recalculated: Ax = 2; xx = 1; XA = 1;

Depending on the termination condition the algorithm would stop now or continue
again at Step 2.

The COMRAD algorithm makes some modifications so that it is more suitable for
use on DNA sequences. Because the DNA dataset, COMRAD works with, is a huge
input, the minimal length of the word in the first iteration is set to 16 concrete
nucleotides. The reasoning behind this step is that 16 nucleotides long words occur with
a reasonable frequency in a large DNA collection and so by this step the algorithm
saves numerous iterations. The second large modification is to account in the
complementary palindromes. Other modifications handle sequence recognition when an
evolutionary modification has affected the sequence. [11] This method achieves very
different compression values depending on the dataset but even though the compression
rate may vary the best published results achieve 0.04 bits per base when comparing
around a thousand sequences of the human chromosome 20. [11]

2.2 Compression algorithms for classification of biological
sequences

In this last theoretical chapter two methods that use compression algorithms for
biological sequences classification are introduced. They are both based on the
Kolmogorov complexity.

2.2.1 Universal Similarity Metric

The Universal Similarity Metric (USM) method is based on the Kolmogorov
complexity. As stated in chapter 1.2, we can denote the conditional Kolmogorov
complexity of a string x given y as K(x]y). This conditional complexity can be
considered as a measure describing the distance between x and y. Unfortunately the
Kolmogorov complexity isn’t something computable therefore in order to establish
K(x|y) an approximation needs to be used. [3, 4, 5]

As shown in the chapter 1.3, there is a close relation (limitedly equivalence for
large strings) between the entropy of the information source and Kolmogorov
complexity. This means that evaluating the entropy of the information source can
provide an accurate estimate of the Kolmogorov complexity. Furthermore it can be
proven that the conditional Kolmogorov complexity of x given y is the same as the
Kolmogorov complexity of x concatenated with y up to a logarithmic precision.[5]

13

Therefore it is possible to estimate the Kolmogorov complexity by calculating the
compression rate of the concatenated sequence. Even though that the entropy of the
source information is defined as being the lowest possible limit of compression rate, the
entropy isn’t possible to be calculated as easily. The idea behind the USM algorithm is
to use the best existing compression methods for biological sequences and estimate the
entropy — the compression ratio becomes the compressive estimate of Entropy. [5]

The outcome of the USM analysis yields good results but is dependent on the
quality of the compressor and if the dataset is well chosen for said compressor. [5]

2.2.2 Lempel-Ziv for biological sequences

The principle of the LZ77 (LZ) has been outlined in the chapter 1.4.3. There is basically
no modification for the biological sequence analysis, apart from the difference in the
alphabet used. In order to analyze the distance between two sequences, they need to be
concatenated one to another and the number of steps needed to generate their exhaustive
history can be calculated. The principle explaining why the measure of the number of
steps can be used as an estimation of the evolutionary distance is described by the
example below, taken from [13]:

Let us consider the following three sequences:
A=“AACGTACCATTG”; B="CTAGGGACTTAT”; C= “ACGGTCACCAA”
Their individual exhaustive histories would be:

He(A): > A»ACK-GPTH-ACCH-ATPTG

He(B): »CPTHAPGPGGAP CTTHAT

He(C): > AB-CP»-GP-GTP-CAP-CCPAA

As all of the histories contain 7 components their respective LZ complexities
c(A) = c¢(B) = c¢(C) = 7. Let now be the concatenated sequences AC and BC with their
respective exhaustive histories He (AC) and He (BC).

He(AC): > AP ACK-GP- TP ACCP-ATP TGP ACGGPTCP ACCAA
He(BC): »CP»-TrAP-GP»GGAP-CTTP-ATP- ACGP-GTP-CAP-CCPAA

The LZ complexities are different this time with ¢(AC) = 10 and ¢(BC) = 12. The
reason for this difference is that the sequence C has been encoded only in three steps
when given the information of A, while it has been encoded in five steps given the
sequence B. The cause is the sequence A and C share the strings ACG and ACCA and
therefore are closer to each other. The number of steps S it takes to generate the
sequence C using the sequence A can be calculated by the following simple equation:

S =c(AC) —c(A) ®)

This is how the similarity between the sequences is estimated.

14

3 EXPERIMENT LAYOUT

The objective of this master thesis is to assess if the compression techniques based on
the Lempel-Ziv (LZ) algorithm can be used for the classification of biological
sequences. The focus is set on DNA sequences, but proteomic data are also briefly
analyzed.

The experiment is divided into 4 parts. The first part takes 4 datasets of different
length and similarity level. The compression algorithm is left as designed by the authors
of [13], in order to gain a rough estimate to validate or deny the LZ approach. As the
results were positive with % of the datasets, the LZ approach has been validated.

The second part of testing has been designed in order to inquire how the similarity
level of sequences influences the outcome of the algorithm. In this part 7 datasets of
complete mitochondrial DNA have been used. The datasets were chosen according to
the taxonomy tree of the NCBI database and are always comparing two groups of
different taxonomy branch. The species in the main groups are chosen randomly. The
first dataset compares two groups of bony vertebrates — Euteleostomi, and the next
datasets descend the taxonomic tree till the last dataset which compares two groups of
Primates.

The third part of testing works with fixed species, and concentrates on short
sequences. The range goes from several hundreds of nucleobases to a thousand. Two
proteomic sequences are also tested in this chapter, as they belong to the category of
short sequences as well. The parts 2 & 3 were designed to determine the strength and
weaknesses of the algorithm.

The fourth part implements modifications of the LZ77 algorithm, based on the
previous results, in order to achieve higher precision in biological sequence
classification.

3.1 Estimating the algorithm functionality

Four different datasets have been used to get a rough estimate of the possibilities of the
LZ technique in the classification of biological sequences:

3.1.1 Datasets
Table 2: Datasets used for the first part of testing.

Dataset no. Dataset specification Dataset average length [bp]
1% dataset 16S rRNA sequences of 13 primates. 1500
2"Y dataset Mitochondrial DNA of chosen 16500
animals.
3" dataset Hepatitis A virus variants from across 7500
the world - 25 sequences.
4" dataset Rhabdovirus variants, including 7 12000
subgroups.

15

The complete list of sequences can be found in the appendix of this paper.

3.1.2 Metric system

Four different, but similar, metrics have been used in this master thesis to estimate the
evolutionary distance, the metrics were left as designed in [13]. The main idea behind
the proposed metrics is that the number of steps necessary to create the exhaustive
histories of concatenated sequences AB and BA are usually different, which needs to be
taken into account.

Let’s consider the individual and concatenated exhaustive histories of sequences A and
B: c(A), c(B), c(AB), c(BA).

First metric:

d; = max{c(AB) — c(A), c(BA) — c¢(B)} (6)

The first metric, leading to the distance measure di, chooses the longest
concatenated exhaustive history, subtracted by the provided sequence’s history.

Second metric:

4 = max{c(AB) — c(A),c(BA) — c(B)})
2 max{c(4), c(B)}

It can be imagined that longer sequences will statistically have larger exhaustive
histories and thus could falsify the result. This reasoning leads to the second metric.
Compared to the first metric, the distance measure d> has been normalized and so the
effect of variable sequence length has been diminished. [13]

Third metric:

d; = c(AB) — c(A) + c(BA) — c(B) (8)

In the previous two cases one of the histories has been chosen to represent the
relativeness of the sequences A and B. The ds approach is to take both of the variants,
meaning c(AB) and c(BA), into consideration. This leads to the third metric system with
the distance measure ds. [13]

Forth metric:
B c(AB) — c(A) + c(BA) — c(B)

L=
%{C(AB) + c(BA)}
The last metric is the normalized version of ds. [13]

(9)

Those four metric systems have been used to analyze the datasets.

16

3.1.3 Algorithm specification

The algorithm is divided into 2 parts. In the first part the exhaustive history of each of
the single input sequences (c(A)) is calculated. The number of steps needed for the
construction of the exhaustive history is saved. The exhaustive history itself, the
location pointer, length of the words and the new characters, as explained in the
theoretical part of this work, are not saved. They would serve no purpose in the
phylogenetical analysis. Even though the new character is not saved, it is still skipped at
each step of the exhaustive history construction and therefore the next string matching
step starts at the position “last character of the last longest common word +1”. In the
second part of the algorithm two sequences at a time are concatenated together and their
conditional exhaustive history is calculated. As the first half of the sequence has been
calculated in the first step, it is not necessary to recalculate it. The process starts with
the first sequence (A) filling the left window and the second sequence (B) filling the
right window. Once the number of steps to form the exhaustive history of B using A has
been calculated, the number of steps of A known from the first step of the algorithm is
added, and therefore c(AB) is reached. These steps are repeated for all the combination
of sequence pairs in the dataset. The resulting matrix is then used as an input for the
metric systems, and the four phylogenetical trees are constructed. The flowchart of the
algorithm is presented on the figure 3.

17

Input: set of sequences in

fasta format.

Prepare sequences
from the fasta file.

J

ori=1:the numbe
finput sequence

r

Calculate and save
the exhaustive
history of a
SE[UEnCEe.

-

for i=1:number of
sequences

for j=1:number of
sequences

Calculate the
exhaustive history of
concatenated
sequencesiandj

)

18

{

Modify the data with
chosen metric
system

Phylogenetic tree

Figure 3: The flowchart of the program

3.1.4 Results and discussion

Thorough the testing of the algorithm it has been successfully confirmed that the
LZ77 algorithm can be used for the classification of biological sequences. On the other
hand the phylogenetical trees calculated with the four metrics possess all long branches
from the leaf to the first nod and very short branches from nods to nods. This effect is
due to the form of proposed metrics. The distances vary too little compared to their
nominal value and so it appears the subjects are distant to each other. The reason is that
the LZ77 algorithm isn’t an algorithm to measure the exact evolutionary distance but a
simple classification algorithm.

To compare the generated trees via LZ77 with the standard approach, a reference
tree has been constructed from the set of sequences using the Jukes-Cantor distance [20].
In order to create a phylogenetic tree, a construction method had to be chosen. For
simplicity in the first part of the experiment the UPGMA has been chosen [19]:

The reference tree for the first dataset (16S rRNA of 13 primates) is presented on
the figure below:

-4 Bonobo chimpanzee

1 Commaon chimpanzee

1 Human

- E -4 Meanderthal
u

-1 Western lowlan gorilla

- —+:: 1 Sumatran orangutan
- -4 Bornean orangutan

- 1 Yellow-cheeked gibon

L -4 White-cheeked gibon

- - Lar gibbon

m | o -+ Guinea baboon

- 0 - Rhesus macaque

L o 4 Common brown lermur

o 0.05 01 015 0.2 0.25

Figure 4: Reference phylogenetic tree constructed via J-C and UPGMA from the first dataset.

The two extreme values of the reference phylogenetic, from figure 4, are going
to be examined first. The sequences of the Neanderthal and Human are the ones closest
to each other. On the other hand the most distant sequence, connected directly to the
root of the tree, is the Common brown lemur. The sequences were analyzed by the four
metrics and the distance measures yielding the best phylogenetic tree for this concrete

19

dataset — the distance ds, is presented below. The Common brown lemur, Neanderthal
and Homo sapiens are stored under the variables 2, 10 and 11 respectively.

1 2 3 4 5 & 7 8 9 10 1 12 13

1 0 0 0 0 0 0 0 0 0 0 0 0
2 421 0 0 0 0 0 0 0 0 0 0 0
3 356 412 0 0 0 0 0 0 0 0 0 0
4 363 417 380 0 0 0 0 0 0 0 0 0 0
5 386 415 387 353 0 0 0 0 0 0 0 0 0
6 386 405 389 357 166 0 0 0 0 0 0 0 0
7 366 407 394 327 256 190 0 0 0 0 0 0 0
8 362 41 374 211 358 362 349 0 0 0 0 0 0
9 391 408 39 337 260 259 323 359 0 0 0 0 0
10 380 400 380 328 256 256 314 357 178 0 0 0 0
11 377 402 386 332 255 261 318 364 18 0 0 0
12 366 409 391 320 334 330 357 356 264 257 259 0 0
13 383 411 390 315 256 256 317 358 155 143 149 203 0

Figure 5: The distance matrix ds with highlighted values of the closest and most distant
individuals.

The distance measure based on LZ77 correctly distinguished that the
Neanderthal and Human are the closest species from the dataset, as their relative
distance value is the minimum of all the distances. The distance measure also agrees
with the premise that the Common brown lemur is the most distant individual, as the
column belonging to the sequence contains the highest numbers of the distance matrix.
The phylogenetical tree created from this metric is presented on the figure 6:

B o - Guinea baboon

- o0 - Rhesus macaque

B -1 Meanderthal

- 4 Human

i o o Common chimpanzee

—
i o~ Western lowlan gorilla
B o0 - Bonobo chimpanzee
—)
B 0 - Largibbon
-4 o~ Yellow-cheeked gibon
e

i o 1 White-cheeked gibon

i + o 4 Sumatran orangutan

B a0 4 Bornean arangutan

i O - Common brown lermur

0 50 100 150 200 250 300 350 400

Figure 6: Phylogenetic tree constructed from the first dataset using the ds metric.

20

As explained in the introduction of this chapter, the distances between the leaves
and the nods are considerable — longer than in the reference tree. The trees have been
compared via the Robinson-Foulds metric (RF distance) [21], which describes the total
of wrongly formed uncommon nods in between the two trees. The RF distance for the
first dataset is equal to 8. Meaning that out of the 22 nodes (not counting the root) 14
are correct, yielding a 63% success rate. The sequences are analyzed in detail in the
following figure. For an easier comparison the trees haven been turned into cladograms
[22] — meaning the calculated distances have been ignored and the trees have been
constructed out of the nods from the precedent figures:

21

L 1 Human
L E 1 Meanderthal
L 1 Commaon chimpanzee
L a4 Western lowlan gaorilla
L o 4 Bonobo chimpanzee
L R 4 Lar gibbon
L E -1 Yellow-cheeked gibon
L 4 White-cheeked gibon
L : -1 Bornean orangutan
—®
L 1 Sumatran orangutan
14 1 Guinea baboon
i : 4 Rhesus macague
1 a4 Comman brown lemur
o 1 2 3 4 &5 & 7 3
L ' ' I : I I . : -1 Bonobo chimpanzee
L 1 Common chimpanzee
L ——a 1 Human
L 1 '—n 1 Meanderthal
L - o 1 Western lowlan gorilla
L 4 Bornean orangutan
L C: 4 Sumatran orangutan
L ——o 1 White-cheeked gibon
L 4 ——— 0 1 Yellow-cheeked gibon
L -——n ~q Lar gibbon
. 1 Guinea baboon
: 1 Rhesus macaque
a 4 Comman brown lemur

Figure 7: Comparison of the reference to the d3metric. On the top of the figure is the
cladogram made out of d3 metric and at the bottom the reference. Three common
large groups of Primates have been highlighted.

The first dataset didn’t yield a very good result considering the RF distance but
has proven that the algorithm is classifying in a correct manner. Figure 7 shows, that the
LZ algorithm has correctly identified the three major groups of primates.

The second dataset containing the mitochondrial genome yields the best results
with the distances dz and d4. As the reference tree and the LZ ds tree is very similar, the
comparison figure is showed directly:

Western Gorilla

S —— Y
L o - Bornean orangutan
L o - Lar gibbon
- - Blue whale
* —:
L - Fin Whale
— %
_ —: | HUrSE
I) - White rhinoceras

_ : -

- < House mouse

- —: - Bornean arangutan
- - Western Gorilla

Lar gibbon
L - Blue whale

* —:
L - Fin Whale
_ —: | HUrSE
L & - White rhinoceros
_ +:: |
L -1 House mouse

0 045 1 15 2 25 3 a5 4

Figure 8: Cladograms of the third dataset. Distance ds on the top and reference on the bottom.
The sole wrongly associated sequence is highlighted in the red box.

23

The second dataset contains only one misplaced sequence: the Human. Apart of
that the phylogenetic tree has been generated correctly. The RF distance is 4, leading to
a 75% success rate. It can be seen that even with a higher sequence length the LZ77
algorithm doesn’t identify very similar sequences correctly but manages to group the
close sequences together, not interfering with the other groups.

The reference phylogenetic tree for the third dataset can be viewed on the figure
8. The hepatitis A virus sequences are highly similar and the Jukes-Cantor algorithm
doesn’t classify the sequences correctly. For this reason the reference tree has been
constructed as in the original paper [16].

1A -FH2
1A -AHI1

1A-DL3

1A -FH3
1A -LY6

1A-AH3
1A - AH2

1A -FH1
1A-TLA

1A - HASI1S
|:]A- M2
1A - HAVFG
1A GBM16
~|:|le - GBM15
1A - GBM14

1B - MBB

1B -IVA

1B - HM175

1B - HAF203
1B - HM175

1B - HM175
2A - CF53

2A - SLF88

3 -NOR21

4 - AGM27

Figure 9: Reference tree for the hepatitis A virus as in [16]

This dataset contains 4 groups of the hepatitis virus differentiated by numbers on
the figure 9. The group number 1 is abundant in sequences and is divided into two
subgroups 1A and 1B. In order to highlight the closeness of the sequences the
phylogenetical tree created via Jukes-Cantor and Neighbor-joining [23] is presented
below:

24

1B -HM175
1B - HM175
1B -HM175
1B - HAF203
1B - IVA
1B - MBB
3A - NORZ21
4 - AGMZT

P
o

i

(]
M
= oo
o @

-.":-.EE
Y
G ptm

=l e el el el = =)
1 e
| FR T R T N R B |
T=C T
T=rad =mm

[¢]
-
(8]

0 0.05 0.1 0.15 0.2

Figure 10: phylogenetic tree constructed based on JC from the second dataset.

The figure 10 shows that the distances are in many cases very similar, especially
the sequences belonging to the groups 1A and 1B are very close to each other. The third
dataset has been chosen to be a hard test for the LZ77 algorithm. The Jukes-Cantor
algorithm fails to place the groups 2, 3 and 4 correctly, if compared to the reference
from [16], and the group 1A is split into two parts, therefore this is a dataset that is
challenging even for the alignment based methods.

The LZ77 algorithm has been tested for all of the four metrics. Metrics 1, 2 and
3 yield almost the same result with their maximum RF distance being 2. The fourth
metric has a slightly worst result with the RF distance to the other 3 metric being 8. As
the datasets are chosen to be difficult to classify, the simple UPGMA method is no
longer sufficient, for this reason the phylogenetical trees in the rest of this paper are
constructed via neighbor-joining. The resulting tree from the metric 3 is presented
below:

25

u]

2A- CF53
2B - SLF38
1B - HM175
1B - HM175
1B - HAF203
1B - HM175
1B - IVA

1B - MBB
1A- AH1
1A- FH2
1A-DL3
1A- FH3
1A-LY6
1A - AH2
1A - AH3
1A- FH1
1A- HAS15
1A - M2
1A- LA
1A- GBM14
1A- GBM15
1A- GBM16
1A- HAVFG
4 - AGM27
3A- NOR21

1

u

o 100 200 300 400 500 600 YOO 300

Figure 11: Phylogenetical tree of hepatitis A virus variants made from the 3™ metric.

It can be seen from the figure 11 that the LZ77 algorithm has managed to
differentiate the main groups of hepatitis virus variants. The generated distances
between the sequences (the length of the branches) are greater than in the tree generated
by Jukes-Cantor, especially in the very similar groups such as 1A and 1B. This is a very
positive discovery as the sequences that look similar to an alignment algorithm seem to
be different enough for the LZ algorithm, which means the classification should be
more precise. The next figure compares the reference from [16] with the phylogenetical
tree created by the metric 3. For a better visibility the LZ tree has been turned into a
cladogram.

26

F8Y -
) i o 42A-CF53
ﬁlﬁbﬁ& L —¢ a :I?H-Sl Faa
| —— - i 11B-HM175
s 11B-HM175
uﬁﬂ | IR
1A - FHI 11B - Hi
[CiATHAss | [118-048
11A-FH2
Fl{A(]}EI}%ﬁBMIS 11A-DL3
1A - GBM14 [: }QE'Y'%"
1B - MBB - 11A - AH2
1B - IVA ¢] }iéﬁ?
4IB—HMITS s L }i-mgms
i;{%ﬁﬂféﬁ%@s L {1A-LA
1B - HM175 @ . mggﬂ}g
N - 11A- u
s b 114~ Gemns
2A - SLF88 L 4 1A - HAVFG
i i a4 4 - AGMZ/
3 -NOR21 a {3A- NOR21
4-AGM27

0 200 400 600 800

Figure 12: Comparison of the cladogram from ds; and the reference for the second dataset. The
three major traits have been highlighted.

The analysis of Figure 12 leads to the discovery that only 1 nods is classified
incorrectly, leading to the RF distance of 2 between the reference and the LZ algorithm,
which corresponds to 96 % success rate — a very good result for such a difficult dataset.

The fourth dataset consist of 35 different Rhabdoviruses belonging to 7 different
subgroups. The specific sequences have been chosen from [17]. This is the most
difficult dataset on which the LZ algorithm has been tested. The distances between the
sequences are very similar. Before presenting the JC tree, the taxonomical tree of
Rhabdoviruses as proposed by the authors of [17] is showed:

27

Novirhabdoviruses

|

Cytorhabdoviruses

v

Nucleorhabdoviruses

AR

Drosophila sigma v.

l

Vesiculo-

SCS

[Epheme-

rOVIIISES

Lyssaviruses

Figure 13: Reference phylogenetical tree of Rhabdoviruses [17]

el b s Tk

Now. hirame v.

MNov. snakehead v.
Mow. snakehead v.
Cyt. lettuce yel. v

Cyt. n. cereal v.

Nuc. maize f3. v
Wue. sonchus yn. v

Mue. orchid £ w

Wue. rice yellow v
Muc. taro vem chl. v.

Dro. melanogaster v.
Dro. obscura v.

Ves. cocal Ind. w

Ves. stomatis Ind. v.

Ves stomatis Ind. v

Ves. stomatis NI w.

Ves. 1sfahan v.

Ves. chandipura v

Ves. spring v. carp v.
Ves. Siniperca chuatsi v.
Eph. wongabel v.

Eph. Flanders v.

Eph. bovine fever v
Eph. Adelaide v.

Lys. West Caucas. bat virus
Lys. Mokola v.

Lys Lagos bat v.

Lys. Irkut virus v.

Lys. Duvenhage v.
Lys. European bat v.

Lys. European bat v.
Lys. Ehujand w.

Lys. Aravan v.

Lys. Australian bat v.
Lys. rabies v.

28

Fishes

Plants

arthropods

Drosgphila

ertebrates

msects

Mammals

The 7 different subgroups of the Rhabdovirus can be seen on the figure 13. The
cladogram created via Jukes and neighbor joining can be seen below:

YWes. cocal Ind. v,

Wes, stamatis Ind. v.2 v

Wes stomatis Ind. w1 v,

Wes. stomatis My

Yes. Isfahan v

Wes. chandipura v,

WES, SPrnG . carp .

YWes, Siniperca chatsiv,

Do, melanogastar v,

Lys. Eurgpean batw.2 v,

Lirs. Khujand v.

Lys. Aravan v,

Lys. European batw.1 v

Lys. [rkut .

Lws. Duwenhage v.

Lys Australian batw,

Lys rabies v,

Lis. Lagaos hat v,

Lys. Mokola .

Lvs. Wiest Caucas. hatw.
ov. hirame .

Mov. snakehead v.2 v,

Mow, shakehead w1 v,

Muc. archid £,

Enhwiongabel v,

Eph. Flanders v,

Eph. Adelaide v.

Eph. bovine fewer v,

Do, abacUra v,

Muc. maize f.e. v,

Muc. sonchus yv.n.

MG, rice yellow v,

iyt leftuce yel. v,

Tyt n. cerealy,

Muc. taro vein chl. v,

l .

- 0O

-
ko2
=y
[m7}
o0
—
=

Figure 14: Jukes-Cantor’s phylogenetical tree of the Rhabdoviruses variants.

The figure 14, shows that the classical Jukes-Cantor alignment based method
manages to separate the Rhabdoviruses into the 7 subgroups almost correctly, only the
drosophila sequences are not grouped together. On the other hand there are several
mismatches compared to the reference, the biggest being the misplacement of the whole
Ephemerovirus and Novirhabdovirus group. The Ephemerovirus should have the same
ancestor as the Vesiculovirus, while the Novirhabdovirus subgroup should be the most
distant one to the rest of the sequences. Once again this dataset is challenging even for
the alignment based methods.

The dataset has been analyzed by the LZ algorithm and the table below shows the
Robinson-Foulds distance between the 4 metrics:

Table 3: RF distances of the Rhabdovirus dataset between the 4 metrics

Metric 1 Metric 2 Metric 3 Metric 4
Metricl 0 34 38 50
Metric2 34 0 36 52
Metric3 38 36 0 50
Metric4 50 52 50 0

The table 3 shows that the resulting trees from the 4 metrics differ largely between
themselves. The reason of this failure is that the LZ complexity is very similar between
the sequences. To back up this statement the first 11 entries from the variable, that

contains the LZ complexity matrix modified by the metric 2, is showed below:

(= Rie =T B o B B o R S

- =
- O

-

0
0.8718
0.8976
0.8819
0.8682
0.8671
0.8810
0.8694
0.8673
0.8700
0.8904

2
0.8718

0
0.8889
0.8757
0.8658
0.8665
0.8767
0.8711
0.8679
0.8448
0.8810

3
0.8976
0.8889

0
0.8766
0.8848
0.8904
0.8792
0.8874
0.8874
0.8884
0.8802

4
0.8819
0.8757
0.8766

0
0.8723
0.8779
0.8664
0.8735
0.8695
0.8735
0.8763

5
0.8682
0.8658
0.8848
0.8723

0
0.8418
0.8767
0.8091
0.8500
0.8658
0.8816

6
0.8671
0.8665
0.8904
0.8779
0.8418

0
0.8696
0.8382
0.8373
0.8665
0.8792

0.8810
0.8767
0.8792
0.8664
0.8767
0.8696

0
0.8729
0.8696
0.8778
0.8767

8
0.8694
0.8711
0.8874
0.8735
0.8091
0.8382
0.8729

0
0.8505
0.8628
0.8810

9
0.8673
0.8679
0.8874
0.8695
0.8500
0.8373
0.8696
0.8505

0
0.8661
0.8690

10
0.8700
0.8448
0.8884
0.8735
0.8658
0.8665
0.8778
0.8628
0.8661

0
0.8769

0.8904
0.8810
0.8802
0.8763
0.8816
0.8792
0.8767
0.8810
0.8690
0.8769

Figure 15: Variable containing the LZ complexity modified by the metric 2, first 11 entries.

Only 11 entries have been shown for a good visibility, but the data are similar
thorough the whole variable. Since the closeness of the sequences is this great and that
the difference in the LZ complexity between the sequences is almost inexistent, the
approach fails to classify the sequences properly. The high similarity can be visually
seen on the phylogenetic tree of the distance 2 below:

30

Wes cacal lnd. v,
YWes stomatis Ind, v.1 .
YWes stomatis Ind. w2 v
Wes, stomatis M v
Was. lsfahany.
Ves, chandipura v,
WEs SPrng V. carp .
Wes, Siniperca chatsi v,
Oro. melanogdastar v
Buc, orchid £ow,
Muc. tara wein chl. w.
Mow, hirame v,
Mow. snakehead w2 v
Lys. Mokola vy,
Lis. Lagaos hat v,
Lys. West Caucas. bat v
Lys. European hatw.1 v,
Lys. Duvenhadew.
Lys. Irkuty.
Lys. khujand v,
Lys. European hatw. 2 v,
Lys. Aravan v,
Lys Alstralian baty.
Lys rabies v,

ov. shakehead v.1 v,
MU, sonchus yv.n. v,
Muc. rice yellow y.
Muc. maize .5, v
Eph. Adelaide v.
Eph. howine fever v,
Eph wonoahel v,
Eph. Flanders w.
Oro. obaclrg v
Cyt . cereal v,
Cyt. lettuce yvel. v,

g

Opopoogo

u]

uULlLlUuuLluuUu

|
1
E

a 500 1000 1500

Figure 16: Graphical display of LZ complexity similarities between the sequences.

The result for the Rhabdoviruses is disappointing but expected. The LZ complexity
with similar sequences is susceptible to variance. Even if the sequences are very similar,
theoretically the ones closer to each other should still yield a better result. Unfortunately
it cannot be said that there will always be more mutations, in slightly more distant
sequences, which are the reason for an iteration of the algorithm to restart and thus
increase the LZ complexity. Also in some cases a well-placed mutation can lead to a
longer common word between two sequences. For this reason the sole LZ distance is
not sufficient for sequences with similar distances in between them.

Throughout the whole testing the metric distance ds has had the best results and
even in this case the same can be said. After analyzing all the phylogenetical trees, the
distance ds3 manages to separate the Rhabdovirus families similarly to the JC tree, the
cladogram is presented below:

31

Yes stomatis Ind. v.1 v

Yes. cocal Ind. v,

Yes, stomatis Ind. w2 v,

Yes, stomatis MJ v,

Ves. Isfahan v,

Yes. chandipura v,

VBS. SOrinG Y. carp .

Yes. Sihiperca chatsiv,

Do, melahogastar v,

Lys. European batw. 2 v,

Lits. Khujand v.

Lys. Aravan v,

Lys. Duvenhage v,

Lys. European batw.1 v,

Lys. Irkuty.

Lys Australian batw.

Lys rabies .

Lis. Lagos bat v,

Lys. Mokola v,

Lys. West Caucas. batw.
0. hirame v

Mov. snakebead w2y,

Muec. archid £y,

Muc. taro vein chl. v.

Mov. snakehead w1 w.
Mue. rice yellow v,
Muc. sonchus y.n. v
Muc. maize £.5.v.

h. Adelaide v.

H. haovine fever v,

h

wiongahel v,
.Flanders v,
Lo, obacura v,
Cyt. . cereal v
Cyt. lettuce vel. v,

.

=
[N
.
[=3]
[mn]
—
(]
—
(o]

Figure 17: Cladogram of the Rhabdovirus dataset by the LZ alg. with the distance metric ds.

The Ephemerovirus and the Novirhabdoviruses groups are not in the correct place,
but overall the classification into groups has been successful.

3.1.5 Conclusion of the first part of testing

The direction of research in the field of compression data algorithms to be used to
classify biological sequences is justified. Even though the algorithm doesn’t show the
best results with closely related sequences, it manages to group together the closest
sequences and in the case of hepatitis A, the LZ algorithm outclasses the Jukes-Cantor
alignment method. It is important to keep in mind that the algorithm used has been the
LZ77 algorithm without any modification. It is a simple algorithm which hasn’t been
adapted for the classification of biological sequences apart from the fact of introducing
the four different metric systems.

3.2 Sequence disparity testing

As it has been shown in the previous chapter, the algorithm as it stands cannot be used
universally. The second part of testing has been designed in order to test the LZ
algorithm’s resolution. Species belonging to two different taxonomy branch groups are
chosen in each datasets. The datasets are descending the taxonomic tree from very

distant to closer groups from the evolutionary point of view.

3.2.1 Algorithm specifications

The algorithm uses the same metric system and base algorithm as proposed in [17]. The
tree construction the UPGMA method, which is old and unprecise, is changed to
neighbor-joining. The reference trees used for this method will be based on the
taxonomic classification of the NCBI database. For this part of testing the interest lies in
the ability of the algorithm to separate the species in two groups and not necessarily to
reach the perfect phylogenetical tree. As the NCBI tree is a cladogram, it doesn’t use
evolutionary distances. For this reason more species can be at the same taxonomic level.
When evaluating the RF distance between the constructed tree and the reference tree,
this fact could lead to falsification as the constructed trees are bifurcating trees. In order
to correct this possible falsification the following rule, when evaluating the RF distance,
is set. Both of the variants of the branches on figure 16 are going to be considered
correct.

Phylogenetical tree variants:

NCBI tree:

El) Nomascus leucogenys
Nomascus leucogenys Nomascus gabriellae

|— Hyloblates lar
Nomascus gabriellos Symphalangus syndaciylus

. Symphalangus syndactylus]}) Nomascus leucogenys
Hyloblates lar Nomascus gabriallos
| Symphalangus syndactylus
Hyloblates lar

Figure 18: NCBI reference tree on the left side and the two correct variants that can occur on
the right side.

3.2.2 Datasets

7 datasets of mitochondrial DNA have been prepared. Each dataset is composed of
around 13 species belonging to two different groups of a taxonomical family. The
number of sequences in a dataset varies due to the accessibility of sequenced species in
the analyzed family. Once the main groups are chosen, the concrete species inside the
groups are the ones that are accessible on NCBI, which means that they may differ a lot
from each other, even inside of the groups. With this said, the difference shouldn’t
surpass the difference between the species from group to group. The last dataset is the
concatenation of the last 3 datasets. The figure below displays the groups that have been
chosen:

33

Euteleostonu

w

Group No. 1

Actinopterygii Sarcopterygii

Dipnotetrapodomorpha

|
Tetrapoda
Amp@ta
M I I
Theria
I
Euthf:ria

Boreoeuthena

w

Group No. 2

w

Group No. 3

Laurasiatheria Euarchontoglires

Primates Group No 4

w

Strepsirrhim Haplorrhim

Simuformes
|
Catarrhini » Group No. §

Cercopithecoidea Hominoidea ———— Group No. 6

Hylobatidae Hominidae

Figure 19: display of the families chosen for the second round of testing.

3.2.3 Results and discussion
The first taxonomic level contains species from the Actinopteri and Sarcopterigii groups.

The phylogenetical trees are presented in the following order: NCBI reference,
Jukes-Cantor and LZ. The computed phylogenetical trees are displayed as cladograms
for a better visibility:

34

—%

—t

1 Actl. Swvnocius variedatls
1 Actl. Scamberomorids semifasciails
1 Actl. ScomBberororis nuna

1 Sarc. Mantella madagasc e nsis
1 Sarc. Homo saaplehs

1 Sarc. Lycadon fiavorohatus

1 Sarc. Liscocon sermicatinatus

1 Sarc. Jacaha jacaha
1 Sarc. Struthio camelus

3

1 Acti. Chanodichttes lishaeform)is
1 Achi. Triplophysa dorsalls
1 Actl. Triplophesa strauchi)
1 Actl. Copitis slnenals
10 i3 20

23

Figure 20: NCBI reference tree of Actinopteri and Sarcopterigii

—

=

=
o]

Actl. Triniophysa dorsalis
Acti, Tripiophrsa strauchil
Acti. Chanodichtfnes sinensls
Acti. Chanodichithes ilishaefor
Actl. Bynodus variegatus
Sare. Struthio camealus

Sarc. Jarana facaha

Satc. Homo sapiens

Sare. Liscodon semicarinatls
Sare. Lycodon flavaronatus
Acll. Scombaromorls serifa.
Acll. Scombarormorls Fuhio)
Sarc. Manteliz madagascarie,

Figure 21: Jukes-Cantor cladogram of Actinopteri and Sarcopterigii

Acti Tripiopinvsg dorsaiis
Aol Trpiopivss strauchil
Acli Cobitis slnensls

Aol Chanodichths illshaeform)s

0o 4
T Ach Scomberomoris semmifasciaiuls
1 At Scomberormars il x el
1 Ach Svnocius varienatus

Sare, Struthlio camelus

Sarc. Jacana facana
Sare. Dinodon sermicatinatus

Sare. Liacodan fiavozohatls
Sare. Homo sapiens

u]

F O

Sate. Mantella madagascatensis

[}
—
(%]
ok
.
n
[n2]

Figure 22: LZ cladogram based on metric no. 3. of Actinopteri and Sarcopterigii

The first dataset is made of two very foreign groups Actinopteri and Sarcopterigii.
The tree using the metric no. 3 has been presented as it is the best for this group, but all
the other metrics yield very similar results. The only sequence that poses problem is
Mantella madagascariensis, which is sometimes classed with the wrong group or
classified outside of the Amniota group. This is not too surprising as Mantella
Madagascariensis belongs to the amphibia family while all the other sequences from
Sarcopterygii belong to Amniota. Mantella Madagascariensis is very distant from both
the Actinopteri and the Amnoita and therefore could be interpreted wrongly by the LZ
algorithm. Apart from this sequence, all of the other species are classified in the correct
groups, and so it can be confirmed that the algorithm works well at the taxonomic level
of Euteleostomi. The table of RF distances of the four metrics, and three alignment
algorithms from the NCBI reference (RFDrer) is displayed below. Two alignment
methods, Kimura [24] and Tamura [25] have been added in order to have a better
comparison between the LZ algorithm and the alignment technics.

Table 4: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of the Euteleostomi.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDrer: | 4 4 2 6 10 4 4

Success 82% 82% 91% 73% 55% 82% 82%
rate:

Out of the analyzed techniques the LZ algorithm in combination with the metric 3
has the best result. The Jukes-Cantor distance is the most inconsistent, the distances are
too foreign from each other and therefore the necessary alignment becomes problematic.

36

The JC reference fails at classifying the sequences in the two groups.

The second dataset is at the taxonomic level of Tetrapoda and the analyzed groups
are the Amphibia and the Amniota.

The phylogenetical trees from the second dataset are presented below, as the NCBI
database is the reference, the alighment methods won’t be displayed but their RF
distance to the reference is going to be presented in the table 5:

L I I I 1 Amnl Jgcaha spinosa

- 1 Amnl. Chermasils i)

L 4(:i‘:;:: 1 Amnl. Lycodon favozonatus
P — 1 Amnl Lycodon FfoZonatls

1 ARl Eqris asing s

1 Amnl. Felis catus

1 Amnl Hoimo Sapiehs

F 1 Amah. Mantelia madagascaiensis
F 1 Amah. imnonectas banhaensis
F 1 Armyah. Edphiactis hexadachsdus
0 palallh iy
3 L n

1 Amph. Fejerdahsa limnochatlis

1 Ak, TrRurE karelin

] 10 15 20 25

Figure 23: NCBI reference tree of Amphibia and Amniota

- 1 Amnil Lycodon rufazonatius
L 4‘_(£ 1 Amni Lvcodon fiavozonatls
- 1 Amnl Chermasiis i)
u|
—

1 Amnil Jacaha spinosa

3 1 Amnl Felis catus
- {E 1 Amnl EqQuus 3ainUs
—
- 1 Amnl Homo Sapiens
u|

H Amah Triturus kareling

H Amah Triturus kareling

1 Ameh Mantella madagascatiensls

]

- 1 Amah Euphidctis hexadachls

- 1 Ameh Fefenvansa limnochatis

- 1 Ameh Limnonectes hannaensls
0 2 s :

Figure 24: LZ cladogram based on metric no. 3. of Amphibia and Amniota.

37

Table 5: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of the Tetrapoda.

Methods | LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor

RFDRrer: | 10 6 6 8 8 8 8
Success 55% 73% 73% 64% 64% 64% 64%
rate:

The second dataset results are similar to the first dataset. The LZ algorithm
manages to correctly recognize the Amniota group with all of the metrics but has a
problem with the Amphibia group — it classifies the Triturus sequences wrongly, as if it
would be a family on its own. The reason for this behavior is that once again the
Triturus karelinii sequence is very distant from both — the Amniota and the rest of the
Amphibia group. The alignment methods fail to classify the sequences correctly for the
same reason. Once again the metric no. 3 has the best result.

The third dataset is at the taxonomical level of Boreoeutheria and compares the
group of Laurasiatheria and Euarchontoglires.

The phylogenetical trees from the third dataset are presented below:

fazss

5

1 LaLr. EQUUS 35IH05

. _
10 15 20 25

Lalr Caprenfls prdaigus
Laur Armmotranis

Lauy. Balagnopterg mlsc g

1 Laur. Halichoers gheous

Laur. Panthara Hiorls

ELar Mus muscLlils

Euar Aotus azaral azaral
Fuagr Homo sapians

Euyar Macaca muiatta

Euar. Chiorocebuls sabaols

Enar. Chioracebls gethions

Figure 25: NCBI reference tree of Laurasiatheria and Euarchontoglires.

38

Laur, Capreoils pygargls var, a
Laur Caprenfus maganius var b
Laur Armotraglus

0 1 Laur Balaonoptars muEciits

I 1 Laur Halichoeris ghsous
- {E 1 Lawr Panthera tighs
—* .
i 1 Laur Equls asinus
: 1 Euar Mus musculis molossinus
]
]

Euar MuUs mUsclius

Euar. Chiorocebus sahasls
Euar. Chlorocehus aethiops
Euar. Macaca muliatta

Euar. Homo 580/ens

Euar Actus azaral 57ata)

Figure 26: LZ cladogram based on metric no. 3 Laurasiatheria and Euarchontoglire.

Table 6: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of the Boreoeutheria.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDRer: 2 2 2 2 8 2 2

Success 92% 92% 92% 92% 66% 92% 92%
rate:

The third dataset leads to the same cladogram for all of the LZ metrics. The final
tree is in accordance with the NCBI tree in every branch, but the Mus musculus
sequences. It can be seen that the LZ algorithm can differentiate well between the
groups and even inside of the families is able to classify the correct sequences together.
The problem that repeats itself is when the algorithm has to classify a sequence that is at
a similar distance to the two groups. In this case the Mus musculus sequence is the only
one belonging to the subfamily of Glires, the immediate subdivision after
Euarchontoglires. All of the other Euarchontoglires sequences belong to the group of
Primates. As the Glires are distant from the Primates the LZ algorithm classifies it as a
standalone group — the same case as with mantilla madagascariensis and the Titrus
family. The alignment based methods of Kimura and Tamura yield the same result as
the LZ algorithm, while the Jukes-Cantor method is failing to classify the sequences
correctly, mixing the two taxonomical groups together.

The fourth dataset is at the taxonomical level of Primates and compares the group
of Strepsirrhini and Haplorrhini.

The phylogenetical trees from the fourth dataset are presented below:

39

£y

10

25

Stre. Lepifemur hlbbarciorm
Stre. Microcaus nurnus
Stre. Progpithects coguerel
Stre. Propitheclls varrealx)
Stre. Propithects taftersaii
Hapl Caliithiix kukii

Hapl. Pan rogiocaes rogiocdes
Hapl Homo sapiehs

Hapl Macaca cyciopis

Hapl Macaca slienus

Hapl Macaca nigra

Hapl Mandiius lelcophaells
Hapl Cercoceblls alss

Figure 27: NCBI reference tree of Strepsirrhini and Haplorrhini.

Hapl Macaca higra

Hapl Macaca cyciopis

Hapl Macaca slignus

Hapl Mandriiius lelcophaslls
Hapl Cefcoceblls alis

Hapl Homo sapiehs

Hapl Pan trogioces rogioctes
Hapl Calithrix kuhii

Stre. Progpithects coguerel
Stre. Propitheclls varrealx)
Stre. Progithecus tattersall
Stre. Lepifemury hbbardorm
Stre, Microceus murings

Figure 28: LZ cladogram based on metric no. 3 Strepsirrhini and Haplorrhini.

Table 7: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of the primates.

Methods | LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor

RFDrer: 0 0 0 0 0 0 0
Success 100% 100% 100% 100% 100% 100% 100%
rate:

The fourth dataset is in accordance in between the NCBI model and all of the
computed phylogenetical trees, be it by the LZ algorithm or the alignment method. The
LZ algorithm yields the same phylogenetical tree in % metrics, but is at the same RF
distance for all of the metrics. The only aberrance that occurs is in the classification of
the Lepilemur Hubbardorum and Microcerbus murinus, which are at the same
taxonomical level according to NCBI and therefore it is not considered an error.

The fifth dataset is at the taxonomical level of Catarrhini and compares the group
of Cercopithecoidea and Hominoidea.

The phylogenetical trees from the fifth dataset are presented below:

- 1 Homl, Pan trogioodes roglodtes
- 1 Homil Homo heldelbergensis

- 1 Homl Hommo sapiens
- & 1 Homl Gorilla beringel gralear

i 1 Honl Godilla gotilia gorilla
K 1o 1 Homi Hylobates lar

- 1 Cere. Trachypithecus plileatus
- 1 Cete. ChioraceHuUs clnosuios
- 1 Cere. Mahdriiius felcophaslls
- 1 Cete. Macaca clicionis

- 1 Cerc. Macaca hemeastiing

- 1 Zere, Macaca fuscata
- 1 Cete. Cercocebils s

Figure 29: NCBI reference tree of Cercopithecoidea and Hominoidea.

- 1 Cerc Macaca fuscata

- 1 Cerc. Macaca cyclopls

- 1 Cerc Macaca nemeastting

- 4 Cerc Mahdrliius islcophacls
F A Cete, Cercocebils ahes

3 0 Cate, Chioracebls cnosyros
F 0 Cete, Trachypithecus pileatus
3 . Haomil Homo sapians

- * 41 Homl Homo heldelbergensls
F - Homi, Pan trogiocddtes trogloodes
- 1 Homd Gonilla govilla goriifa
N 4 Homl Gorifia beringel graver
r .)))) g Homil Hilobates izt

1] 1 2 3 4 5 6

Figure 30: LZ cladogram based on metric no. 3 Cercopithecoidea and Hominoidea.

41

Table 8: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of the Catarrhini.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDRer: 0 0 0 0 0 0 0

Success 100% 100% 100% 100% 100% 100% 100%
rate:

The evolutionary distance of the fifth dataset sequences is fairly close but the
results created by the different metrics are the same. The only missclassifications that
occur in between the trees are the placement of Pan troglodytes, the Homo, the Gorilla
subgroup and the placement of Mandrillys leucophaeus, Cercocebus atys and the
Macaca group. According to the NCBI database the three species in both cases are a
direct descendent of their common parent, meaning that for the NCBI database they are
at the same level. For the reason described above, the results of the 5" dataset can be
considered flawless.

The sixth dataset is at the taxonomical level of Hominoidea and compares the
group of Hylobatidae and Hominidae. There are only 4 mitochondrial DNA sequence
accessible from the family of the Hylobatidae and therefore the sixth dataset contains
only 9 species.

The phylogenetical trees from the sixth dataset are presented below:

o ' - Homl homao heideibergensis

a
1

Haowmi. Pan trogioddtes trogloodas

0 - Homl Pan panisols

Howml, Garilla Deringel grauer)

Howmi Garifla garilla garilia

(=]
1

Higlo, Momasclls islcoge s

o
—— — ——
[m] [u]

1

[u}
1

Hilo, Nomascus gabielige

[u]
1

Higla, Symphalanouls siendacis s

—

Higlo Hwlobates fat

10 12 14 16

.
[m3]
oo =

Figure 31: NCBI reference tree of Hylobatidae and Hominidae.

42

' ' ' ' - Homl Pah pahiacls
4 Homi Pan trogiodides rogioddes
o+ Hoimd homo heldeiberensis
1 Hownl Goklia gorifia goviifa
I +:: 1 Homi Gorllla herlngel gralel
1 Hvio Aylobates fat
{: 1 Hyio, Symphalangls syndachius
1 1 Hyio. Momasouws gabrieliae
{: 1 Hyio, Nomagscus lieldcogenys
0 i 2 3 3

Figure 32: LZ cladogram based on metric no. 3 Hylobatidae and Hominidae.

Table 9: RF distance between the 4 metrics and the alignment based algorithms compared to the
NCBI reference of the Hominoidea.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDRer: 0 0 0 0 0 0 0

Success 100% 100% 100% 100% 100% 100% 100%
rate:

The results from the last dataset are similar to the previous one. The families are
separated correctly with small variance inside of the families that are according to the
NCBI reference: a flawless result.

The last dataset is the concatenation of the last three datasets, meaning it contains
sequences belonging to the primate family. There are altogether 26 unique sequences.

43

1 St Leyifarmnur Bubharcorm
1 Stre. Microcebus murinls

1 Sire. Propithecus cogliaral)

4 St Propithecls verraaix)

1 Stre. Propithecus taftersali

1 Hapl Caliithel kUil .
1 Horml Homo heldeibergensls
1 Homil. Homo saplens

1 Homml Pan trogiodites

1 Hormil Pan paniscls

1 Howml Garlila baringel grausr)
1 Hawmil Gorilla gorilia gokilla

1 Cere. Trachypithecls plicafls
1 Cere. Chiorocels CYNasUas
1 Cerc. Mandriius falcophaols

- gym. ornasc s lelcogeny's
. Hym. Nomascus pabrigiiae
1 Hiwla, Smphalahgls syhdachiuls
1 Hylo, Hvlobates i
]

1 Cefe. Macaca cyclon)s

1 Cere. Macaca sifenis

1 Cete. Macaca nigra

1 Cerc. Macaca hermnestring
1 Cere. Macaca fuscata

1 Cete. Cercoce busalys

I .
| L—=
I ——#%
! S
] 10 14 20 25

Figure 33: NCBI reference off all the sequences belonging to the taxonomic group of Primates.

i ——&

B .]

)

K o

L + o

-]
0 2 B 8 10

Cete. Macaca flscata

Cate. Macara ccionis

Cate. Macaca nigra

Cefe. Macaca hemestting
Cere. Macaca slignus

Cate. Mandriiius lelcophaalls
Cefe. Cercocebls alss

Cate, Chioroceus clenosunas
Cate, Trachynithec s pifeatls
Hivlo, Riviobates larvar. b
Hiwla, Hivlobates lar var 8
Hilo, Swrmphaianous senoachius
Hislo, Momascls gabrieliae
Higla, Momascls felrogeny s
Hownl, Pan pahlscis

Hawmi. Pan trogliodtes

Homil. Homo sa0)ens

Howl, Howmo heidelbergensls
Hawmil, Gariila haringel grauar!
Howmil, Garifia gorlifa goriila
Hagpl Caifithrix kUi

Stra. Propithecus cogueral)
Stre. Propithecus taltersali
Stre. Progithecls verrealx)
Stra. Lapifemury hhbardorum
Stre. Microce s mUinLS

Figure 34: LZ cladogram based on metric no. 3 of all the sequences belonging to the taxonomic
group of Primates.

44

The result of the last dataset is very positive. All of the sequences are classed
correctly despite their large count:

Table 10: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference of all of the primates.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDRer: 0 0 0 0 0 0 0

Success 100% 100% 100% 100% 100% 100% 100%
rate:

3.2.4 Conclusion of the second part of testing

In all of the different taxonomical level the LZ algorithm recognized the two different
taxonomic branches and classed the majority of the sequences correctly. The LZ
algorithm outclassed the alignment algorithms in the first three datasets, while
equivalent in the last three datasets. The result of this testing shows, that the LZ
algorithm as left as designed by [17] can distinguish different taxonomic families up to
the level of Hominoidea.

While having positive results, an important flaw of the algorithm has been
confirmed. The alignment based algorithms are able to estimate the evolution distance
between the sequences by identifying the type of mutation that occurred in the sequence.
This classification is simple as the sequences are aligned. This allows the alignment
based algorithms such as Tamura or Kimura to surpass their predecessor Jukes-Cantor.
They can weight the result by the type of mutation that occurred, which is additional
information for the analysis, and leads to more precise result. The LZ algorithm as it
stands doesn’t have any such additional information. This leads to a misclassification
when three groups are very distant from each other, even if two of them belong to the
same taxonomic tree. In the second and the third dataset Mus musculus, Triturs karelinii
and Mantella madagascariensis have been wrongly classified for this reason.
Modifications to the LZ algorithm are described in the chapter 3.5.

3.3 Short sequences and proteomic sequences

It can be questioned, if the LZ algorithm performs consistently with different sequence
length, especially if it is to be used on short proteomic sequences. With very short
sequences the LZ complexity will be very small and therefore could be similar. In some
cases due to variance a more distant sequence could yield a better result than a closer
sequence. The table below displays the number of different combinations that can be
created with n number of nucleotides and amino acids:

45

Table 11: Number of existing words for an n length string of nucleotides and amino acids

Number of Total nucleotide Total amino acids

nucleotides/amino acids: combinations: combination:

1 4 21

2 16 441

3 64 9261

4 256 194481

5 1024 4084101

6 4096 85766121

7 16364 1801088541

8 65536 37822859361

The table 11 shows the number of different words that exist for a certain length of
nucleotides/amino acids. The meaning of this table is, that if the biologically sequences
were randomly generated, the probability of finding a certain word of a length of e.g. 6
in another sequence would be 1/4096, increased by the sequence length, for nucleotides
and 1/85766121 for amino acids. As the number of combinations grows rapidly the
algorithm is expected to work well even for short sequences.

3.3.1 Algorithm specification

The algorithm is left as designed by the authors of [17]. The reference sequences are
taken from the NCBI database and are compared to the 4 metrics and the alignment
methods.

3.3.2 Datasets

This dataset is composed of 5 sets of sequences of similar species. The sequences are
coding regions of genes of apolipoprotein M (APOM), heat shock protein family A
(HSPAS8) and interleukin 2 (IL2). As the proteomic sequences of APOM and IL2 are
available the algorithm will be tested on proteomic sequences as well. Some of the
sequences are not sequenced yet and are only “predicted” sequences based on NCBI
prediction algorithms. As the datasets were tested by the alignment algorithms and
compared to the NCBI reference with positive result, this poses no problem. As some
sequences are not available on the NCBI database, there are little differences, amongst
the species, across the datasets.

The rounded average length of the sequences can be seen in the table below:

46

Table 11: Length of the sequences in the third part of testing

Gene Nucleotide seq. length Amino acid seq. length
APOM 576 191
IL2 466 154
HSPAS8 1823 Unavailable

As the algorithm has been tested thoroughly with mitochondrial DNA, of
approximately 16000bp, the sequences in this dataset have been chosen specifically
short.

3.3.3 Results and discussion

As the species in the 5 datasets are similar, only one NCBI reference that includes
all of the species will be shown and can be seen on the figure below:

L - Myobis brancii

L 4:2 - Eptesicls fuscus
L I 1 Equus cabalius
L ————0 1 Camells ferns

L s {t:z - COwis aties

3 - Capra Alrclls

3 - Bos taurls

- . * T—: - Physeter catodon
3 - Orcinus arca

L L 5 - Uirsus maritimus
L 4:: - Rattus honvegicus
L 1 Mus musciiug
L - Homo sapiens
L = Fah froglocdas
L - Gkl gorilia
L | | | | - Macaca mulatta
] 10 15 20 25

Figure 35: NCBI reference for the short sequence testing.

The species of this dataset belong to the class of Boreotheria. There are species
such as the killer whale, the big brown bat, the house mouse or the gorilla, representing
different subgroups. Amongst these groups several species have been added, therefore
the dataset contains differences and similarities and can test the LZ algorithm on short
sequences.

The phylogenetical tree of the APOM gene, constructed from nucleotides, is
presented below, followed by the tables of the RF distances of nucleotide and proteomic
sequences:

47

—&
L o
¢
. ul
L a|
I ¢ .
]]]]
1] 20 40 B0 a0

Equls cabalius
LIFEUSE matitimus
Bos taurs
Capra hircls
s arles
CFcinys arca
FPhisater catodon
Camells farus
Fariiia gorlifa
Fan troglocdes
Homo sapiehs
Macaca muliatta
Mhyotis e ifugus
Eptesicls fUscUS
s mscLins
Raltus nonvegicus

Figure 36: LZ phylogenetical tree based on the 3rd metric of the APOM gene.

Table 12: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference for nucleotide sequences of the APOM gene.

Methods | LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor

RFDgrer: | 4 4 4 4 4 4
Success 85% 85% 85% 85% 85% 85% 85%
rate:

Table 13: RF distance between the 4 metrics and the Jukes-Cantor algorithm compared to the
NCBI reference for proteomic sequences APOM gene.

Methods | LZ LZ LZ LZ Jukes-
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDrer. | 4 4 4 4 4
Success 85% 85% 85% 85% 85%
rate:

The phylogenetical trees of all the LZ metrics and alignment algorithms are the
same for both, the nucleotide and proteomic sequences. The RF distance from the NCBI
reference is 4 in all of the cases. The reason for the difference being, the misplacement
of the two groups of Glires (Mus musculus and Rattus norvegicus) and Chirpoteras
(Myotis lucifugus and Eptesicus furscus). The trees constructed from the nucleotide and
amino acids are compared in the next figure:

48

1t

1]

|

F

| des

0 10 20 30 |40 &0 0 20 40 B0

80

100

1 Equus cabaiius

4 Ursus marntimus
1 Bos tawrus

4 Capra hircus

4 Owis aries

1 Orcinus orca

1 Physeter catodon
4 Camelius ferus

1 Gorllia goriila

4 Pan troglodtes
4 Homo sapiens

{1 Macaca mulatta

1 Myotis fucifugus
1 Eptesicus fuscus
1 Mus muscuius

1 Rattus noneagicis

Figure 37: Comparison of the tree of the APOM gene constructed based on the proteomic
sequences (left) and the nucleotide sequences (right) by the LZ algorithm and the

distance metric ds.

The phylogenetical trees are in accordance nods to nods and by the distances
evaluated by the LZ algorithm, leading to two similarly shaped trees. The Person
correlation coefficient [26] has been calculated based on the non-null values of the
distance matrix’. The Person correlation coefficient is 0.9526 with the p-value of
8.11*10%%, meaning the two variables (distance matrix’) are directly proportional with a

high significance value.

The phylogenetical tree of the IL2 gene, constructed from nucleotides, is presented
below, followed by the tables of the RF distances of nucleotides and proteomic

sequences:

49

10

20 an

40

a0 60

7o a0

1 Pan troglocdes
1 Homo sapiens

1 Gotiliz gorilla

1 Macaca mulalta
1 Equus cabaiils
1 Phiselor catodon
1 Crcinus orca

1 Capra hircus

1 Owis aFles

1 Bostaurus

1 Cakneius ferus

1 Lirsus maritimus
1 Motz branei

1 Eplesiscls fUscLUS
1 Raftus honegicls
1 Mus muscuius

Figure 38: LZ phylogenetical tree based on the 3rd metric of the IL2 gene.

Table 14: RF distance between the 4 metrics and the alignment based algorithms compared to

the NCBI reference for nucleotide sequences of the IL2 gene.

Methods | LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor

RFDgrer: | 8 8 8 8 0 4
Success 2% 72% 2% 72% 100% 85% 85%
rate:

Table 15: RF distance between the 4 metrics and the Jukes-Cantor algorithm compared to the
NCBI reference for proteomic sequences IL2 gene.

Methods | LZ LZ LZ LZ Jukes-
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDREr: 6 6 6 6 4
Success 79% 79% 79% 79% 85%
rate:

The result of the IL2 gene is worse than for the APOM gene. The groups of Glires
and Chirportes are placed outside of their respective groups as previously but this time
even the specie of Equus Cabellus is misplaced for the nucleotide generated tree. The
trees constructed from the nucleotide and amino acids are compared in the next figure:

50

1 Equus caballus 3 4 Pan trogiodyies

4 Ursus matitimus 3 1 Homo saplens

4 Bos tawrus F 1 Goriila goriiia
4:;-; 4 Capra hircus 3 # 1 Macaca mulatta

b Qwvis aries - ‘"————————0o 1 Equus cabalius
E 1 Qrcinus orca + iﬂ 1 Physeter catodion
1 Physeter catodon - - Orcinus orca
»

4 Camelus ferus + 4 4 Capra hircus
1 Gorilta goriiia r H § 4 Ovis aries
%‘ 1 Pan trogiodvtes 3 - Bos tawris
1 Homo sapiens - 1 Cameius ferls
F —a 4 Macaca mulatta 3 4 Ursus maritimus
Lo ?W 3 {: -+ Migotis brandti
F L a4 Eptesicls fUScUs - 4 Eplesiscus fuscus|
+ [1 Mus musclius - 1 Rattus norvegicus
S — 4 Ratltus norvegicus + Eﬂ - Mus muscuius
Ell 2]0 4lEI B]EI EIIIJ 100 6 2ID 4IIJ 5ID EIL'I

Figure 39: Comparison of the tree of the IL2 gene constructed based on the proteomic
sequences (left) and the nucleotide sequences (right) by the LZ algorithm and the
distance metric da.

Apart from the different placement of Equus caballus, the trees are in accordance.
The Person correlation coefficient is 0.9724 with the p-value of 2.18*10° meaning the
two variables (distance matrix’) are directly proportional with a high significance value.

The last dataset of the HSPA8 gene corresponds to the reference in all of the cases
but the Glires group. As this result has already been reported before only the table of the
RF distances is presented:

Table 16: RF distance between the 4 metrics and the alignment based algorithms compared to
the NCBI reference for nucleotide sequences of the HSPAS gene.

Methods LZ LZ LZ LZ Jukes- Kimura | Tamura
compared: Metric 1 | Metric 2 | Metric 3 | Metric 4 Cantor
RFDRrer 2 2 2 2 2 2 2

Success 93% 93% 93% 93% 93% 93% 93%
rate:

3.3.4 Conclusion of the third part of testing

The third phase of testing confirmed that the LZ algorithm is able to classify even short
sequences with length around 400bp for nucleotides and 150 for amino acids. The
resulting phylogenetical trees are not identical, but share the same baseline with their
Person correlation coefficient being over 0.95 in both cases. The figures 37 and 39
prove that the algorithm is able to work with proteomic sequences as well as with
nucleotide sequences. The reason being, as showed in the preface of this chapter, that
even thought that the proteomic sequences are overall shorter, the size of the alphabet

51

compensates for this lack of length.

The best results were for the HSPA8 sequence, while the worst for the proteomic
sequence of IL2. The main reason why the data are not exactly in accordance with the
reference is the placement of the Mus musculus and Rattus norvegicus sequence.

Altogether it has been confirmed, throughout the first 3 parts of testing, that the LZ
algorithm can distinguish between sequences up to the taxonomical level of
Hominoidae, can work with proteomic sequences and is able to classify both, long and
short sequences. In all of the cases the distance metric ds has had the best results. For
this reason, in the following part of the paper, only the metric ds is going to be
considered. The weaknesses of the algorithm are especially its inability to predict real
evolutionary distance. This leads to misclassifications when sequences are as close as
the Rhabdoviruses or when a group of sequences have a similar LZ complexity between
themselves. These flaws will be looked upon in the next part of this paper.

3.4 Modifications of the LZ algorithm

This chapter proposes modifications to the original algorithm from [17]. Two different
approaches were used. The first approach changes the algorithm itself to specialize it for
the classification of biological sequences while the second introduces possibilities to
weight the result of the algorithm

3.4.1 Static dictionary

This paper’s main idea, as stated earlier, is that the conditional Kolmogorov complexity
can be considered a measure describing the distance between two sequences. Moreover
the equation (3) proves that there is a connection between Kolmogorov complexity and
entropy for long strings and therefore the Kolmogorov complexity can be estimated via
compression ratio. The chapter 2.2.1 points out via the Universal Similarity matrix that
better the compression algorithm better the entropy estimate. This is the logic behind
the algorithm in [17], which has been used for the previous analysis.

This statement is applicable to all compression algorithms, however it is possible to
modify the compression algorithm to suit better the biological sequences. The LZ
algorithm as used by the authors of [17], adds new words into the dictionary at every
step and extends the left window sequence. With this configuration it will take less steps
to generate the second sequence, as if the same word appears again, it will already be in
the dictionary. The figure 40 demonstrates this phenomenon.

52

sequence Q sequence S

1)
2)
3)
4)

Figure 40: Two sequences being encoded by the original LZ algorithm

The black line on the figure represents the input sequence Q and the red and blue
line represents the second sequence S, which is to be compressed. The red part of the
sequence S symbolizes a string of the sequence that repeats itself twice at different
locations. As the repeated sequence isn’t part of the sequence Q, it will take many steps
to the algorithm to generate the first red part of the sequence and reach the status in 2).
The algorithm continues and adds the blue part of the sequence S, which also takes
several steps, depending on the similarities between the two sequences. Once the blue
part is generated, the red string is to be coded again, only this time it will only take one
step to generate it, as it is already present in the dictionary. While this approach is very
advantageous in compression, it can be seen that for biological comparison this
approach is flawed. As the sequence Q did not possess the red part of the S sequence,
the number of steps to generate S from Q should be larger.

This flaw can lead to the fact that if very distant sequences that are repetitive are to
be compressed, their LZ distance will be small. For sequence comparison this feature is
unwanted and therefore the following modification has been proposed:

The algorithm will no longer add new words to the dictionary from the second
sequence (S) but will work only with a static dictionary generated from the sequence Q.
This way even if the same sequence repeats many times, the algorithm will take the
same amount of steps to generate each repeat, not leading to data falsification. The other
benefit of this approach is that the algorithm become less time-consuming and is overall
simpler. As the dictionary is no longer dynamic, new string search algorithms can be
used for coding the dictionary, for instance the sequence Q could be encoded as a suffix
tree in the first step, which would then lead to a very fast pattern search and could open
a doorway to whole genome comparison [27, 28, 29, 30, 31].

This approach has been tested on all of the sequence presented in the first three
parts and it leads to same or slightly better results than the algorithm used previously.
The computing time difference between the two algorithms depends on the sequence
length, as the implemented string pattern search isn’t linear. The table below displays a
selection of sequences used previously. The relevant parameters of the computer the
algorithm run on were: processor: AMD FX(tm)-6100 Six-Core Processor 3.30GHz and
RAM: 6,00GB Dual-Channel DDRS.

53

Table 17: Table of speed and accuracy of the LZ algorithm, modified LZ algorithm and Jukes-

Cantor.
Sequence name: | Average | Original | % of | Modified | % of | Alignment
sequence | alg. (1) | correct | algorithm | correct | algorithm
length: Time nods (2) time nods time [s]:
[s] based [s]: based
on RF on RF
distance distance
of (1) to of (2) to
JC. Ref. JC. Ref.
Mitochondrial 16743 552 92% 215 92% 259
DNA of Primates
13seq
1% mitochondrial | 16468 241 100% 131 100% 149
10 species
Hepatitis A virus 7400 441 96% 213 96% 218
variants, 25
sequences
MT 16S rRNA of | 1559 7.8 82% 5.1 82% 2.44
13 primates
APOM 16 seq 575 3.63 85% 2.4 85% 0.7
APOM protein 190 1.1 85% 0,7 85% 0.25
IL2protein 16seq 154 0.87 72% 0.74 72% 0.27

The table 17 proves that the modified algorithm has a better computing time and
comparable results to the original algorithm. For this reason the modified algorithm is
going to be used in the next parts of this paper. A deeper analysis shows, that the
modified algorithm has overall same result with “simple” sequences, meaning that the
distances between the species varies and is not to close. The problematic sequence
amongst these datasets is the Rhabdovirus variants. The figure below displays the
outcome of the modified LZ algorithm:

54

Eph. Adelaide v.

Eph. hovine fever .
Eph wongahel .

Eph. Flanders w.

Do, ofscura v,

Buc. rice yellow v,

Muc. sonchus y.n. v
MHuUc. maize f.2 v,

Ct lettuce yel w.

Cyt n, cereal v,

Lys. European bhatyw.2 v,
Lys. Khujand w.

Lys. Aravan v.

Lys. Duvenhage v,

Lirs. European batw.1 v,
Lys. Irkut v,

Lys Australian batw.
Lis rabies v,

Lys. Lagos bhatw.

Lys. Mokola v.

Lys. West Caucas. hatw.
Yiasg stomatis Ind. v 1 v,
Yes. cocal Ind. v,

Yes, stomatis Ind. v.2 v
Wes, stomatis My
Yes. |sfahan v,

Yes chandipura v,

—
—
4‘_‘_& YEBS. Spring v carp v,
Yes Siniperca chatsiv.

T T T

u |

u |

u |

u |

]
Mov. hirame .
MHov. snakehead v.2 v.
MHuc. orchid £ v

< Muc. taro wein chi. w.

4 Mov, snakehead v.1 v,
0 o Cvo, melahogastar v,

0 2 4 B a8 1

=

Figure 41: Cladogram of the rhabdovirus dataset computed by the modified LZ algorithm.

Both the original algorithm and the modified algorithm manage to separate the
main classes of viruses, but fail to group the classes correctly between themselves. In
the modified algorithm case the Nucleorhabdoviruses are wrongly conencted to the
Ephemeroviruses and the vesiculoviruses and lysavirues are no longer clearly separeted
from the other groups. On the other hand the Ephemeroviruses are no longer the most
distant group, which is an improvement to the original.

Overall the modified algorithm has proved consistency on all the datasets with
same results as the original. The computing time varies depending on the sequence, but
for mitochondrial sequences is about two times faster than the original and even slightly
faster than the alignment method.

3.4.2 Weighting the LZ complexity

For complex datasets the LZ algorithm can lead to very similar distance estimates in-
between the sequences. The LZ complexities being close can generate flaws in the
construction of the tree. In these cases the algorithm needs some other way to
differentiate between the sequences. It is natural to question what other information can
be mined from the LZ algorithm. This paper works with two approaches: the maximum
length of words and the tranisition/transversion ration value.

55

The principle of the maximum length of words is very simple. At each step of
the computation, when the algorithm finds the longest common string in both of the
sequences, it saves the length of the string. At the end of the whole algorithm the words
are ordered by their length and the n largest values are averaged. The algorithm shows
best results for 5 longest words, therefore n is 5. At this point each couple of sequences
possesses new information: the value of their averaged 5 longest words (the method is
going to be referred as AV5). An AV5 matrix is created for all combinations of two
sequences in the dataset. Once the whole dataset processed, the largest value of AV5 is
selected, and the whole AV5 matrix is divided by the largest value, meaning that the
values are in the range of 0 to 1, with 1 representing the combination of sequences with
the highest AV5 value. In the next step the values are inverted, and therefore their range
becomes from 1 to a theoretical infinite. The LZ complexity matrix is then multiplied by
the AV5 matrix. After these steps the two sequences with the highest AV5 have their
distance unchanged while the others are weighted. The sequences that had their AV5
value similar to the maximum AV5 value will see their LZ distance modified just
slightly, while the sequences with a low value will see their LZ distance modified
greatly. It is important to state that the premise for this modification is that the
sequences that are closer from the evolutionary view point will share longer identical
strings than the ones that are more distant. This can occur only if the mutations are
localized on certain parts of the DNA sequence. The following figure shows the
phylogenetical tree of the Rhabdovirus dataset after the implication of the AV5 for the
third metric.

56

Eph. Flanders v.
Ephwongabel v,

Eph. bovine fever v,
Eph. Adelaide v,

VBS, Spring v carp .
Yes. Biniperca chatsiy.
Yes, chandipura v,
Yes lsfahan v,

Yes stomatis Ind. w2 v,
Yes cocal Ind. v,

Ves, stomatis My,
Yes stomatis Ind. w1 v,
nro. melanogasier v,
Lys. European hatw.1 v,
Lirs. Irkut v,

Lys. Duvenhage v,

Lys. Khujand v,
.European hatwv. 2 v,
Lys. Aravan v,

Lys. Lagos hatw,

Lys. Mokala v,

Lys Australian batw.
Lys rahies v.

Lys. WWest Caucas. batw.
it n. cereal v,

Ct. lettuce yel w,

MU, sanchus y.n. v,
Mow. snakehead vl v
Oro. obscura v,

Mow, shakehead v.2 v
Bow. hirame .

Muc. archid 1w,

Muc. maize £.5. v,

Muc. taro wein chl. v,
M. rice yellow v,

| N I NN T N N N N N N I N U N I N O [S N [N U Y [N N NN N I S |
-
L]

0 1000 2000 2000 4000

Figure 42: Cladogram of the rhabdovirus dataset computed by the modified LZ algorithm

The figure 42 should be compared with the figure 13 from chapter 3.1. where the
original LZ distances can be seen. The families of Rhabdoviruses on the figure 42 are
better differentiated than the ones on figure 13. The resulting figure, modified by AV5,
IS a big improvement to the previous classifications. The Ephemerovirus group, which
has been previously placed as the furthest group of the dataset is now correctly grouped
with the Vesiculoviruses. The groups of Novirhabdoviruses and Nucleoviruses are very
distant from the rest of the groups, which corresponds to reality. Inside of the subgroups
there are still a lot of transpositions, but overall implementing AV5 has been a big
improvement.

The AV5 approach has been tested on the other datasets. It has similar results with
the mitochondrial DNA, but as the results beforehand were already very good, the RF
difference is usually only 2. For the datasets with short sequences the algorithm
manages to classify the big families but makes some transpositions at the lowest
taxonomic level. The results are overall acceptable, even placing the Mus musculus and
Rattus norvegicus correctly, which were two problematic sequences in all of the
datasets, but has worse results than the algorithm without AV5.

The only case where the AV5 clearly worsens the outcome is the Hepatitis A
dataset. The phylogenetical tree of the Hepatitis A with LZ77&AV5 is presented next:

57

- - 14- GBM14

- — 1A- GBM1S

- - 1A - HAVFG

- - 14- GBM1E

- — 1A - M2

- - 1A- HAS1S

- - 1A- LA

- — 1A- AHZ

- - 14- AH3

- - 14-FH3

- — 1A-DL3

- - 18- LYE

- : - 18- AH1

- — 1A-FHZ

- o o 18- FH1

- - 18 - WA

- — 18- HM175

- - 18- HAF203
o o 18- HM175

- + o 18- HM175
0
yu

— 18- MBB
— 18- HAS1S

B CE - 2A- CFa3
- — 2B - 5LFBa8
- o 34- NOR21

- o o 4 - AGM2T

Figure 43: Cladogram of the hepatitis dataset computed by the modified LZ algorithm and AV5.

The main hepatitis groups are well recognized, even the two subgroups from the
family denoted 1A have been correctly recognized, but inside of the groups, what has
previously matched the reference is now in disorder. Almost every nod is wrong.

The difference between the Hepatitis A dataset to the others is that the sequences
are very similar to each other. The other datasets sometimes also possess very similar
LZ complexities, but their nominal value is larger. The hepatitis virus has not only very
similar LZ complexities but also very small nominal values. Overall the AV5 approach
works well to accentuate differences between groups, but is the reason of
misclassifications inside of the groups. Therefore the AV5 weight should be used only
on the right occasion.

The second weighting approach works with one of the important ideas behind the
LZ algorithm for biological sequences. During the computation at each step, the LZ
algorithm finds the longest common word for the two analyzed sequence and it adds
one extra character to the string before continuing the building process. This mechanism
is explained in the chapter 1.4.3. The original algorithm for data compression saves a lot
of space by this mean, but it has a big meaning for the algorithm specialized for the
classification of biological sequences as well The next example explains the value of
this approach:

58

Let’s consider the following two sequences:
Sequence 1);: ACATAGTGACCCTCAGTAGGTAG
Sequence 2);: ACATAGTGACCCACAGTAGGTAG

The Hamming distance between these two sequences is 1 and the difference is
highlighted in red. Two scenarios will be considered onwards, the first scenario works
with the classical LZ algorithm and the second scenario doesn’t add the extra character
to the sequence once the longest common word is found. The scenarios are presented in
the following text:

Scenario 1:
Sequence 1): ACATAGTGACCCTCAGTAGGTAG
Sequence 2): ACATAGTGACCCACAGTAGGTAG

Step 1) The algorithm finds the longest common word: ACATAGTGACCC
Step 2) The algorithm adds the extra letter A to the string: ACATAGTGACCCA
Step 3) The algorithm finds the next longest common word: CAGTAGGTAG
The sequence 2) is encoded in two steps.

Scenario 2:

Sequence 1): ACATAGTGACCCTCAGTAGGTAG

Sequence 2): ACATAGTGACCCACAGTAGGTAG

Step 1) The algorithm finds the longest common word: ACATAGTGACCC

Step2) The algorithm doesn’t add the extra letter A and continues searching
Starting from A.

Step 3) The algorithm finds the next longest common word: ACA
Step 4) The algorithm finds the next longest word: GTAGGTAG
The sequence 2) is encoded in 3 steps.

This example does not only show that the number of steps (the LZ complexity)
is influenced by adding one character to create a unique word but moreover in the
first scenario the algorithm detects a mutation location. It can be expected, that if a
word of more than 10 characters is found in both sequences, it is not a question of
luck as the number of possible combination of nucleotides are 1048576, especially
if the sequences are up to the length of mitochondrial DNA. This realization leads
to the fact the nucleotide place following right after the long word has been found
has a high probability to be a place where a mutation occurred.

Unfortunately as the algorithm cannot decide whether the mutation was an
insertion, deletion or a substitution, all the mutations are considered as substitutions.

59

This is a weakness of the algorithm, but as LZ77 it is not an alignment based
method it is not possible to decide which mutation occurred. For this reason this
weight is an approximation and can be used only in specific situations.

Once the mutation point discovered, the algorithm saves the type of substitution
in a variable. At the end of the algorithm a matrix of the frequencies of different
substitution is at disposal. An example of such matrix can be seen below:

Table 18: An example of a mutation matrix

A C G T
A 0 24 64 14
C 23 0 23 12
G 5 12 0 12
T 25 54 24 0

The next step is inspired by the Kimura alignment method, which is based on the
fact that amongst substitutional mutations transitions occur more often than
transversions. This leads to the fact, that higher the ration of transversions/transitions is
(the abbreviation TTr is going to be used), the more time there must have been for the
transversions to occur and so the more distant the sequences are from each other.

The algorithm modified based on TTr simple multiplies the LZ complexity by this
ratio. In this method the important factor is from which length of the longest common
word should the algorithm consider the following nucleotide position to be a mutation
(constant K). If the constant K is set too big, there won’t be enough data and the result
could be random. For this reason the constant K is chosen as follows: Length of the
sequence ~= 4K,

If the AV5 method and TTr are compared, the AV5 method works well for
separating and correctly classifying big families of species that have a similar LZ
complexity and the final outcome can be modified greatly. TTr is a decent method that
changes the LZ value only slightly and is useful for classing sequences inside of the
classes. Overall there is no big advantage to use the TTr modification as standalone.
This approach shows good results with mitochondrial sequences from the taxonomic
level of Primates and lower, but fails to classify the more distant mitochondrial
sequences correctly, the standalone LZ algorithm is better. The TTr modification has
slightly worse results with short sequences such as APOM and IL2. When tested on the
Rhabdovirus dataset the outcome is not better than the simple LZ77 as can be seen on
the figure below.

60

- — 4

B) i

I A i

K} E:;:
1] 2 4 G 3

Figure 44: Cladogram of the rhabdovoris dataset computed by the modified LZ algorithm and
TTr.

After the application of the TTr weight the algorithm mixes together some of the

Lys. European batw.2 v
Lys. Khujand v,

Lirs. Aravan v,

Lys. Duvenhage v,

Lys. European hatw. 1 v,
Lys. Irkuty,

Lys Alstralian baty.

Lys rahbies v.

Lys. Lagos hatw,

Lys. West Caucas. batv.
Lirs. Mokola vy,

oyt lettuce yel v
Eph. Adelaide v.
Mo, hirame v,
Ephwongabel v.
Muc. maize .5 v,
Mow, snakehead v 2 v,
Ves stomatis Ind. v.2w.
Eph. bovine fever v,
Yes stomatis Ind. w1 v,
Ves. cocal Ind. v,]
WVes. Siniperca chatsiv.
Wes spring v carpy,
Cyt. n.cergal v,

MU, taro wein chl. v,
Oio. mmelanodastar v,
Dfa, 0Rscurg v,

Muc. archid 1y,

Ves, chandipura v,
Ves stomatis By
MUc. sanchus y.n. .
Ves. |sfahan v

Buc, rice yellow v,

Eph. Flanders v,

Mow, snakehead v.1 v,

families. The TTr algorithm as a standalone doesn’t bring good results.

The methods AV5 and TTr were designed in order to find additional information in
the LZ77 algorithm that could describe the evolutionary distance for problematic
sequences. The methods were designed so that one separates the main groups with a
similar LZ complexity and the second one was designed as a light modification at the
lowest taxonomical level. The methods can be used together in order to enhance these
two aspects. The figure below displays the outcome with the most problematic -

Rhabdovirus - dataset:

61

Yes stomatis Ind. vl v,
Wes. cocal lhd. v,

Yes. stomatis Ind. w2 v,
Yes stomatis M,
Yes Siniperca chatsiwv,
Yes spring . carp .,
Yes. |sfahan .

Yes. chandipura v,

Eph wongabel v,

Eph. Flanders v.

Eph. bovine fevery,
Eph. Adelaide v.

Lys. European batw.2 v,
Lys. Khujand w.

Lirs. Aravan v

Lys. European hatw.1 v,
Lys. [rkutw.

Lys. Duvenhage v,

Lys Australian bat v,
Lys rahies v.

Lys. Lagos batw.

Lis. Mokola v,
Iﬁrs.WestCaucas. hatw.
ro. melahogaster v,

Dro. of&cLrE v,
Mow. hirame v,
Mov. snakehead v.2 v

Cot. lettuce yel. v,
MU, majze 1.5, v,
Muc. orchid 1w,

MHov. shakehead vl v,
Cyt. n. cereal v,

Muc. taro vejn chil. v,
Muc. rice yellom v,
Muc. sonchus y.n. .

Figure 45: Cladogram of the rhabdovoris dataset computed by the modified LZ algorithm, TTr
and AV5.

The result of the combination of AV5 and TTr on the Rhabdovirus dataset is a
success. The family of the WVesiculoviruses is correctly associated with the
Ephemeroviruses, as when AV5 was used, but this time even the classes of Drosophilia,
Novirhbadobiruses and Nucleorhabdoviruses are grouped together correctly. There are
still flaws remaining in the phylogenetical tree, such as the two sequences of
Cytoviruses not being grouped together but the improvement compared to the first
result is undeniable.

3.4.3 Conclusion of the new modifications

Three new approaches have been introduced in this chapter. Modification of the core of
the LZ algorithm and two weighting methods.

The modification of the LZ algorithm works with a static rather than a dynamic
dictionary, which fits better the biological classification methodology. This
modification has proven to perform faster than the original algorithm and with same
results. The LZ modified algorithm can be used universally.

Two weighting methods have been designed to work with problematic sequences.
There is no reason to use them in normal cases, as the modified LZ algorithm performs

well as a standalone. The AV5 algorithm works with the maximum common words
length and has successful results with the majority of sequences, improving the
problematic Rhabdovirus sequence by a good margin. The strength of AV5 is
accentuating differences between big groups of sequences. The TTr method is a lighter
weight and is designed to improve the classification at a lower taxonomical level. As a
standalone the algorithm doesn’t perform well, but when combined with AV5, leads to
good results for the Rhabdovirus sequence.

4 GRAPHICAL USER INTERFACE

In order to ease the usage of the developed methods a graphical user interface has been
created. This chapter will describe the program.

Browse Dataset

LZgui =

Working with file:
ChUsers\scurge\Desktop\diplomka\programkolAPOM . fasta

Choose methods to be calculated: Tree (NE= —
(®) Phylogram |_J Cladogram
— Method selection
Original LZ Modified LZ [Tac Choose one to display the resulting phylogenetical tree for
selected method. TTr metheds are not available for amino
1615 1615 e
finizshed original LZ A
modified LZ
Set minimum length of word modified LZ + AVS
for TTr: modified LZ + TTr
modified LZ + AVSETTr
T Jukes-Cantor
Compute
W
Calculated RF distance from selected
methods:
original LZ | modified LZ | modified L. | modified L. | modified
original LZ 0 4 12 "
modified LZ 0 4 12
modified LZ + AV3 4 0 14
modified LZ + TTr 12 12 14 0 W
€ >

Figure 46: Grahical user interface for the usage of the LZ algorithm.

The figure 46 displays the whole GUI. At the start of the program the user is
prompted to select a fasta file, which will be later processed. The path to the file and its
file name is displayed on the top right side, so that when the files are changed or the
user is multitasking, one does always know the working file. Once the file loaded the

63

user has the option to compute one of three methods, the original LZ algorithm, the
modified LZ algorithm or the Jukes-Cantor reference. As throughout this paper the
distance metric ds has always yielded the best results, the program is working only with
the distance metric dz and there is no option to select a different metric. In the case of
choice of the modified LZ algorithm, the AV5 and TTr weights are calculated as well.
The user has the option to change the minimum common word length in the edit box.

Once the selection of methods is finished, the user should click on the compute
button in order to calculate the distance matrixes. As the process of calculating can take
several minutes, the text fields below the method checkboxes shows the current status
of the algorithm and the last text field will display “finished” once the last selected
method has been computed. The calculated data is used to compute the phylogenetical
trees based on the neighbor-joining algorithm and the RF distance between all of the
computed trees is displayed in the table at the very bottom of the GUI. Depending on
the number of trees calculated the size of the table changes.

In the next step the user has the option to display the phylogenetical trees. Two
choices are offered: either to display the phylogenetical tree as constructed by neighbor-
joining or as cladograms. In order to visualize the tree, one has to click on one of the
fields in the listbox on the right hand side. If the element the user clicks on hasn’t been
computed, nothing will happen.

The GUI automatically recognizes if the input sequence is a nucleotide sequence or
amino acid sequence and works for both. In the case of the input being an amino acid
sequence the TTr methods are unavailable and therefore aren’t computed.

64

5> CONCLUSION

This master thesis deals with the problematic of classifying biological sequences
utilizing the non-alignment based methods of lossless data compression. As numerous
different methods of data compression exist a literal research has been made and the
original Lempel-Ziv dictionary method has been chosen. This method allows estimating
the entropy of two concatenated sequences by the LZ complexity, a measure based on
the counts for one sequence to be built from another sequence.

The chapters following the literal research are testing the LZ approach thoroughly.
15 datasets haven been acquired from the NCBI database. The datasets were chosen in
order to test a particular aspect of the LZ algorithm in each part of the testing.

A quick assessment of the LZ method has been made in the first part of the testing.
4 datasets of different length and different complexity were chosen. The outcome of the
chapter showed that the LZ complexity is a measure that can describe evolutionary
distances, but that in some cases a mismatch of equally distant groups of species can
occur.

The second part of testing has been designed to inspect the ability of the LZ
algorithm to classify sequences of different taxonomical levels, starting at the level of
Euteleostomi and finishing at the level of Hominoidea. Out of the 6 datasets of
mitochondrial DNA the LZ algorithm performed equally or better than its alignment
based counterparts. In the first three very foreign datasets the LZ algorithm outclassed
the Jukes-Cantor method by a large margin. The LZ algorithm had the success rate of
classifying the species correctly, according to the RF distance compared to the NCBI
reference, of 91%, 73% and 92% while the Jukes-Cantor algorithm only 55%, 64% and
66% respectively. The alignment methods of Kimura and Tamura performed similarly
to the LZ algorithm. The three last datasets of Primates to Hominoidea were flawless for
all of the methods.

As the mitochondrial sequences’ length is of order of 16000bp, the LZ algorithm
has been tested on shorter sequences. This has been accomplished in the third part of
testing where 3 different genes of length between 400bp — 1800bp were chosen. The LZ
algorithm once again performed as well as its alignment counterparts, except for the 1L2
gene, where the result is slightly worse. This chapter also tested two proteomic
sequences of the same genes. The results were in accordance to the NCBI reference.
The Pearson correlation coefficient to the sequences computed from nucleotides was
over 0.95 with a very high significance value. The fact that the LZ algorithm can work
with amino acid sequences has been confirmed.

The fourth part of testing proposes innovations to the LZ algorithm. The algorithm
has been modified in order to work with a static dictionary rather than with a dynamic
one. This approach has been tested on all of the datasets with results equal to the
original LZ algorithm. As the method is around two times faster than the original
method and that the algorithm performs better with repetitive sequences, the modified
algorithm has proven it can be utilized universally. Two weighting methods have been
introduced to try to bring additional information into the algorithm, so that problematic
sequences can be classified properly. The first method utilizes the average length of the
5 longest common words (AV5), while the second one utilizes the

65

transition/transversion ratio (TTr). The AV5 weight has been designed to separate
groups of species while the TTr is a lighter weight, designed to specify the classification
of the closest sequences. These weighting methods were designed to differentiate
between sequences in problematic datasets and therefore change the outcome of the
original LZ classification. A great improvement has been achieved while combining the
AVS5 and TTr method for the Rhabdovirus dataset, with the resulting tree’s correctness
outclassing all the other tested methods. On the other hand the TTr method yields very
bad results when used alone and the AV5 method rarely improves the result of the LZ
algorithm for well differentiated species. For this reason the AV5 and TTr methods
cannot be used universally.

The last chapter of the paper presents the Graphical User Interface that has been
implemented in order to ease the usage of the described methods.

This master thesis has proven that the compression technique based on the LZ
algorithm can be used to classify both DNA and proteomic sequences. The algorithm is
particularly strong when comparing very distant species, as the algorithm outclassed the
alignment algorithms. The algorithm’s speed at its current State is comparable to the
alignment based techniques but the modification of the algorithm to use a static
dictionary opens the option to implement advanced string matching techniques and
further improve the speed of the algorithm.

66

REFERENCES

[1] RAMEZ MINA, DHUNDY BASTOLA, HESHAM H. ALI, Compression-based
Alghorithms for Comparing Fragmented Genomic Sequences. College of
Information Science and Technology, University of Nebraska at Omaha, Omabha,
NE, USA, BIOTECHNO 2013.

[2] XIWU YANG, TIANMING WANG. A novel statistical measure for sequence
comparison on the basis of k-word counts. Journal of Theoretical Biology 318,
page 91-100, 2013

[3] KHALID SAYOOD, Lossless Compression Handbook, 2003 Elsevier Science
(USA), Academic Press

[4] SALOMON D., MOTTA G., Handbook of Data Compression, fifth edition. ISBN
978-1-84882-902-2

[5] FERRAGINA P., GIANCARLO R., GRECO V., MANZINI G., VALIENTE G.,
Compression-based classification of biological sequences and structures via the
Universal Similarity Metric: experimental assessment. 13. July 2007

[6] GIANCARLO R., SCATURRO D., UTRO F., Textual data compression in
computational biology: a synopsis. Department of applied Mathematics, University
of Palermo, Italy, February 2009.

[7] SNYDER TIM, Overview and Comparison of Genome Compression Algorithms.
University of Minnesota. Morris, Departement of Computer Science.

[8] RANA J.M.S, Bioinformatics — Tools and applications, Uttarakhand State
Biotechnology department, 2012

[91 NOUR S. BAKR, AMR A. SHARAWI. DNA Lossless compression algorithm:
review. American Journal of Bioinformatics Research pages 72-81, 2013.

[10] XIN CHEN, SAM KWONG, MING LI, A Compression algorithm for DNA
sequences. IEEE July/August 2001.

[11] KURUPPU S., BERESFORD-SMITH B., CONWAY T., ZOBEL J., Iterative
Dictionary Construction for Compression of Large DNA Data Sets, IEEE/ACM
transictions on computational biology and bioinformatics, vol 9. No. 1, January-
Februray 2012.

[12] LI M., CHEN X., LI X., MA B. The Similarity Metric, IEEE T. Inform. Theory
2004 page 3250-3264.

[13] HASAN H. OTU, KHALID SAYOOD, A new sequence distance measure for
phylogenetic tree construction, Departement of Electrical Engeneering, University
of Nebraska-Lincoln, April 2003

[14] MARCIA L.B., MESSIAS S., de LIMA M.A, YOSHIDA C.FT., GASPAR A. M,,
GALLER R., Genetic variability of hepatitis A virus strain HAF-203 isolated in
Brazil and expression of the VP1 gene in in Escherichia coli. Mem. Inst. Oswaldo
Cruz, Rio de Janeiro, Vol. 101, pages 759-766, November 2006

[15] ZIV J., LEMPEL A., A Universal Algorithm for Sequential Data Compression.
IEEE transactions of information theory, vol 1T-23, NO. 3, May 1977.

67

[16] CAO M. D., DIX T., ALLISON L., MEARS C., A simple statistical algorithm for
biological sequence compression. Data Compression Conference, 2007. DCC,
pages 43-52, march 2007.

[17] LONGDON B., OBBARD D.J., JIGGINS F.M, Sigma viruses from three species
of Drosophila form a major new clade in the rhabdovirus phylogeny. Institute of
Evolutionary Biology, University of Edinburgh, Department of Genetics,
University of Cambridge, Cambridge, UK 2009.

[18] BROCCHIERI L., KARLIN S., Protein length in eukaryotic and prokaryotic
proteome. Nucleid acide research. Published online 2005.

[19] SOKOL R. MICHENER C. A statistical method for evaluationg systematic
relationships. University of Kansas, science bulletin 38, 1958

[20] JUKES T.H., CANTOR C.R., Evolution of Protein Molecules, New Yor:
Academic Press, 1969

[21] ROBINSON D.R., FOULDS L.R., Comparison of phylogenetic trees,
Mathematical Bioscience 1981

[22] MAYR E., Cladistic analysis or cladistic classification?, Journal of Zoological
Systematics and Ecolutionary Research, 2009

[23] SAITOU N. NEI M., The neighbor-joining method: a new method for
reconstructing phylogenetic trees., Molecular Biology and Evolution, July 1987.

[24] KIMURA M., A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences, Journal of
Molecular Evolution 1980

[25] TAMURA K. Estimation of the number of nucleotide substitutions when there are
strong transition-transversion and G+C content biases, Molecular Biology and
Evolution, 1992

[26] PEARSON K. Notes on regression and inheritance in the case of two parents.
Proceedings of the Royal Societly of London, June 1895

[27] NAVARRO G., MAKINEN V., Compressed Full-Text Indexes, University of
Helsinky and University of Chile. ACM Comput. Surv. April 2007

[28] KIM D. K., KIM M., PARK H., Linearized Suffix Tree: an Efficient Index Data
Structure with the Capabilities of Suffix Trees and Suffix Arrays, Algorithmica
2008, October 2007

[29] ABOUELHODA M. I, KURTZ S., OHLEBSUCH E., Replacing suffix trees with
enhanced suffix arrays, Journal of Discrete Algorithms 2 (2004)

[30] GEIEGERICH R., KURTZ S., STOYE J., Efficient implementation of lazy suffix
trees. Software - practice and experience, june 2003

[31] KARKKAINEN J, SANDERS P., BURKHARDT S., LinearWork Suffix Array
Construction, Journal of the ACM vol. 53. November 2006

[32] VINGA S., ALMEIDA 1., Alignment-free sequence comparison-a review..
Bioinformatics, Oxford, England . March 2003.

68

APPENDIX

Sequences used in this master thesis:

MT 16S RNA dataset:
gi|459485530:1089-2650

0i[238866918:1095-2669
gi[49146236:1624-3181
gi[5835834:1095-2654
gi[5835820:1089-2646
gi[408772040:1092-2649
gi[529217390:1092-2648
0i[5835163:1094-2651
0i[195952353:1091-2648
0i[196123578:1667-3224
gb|HQ260949.1/:1621-3179
gi[5835135:1091-2649

0i|5835121:1090-2647

Papio papio mitochondrion, complete
genome;

Eulemur fulvus mayottensis mitochondrion,
complete genome;

Macaca mulatta mitochondrion, complete
genome;

Pongo abelii mitochondrion, complete
genome;

Hylobates lar mitochondrion, complete
genome;

Nomascus gabriellae mitochondrion,
complete genome;

Nomascus leucogenys mitochondrion,
complete genome;

Pongo pygmaeus mitochondrion, complete
genome;

Gorilla gorilla gorilla mitochondrion,
complete genome;

Homo sapiens neanderthalensis
mitochondrion, complete genome;

Homo sapiens isolate S1 mitochondrion,
complete genome;

Pan paniscus mitochondrion, complete
genome;

Pan troglodytes mitochondrion, complete
genome;

Sequences from the first part of testing mitochondrial dataset:

gi|643689|dbj|D38114.1|GORMTC

gi|12772|emb|X61145.1|

Gorilla gorilla mitochondrial DNA,
complete genome

Balaenoptera physalus mitochondrial

69

gi|644494|dbj|D38115.1/ORAMTD
gi|2052151jemb|Y07726.1]
gij414126/emb|X72204.1|

gi|13003|emb|V00662.1]
gi|1632801|emb[X99256.1|

gi|854269|emb|X14848.1|
gi[577571/emb[X79547.1|

0i|13838|emb|VV00711.1]

Hepatitis A dataset:
0i|222597|dbj|D00924.1|SHVAGM27

gi[4001732|dbj|AB020564.1|
gi|4001734|dbj|AB020565.1|
gi|4001736|dbj|AB020566.1|
gi[52789965|gb|AY644676.1|
gi[33324701|gb|AF512536.1|

gi|603025/emb|X83302.1]
gi[4001738|dbj|AB020567.1|

gi[4001740|dbj|AB020568.1|
gi[4001742|dbj|AB020569.1|

gi[443846/emb|X75215.1|
gi[443844emb|X75214.1|
gij443848jemb|X75216.1|

complete genome

Pongo pygmaeus mitochondrial DNA,
complete sequence

Ceratotherium simum complete
mitochondrial DNA sequence

Balaenoptera musculus mitochondrial
DNA complete genome

H.sapiens mitochondrial genome'

Hylobates lar complete mitochondrial DNA
sequence

Rattus norvegicus mitochondrial genome

Equus caballus mitochondrial DNA
complete sequence

Mus musculus mitochondrial genome

Simian hepatitis A virus gene for
polyprotein, complete cds;

Hepatitis A virus genomic RNA, complete
sequence, isolate AH1,;

Hepatitis A virus genomic RNA, complete
sequence, isolate AH2;

Hepatitis A virus genomic RNA, complete
sequence, isolate AH3;

Hepatitis A virus isolate CF53/Berne,
complete genome;

Hepatitis A virus isolate DL3, complete
genome;

Hepatitis A virus complete genome;

Hepatitis A virus genomic RNA, complete
sequence, isolate FH1,;

Hepatitis A virus genomic RNA, complete
sequence, isolate FH2;

Hepatitis A virus genomic RNA, complete
sequence, isolate FH3;

Hepatitis A virus GBM/WT RNA,
Hepatitis A virus GBM/FRhK RNA;
Hepatitis A virus GBM/HFS RNA,;

70

gi[8810242|gh|AF268396.1
gi[329582|gb|M14707.1|HPA

0i|9626732|ref[NC_001489.1
0i[329594|gb|M16632.1|HPAA

gi|62310/emb|X 15464.1]

gi|109390447|gb|DQ646426.1]

gi[329596|gb[K02990.1|HPAACG
gi|19550900|gb|AF485328.1|

0i[62526564|gb|AY974170.1
gi[329606|gb|M20273.1|HPACG
gi|74381880jemb|AJ299464.3)
gi[50295436|gb|AY 644670.1]

Rhabdovirus dataset:
0i[9633477|ref[NC_000903.1]
0i|948298106|ref[NC_028255.1|
0i947834932|ref[NC_028246.1|

0i|946699517|refINC_028235.1]
gi[761546856ref[NC_009528.2)

gi[55770806|ref[NC_006429.1|
gi|9635147|refINC_002251.1]

gi[701219253|refINC_025385.1]
gi[700075168|refINC_025377.1
gi[700074710[refINC_025353.1]

Hepatitis A virus polyprotein precursor,
gene, complete cds;

Hepatitis A virus (wild-type) RNA,
complete genome;

Hepatitis A virus, complete genome;

Hepatitis A virus (attenuated) RNA,
complete genome;

Human hepatitis A virus (HAV) strain
HAS-15 mRNA for viral proteins VP1-4,
2A, 2B and 2C;

Hepatitis A virus strain IVA, complete
genome;

Human hepatitis A virus, complete genome;

Hepatitis A virus isolate LY6, complete
genome;

Hepatitis A virus strain M2 polyprotein
MRNA, complete cds;

Human hepatitis virus type A RNA,
complete genome;

Hepatitis A virus polyprotein, genomic
RNA, strain NOR-21;

Hepatitis A virus strain SLF88, complete
genome;

Snakehead rhabdovirus complete genome
Cocal virus Indiana 2, complete genome

Adelaide River virus isolate DPP61,
complete genome

Flanders virus isolate BE AN 781455,
complete genome

European bat lyssavirus 2 isolate RV1333,
complete genome

Mokola virus, complete genome

Northern cereal mosaic virus, complete
genome

Khujand lyssavirus, complete genome
West Caucasian bat virus, complete genome

Vesicular stomatitis Alagoas virus Indiana
3, complete genome

71

gi|667699573|refINC_024487.1|
gi|664651929|refINC_024473.1|
gi|149944272|refINC_009608.1|

gi[256535775|refINC_013135.1|

gi[471237017|refINC_020810.1]

gi[471237011|ref]NC_020809.1
gi[471237005|ref[NC_020808.1|
gi[471236999|refINC_020807.1]

gi[471236993|ref[NC_020806.1]
gi[471236987|refINC_020805.1]

gi[20428615|ref[INC_003746.1|
gi[216967209|refINC_011639.1|
gi|148724425|refINC_009527.1]

0i|116536721|ref[INC_008514.1]
gi[83659771|ref[NC_007642.1]

gi[134305391[refINC_001615.2)
gi[62327479refINC_006942.1
gi[50234098|refINC_005974.1]
gi[34610114|refINC_005093.1
gi|17158068|refINC_003243.1
gi[14336454|ref[NC_002803.1

gi|10086561|ref[NC_002526.1|

0i|9628892|refINC_001724.1|
gi[9627229refINC_001560.1|

Drosophila subobscura Nora virus,
complete genome

Vesicular stomatitis New Jersey virus
isolate NJ1184HDB, complete genome

Orchid fleck virus genomic RNA, segment
RNA 1, complete sequence

Drosophila melanogaster sigma virus AP30
N, P, X, M, G and L genes, genomic RNA,
isolate AP30

Duvenhage virus isolate 86132SA,
complete genome

Irkut virus, complete genome
Aravan virus, complete genome

Lagos bat virus isolate 0406SEN, complete
genome

Isfahan virus N gene, P gene, M gene, G
gene and L gene, genomic

Chandipura virus isolate CIN 0451,
complete genome

Rice yellow stunt virus, complete genome
Wongabel virus, complete genome

European bat lyssavirus 1, complete
genome

Siniperca chuatsi rhabdovirus, complete
genome

Lettuce necrotic yellows virus, complete
genome

Sonchus yellow net virus

Taro vein chlorosis virus, complete genome
Maize fine streak virus, complete genome
Hirame rhabdovirus, complete genome
Australian bat lyssavirus, complete genome

Spring viraemia of carp virus, complete
genome

Bovine ephemeral fever virus, complete
genome

Snakehead retrovirus, complete genome
Vesicular stomatitis Indiana virus, complete

72

gi|9627197|ref[NC_001542.1

Rabies virus, complete genome genome

Sequences used for the second part of testing:

gi|1002164154|refINC_029423.1]

gi|1011057294|refINC_029722.1]

gi|107736076ref]NC_008066.1]
gi[148543101|refINC_009510.1]
gi[194277529refINC_011053.1]
gi[240266584|refINC_012837.1]
gi[281188575|gb|GU189676.1|
gi[304322880refINC_014453.1]
gi[307777727|dbj|AP011544.1|
gi[308746468|gb|HQ287897.1|
gi[315142259|gb|HQ622775.1|
gi[318039968|gb|HQ697277.1|
gi[33438943|refINC_005055.1]
gi[339906278|refINC_015792.1
gi[3668119]emb|Y12025.1|
gi[394831045|refINC_018115.1]
gi[408772040[refINC_018753.1

gi[41216035|gb|AY524977.1]

Triplophysa dorsalis mitochondrion,
complete genome

Chanodichthys ilishaeformis
mitochondrion, complete genome'

Chlorocebus sabaeus mitochondrion,
complete genome’

Ammotragus lervia mitochondrion,
complete genome

Propithecus coquereli mitochondrion,
complete genome

Limnonectes bannaensis mitochondrion,
complete genome

Pan paniscus isolate PP30 mitochondrion,
complete genome

Lepilemur hubbardorum mitochondrion,
complete genome

Euphlyctis hexadactylus mitochondrial
DNA, complete genome'

Homo sapiens isolate Ir4 10799 H
mitochondrion, complete genome

Hylobates lar isolate T11 mitochondrion,
complete genome

Triturus karelinii voucher 2360
mitochondrion, complete genome

Fejervarya limnocharis mitochondrion,
complete genome

Triturus karelinii mitochondrion, complete
genome

Struthio camelus complete mitochondrial
genome

Aotus azarai azarai mitochondrion,
complete genome

Nomascus gabriellae mitochondrion,
complete genome

Synodus variegatus mitochondrion,

73

gi[435856991[refINC_020039.1]
gi[457866490dbj|AP013031.1|
gi[47156210|gb|AY612638.1]
gi[478432541|gb|K C603863.1
gi[507473161|gb|KC757404.1]
gi[507473259|gb|KC757411.1]

gi|511347879|ref[NC_021391.1]

gi[511347893|refINC_021392.1|

gi[558479077|gb|KF680163.1|
0i|568192363|refNC_023100.1|
gi|578003732|gh|KF914214.1]
0i|5834995|ref[INC_001601.1]
gi[5835009|ref[NC_001602.1|
gi[5835205|ref[NC_001700.1]
gi[5835345|ref[NC_001788.1]
gi[5835568|ref[NC_001945.1]
gi[5835820|ref[NC_002082.1]
gi|604159100|gh|KJ179950.1]

0i[619329278|gh|KJ631049.1]

complete genome

Cnemaspis limi mitochondrion, complete
genome

Mus musculus mitochondrial DNA,
complete genome, clone: P29mtC3H

Macaca mulatta mitochondrion, complete
genome

Homo sapiens mitochondrion, complete
genome

Nomascus leucogenys mitochondrion,
complete genome

Symphalangus syndactylus mitochondrion,
complete genome

Scomberomorus semifasciatus strain
GREY-SsPD211135 mitochondrion,
complete genome

Scomberomorus munroi X Scomberomorus
semifasciatus strain Grey-SsCRC0703
mitochondrion, complete genome

Trachypithecus pileatus mitochondrion,
complete genome

Homo heidelbergensis mitochondrion,
complete genome

Gorilla gorilla gorilla mitochondrion,
complete genome

Balaenoptera musculus mitochondrion,
complete genome

Halichoerus grypus mitochondrion,
complete genome

Felis catus mitochondrion, complete
genome

Equus asinus mitochondrion, complete
genome

Dinodon semicarinatus mitochondrion,
complete genome

Hylobates lar mitochondrion, complete
genome

Dinodon rufozonatum mitochondrion,
complete genome

Jacana jacana mitochondrion, complete

74

0i[619856195|gb|KF914213.1]
gi[62184368|ref[NC_006915.1]
gi|628971407|ref[NC_024068.1
gi[659104616|gh|KJ681495.1]
gi|67082892|gh|DQ069713.1]
0i[683418040|gb|KM262190.1]
gi|699049576refINC_025271.1
gi[71658036|ref[NC_007229.1]
gi[722489592|refINC_025513.1]
gi[746000265(refINC_026120.1]
gi[755573649|gh|KJ508413.2]
gi[757813536|gb|KP317203.1
gi[758374618|gh|KM679363.1]
gi[769829586(refINC_026714.1
gi[817526666refINC_026976.1]
0i[87299381dbj|AB212225.1

gi[884997387|refINC_027449.1

gi|906476668|ref[NC_027658.1]

gi|918020940|ref[NC_027740.1]

genome

Gorilla beringei graueri mitochondrion,
complete genome

Mus musculus molossinus mitochondrion,
complete genome

Jacana spinosa voucher STRI:BC3332
mitochondrion, complete genome

Capreolus pygargus isolate Cp8
mitochondrion, complete genome

Cercopithecus aethiops sabaeus
mitochondrion, complete genome

Chlorocebus cynosuros mitochondrion,
complete genome

Capreolus pygargus isolate Cp5
mitochondrion, complete genome

Cobitis sinensis mitochondrion, complete
genome

Macaca fuscata mitochondrion, complete
genome

Macaca nigra mitochondrion, complete
genome

Panthera tigris isolate Malayan
mitochondrion, complete genome

Pan troglodytes troglodytes, complete
genome

Macaca silenus mitochondrion, complete
genome

Triplophysa strauchii mitochondrion,
complete genome

Macaca nemestrina mitochondrion,
complete genome

Mantella madagascariensis mitochondrial
DNA, complete genome

Macaca cyclopis isolate Mc-
mitogm12060805 mitochondrion, complete
genome

Callithrix kuhlii mitochondrion, complete
genome

Propithecus tattersalli mitochondrion,
complete genome

75

gi|944542639|refINC_028210.1|
gi[953245206(refINC_028442.1

0i|955665322|gb|KR911720.1
gi|959125180refINC_028592.1]
gi|966202078|ref[NC_028718.1]

0i|966202868|ref[NC_028730.1]

Propithecus verreauxi mitochondrion, complete genome

Mandrillus leucophaeus mitochondrion,
complete genome

Lycodon flavozonatus mitochondrion,
complete genome

Cercocebus atys mitochondrion, complete
genome

Microcebus murinus isolate 920FAG
mitochondrion, complete genome

Lycodon flavozonatus mitochondrion,
complete genome

Sequences used for the third part of testing:

CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="APOM
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8

Capra hircus goat

Eptesicus fuscus big brown bat
Physeter catodon sperm whale
bos taurus

camelus ferus

gorilla gorilla gorilla

horse equus caballus

human

macaca mulatta

myotis lucifugus little brown bat
ovis aries sheep

pan troglodytes

ursus maritimus polar bear
orcinus orca -killer

mus musculus

rattus norvegicus

Myotis lucifugus

Physeter catodon

bos taurus

camelus ferus

capra hiracus goat

eptesicus fuscus

76

CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="HSPAS8
CDS /gene="Hspa8
'CDS /gene="Hspa8
'CDS /gene="IL2
'CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
'CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2
CDS /gene="IL2

equs caballus

gorilla gorilla gorilla

human

macaca mulatta
ovis aries sheep
pan troglodytes
ursus maritimus
mus musculus
rattus norvegicus
Pan troglodytes
Physeter catodon
bos taurus
camelus ferus
capra hircus
eptesiscus fuscus
equus caballus
gorilla gorilla
human

macaca mulatta
myotis brandtii
orcinus orca
ovis aries

ursus maritimus

CDS /gene="112 mus musculus

CDS /gene="112 rattus norvegicus
gi|109733492|gb|AAI116846.1] 112 protein [Mus musculus]
0i|114052044|refiINP_001040595.1| interleukin-2 precursor [Macaca mulatta]
0i|117582508|gb|ABK41601.1| interleukin-2 [Ovis aries]
0i|146198786|ref|[NP_001078902.1 | interleukin-2 precursor [Equus caballus]
0i|149048754|gb|EDM01295.1| interleukin 2 [Rattus norvegicus]
gi|28178861|ref|[NP_000577.2| interleukin-2 precursor [Homo sapiens]
0i|33330683|gb|AAQ10670.1] interleukin-2 [Bos taurus]
0i|33330685|gb|AAQ10671.1] interleukin-2 [Capra hircus]
0i|426345397|ref|XP_004040401.1| PREDICTED: interleukin-2 [Gorilla gorilla

77

gi[465981812|ref|XP_004265151.1
gi|554541783|ref|XP_005865519.1]

gi|114606419|ref|XP_518354.2|

gi|109070476|ref|XP_001112572.1|

gi|148694705|gb|EDL26652.1]
gi|149732042|ref[XP_001490472.1]

'gi[22091452|ref|NP_061974.2)
gi[426352431|ref|XP_004043716.1|

gi[466089401|ref|XP_004286652.1|

gi[548517981|ref|XP_005696653.1]

gorilla]
PREDICTED: interleukin-2 [Orcinus orca]

PREDICTED: interleukin-2 [Myotis
brandtii]

PREDICTED: apolipoprotein M isoform
X1 [Pan troglodytes]

PREDICTED: apolipoprotein M isoform
X1 [Macaca mulatta]’

apolipoprotein M [Mus musculus]

PREDICTED: apolipoprotein M [Equus
caballus]

apolipoprotein M isoform 1 [Homo sapiens]

PREDICTED: apolipoprotein M isoform 1
[Gorilla gorilla gorilla]

PREDICTED: apolipoprotein M isoform
X2 [Orcinus orca]

PREDICTED: apolipoprotein M isoform
X2 [Capra hircus]

78

