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ROBERT HAKL

Abstract. Efficient conditions sufficient for the solvability of the problem
() = Lu)(t) +q(t);  u(a)=c, u'(a)=c2 u(d)=cs
are established. Here £ : C([(z, b};R) — L([a, b};R) is a linear bounded operator,

q € L([a,b;R) and ¢; € R (i = 1,2,3). Sign-constant solutions are discussed as
well.

1. INTRODUCTION

Theory of boundary value problems for functional differential equations and sys-
tems has been recently made more complete due to an effort of many mathe-
maticians. For an overview of the results known nowadays one is advised to see
monographs [1,2,4-6,9,11-16, 18] and references therein.

In the presented paper, we will consider the two-point boundary value problem

u"'(t) = L(u)(t) + q(t) for a.e. t € [a, ], (1.1)
u(a) = c1, u'(a) = ¢, u(b) = ca, (1.2)

where £ : C([a,b];R) — L([a, b];R) is a linear bounded operator, g € L([a, b];R),
¢ € R (i = 1,2,3). By a solution to the problem (1.1), (1.2) we understand
a function u : [a,b] — R which is absolutely continuous together with its first
and second derivatives, satisfies the equality (1.1) almost everywhere in [a, b] and
(1.2) holds. Efficient conditions guaranteeing the unique solvability of the problem
(1.1), (1.2) are established in the paper. A great importance is put on the question,
whether there exist solutions which are positive in the interval ]a, b[. As far as the
author is aware there is no article dealing exactly with the problem (1.1), (1.2).

This paper is the first part of the research dealing with the equation (1.1), when
the operator on the right-hand side of the equation has a general form. The second
part, dealing with the particular case when the equation (1.1) is an equation with
deviating arguments, is a subject of the forthcoming paper. The presented paper
is split into three sections — the first one is an introduction, the second one contains
the list of the results obtained and the third one is devoted to their proofs.
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The following notation is used throughout the paper:

R is a set of all real numbers, R = [0, +o0].

C([a,b); R) is a Banach space of all continuous functions u : [a,b] — R endowed
with the norm

ullc = max {|u(t)| : t € [a,b]}.

C([a,b];RT) = {u € C([a,b];R) : u(t) € R for t € [a,b]}.

C? ([a,b];R) is a set of all functions u : [a,b] — R which are absolutely contin-
uous together with their first and second derivatives. B

C?.(Ja,b[;R) is a set of all functions u :]a,b[— R such that u € C?([e, 8]; R)
for every «, 8 €]a,b[, a < S.

Let u :]a,b[— R be a continuous function and let there exist a finite or an
infinite right, resp. left, limit of u at the point a, resp. b. Then we will write
u(a+), resp. u(b—), instead of tgr(g_ u(t), resp. tl_lgl u(t).

50(](1, b[;R) is a set of all functions u € CN'ZQOC(]a, b[;R) N C([a,b];R) such that
there exist finite or infinite limits u'(a+) and u/(b—).

L([a, bl; ]R) is a Banach space of all Lebesgue integrable functions p : [a,b] — R
endowed with the norm

b
ol = [ plo)]ds.

L([a,b);RT) = {p € L([a,b];R) : p(t) € RT for a.e. t € [a,b]}.

Lap is a set of all linear bounded operators £ : C’([a, bl; ]R) — L([a, bl; R).

Pap is a set of all linear non—decreasing operators, i.e. operators £ € L, trans-
forming the set C([a,b]; RT) into the set L([a, b); RT).

For any x € R, we put

N

An operator £ € L, is said to be a to-Volterra operator, where ¢y € [a, ], if for
every aj € la,to], by € [to,b], a1 # by and v € C([a,b]; R) satisfying

v(t) =0 for t € [aq,b1]
we have
L(v)(t) =0 for a.e. t € [ay,b1].

Along with the problem (1.1), (1.2) we will consider the corresponding homo-
geneous problem

u"(t) = L(u)(t)  for a.e. t € [a,b], (1.1p)
u(a) =0, W' (a) =0, u(b) = 0. (1.29)

From the general theory of boundary value problems, the following result is well-
known (see, e.g. [1,3,7,8,10,16]).

Theorem 1.1. The problem (1.1), (1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (1.1g), (1.29) has only the trivial solution.
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Definition 1.2. An operator ¢ € Ly, is said to belong to the set V([a,b]) if
every function u € 52([a, b); R) satisfying
o' (t) < L(u)(t)  for a.e. t € [a,b],
u(a) >0, u'(a) >0, u(b) >0

admits the inequality
u(t) >0 for t € [a, b]. (1.5)

Definition 1.3.~An operator £ € L, is said to belong to the set VO([a, b]) if
every function u € C?([a, b]; R) satisfying (1.3) and
u(a) =0, u'(a) >0, u(b) =0 (1.6)
admits the inequality (1.5).
Remark 1.4. Obviously, V([a,b]) € Vo([a,b]). Moreover, if —¢ € Pq;, then
¢ € V([a,b]) = e Vy([a,b]).

Indeed, let —¢ € Pqp, £ € Vo([a,b]) and let u € 52([(1, b); R) satisfy (1.3) and (1.4).
Put

v(t) = W(t —a)? +ula) + UI(G)W for t € [a,b],
w(t) = u(t) — v(t) for t € [a,b]. (1.7)
Then
v(t) >0 for ¢ € [a,b],
w” (t) < L(w)(t) for a.e. t € [a, ], :
w(a) =0, w'(a) =0, w(b) = 0. (1.10)

Consequently, on account of (1.9), (1.10) and the assumption ¢ € Vo([a,b]) we
have w(t) > 0 for ¢ € [a,b] which, in view of (1.7) and (1.8), implies (1.5).

Remark 1.5. If ¢ € V([a,b]), resp. £ € Vy([a,b]), then the problem (1.1),
(1.2) is uniquely solvable. Indeed, let u be an arbitrary solution to (1.1p), (1.29).
Then, according to Definition 1.2, resp. Definition 1.3, the inequality (1.5) holds.
However, —u is also a solution to (1.1p), (1.2¢) and so

—u(t) >0 for ¢ € [a, b].
Consequently, © = 0 and the assertion follows from Theorem 1.1.
Notation 1.6. Let ¢ € L, be a to-Volterra operator, a € [a, o], 8 € [to, ],
a # (. Then we define a restriction £*? of £ to the interval [, 3] by
P (v)(t) = L(V(v)) (1) for a.e. t € [a, 3], v € C([o, B;R),
where
v(a) for t € [a,q]
dv)(t) =< v(t) for te]a, [, v € C([a, B;R).
v(B) for t € [B,D]
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Obviously, ¢*8 : C([a,ﬁ];R) — L([a,ﬁ];R) is a linear bounded operator and
28 ¢ Pas whenever £ € Pgp.

2. MAIN RESULTS

Theorem 2.1. Let —{ € Py,. Then ¢ € V([a,b]) if and only if there exists
a function v € Co(]a,b[;R) such that
~v(t) >0 for t €]a,b], (
v'(a+) > 0, (
Y () < L(y)(t) for a.e. t € [a,b], (

)
)
)
v(a) + ' (a+) 4+ v(b) + meas {t € [a,b] : v/ (t) < £(7)(t)} > 0. (2.4)

2.1
2.2
2.3
2.4
Remark 2.2. According to Remark 1.4, the conditions of Theorem 2.1 are
necessary and sufficient also for the inclusion ¢ € Vy([a,b]) provided —¢ € Pgp.
Remark 2.3. Note that the zero operator, i.e. an operator defined by
L(v)(t) =0 for a.e. t € [a,b], vE C([a,b];R),

belongs to the set V([a,b]), because obviously, —¢ € Py, and v(t) =1 for ¢ € [a, b]
satisfies (2.1)—(2.4).

Theorem 2.4. Let { € Py, be an a-Volterra operator. Then ( € V([a,b]) if
and only if there exists a function B € CN'O(]a, b[;R) such that

B(t) >0 for t € [a,b], (2.5)
B'(t)<0  fort€la,bl, (2.6)
B () > (B)(t)  forae. t€[a,b]. (2.7)
Theorem 2.5. Let { € Py, be an a-Volterra operator. Then € € Vy([a,b]) if
and only if there exists a function 8 € Co(]a,b[;R) such that
B(t) >0 for t €la,b], (2.8)
g'(b-) <0, (2.9
B (t) > £(B)(t) for a.e. t € [a,b]. (2.10)
Conditions guaranteeing the inclusion
e V([a,b]), (2.11)
resp.
€ Vo(la,b]), (2.12)

in the case when /¢ is a monotone operator, i.e. either —¢ € Py, or £ € Py,
are described in Theorems 2.1-2.5. Theorems 2.6 and 2.7 established below deal
with the validity of the inclusion (2.11), resp. (2.12), in the case when ¢ can be
expressed as a difference of two non—decreasing operators, i.e. in the case when
L()(t) = Lo(v)(t) — £1(v)(t) for a.e. t € [a, D], v € C([a,b];R), (2.13)

with 60,61 € Pab.
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Theorem 2.6. Let £y, 1 € Py, and £y, —¥1 € V([a, b]) Then the operator £
defined by (2.13) belongs to the set V([a,b]).

Theorem 2.7. Let £y, {1 € Py, and {y € Vo([a,b]), —{ € V([a,b]). Then the
operator { defined by (2.13) belongs to the set Vo([a,b]).

According to Definitions 1.2 and 1.3 and Remark 1.5, the inclusion (2.11), resp.
(2.12), guarantees that there exists a unique solution u to the problem (1.1), (1.2).
Moreover, if ¢(t) < 0 for a.e. t € [a,b] and ¢; > 0 (i = 1,2,3), resp. ¢; = 0,
co > 0, c3 = 0, then u satisfies (1.5). More precisely, the following two assertions
are valid.

Theorem 2.8. Let ¢ be defined by (2.13) with £y, {1 € Pqap. Let, moreover,

ly € V([a,b]), —ty € V([a,b)).
Then the problem (1.1), (1.2) has a unique solution u. If, in addition,
q(t) <0  forae. te€la,b (2.14)
and
>0 (i=1,2,3), (2.15)

then (1.5) holds.
Theorem 2.9. Let ¢ be defined by (2.13) with £y, {1 € Pap. Let, moreover,
l € Vo(la,b]),  —t1 € V([a,b]).

Then the problem (1.1), (1.2) has a unique solution w. If, in addition, (2.14) is
fulfilled and

C1 = 0, co > 0, C3 = 0, (216)
then (1.5) holds.

If we assume, in addition, that a non—decreasing part of the operator / is a-
Volterra, then u is not only non—negative but even positive in ]a,b[. More pre-
cisely, the following two assertions are valid.

Theorem 2.10. Let ¢ be defined by (2.13) with £y, f1 € Pyy. Let, moreover, £y
be an a-Volterra operator and

é() c V([a,b]), —81 S V([qu})

Then the problem (1.1), (1.2) has a unique solution w. If, in addition, the relations
(2.14) and (2.15) are fulfilled with

3
lalle +Y e >0, (2.17)
=1

then
u(t) >0 for t €la,b]. (2.18)
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Theorem 2.11. Let ¢ be defined by (2.13) with Ly, {1 € Pay. Let, moreover, £y
be an a-Volterra operator and
Ly € Vo([a,b]), —tl € V([a,b])

Then the problem (1.1), (1.2) has a unique solution w. If, in addition, the relations
(2.14) and (2.16) are fulfilled with

lallz +c2 >0, (2.19)
then (2.18) holds.

The assumptions of Theorems 2.8 and 2.9 do not guarantee only the existence
of a solution to (1.1), (1.2), but even the non—positivity of Green’s operator of the
problem (1.1), (1.2y). If we are interested only in the solvability of the problem
(1.1), (1.2), we can weaken the conditions of Theorems 2.8 and 2.9. More precisely,
the following assertions are valid.

Theorem 2.12. Let £ be defined by (2.13) with £o,¢1 € Pap. Let, moreover,
1
550 € Vo([a,b]), —l € V([a,b})

Then the problem (1.1), (1.2) is uniquely solvable.

Theorem 2.13. Let ¢ be defined by (2.13) with Ly, {1 € Pay. Let, moreover, £y
and {1 be a-Volterra operators and

—t € V([a,b])
Then the problem (1.1), (1.2) is uniquely solvable.

3. PROOFS

To prove Theorem 2.1 we will need the following two lemmas.
Lemma 3.1. Let w € 60(]0,, b[;R) be such that
w # 0, (3.1)
w(t) >0 for t € [a,b], 2
w” () <0  forae. tE€]a,b].

Then the following assertions are valid:

a) if
w(a) =0, w'(a+) =0, (3.4)
then there exists a finite or an infinite limit
w” (a+) > 0;
b) if
w'(a+) > 0, w(b) =0, (3.5)
then
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Proof. From (3.3) it follows that w” is non—increasing. Therefore, there exist
(finite or infinite) limits w”(a+) and w”(b—).

a) Assume that w”(a+) < 0. Then, according to (3.3) we have

w”’(t) <0 for t €]a, b,
which together with (3.4) implies
w'(t) <0 for t €]a,b|
and, consequently,
w(t) <0  for t € [a,b].
However, the last inequality together with (3.2) contradicts (3.1).

b) From (3.2) and (3.5) it follows that w’(b—) < 0. Assume that w'(b—) = 0.
Then, obviously, on account of (3.2) we have w”(b—) > 0. Consequently, in view
of (3.3), the inequality

w”’(t) >0  for t €]a,b|
holds. However, the last inequality together with (3.5) implies
w'(t)>0  for t €]a,b|
and, consequently,
w(t) <0 for t € [a,b].
The latter inequality and (3.2) result in w = 0, which contradicts (3.1). O

Lemma 3.2. Let w € 50(}61, b[;R) be such that (3.2) and (3.3) hold and let

w'(a+) > 0. (3.6)
Let, moreover, there exist tg € |a,b[ such that
w(to) = 0. (3.7)
Then w = 0.
Proof. Obviously, according to (3.2) and (3.7) we have
w'(tg) =0, w”(to) > 0. (3.8)

Hence, in view of (3.3), we get

w”’(t) >0  for t €]a,to]
and, consequently, on account of (3.6) we obtain

w'(t) >0 for t €]a,to).
The last inequality together with (3.7) implies

w(t) <0 for t € [a, o],
whence, with respect to (3.2) we get

w(t)=0 for t € [a, to]. (3.9)
Now (3.9) implies

w”(tg) = 0,

which together with (3.3) yields

w”(t) <0 for t € [to,b].
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The last inequality with respect to (3.8) results in

w'(t) <0 for ¢ € [to,b],
whence, in view of (3.7), we obtain

w(t) <0 for ¢ € [to, b]. (3.10)
Now (3.9) and (3.10), on account of (3.2), imply w = 0. O

Proof of Theorem 2.1. Let ¢ € V([a,b]). Then according to Remark 1.5 there
exists a unique solution v to the problem

Y (t) =L(y)(t)  for a.e. t € [a,b],

y(a) =1, v (a) =0, v(b) = 0.
Because ¢ € V([a,b]), we have y(t) > 0 for ¢ € [a,b] and, moreover, according
to Lemma 3.2 we find that (2.1) holds. Thus v € Cy(]a,b[;R) and it satisfies
(2.1)-(2.4).

Let there exist v € Co(]a,b[;R) such that (2.1)~(2.4) are fulfilled. Let, more-

over, u € 62([(1, b];R) be a function satisfying (1.3) and (1.4). We will show that
(1.5) holds. Assume on the contrary that there exists to €]a, b[ such that

u(to) <O0. (3.11)
Put
u(t)
)\:sup{—:te a,b}. 3.12
S stelat] (312)
Then, in view of (3.11), we have
A>0 (3.13)
and according to (1.4), (2.1)—(2.3) and Lemma 3.1 we have A < +oo. Put
w(t) = Ay(t) + u(t) for ¢ € [a,b]. (3.14)
Obviously,
w(t) >0 for ¢ € [a,b], (3.15)
w” (t) < L(w)(t) for a.e. t € [a,b]. (3.16)
We will show that o
—u(t
A > lim sup . 3.17
t—at V(1) (817)
Assume the contrary,
A = lim sup —u(t) .
t—sat V(1)
Then, in view of (1.4), (2.1), (2.2) and (3.12) we have
@) =0, W@)=0, Al@)=0, ~(aH)=0.  (318)
Now, according to (3.18) and Lemma 3.1 using 'Hospital rule we get
1
yo _ Wa) (3.19)

v'(at)
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Furthermore, (3.14)—(3.16), (3.18) and (3.19) imply
w”(t) <0  for ae. t € [a,b],
w(a) =0, w'(a+) =0, w”(a+) =0,

which in view of (3.15) results in

w = 0. (3.20)
Moreover, (3.20) on account of (1.3), (1.4), (2.1), (2.3), (3.13) and (3.14) yields
2 () =0, (3.21)

0 < 0(u)(t) — " (t) = )\(Py”'(t) - E('y)(t)) <0 forae telabd. (3.22)

However, (3.18), (3.21) and (3.22) contradict (2.4).
Next we will show

. —u(t)
A > limsu . 3.23
AT 329
Assume the contrary,
A = lim sup —u(®) .
tobo— (1)
Then, in view of (1.4), (2.1) and (3.12) we have
u(b) =0, ~(b) = 0. (3.24)
Now, according to (2.2), (3.24) and Lemma 3.1 using ’'Hospital rule we get
u'(b)
A=— . 3.25
7' (b-) (3.25)
Furthermore, (3.14)—(3.16), (3. 24) and (3.25) imply
w(t) < for a.e. t € [a, b], (3.26)
w(b) =0, w'(b—) = 0. (3.27)

Consequently, in view of (3.26) there exists a finite or an infinite limit w” (b—). If
w”(b—) < 0, then there exists € €]0,b — a[ such that

w’(t) <0  for t€[b—e¢,b,
which together with (3.27) implies
w(t) <0 for t € [b—eg,. (3.28)

However, (3.28) contradicts (3.15). Therefore, w”(b—) > 0 and so, on account of
(3.26), we have

w’(t) >0  for t €la,bl. (3.29)
On the other hand, (1.4), (2.2) and (3.14) result in
w'(a+) > 0. (3.30)
Now (3.27), (3.29) and (3.30) yield (3.20), which with respect to (1.3), (1.4),
(2.1)-(2.3), (3.13) and (3.14) implies (3.18) and (3.22). However, (3.18), (3.22)
and (3.24) contradict (2.4).
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In view of (3.17) and (3.23), from (3.12) and (3.14) it follows that there exists
to €la,b] such that w(tg) = 0. Consequently, according to Lemma 3.2 we have
(3.20). However, as above (3.20) implies

y"'(t) =L(y)(t)  for a.e. t € [a,b],
a)=0,  7(a+t)=0, () =0,
which contradicts (2.4). O

To prove Theorems 2.4 and 2.5 we will need the following two assertions.

Lemma 3.3. Let w € 5’2([a, b;R) be such that (3.1) and (3.2) hold. Let,

moreover,

w” () >0  forae. tE€]a,bl, (3.31)
w(b) =0 (3.32)
Then
w(t) >0 for t €la,b[. (3.33)
Proof. Assume on the contrary, that there exists ¢y € a, b[ such that

w(ty) = 0. (3.34)

Then, in view of (3.2), we have
w'(ty) =0, (3.35)
w” (tg) > 0. (3.36)

According to (3.31), from (3.36) it follows that
w’(t) >0 for t € [to, b],
which together with (3.2), (3.32) and (3.34) implies

w(t) =0 for t € [to, b] (3.37)
and, consequently,

w”’(t)=0  for t € [to,b]. (3.38)
Now (3.31), in view of (3.38), results in

w”’(t) <0 for t € [a,to). (3.39)

On the other hand, on account of (3.2), (3.34), (3.35) and (3.39), we have

0> —u(a) = [ " ul(s)ds = / " (s — au"(s)ds > 0

and thus, in view of (3.39),

w’(t)=0  for t € [a,t].
However, the last equality together with (3.34) and (3.35) implies

w(t) =0 for t € [a, to]. (3.40)
Now (3.37) and (3.40) contradict (3.1). O
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Lemma 3.4. Let w € 60(]a,b[;R) be such that (3.31) and (3.33) hold. Let,

moreover,

w(a) =0, (3.41)

w'(b—) <0 3.42)
Then

w'(a+) > 0.

Proof. Assume on the contrary that w’(a+) < 0. In view of (3.33) and (3.41)
we have
w'(a+) = 0. (3.43)
From (3.31) it follows that there exists a finite or an infinite limit w”(a+). Ac-
cording to (3.33), (3.41) and (3.43) we have

w”(a+) > 0. (3.44)
Thus (3.31) and (3.44) yield
w”’(t) >0  for t €la,b|,
whence in view of (3.42) and (3.43) we get
w'(t)=0  for t €]a,b|.
However, the last equality together with (3.41) contradicts (3.33). O

Proof of Theorem 2.4. Let £ € V([a, b]) Then, according to Remark 1.5 there
exists a unique solution 8 to the problem

g (t)=1¢(B)(t)  forae. tE a,b],
Bla)=1,  B(a)=0,  B(b)=0.

Because ¢ € V([a,b]), we have 3(t) > 0 for ¢ € [a,b] and, moreover, according
to Lemma 3.3 we find that (2.5) holds. Furthermore, (2.5) and 8(b) = 0 imply
B'(b) < 0, which together with 8'(a) = 0 and

pg"(t) >0  forae. tE€a,b

results in (2.6). Thus 8 € 6'0(]a,b[;R) and it satisfies (2.5)—(2.7).
Let there exist 8 € 5’0(]a,b[;R) such that (2.5)—(2.7) are fulfilled. Let, more-

over, u € 6’2([a, b];R) be a function satisfying (1.3) and (1.4). We will show that
(1.5) holds. Assume on the contrary that there exists ty € |a,b[ such that (3.11)
holds. According to (1.4) there exists by € |tg, b] such that

u(bg) =0 (3.45)
and
u(t) <0 for ¢ € [to, bol - (3.46)
Moreover, in view of Notation 1.6, we have
u (t) < 7% (u)(t)  for a.e. t € [a, by (3.47)

and if u(t) <0 for t € [a, bo], then from (3.47) we get
W (t) <0 for ae. t € [a,bo], (3.48)



68 R. HAKL

which together with (1.4) and (3.45), according to Remark 2.3, implies

u(t) >0 for t € [a, bo]. (3.49)
However, (3.49) contradicts (3.46). Therefore, there exists ¢1 € [a, o] such that
u(ty) > 0. (3.50)
Let by €]to, bo[ be such that
u(to) < u(by) (3.51)
and put
)\:SHP{% te [a,bl]}.
Obviously, according to (2.5) and (3.50) we have
0 <A< +o0. (3.52)
Furthermore,
AB(t) —u(t) >0 for t € [a,b1] (3.53)
and there exists ¢ € [a, tg] such that
AB(c) —u(e) = 0. (3.54)
If ¢ # a, then in view of (3.53) we have
A8 (c+) —u/(c) =0 (3.55)
and
A3 (e+) — " () > 0. (3.56)

If ¢ = a, then on account of (1.4), (2.6) and (3.52) we have
A3 (a+) — u/(a) < 0.

However, the last inequality together with (3.53) and (3.54) results in (3.55).
Furthermore, in view of (2.5), (2.7) and the assumption ¢ € Py, there exists a
finite or an infinite limit 8”(a+) and, consequently, (3.53)—(3.55) imply (3.56).
Thus in both cases, (3.55) and (3.56) hold.

On the other hand, with respect to (3.52),

MG (t) — "' (t) > 0P (\B —u)(t)  for ae. t € [a,b1],
whence, in view of (3.53), we get
A" () —u"'(t) >0  for ae. t € [a,b]. (3.57)

Now (3.56) and (3.57) result in

AB"(t) —u"(t) >0  for t €]c,b]
and the latter inequality together with (3.55) yields

A3 (t) —u'(t) >0  for t €]c,by]. (3.58)
From (3.58), according to (2.6) and (3.52), it follows that

u(t) <0 for t €le, by

However, the last inequality contradicts (3.51). O
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Proof of Theorem 2.5. Let £ € VO([a, b]) Then, according to Remark 1.5 there
exists a unique solution § to the problem

B (t) = £(B)(t) for a.e. t € [a, b],
Bla)=0,  Ba)=1,  B(b)=0.

Because £ € Vo ([a, b]), we have () > 0 for ¢ € [a,b] and, moreover, according to
Lemma 3.3 we find that (2.8) holds. Furthermore, (2.8) and 5(b) = 0 imply (2.9).
Thus 8 € Co(Ja,b[;R) and it satisfies (2.8)—(2.10).

Let there exist 3 € Co(]a, b[; R) such that (2.8)-(2.10) are fulfilled. Let, more-

over, u € 52([(1, b];R) be a function satisfying (1.3) and (1.6). We will show that
(1.5) holds. Assume on the contrary that there exists tg €]a,b[ such that (3.11)
holds. According to (1.6) there exists by € |to, b] such that (3.45) and (3.46) hold.
Moreover, in view of Notation 1.6, we have (3.47) and if u(t) < 0 for ¢ € [a, bo],
then from (3.47) we get (3.48) which together with (1.6) and (3.45), according to
Remark 2.3, implies (3.49). However, (3.49) contradicts (3.46). Therefore, there
exists t; €]a,to[ such that (3.50) is fulfilled. Obviously, there exists by € ]t1, bo|
such that

u(b1) <0, (3.59)
u'(by) >0, (3.60)
u”’(by) > 0. (3.61)
Put
)\:SUP{ZS; :te]a,bl]}. (3.62)
According to (2.8) and (3.50) we have
A> 0. (3.63)

Moreover, if f(a) = 0, then according to Lemma 3.4 we have #'(a+) > 0 and,
consequently, on account of (1.6), we find A < +o00. Put

v(t) = AB(t) — u(t) for ¢ € [a,by]. (3.64)
Then, obviously,

v(t) >0 for ¢ € [a, b1] (3.65)
and, moreover, with respect to (1.3), (2.10), (3.63), (3.64), and Notation 1.6, we
have

" () > 0% (v)(t) for a.e. t € [a, by],
whence in view of (3.65) we get
v"(t) >0  for a.e. t € [a,b]. (3.66)

Furthermore, on account of (2.8), (3.59), (3.63) and (3.64), either there exists
¢ €la,b1[ such that
v(c) =0, (3.67)

A = limsup ult) . (3.68)

t—at O(t)

or



70 R. HAKL

If (3.67) holds for some ¢ €]a, b1[, then in view of (3.65) we have

V() =0 (3.69)
and

v"(c) > 0. (3.70)
If (3.68) holds, then in view of (1.6) and (3.63) we have

B(a) =0 (3.71)

and thus, according to Lemma 3.4,
B’ (a+) > 0. (3.72)

Consequently, using 'Hospital rule, from (3.68) with respect to (1.6), (3.63), (3.71)
and (3.72) we get

B'(at) < 400, A= ;gfﬁ) . (3.73)
Therefore, in view of (1.6), (3.64), (3.71) and (3.73) we have
v(a) =0, v'(a+) = 0. (3.74)

According to (3.66) there exists a finite or an infinite limit v”(a+). Assuming
v (a+) < 0, on account of (3.74), we obtain a contradiction to (3.65). Therefore,
v"”(a+) > 0. Thus in both cases there exists ¢ € [a, b;[ such that

v(c) =0, v'(e+) =0, v (c+) > 0. (3.75)
Now (3.66) and (3.75) yield
v"(t) >0 for ¢ €]c, by], (3.76)
whence, on account of (3.61), (3.63) and (3.64) we get
A" (b1) > 0. (3.77)

Furthermore, (3.77) in view of (2.8) and (2.10) yields
B'(t) >0  for te[by,b,

whence with respect to (2.9) we obtain

B'(b1) <0. (3.78)
On the other hand, (3.76) together with (3.75) yields
v'(by) > 0,
whence in view of (3.63), (3.64) and (3.78) we get u/(b1) < 0 which contradicts
(3.60). O

Proof of Theorem 2.6. Let u satisty (1.3) and (1.4) with ¢ defined by (2.13).
We will show that (1.5) holds. According to the assumption £y € V([a,b]), in view
of Remark 1.5, the problem

a"'(t) = lo(a)(t) + L1([u]-)(t)  for a.e. t € [a,b], (3.79)
ala) =0, a'(a) =0, ad)=0 (3.80)

has a unique solution « such that
a(t) <0 for ¢ € [a, b]. (3.81)
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Put
v(t) = a(t) —u(t) for t € [a,b]. (3.82)
Then in view of (1.3), (1.4), (3.79), (3.80) and (3.82) we have
" (t) > lo(v)(t) + €1 ([u]£)(t)  for a.e. t € [a,b], (3.83)
v(a) <0, v'(a) <0, v(b) <0. (3.84)

Consequently, from (3.83) and (3.84), with respect to the inclusions ¢ € V([a, b])
and {1 € Py, it follows that v(t) < 0 for ¢ € [a, b], i.e. on account of (3.82),

at) < ult) for t € [a, b]. (3.85)
Now (3.81) and (3.85) result in
a(t) < —[u(t)]- for t € [a,b]. (3.86)
Thus using (3.86) in (3.79) we get
a”'(t) < lo(a)(t) — li(a)(t)  for ae. t € [a,b] (3.87)

and, with respect to the inclusion £y € Py and (3.81), the inequality (3.87) yields
o (t) < —tl1(a)(t)  for ae. t € [a,b] (3.88)
Now (3.88) together with (3.80) and the assumption —¢; € V([a,b]) implies
a(t) >0 for t € [a, b],
which together with (3.85) results in (1.5). O
Theorem 2.7 can be proven analogously to Theorem 2.6. Theorems 2.8 and

2.9 immediately follow from Theorems 2.6 and 2.7, Definitions 1.2 and 1.3, and
Remark 1.5.

To prove Theorems 2.10 and 2.11 we will need the following assertions. The
first one is a result from [17] and we formulate it in a suitable for us form.

Lemma 3.5. Let { € Py, be an a-Volterra operator. Then every function
w E C’Q([a, bl; ]R) satisfying
w”(t) < l(w)(t)  for a.e. t € [a,b],
w(a) =0, w'(a) =0, w”(a) =0
admits the inequality
w(t) <0 for t € [a,b].

Lemma 3.6. Let { € Py, be an a-Volterra operator, { € V([a,b]), and let

u € 52([a,b];]R) satisfy (1.3), (1.4). Let, moreover, there exist to €la,b[ such
that

ulto) = 0. (3.89)
Then
u(t) =0 for t € [to, b]. (3.90)
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Proof. Put
qt) =u""(t) — £(u)(t) for a.e. t € [a, b].
Then, in view of (1.3),

q(t) <0 for a.e. t € [a, ] (3.91)
and
u"(t) = L(u)(t) + q(t) for a.e. t € [a,b]. (3.92)
According to Remark 1.5, there exists a unique solution v to the problem
v"(t) =L(v)(t) + qo(t)  for ae. t € [a,b], (3.93)
v(a) =0, v'(a) =0, v(b) = u(b), (3.94)
where
= {b, et oo
Obviously, in view of (3.91) we have
q(t) <0 for a.e. t € [a, D], (3.96)
which, together with (1.4), (3.93), (3.94) and the assumption ¢ € V([a, b]), implies
v(t) >0 for ¢ € [a, b]. (3.97)
On the other hand, put
w(t) = u(t) — v(t) for t € [a, b]. (3.98)
Then, on account of (3.92)—(3.94) and (3.98), we have
w” (t) = l(w)(t) + q(t) — qo(t)  for a.e. t € [a,b], (3.99)
w(a) = u(a), w'(a) = u'(a), w(b) = 0. (3.100)
Now (1.4), (3.91), (3.95), (3.99), (3.100) and the assumption ¢ € V([a,b]) imply
w(t) >0 for ¢ € [a,b]. (3.101)
However, (3.101) in view of (3.89), (3.97) and (3.98) yields
u(to) = 0. (3.102)

Consequently, on account of (3.93)-(3.95), (3.97), (3.102) and the assumption
{ € Pyp, we have

v"'(t) >0  for ae. t€ [a,to],
v(a) =0, v'(a) =0, v(tg) =0,
whence, according to Remark 2.3, we get
v(t) <0 for ¢ € [a, to]. (3.103)
Thus (3.97) and (3.103) result in
v(t)=0  for t € [a,to).

Therefore,
v"(a) = 0. (3.104)
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Now from (3.93), (3.94), (3.96) and (3.104), according to Lemma 3.5, it follows
that

v(t) <0 for t € [a, b]. (3.105)
However, (3.105) together with (3.97) implies
v(t) =0 for ¢ € [a, b]. (3.106)

Furthermore, (1.3), (1.4) and the assumption ¢ € V([a, b]) result in (1.5) and thus
from (3.89) we get

o (to) = 0. (3.107)
Consequently, on account of (3.95), (3.98), (3.101) and the assumption ¢ € Py,
from (3.89), (3.99), (3.100), (3.106) and (3.107) we obtain

w”(t) >0  for ae. t € [to,b)],
w(ty) =0, w'(tg) =0, w(b) =0,
whence, according to Remark 2.3, we get
w(t) <0 for t € [to, b]. (3.108)
However, (3.108) in view of (1.5), (3.98) and (3.106) results in (3.90). O
The following assertion can be proved analogously.

Lemma 3.7. Let £ € Py, be an a-Volterra operator, £ € Vo([a,b]), and let

u € 52([a7b];R) satisfy (1.3), (1.6). Let, moreover, there exist ty €la,b[ such
that (3.89) is fulfilled. Then (3.90) holds.

Lemma 3.8. Let £ € Py and let u € 62([a, b;R) satisfy (1.3) and

u(a) =0, u(b) = 0, u'(b) = 0. (3.109)
Let, moreover, there exist 3 € 6’0(]a,b[;R) satisfying
B(t) >0 for t €]a,b], (3.110)
B'(b—) <0, (3.111)
B () > (B)(t)  for ae. t€ [a,b]. (3.112)
Then
u(t) <0 for t € [a,b]. (3.113)

Proof. Define the operators ¢ : C([a,b]; R) — C([a,b];R) and ¢ : L([a,b]; R) —
L([a,b];R) by
e)(t) =v(a+b—1) for t € [a, b],
Y()(t) =v(a+b—1t) for a.e. t € [a,b]
and put
L)(t) = —w(f(go(v)))(t) for a.e. t € [a, ], v € C([a, b]; R).

Furthermore, put
V() = @(B)(t)  for t € [a,b].
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Then, obviously, v € CN'O(]a, b[;R) and on account of (3.110)—(3.112) we have
y(t) >0  for t € [a,b], v (a+) > 0,

A" () < £()(¢) for a.e. t € [a,b].

Moreover, —le Pap. Consequently, according to Theorem 2.1, (e V([a, b])
On the other hand, the function w = ¢(u), in view of (1.3) and (3.109) satisfies

w" () > £(w)(t) for a.e. t € [a, ],
w(a) =0, w'(a) =0, w(b) =0,
whence, with respect to the inclusion £ € V([a,b]), we obtain
w(t) <0  for t € [a,b].
However, the latter inequality yields (3.113). O

Proof of Theorem 2.10. According to Theorem 2.8 we have that (1.1), (1.2) has
a unique solution v which satisfies (1.5) provided (2.14) and (2.15) hold. It remains
to show that (2.17) implies (2.18).

Let (2.14), (2.15) and (2.17) hold and assume on the contrary that there exists
to €Ja,b| such that (3.89) is satisfied. Because (1.5) and (2.13) are fulfilled, in
view of {1 € Pap, (2.14) and (2.15), from (1.1) and (1.2) we get (1.4) and

u" () < lo(u)(t) for a.e. t € [a,b]. (3.114)

Thus, according to Lemma 3.6 we have (3.90).
On the other hand, according to the inclusion ¢y € V([a7 b]) and Remark 1.5
there exists a unique solution 8 to the problem

B (t) =Lo(B)(t)  for ae. t € [a,b], (3.115)
Bla)=1,  B(a)=0,  B(b)=0. (3.116)
In the same way as in the proof of Theorem 2.4 one can show that 3 satisfies (2.5)
and (2.6).
First we will show that
u(a) = 0. (3.117)
Assume on the contrary that
u(a) > 0. (3.118)
Put
w(t) = u(a)B(t) — u(t) for ¢ € [a, b]. (3.119)

Then in view of (1.4), (3.90), (3.114)—(3.116), (3.118) and (3.119), we have
w" (t) > Lo(w)(t) for a.e. t € [a, b],
w(a) =0, w'(a) <0, w(b) =0,
whence on account of the inclusion £y € V([a,b]) we obtain
w(t) <0 for ¢ € [a, b].
However, the latter inequality with respect to (2.5), (3.118) and (3.119) results in
u(t) >0 for ¢ €]a, b,
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which contradicts (3.90). Therefore (3.117) holds.

Now let by € ]to,b] be arbitrary but fixed. Then from (3.114) and (3.115), in

view of (2.5), (2.6), (3.90) and (3.117), we get
) =

B"(t) = €5 (B)(t)  for a.e. t € [a, b, (3.120)
u'" (t) < 8% (u)(t) for a.e. t € [a, bo], (3.121)
B(t) >0 for ¢ €]a, by), (3.122)
B'(bo) <0, (3.123)
u(a) =0, u(by) = 0, u' (bg) = 0. (3.124)
Consequently, according to Lemma 3.8,
u(t) <0 for t € [a, bo]. (3.125)
Now (1.5), (3.90) and (3.125) result in w = 0, which contradicts (2.17). O

Proof of Theorem 2.11. According to Theorem 2.9 we have that (1.1), (1.2) has
a unique solution u which satisfies (1.5) provided (2.14) and (2.16) hold. It remains
to show that (2.19) implies (2.18).

Let (2.14), (2.16) and (2.19) hold and assume on the contrary that there exists
to €Ja,b] such that (3.89) is satisfied. Because (1.5) and (2.13) are fulfilled, in
view of {1 € Pgp, (2.14) and (2.16), from (1.1) and (1.2) we get (1.6) and (3.114).
Thus, according to Lemma 3.7 we have (3.90).

On the other hand, according to the inclusion ¢y € Vo([a, bD and Remark 1.5

there exists a unique function § € 52([61, b); R) satisfying (3.115) and
Bla)=0,  f'la)=1,  B(b)=0.
In the same way as in the proof of Theorem 2.5 one can show that 3 satisfies (2.8)
and (2.9).
Now let by €]tg,b] be such that (3.123) holds. Such a point does exist be-
cause $(b) = 0 and (2.8) holds. Then from (3.114) and (3.115), in view of (2.8),
(3.90), (3.117) and (3.123), we get (3.120)—(3.124). Consequently, according to

Lemma 3.8, (3.125) holds. Now (1.5), (3.90) and (3.125) result in u = 0, which
contradicts (2.19). O

The following two assertions are needed to prove Theorems 2.12 and 2.13.

Lemma 3.9. Let —( € Py, be an a-Volterra operator and let £ € V([a,b]).
Then for every by € la,b| the inclusion

% € V([a, bo)) (3.126)
holds.

Proof. According to Theorem 2.1 there exists v € 5’0(]a, b[; R) satisfying (2.1)—
(2.4). Let by €la,b] be arbitrary. Then from (2.1) we have

() >0 for t €]a, by, (3.127)
which also implies

v(a) + 7' (a+) + 7(bo) + meas {t € [a,bo] : v (t) < £ (7)(t)} > 0.  (3.128)
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Because ¢ is an a-Volterra operator, from (2.3) we get
7" (t) < % (y)(t)  for a.e. t € [a,bgl. (3.129)

Thus the restriction of 7 to the interval [a, by belongs to the set Co(]a,bo[;R)
and it satisfies (2.2), (3.127)—(3.129). Therefore, according to Theorem 2.1, the
inclusion (3.126) is valid. O

The following assertion is a result from [10] and we formulate it in a suitable
for us form.

Lemma 3.10. Let £ € Ly, be an a-Volterra operator for which there ezists a
function n € L([a,b]; RT) such that

() @®)| < n@®)|vlle for a.e. t € [a,b], v € C([a,b]; R). (3.130)
Then the problem
u"'(t) = L(u)(t) for t € [a,b],
u(a) =0, W' (a) =0, u’(a) =0
has only the trivial solution.

Proof of Theorem 2.12. Let u be a solution to the problem (1.1p), (1.29). Ac-
cording to Theorem 1.1 it is sufficient to show that u = 0.

Because %Eo € Vo([a, b])7 according to Remark 1.5 there exists a unique solution
« to the problem

o (t) = %Eg(a)(t) _ %€O(|u\)(t) “o(u)@)  forae tefab,  (3131)

a(a) =0, o (a) =0, a(b) = 0. (3.132)

Put
wi (t) = a(t) — u(t) for ¢ € [a,b], (3.133)
wa(t) = at) + u(t) for ¢ € [a, b]. (3.134)

Then from (1.1p), (1.29), (3.131), (3.132), in view of (3.133), (3.134) and the
assumption £y, {1 € Py, we get

7)< %Eo(wl)(t) for a.e. ¢ € [a,b), (3.135)
wi(a) =0, wi(a) =0, wi(b) =0, (3.136)
vt) < %Eo(wg)(t) for ae. t € [a,0], (3.137)
wa(a) =0, wh(a) =0, wa(b) = 0. (3.138)

Now from (3.135)-(3.138), on account of £¢, € Vo([a,b]), we get

wi(t) >0 for ¢ € [a, b], wa(t) >0 for t € [a,b],
whence in view of (3.133) and (3.134) we obtain

a(t) > |u(t)] for t € [a,b]. (3.139)

Now using (3.139) in (3.131) we find
a"(t) > —l1(a)(t)  for ae. t € |a,b],
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which together with (3.132) and the assumption —¢; € V([a,b]) implies
a(t) <0 for ¢ € [a, b]. (3.140)
Consequently, (3.139) and (3.140) yield u = 0. O
Proof of Theorem 2.13. Let u be a solution to the problem (1.1p), (1.29). Ac-
cording to Theorem 1.1 it is sufficient to show that u = 0.
Note that ¢ satisfies (3.130) with n = £o(1) + ¢1(1). Therefore, if u”(a) = 0,

then according to Lemma 3.10 we have v = 0. Thus, without loss of generality we
can assume that

u"(a) > 0. (3.141)
According to (1.29) and (3.141), there exists by € |a, b] such that
u(bg) =0 and u(t) >0 for ¢ €la, byl (3.142)

Therefore, in view of (1.1p), (1.2), (3.142) and because £y, {1 € Py are a-Volterra
operators, we have

u" (t) > —09% (u)(t) for a.e. t € [a, by], (3.143)

u(a) =0, u'(a) =0, u(bg) = 0. (3.144)

However, according to Lemma 3.9, —¢{* e V([a,bo]) and so (3.143) and (3.144)

yield u(t) < 0 for ¢ € [a, bo], which contradicts (3.142). O
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