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Abstract

The formula of the all-pole low-pass frequency filter transfer function of
the fractional order (N +α) designated for implementation by non-cascade
multiple-feedback analogue structures is presented. The aim is to determine
the coefficients of this transfer function and its possible variants depending
on the filter order and the distribution of the fractional-order terms in the
transfer function. Optimization algorithm is used to approximate the tar-
get Butterworth low-pass magnitude response, whereas the approximation
errors are evaluated. The interpolated equations for computing the transfer
function coefficients are provided. An example of the transformation of the
fractional-order low-pass to the high-pass filter is also presented. The re-
sults are verified by simulation of multiple-feedback filter with operational
transconductance amplifiers and fractional-order element.
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1. Introduction

Non-integer-order systems, more commonly called fractional-order (FO)
systems, attract attention thanks to their additional degrees of freedom in
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their properties, more flexible characteristics and ability to model various
physical phenomena more accurately compared to their integer-order (IO)
counterparts [3], [24], [25]. Also analogue frequency filters can be designed
as FO. This approach provides more general properties, the most notable
of which is the possibility of continuously adjusting the roll-off of the mag-
nitude frequency response without limitation to multiples of 20 dB/dec as
is the case of IO filters [6]. FO low-pass (LP) and high-pass (HP) filters
feature the stopband slopes of −20(N+α) dB/dec and +20(N+α) dB/dec,
respectively, where N ∈ N0 is integer component and α ∈ (0, 1) is fractional
component of the order, whereas the sum (N + α) is the fractional order
of the filter. For example, a 2.4-order LP filter thus provides magnitude
frequency response stopband slope of –48 dB/dec. This fine setting of at-
tenuation values in the magnitude response is easily realizable using FO
filters over their IO counterparts. The flexible and precise shaping of FO
filter characteristics is an efficient feature which finds applications e.g. in
biomedical engineering for processing of biological signals such as electro-
cardiograms (ECG) and electroencephalographs (EEG) [26], for biomedi-
cal measurements [9], in microbiological sensor applications [1], control and
regulation systems such as FO proportional-integral-derivative (FO PID)
controllers [25], [2], or audio signal processing [11].

The design procedures of IO analogue filters are well known, however
obtaining a suitable mathematical description (mostly as transfer function
(TF) in s-domain, where s is Laplace variable) and circuit implementation
of a FO filter is a more complex task. For this purpose, the following two
approaches are mainly used:

(1) Numerical search for coefficients of FO TF to minimize the error
between the magnitude frequency response of this TF and the se-
lected target function that determines the FO filter requirements
over a defined frequency band. In the previous works e.g. the
LP Butterworth [6], Chebyshev [5], inverse Chebyshev [7], elliptic
[8], arbitrary quality factor [13], flat band-pass [14], and HP But-
terworth [17] target magnitude responses have been approximated
by the FO filter TF. Once the resulting coefficients of the FO TF
are found, it is then usually realized using a circuit derived from a
known IO analogue filter, where a classic capacitor is replaced with
an element with FO immittance, also known as fractional-order el-
ement (FOE), constant phase element (CPE) or simply fractor [23].
The admittance of FOE can be written as Y (s) = sαF , where α is a
fractional order of FOE, and F is a parameter characterizing FOE
referred to as fractance. As the implementations of FOE (mainly
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with α ∈ (0, 1), i.e. with capacitive character) are currently be-
ing researched intensively and a solid-state FOE is expected to be
available soon, it is important to focus on this design approach and
to investigate the utilization of FOE in traditional filter topologies
to transform these into fractional order. This will reveal poten-
tial advantages over their IO counterparts that designers can take
advantage of in the future. Currently, due to the commercial un-
availability of FOEs, these elements are within experimental ver-
ifications often emulated by passive ladder networks consisting of
resistors and classic capacitors [27].

(2) The second approach approximates the characteristic of FO filter
by a higher IO TF, which is then implemented by an IO circuit of
increased complexity but using classic off-the-shelf elements. The
early works, e.g. [4], [20], [10], are based on IO approximation of sα

in the FO TF resulting from the first approach, thus in fact two con-
secutive approximations are carried out. In latter works [16], [18],
[19] the IO TF is found directly to approximate the target charac-
teristic of FO filter. However, the drawbacks here are the limited
frequency bandwidth and higher number of components (both ac-
tive and passive) compared to the first approach.

The limitation of the previous works dealing with both approaches is
that they are aimed at the design of FO filters of the order between one
and two only, i.e. considering (1 + α) ∈ (1, 2). Partial attention is paid to
higher FO TFs in [6], [4], [20], where the product of a TF with fractional
order (1+α) ∈ (1, 2) and a TF with the order (N − 1) ∈ N is considered to
realize (N + α)-order FO filter by cascade approach. The problem is that
both partial TFs are chosen as Butterworth and thus the resulting filter
is no longer Butterworth with maximally flat magnitude response in the
passband. In a correct cascade synthesis of Butterworth filters the partial
blocks differ in their quality factors. In addition, when the partial filters
have the same –3 dB cut-off frequency, their cascade shows a decrease of
6 dB at this frequency. Thus the intended –3 dB cut-off frequency is no
longer valid. Assuming the second approach, the resulting IO filter circuits
approximating the (N+α)-order are more complex, as their order is usually
(N + 2) and transfer zeros must also be realized. These circuits are more
sensitive to the tolerances of element parameters, as we confirm in Section
5.1. The implementation of the FO filters of the order (N + α) using the
(1 + α)-order filter obtained by the first approach and (N − 1)-order filter,
as mentioned in [6], could provide simpler circuits compared to the second
approach thanks to utilization of FOE which eliminates the transfer zeros.
But the cascade implementation is here probably the only feasible circuit
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solution, as the direct realization of the product of the TFs of order (1+α)
and (N − 1) by a non-cascade structure would be very complicated.

Therefore, in this work the TFs of analogue filters with Butterworth
maximally flat magnitude frequency response and fractional order (N +α)
higher than two, i.e. with N ≥ 2, are explored and evaluated for the first
time. To better understand the origin of the higher-order FO TF format
as defined in Section 2, here we shortly deal with the usual description
of (1 + α) FO TF. As described e.g. in [6], the second-order LP filter
circuits can be transformed to the fractional domain by replacing classic
IO capacitor by FOE resulting in one of the following basic forms of FO
LP TFs:

1H1+α(s) =
a0

b0 + b1sα + b2s1+α
, (1.1)

2H1+α(s) =
a0

b0 + b1s+ b2s1+α
. (1.2)

The order of both these TFs is (1 + α) ∈ (1, 2) assuming α ∈ (0, 1) and
the coefficients a0, b0, b1, b2 determine the magnitude and phase frequency
response of the filter and can be used to compute the element parameters of
the filter circuit. The TFs (1.1) and (1.2) differ in the exponent of s of the
denominator term with the b1 coefficient depending on which of the capaci-
tors in the second-order filter structure is replaced by FOE. The coefficients
in (1.1) and (1.2) have been numerically found in [6] to approximate the
target Butterworth magnitude response with –3 dB cut-off frequency equal
to 1 rad/s and the differences between (1.1) and (1.2) have been analyzed to
find out which one is most suitable for approximating the target response.
Note that the coefficients a0, b0, b1, b2 resulting from the numerical search
are different for each of the TFs (1.1) and (1.2).

In this article we extend the theory of FO analogue frequency filter TFs
and their variant solutions and provide performance and accuracy analysis.
The main contribution is the mathematical description and analysis of frac-
tional higher-order TF designated for non-cascade circuit implementations,
namely inverse follow-the-leader feedback (IFLF) structure [21] containing
only one FOE. For each (N + α)-order, all possible variants of all-pole
FO LP TF are examined to quantify the differences between them and to
determine the most suitable (N +α)-order TFs for the approximated But-
terworth magnitude responses. The coefficients of these selected TFs are
numerically found and expressed in the form of interpolated matrix equa-
tions to enable the reader of this article to design the FO filter of up to the
(5+α)-order. Utilization of the results of these procedures for non-cascade
FO HP Butterworth filter design is also briefly mentioned.
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2. (N + α)-Order Filter Transfer Functions

To introduce the (N + α)-order filter TF format, let us start from the
(N + 1)-order IFLF filter structure presented in Figure 2.1, [21].

+ + +
IN

LP
OUTa0

b0

b1

bN

1
s

1
s

1
s

...

...

INT 1 INT 2 INT N+1

HP
OUT

Fig. 2.1: Inverse follow-the-leader feedback (IFLF) structure
implementing (2.1).

Its all-pole rational LP TF between the input IN and the output LP
OUT is given by

HN+1(s) =
a0

N+1∑
i=0

bisi
, (2.1)

whereas bN+1 = 1. Note that the filter order was intentionally chosen
(N + 1) here for a more convenient notation of the order after extending
(2.1) to the fractional domain.

If the k-th IO integrator in the structure in Figure 2.1 is replaced with
a fractional one (i.e. with its TF being 1/sα) and the other integrators
remain unchanged, the TF of the IFLF filter modifies to the FO form

kHN+α(s) =
a0

k−1∑
i=0

bisi +
N+1∑
i=k

bisi−1+α

(2.2)

with the order (N +α). The comparison of (2.1) and (2.2) reveals that the
first k terms in denominator, i.e. with i ∈ [0 . . (k − 1)], were not altered
and remain with integer exponent of the Laplace variable s. On the other
hand, the terms with higher indexes i, i.e. i ∈ [k . . (N +1)], now contain s
raised to the fractional power of (i−1+α). The number of fractional terms
in (2.2) is thus (N+2−k). Since the value of k indicates the number of the
integrator converted to fractional order in Figure 2.1, its possible range is
from 1 to (N + 1). The parameter k represents another degree of freedom
and extends the variety of TF formats for each filter order (N + α). The
suitable choice of k thus must be examined in terms of implementation of
the required target frequency response. The described transformation of
the filter to fractional domain is advantageous, as only one FOE is required
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for the circuit implementation. Note that the IFLF topology is chosen here
as an example, but also other multiple-feedback state-variable structures
can provide the TF (2.2).

2.1. (N + α)-Order Butterworth Low-Pass Transfer Functions.

In this section the coefficients a0, b0, b1, . . . , bN (remember that bN+1 =
1) of the general (N + α)-order TF (2.2) are found using a numerical op-
timization algorithm to match the target Butterworth LP magnitude re-
sponse. For each value of the selected filter order (N+α) and possible value
of k, an individual search run is carried out resulting in an unique vector
of the coefficients

[
a0 b0 b1 . . . bN

]
. An optimal k value is found for

each considered filter order (combination of N and α) providing the lowest
approximation error between the magnitude of (2.2) with the found coef-
ficients and the target function. This optimal value of k then determines
that the k-th IO integrator in the filter structure should be replaced by FO
integrator and specifies which of the terms in denominator of the TF (2.2)
contain s with integer or fractional exponent. Correspondingly, the process
can be applied to other approximation types (such as Bessel, Chebyshev,
etc.) as well.

The relation for the magnitude of the Butterworth LP transfer func-
tion generalized to the fractional order (N + α) that represents the target
response in this study is as follows [16], [19]:

|BN+α(ω)| = 1√
1 + ω2(N+α)

, (2.3)

where ω is angular frequency. This function provides magnitude of –3 dB
at cut-off angular frequency 1 rad/s, unity pass-band gain, and stop-band
roll-off −20(N + α) dB/dec typical for FO LP filters. Although phase re-
sponse can also be important for the filter design, we should note that the
Butterworth approximation primarily takes into account only the magni-
tude response which should be maximally flat in the passband. Therefore,
we have generalized the known relation valid for integer-order Butterworth
filter by utilizing the fractional order (N + α) to obtain the target magni-
tude response (2.3). Considering the fractional order (1 + α), the relation
(2.3) has been also used in previous works dealing with search for FO LP
filter TFs with Butterworth response, e.g. in [16], [19]. According to the
best authors’ knowledge, the mathematical relation, which could be used
as a target Butterworth phase response depending on the filter order, does
not exist. The phase response can therefore be determined only after the
coefficients of the FO TF have been found using the target magnitude re-
sponse. However, based on the equation (2.2) (considering s = jω), it is
possible to determine the expected asymptotic phase values for very low
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and very high frequencies compared to the cut-off frequency 1 rad/s with-
out knowledge of the TF coefficients. The phase response approaches the
values 0 and −90(N + α) degrees for low and high frequency respectively.

We have employed numerical optimization to find the coefficients of
TF (2.2) such that the maximum absolute error between magnitude in dB
of (2.2) and (2.3) is minimized. For this purpose the MATLAB function
fminsearch was applied with the argument E defined as

E = max
i

∣∣20 log |kHN+α(x, ωi)| − 20 log |BN+α(ωi)|
∣∣ . (2.4)

Here x =
[
a0 b0 b1 . . . bN

]
is the sought vector of the coefficients.

Each search used M = 100 frequency points ωi logarithmically spaced
in the wide frequency range from ω1 = 0.01 rad/s to ωM = 100 rad/s,
covering both pass-band and stop-band of (2.3). For given N and k, the
individual runs of fminsearch function were performed for the fractional
component α decreasing from αMAX = 0.99 to αMIN = 0.01 with a linear
step of αSTEP = 0.01. The first search was always performed with the
highest α = 0.99 because in this case the non-integer exponents of s in
(2.2) are as close as possible to the integer exponents in (2.1) and the initial
estimation of the sought coefficients (input of fminsearch function) can be
done on the basis of the well-known coefficients of the Butterworth TF of
the integer order (N + 1). The next optimization run (with one step lower
α) always uses the values of the coefficients determined in the previous run
as initial estimation. The pseudocode of the proposed technique of FO
TF coefficient design is presented in Algorithm 1. Note that also other
minimization criteria (such as mean square error) and search algorithms
(e.g. metaheuristic algorithms) can be used, however their investigation is
beyond the scope of this paper.

Algorithm 1: Pseudocode of the proposed FO TF coefficient de-
sign.

Input: N , k, αMAX, αMIN, αSTEP, M , ω1, ωM

Output: xα, Eα // coefficient vector x and error E for

a specific α

x0 ← coefficients of (N + 1)-order Butterworth filter

α← αMAX

while α ≥ αMIN do
minimize the error E (2.4) with initial point x0

store xα, Eα

x0 ← xα

α← α− αSTEP

end
display Eα vs. α
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2.2. Optimization Results.
The first minimization of E (2.4) was carried out for N = 2, thus for

fractional order (N + α) ∈ (2, 3). All the possible k values (i.e. 1, 2,
3) are considered. To evaluate the performance of this optimization it is
appropriate to use again the maximum absolute error E in dB defined by
(2.4). The resulting values of this error depending on α and k are shown
in Figure 2.2.
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Fig. 2.2: Maximum absolute error between magnitude in dB
of (2.2) and (2.3) for N = 2.

It is apparent that the magnitude of (2.2) approximates the value of the
target function (2.3) with the lowest error for k = 2 and values of α close to
zero and one. The best results reached for the boundary values of α could
be expected, as here TF (2.2) tends to integer order. The maximum error
occurs for α around 0.6. Interestingly, the errors for k = 1 and k = 3 are
identical. The value k = 1 signifies only one IO term in TF (2.2) and the
first integrator of fractional order in Figure 2.1, whereas k = 3 denotes only
one FO term in (2.2) and the last integrator of fractional order in Figure
2.1. It was also observed that the found values (b0/a0), (b1/a0), (b2/a0),
and (b3/a0), i.e. the coefficients of the denominator of (2.2) divided by a0,
are identical for both k = 1 and k = 3. From this point of view it is possible
to notice a certain symmetry of the results regarding the value of k.

Similarly, the optimizations were performed for N = 3, N = 4, and
N = 5, i.e. for filter orders (N + α) ∈ (3, 4), (N + α) ∈ (4, 5), and



(N + α)-ORDER LOW-PASS AND HIGH-PASS FILTER . . . 697

(N +α) ∈ (5, 6), respectively, and always with assuming all possible values
of k, i.e. k ∈ [1 . . (N+1)]. The reached maximum absolute errors computed
by (2.4) are depicted in Figures 2.3 to 2.5.
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Fig. 2.3: Maximum absolute error between magnitude in dB
of (2.2) and (2.3) for N = 3.

Also for N values from 3 to 5, the largest approximation errors occur
for the boundary (highest and lowest considered) k values. The error is
lowest for central values of k, i.e. k = 2 and k = 3 for N = 3, and k = 3 for
N = 4. Up to N = 4 the error values show the symmetry with respect to
the selected value of k observed already for the case N = 2. From the last
Figure 2.5 withN = 5 it is seen that it is no more possible to unambiguously
determine for which value of k from 2 to 5 the error of approximation
reaches the smallest value, as the dependences on α are similar for all error
curves. Regardless of N , the boundary values of α provide lower error,
whereas the highest error is obtained slightly above the middle of the range
of α. The achieved absolute error values are almost always below 0.5 dB and
for selected optimal values of k they stay below 0.3 dB in the whole range of
α, which is a reasonable value. It can be summarized that for N ∈ [2 . . 5]
and most values of α considered, to reach the best approximation of the
target Butterworth response it is recommended to choose k value as follows:

k =

{
N/2 + 1, when N is even,
(N + 1)/2 or (N + 3)/2, when N is odd.

(2.5)
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Fig. 2.4: Maximum absolute error between magnitude in dB
of (2.2) and (2.3) for N = 4.
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Fig. 2.5: Maximum absolute error between magnitude in dB
of (2.2) and (2.3) for N = 5.

This optimization, therefore, helps to find the optimal distribution of
IO and FO terms in TF (2.2) and also location of FO integrator in the
implementing structure, e.g. in Figure 2.1.
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The coefficients of the TF (2.2) resulted from the numerical optimiza-
tion with N = 2 and k = 2 depending on α are graphically presented by
solid lines in Figure 2.6. The coefficients b1 and b2 are almost identical,
thus their curves (green and violet) overlap. For α = 0.99 the values are
close to the coefficients of the third-order Butterworth TF which, as al-
ready mentioned, have been used as initial estimation for the fminsearch
function. When decreasing α, the coefficients change continuously and for
α = 0.01 they approach the coefficients of the second-order Butterworth
TF providing that the sum of b1 and b2 corresponds to the coefficient of
the first power of s in denominator, i.e. 1.414.
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Fig. 2.6: Coefficients of TF (2.2) with N = 2 and k = 2
found by fminsearch function (solid lines) and interpolated
by (2.6) (dotted lines).

The following interpolated equations as functions of α have been derived
for computing the coefficients a0, b0, b1, . . . , bN . As an example, only one
value of k providing the best approximation result is selected for each of
the values N ∈ [2 . . 5]. The coefficient values determined by (2.6) are also
displayed in Figure 2.6 by dotted lines to demonstrate the accuracy of the
interpolation.
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• N = 2, k = 2⎡
⎢⎢⎣
a0
b0
b1
b2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.9992 −0.0720 −0.0347 0.1063
0.9999 0.0005 0.0010 −0.0017
0.6967 0.8991 −0.1453 0.5452
0.7091 0.8101 0.0337 0.4388

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
1
α
α2

α3

⎤
⎥⎥⎦ . (2.6)

• N = 3, k = 2⎡
⎢⎢⎢⎢⎣

a0
b0
b1
b2
b3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.9974 0.0421 0.0623 −0.1003
0.9984 0.0973 0.1077 −0.2003
1.0418 1.7942 −1.0600 0.8673
0.9625 0.5066 2.8741 −0.9453
1.9850 1.2112 0.0066 −0.5818

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎣
1
α
α2

α3

⎤
⎥⎥⎦ . (2.7)

• N = 4, k = 3⎡
⎢⎢⎢⎢⎢⎢⎣

a0
b0
b1
b2
b3
b4

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9958 0.0536 −0.0019 −0.0487
0.9917 0.1046 −0.2383 0.1461
2.6217 0.9962 0.4211 −0.7971
1.5721 3.1363 −0.7767 1.3395
1.8296 1.1265 3.0882 −0.8161
2.5946 1.2991 −0.2245 −0.4183

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎣
1
α
α2

α3

⎤
⎥⎥⎦ . (2.8)

• N = 5, k = 2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
b0
b1
b2
b3
b4
b5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9932 0.0931 −0.1625 0.0726
0.9982 0.1058 −0.0286 −0.0792
1.6469 3.6925 −4.2764 2.8262
1.5940 0.2503 7.0473 −1.5161
5.1582 5.7095 −0.7549 −1.0162
5.2433 1.5986 −0.0957 0.6862
3.2145 1.1127 −0.1779 −0.3084

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎣
1
α
α2

α3

⎤
⎥⎥⎦ . (2.9)

3. Stability Verification

It is very important to verify the stability of the TF (2.2) with the
coefficients determined by (2.6)-(2.9). The stability was examined using
the procedure described in [22] based on converting the s-domain TF to the
W -plane. After this transformation the W -domain function is analyzed by
classic IO methods. The following steps describe the stability examination:

(1) The substitution s = Wm and α = n/m is performed in FO TF.
(2) The positive integer numbers n and m are chosen such that α =

n/m.
(3) The poles of the transformed TF, i.e. the roots of the character-

istic equation in W -plane, which is of integer order, are found. If
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all absolute values of the root angles are higher than π/(2m), the
system is stable. Otherwise, it is unstable.

Applying this process to the denominator of (2.2) and considering N =
2 and k = 2 yields the transformed characteristic equation in the W -plane
given by

b0 + b1W
m + b2W

m+n + b3W
2m+n = 0 . (3.1)

For the other selected combinations of N and k providing the best
approximation results, the following W -plane characteristic equations are
derived from TF (2.2):

• N = 3, k = 2

b0 + b1W
m + b2W

m+n + b3W
2m+n + b4W

3m+n = 0 . (3.2)

• N = 4, k = 3

b0 + b1W
m + b2W

2m + b3W
2m+n + b4W

3m+n + b5W
4m+n = 0 . (3.3)

• N = 5, k = 2

b0+ b1W
m+ b2W

m+n+ b3W
2m+n+ b4W

3m+n+ b5W
4m+n+ b6W

5m+n = 0 .
(3.4)

To analyze the range of α from 0.01 to 0.99 in steps of 0.01 a fixed value
of m = 100 is chosen which results in integer values of n necessary to satisfy
all values of α from the selected range. The minimum absolute values
of angles of roots of (3.1)-(3.4) for 0.01 ≤ α ≤ 0.99 and the coefficients
determined by (2.6)-(2.9) are presented in Figure 3.1. For reference, the
stability margin angle (180◦/(2m) = 180◦/200 = 0.9◦) is given as a solid
red line. All minimum absolute root angles below this line would indicate
unstable behavior.

As it is clear from Figure 3.1, each case has absolute pole angles higher
than the stability margin angle. Thus, the filters described by the TF (2.2)
with the coefficients given by (2.6)-(2.9) and the respective values of N and
k are found to be always stable.

4. Extension to High-Pass Filters

Applying the transformation s → 1/s, the FO LP TF (2.2) can be
transformed to FO HP TF given by the relation

kH
HP
N+α(s) =

a0s
N+α

k−1∑
i=0

bisN+α−i +
N+1∑
i=k

bisN+1−i

. (4.1)

Compared to the TF (2.2), there are k fractional terms in the denominator
of (4.1) and the term in the numerator is also fractional. The order of the
coefficients b in the denominator is reversed (b0 is in the term with highest
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Fig. 3.1: Minimum absolute root angles in W -plane for
(3.1)-(3.4).

exponent of s). This HP transfer function can be realized by the IFLF
structure in Figure 2.1 with the output marked HP OUT and where the
(N +2− k)-th integrator is fractional. The coefficients a and b determined
for LP TF (2.2) can be used also in HP TF (4.1) to approximate FO HP
Butterworth response with –3 dB cut-off frequency 1 rad/s. Therefore
no extra numerical search for HP coefficients is required. It is also not
necessary to determine for which value of k the lowest deviation of the TF
(4.1) from the FO HP Butterworth response is achieved as the optimal
value of k is the same as for LP FO TF.

5. Example of the Filter Design and Simulation

As an example, a LP IFLF filter design with order 2.25 and parameters
N = 2, k = 2, α = 0.25 will be given. The coefficients of TF (2.2) were
found for cut-off angular frequency 1 rad/s. This frequency will be shifted
to a more practical value ω0 = 10 krad/s, i.e. f0 = 1592 Hz, using the
frequency scaling demonstrated by the following relation,

2H2.25(s) =
a0

b0 +
b1
ω0
s+ b2

ω1.25
0

s1.25 + 1
ω2.25
0

s2.25

=
a0ω

2.25
0

b0ω
2.25
0 + b1ω

1.25
0 s+ b2ω0s1.25 + s2.25

.

(5.1)
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After substitution of the coefficients determined by (2.6) and the se-
lected ω0 into (5.1) we get

2H2.25(s) =
9.8032 · 108

1 · 109 + 9.1933 · 104s+ 9.1926 · 103s1.25 + s2.25
. (5.2)

This TF is realized by the multiple-feedback filter shown in Figure 5.1 con-
taining three operational transconductance amplifiers (OTA), two resistors,
two standard capacitors, and one capacitive FOE (F2 element) with the or-
der α = 0.25. The OTA element is a differential voltage-controlled current
source with output current given by the product of transconductance gain
gm and differential input voltage: iOUT = gm(v+ − v–). The LT1228 am-
plifier [15] was used as OTA in the OrCAD PSpice simulations presented
here.

gm1

+

_

OTA1

C1 gm2

+

_

OTA2

F2 gm3

+

_

OTA3

C3

VIN

VOUT

 = 0.25

LT1228
LT1228

LT1228
R2

R1

Fig. 5.1: OTA-based 2.25-order LP filter.

The TF of the structure in Figure 5.1 in terms of element parameters
is

2H2.25(s) =

R2

R1 +R2

gm1gm2gm3

C1F2C3
gm1gm2gm3

C1F2C3
+

gm2gm3

F2C3
s+

gm3

C3
s1.25 + s2.25

. (5.3)

Choosing C1 = C3 = 47 nF and fractance F2 = 63.162 �F·sec−0.75, by
comparing the coefficients in denominators of (5.2) and (5.3) we get the
transconductances gm1 = 0.5112 mS, gm2 = 0.6317 mS, and gm3 = 0.4321 mS.
The DC gain a0/b0 = 0.98032 is ensured by simple resistive divider R1 =
240 Ω, R2 = 12 kΩ at the filter input. Due to the commercial unavail-
ability of FOE, this element was approximated by 7th-order Valsa ladder
structure [12] as shown in Figure 5.2. The resistances and capacitances
were determined using the approach described in [12] and are summarized
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in Table 5.1. The admittance magnitude (black) and phase (blue) charac-
teristics of the approximated FOE (solid lines) and the ideal values (dotted
lines) are presented in Figure 5.3. It can be observed that the RC circuit
operates correctly in the frequency band from 75 Hz to 1.15 MHz (more
than 4 decades) providing the phase angle 90◦ · α = 22.5◦ with maximum
deviation ±1◦.

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5
R0

C0
R6

C6

Fig. 5.2: Valsa RC circuit to approximate FOE in Figure
5.1 (F2 element).

Tab. 5.1: Resistances and capacitances in the circuit from
Figure 5.2 (α = 0.25, F2 = 63.162 �F · sec−0.75).

R0 4.64 kΩ C0 39 pF
R1 5.11 kΩ C1 220 nF
R2 4.02 kΩ C2 33 nF
R3 6.81 kΩ C3 5.6 nF
R4 1.15 kΩ C4 1.2 nF
R5 2.2 kΩ C5 4.7 nF
R6 590 Ω C6 270 pF

The PSpice simulated magnitude frequency characteristic of the filter
from Figure 5.1 with LT1228 OTAs and FOE from Figure 5.2 is depicted
in Figure 5.4 as dotted black line. The target characteristic determined by
(2.3) and shifted to the cut-off frequency f0 = 1592 Hz is represented by
black solid line. The optimized magnitude characteristic given by (5.2) is
displayed by dashed black line. The blue and green lines have been added
to illustrate the position of the FO characteristics between the 2nd and 3rd

filter order.
Both the optimized and simulated characteristics of the filter are in

a very good agreement with the target function. As these characteristics
overlap, the magnitude errors of the optimized function and of the simulated
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Fig. 5.3: Admittance magnitude and phase characteristics
of the approximated FOE from Figure 5.2.

characteristic against the target function are shown in Figure 5.5 by the
dashed and dotted lines, respectively.

The error of the optimized characteristic (5.2) with the found coeffi-
cients vs. the target function is in the range of ±0.17 dB which confirms
also the result in Figure 2.2 (blue line at α = 0.25). The error of the sim-
ulated characteristic follows the error of the optimized characteristic up to
1 kHz and at higher frequency it turns to negative values, however it does
not exceed a very low value of –0.72 dB in the displayed band.

The phase frequency characteristics of the optimized function (5.2) and
of the simulated filter from Figure 5.1 are shown in Figure 5.6 by dashed
and dotted lines, respectively. Target phase is not present in Figure 5.6 as
only magnitude part is defined by the target function (2.3). As discussed in
the Section 2.1, a target phase response in a form of mathematical relation
cannot be defined. Thus only the asymptotic phase values 0◦ and −90◦ ·
2.25 = −202.5◦, which the phase theoretically approaches at the edges of
the frequency band, are indicated by the red arrows in Figure 5.6. Both
of the black phase characteristics in the figure are close to each other and
approach the expected asymptotic values at low and high frequencies. The
phase characteristics of the 2nd and 3rd order Butterworth filter have been
also added for illustration. Both of the black phase characteristics are
close to each other and at high frequencies they approach the expected
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value −90◦ · 2.25 = −202.5◦. Figure 5.7 displays the difference between
the simulated phase characteristic and the optimized phase of (5.2) from
Figure 5.6 in detail.

0

0.01 0.1 1 10 100 1000

M
ag

ni
tu

de
 (d

B
)

Frequency (kHz)

target eq.(2.3)
optimized eq.(5.2)
simulated
2nd order
3rd order

Fig. 5.4: Target acc. to (2.3) (solid black), optimized acc.
to (5.2) (dashed black), and simulated (dotted black) mag-
nitude characteristics of the Butterworth LP filter of the
order 2.25. (The black lines overlap.)

5.1. Monte-Carlo Analysis.
In order to determine the sensitivity properties of the circuit in Figure

5.1, the Monte-Carlo (MC) simulations considering 10 % tolerance val-
ues (drawn from a uniform distribution) for the resistors, capacitors, and
FOE were performed for 200 runs. The OTAs were simulated with exact
transconductance gains, as these parameters can be precisely set for the
amplifiers via an external control input. The resulting MC magnitude re-
sponses are presented in Figure 5.8 by green lines and the nominal run
(with exact element values) is marked with black color. The inset shows
a detail of the characteristics around the cut-off frequency 1.592 kHz. It
is apparent that the circuit has low sensitivity to the variations of passive
element values, especially in the passband. For example at 0.1 kHz the
maximum magnitude deviation from the nominal run is 0.04 dB and in the
stopband at 10 kHz this deviation is 2.1 dB. The –3 dB cut-off frequency
of the runs varies between 1.38 kHz and 1.81 kHz.
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Fig. 5.5: Magnitude errors of optimized (5.2) (dashed), and
simulated (dotted) characteristics from Figure 5.4 vs. target
function (2.3).

To have a possibility of comparison with other works, the MC simula-
tions were carried out also for a 4.5-order LP Butterworth filter with N = 4,
α = 0.5, k = 3, TF according to (2.2), and coefficients calculated by (2.8).
The TF was implemented by the non-cascade IFLF structure analogous to
Figure 5.1 which was extended by two integrator sections. The MC re-
sponses are shown in Figure 5.9. The frequency axis is normalized with
regard the cut-off frequency for the sake of generality. The results again
confirm that also the 4.5-order filter has low sensitivity, mainly in the pass-
band. At the normalized frequency 0.1 the maximum magnitude deviation
from the nominal run is 0.09 dB and in the stopband at frequency 10 this
deviation is 2.9 dB. The normalized –3 dB cut-off frequency of the runs is
detected between 0.76 and 1.19.

The MC simulations in Figure 5.9 were compared with the following
TF presented in [19] as equation (13):

H4.5(s) =
0.0241s2 + 0.6159s + 1.2501

(0.1696s3 + 1.3706s2 + 2.0965s + 1.2433)(s + 1)(s2 + s+ 1)
.

(5.4)

This TF approximates also the 4.5-order Butterworth LP response by a
product of three integer-order LP TFs. The 3rd order TF with transfer
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Fig. 5.6: Optimized acc. to (5.2) (dashed), and simulated
(dotted) phase characteristics of the Butterworth LP filter
of the order 2.25.

zeros approximates the 1.5-order Butterworth response. The 1st and 2nd

order all-pole TFs, having together a Butterworth response, increase the
filter order by three. Each of the mentioned individual parts of the TF (5.4)
were implemented using the follow-the-leader feedback (FLF) circuits with
current feedback operational amplifiers (CFOA) presented in [19]. Appar-
ently, this structure cascaded of three circuits is much more complex in
comparison to the 4.5-order IFLF filter used for the previous simulation.
The MC simulations of the structure from [19] are depicted in Figure 5.10.
It is evident that this circuit is more sensitive than the 4.5-order filter from
this work, especially in the passband. Here at the normalized frequency
0.1 the maximum magnitude deviation from the nominal run is 4.1 dB and
in the stopband at frequency 10 this deviation is 5.2 dB. The normalized
–3 dB cut-off frequency of the MC runs is between 0.57 and 1.01 and the
nominal run shows the cut-off frequency of only 0.81, whereas at the unity
frequency the nominal run decreases to –6 dB. It confirms that the 4.5-order
filter from [19] does not provide an exact Butterworth response because the
partial cascaded TFs are chosen as Butterworth, as discussed in Section 1.
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(5.2) characteristics from Figure 5.6.

6. Discussion and Conclusion

We have introduced formats of all-pole LP and HP filter TFs of the
fractional order higher than two, suitable for non-cascade circuit imple-
mentations, e.g. by state-variable structures with integrators and multiple
feedbacks. The LP TFs of the fractional order from 2 to 6 have been ex-
amined regarding the accuracy of the approximation of the Butterworth
target function. Their slope of magnitude frequency response in stopband
is continuously adjustable between –40 dB/dec and –120 dB/dec and not
limited to multiples of 20 dB/dec only, which is an important difference
compared to IO filters. All the FO TF formats considered (depending on
the selected values of N and k) show good agreement with the target func-
tion, while the maximum absolute error is mostly below 0.5 dB. The error
can be reduced even below 0.3 dB with the optimal choice of the value of
k determining the position of the FO integrator in the filter structure. It
was found that the FO integrator should be located in the middle of the
structure and for higher filter orders it should not at least occur at its edge
to reach the lowest error of approximation of the target function. For these
most suitable values of k and fractional orders from 2 to 6 the relations for
computing the FO TF coefficients are presented.
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Fig. 5.8: Monte-Carlo simulated magnitude characteristics
of the 2.25th-order Butterworth LP filter.

The resulting FO filter structure differs from the conventional IO one
only in replacing one standard capacitor with FOE. With the expected
availability of FOE implementations, it will be possible to easily design
FO filters without increasing the circuit complexity compared to conven-
tional IO filters. The structures with integrators and multiple feedbacks are
practically well-proven and employ commonly available active elements.

FO HP filters can be easily obtained from the FO LP filters by the
well-known s→ 1/s transformation of the TF. The described methodology
can also be used to design FO filters based on other target functions (e.g.
Chebyshev, Cauer, Bessel), but for this purpose it is necessary for the
designer to program own optimization routine for finding the TF coefficients
and possibly use a modified filter structure with feedforwards in case the
TF contains transfer zeros.
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Fig. 5.9: Monte-Carlo simulated magnitude characteristics
of the 4.5th-order Butterworth LP filter from this work.
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