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1 INTRODUCTION

Discrete equations arise naturally in discretizing ordinary or delayed differential equations.
As such, they may serve as a powerful mathematical tool for modelling various phenomena
in physics, biology, engineering, economics, and many other scientific fields.

Of special importance are applications of discrete equations in electrical engineering,
particularly discrete-time signal processing where they are employed to digitize analogous
signals. Thus, investigating the properties of systems of discrete equations is part of the main
stream of research.

The thesis is devoted to the problems of representing the solutions of what is called discrete
systems with weak delay.

The fundamentals of the theory of difference equations are well described, for example, in
books by S. Elaydi [33], by I. Gyéri, G. Ladas [35], by V. L. Kocié¢, G. Ladas [42] and by R. P.
Agarwal, M. Bohner, S. R. Grace, D. O’'Regan [1|. Applications to electrical engineering are
described, e. g., in books by R. Vich, Z. Smékal [60] , by J. G. Proakis, D. G. Manolakis [4§]
and by A. V. Oppenheim, R. W. Schafer, J. R. Buck [47].



1.1 CURRENT STATE

The theory of ordinary difference equations is developed intensively in various directions.
Many of them copy topics similar to those of ordinary differential equations, but there are
topics not analogous to problems considered for them.

The areas of in-depth resarch include, e.g., the theory of representations of solutions of linear
discrete systems with delay. We mention at least papers [17], [18], [21]- [29], [40], [45] and
monograph [20]. The problem of the existence of positive solutions of discrete equations is
studied, e.g., in [2|— [5], [44]. Various problems related to the stability of solutions of discrete
equations and systems are analyzed in [19], [37], [41], [43]. Oscillation properties of solutions of
discrete equations are studied, e.g., [38], [46], [49]. The asymptotic behavior of the solutions and
various qualitative properties of solutions are studied in [6], |7], [15], |16], [30], [31], [34], [50].

The theory of weakly delayed systems is considered in the papers [9]- [11], [21], [39]. As
a co-author, the author of the thesis, has recently achieved new results on this topic, e.g.,
in [12]- [14], 32], [61]- [59].

1.2 AIMS OF THE THESIS

We use the following notation in the sequel: For integers s, ¢, s < ¢, we define a set
71 :={s,s+1,...,q—1,q}. Similarly, we define a set Z° :={s,s +1,... }.
The aim of this thesis is to analyse weakly delayed linear discrete systems with constant
coefficients and delays of the form

z(k +1) = Az(k) + Bx(k —m) (1.1)

where m > 0 is a positive integer, k € Z¥, A = (a;;) and B = (b;;) are constant 3 x 3
matrices, and z: Z>, — R3. Throughout the thesis we assume detA # 0 (the presence of a
zero eigenvalue of A can cause problems in constructing of systems of generalized eigenvectors
of some auxiliaty matrices).

Methodically, we will follow the papers [39] and [10,[11] as well. In [39] a planar linear discrete
system with a weak delay is considered

z(k +1) = Az(k) + Bx(k —m), (1.2)
having a fixed integer m > 0, k € Z5°, A = (a;;) and B = (b;;) are constant 2 x 2 matrices,
and z: 2, — R2.

The system with weak delays is defined in [39] as a system (|1.2]) for which the equality
det (A+A\""B = AE) = det (A — \E),

where E' is a 3 by 3 unit matrix, holds for every A € C\ {0}.
The relevant general solution of ([1.2)) is constructed in [39] with the results on the
dimensionality of the space of solutions deduced.

In [10,/11] generalizations were investigated of system (|1.2) having the form

x(k+1) = Ax(k) + Bx(k —m) + Cz(k — n),



where m > n > 0 are fixed integers, k € Z5°, A = (a;;), B = (b;;) and C = (c¢;;) are constant
2 X 2 matrices, and z: Z*, — R? and

x(k+1) = Ax(k) + zn: Bla;(k —my)

where my, mo, ..., m, are constant integer delays, 0 < m; < mg < --- < m,, k € Zg°,
A, B!, ..., B™ are constant 2 x 2 matrices, A = (a;;), B' = (béj), i,7j=1,2,1=1,2,...,n and
z: 2%, — R

The dissertation aims to select weakly delayed systems from a general discrete system (|1.1).

We will give criteria for to be weakly delayed in terms of the coefficients of matrices A
and B. The next problem is to find analytical formulas describing the solutions of system ([1.1).
It is known, that in contrast to non-weakly delayed systems, the solutions of weakly delayed
ones depend only on part of the initial data. Therefore, we will investigate the problem of
reducing the initial data as well.

1.3 PRELIMINARY NOTIONS AND PROPERTIES
Consider discrete systems
z(k+1) = Az(k) + Bx(k —m) (1.3)
where m > 0 is a fixed integer, k € Z°, A = (a;;) and B = (b;;), are constant { x [ matrices,

and x: 2>, — R [ > 2.

In [21], linear weakly delayed systems were defined for planar systems. This definition can be
applied to [-dimensional systems as follows.

Definition 1.3.1. System (|1.3)) is called weakly delayed if the characteristic equations for (|1.3])
and for the system without delay

z(k +1) = Ax(k) (1.4)
have identical roots, that is, if, for every A € C\ {0},

det (A+X\""B = AE) = det (A — \E).

In the thesis we use various regular transformations of weakly delayed systems . The
property of a system to be weakly delayed is invariant under such transformations. Therefore,
the following result forms the basis for our following constructions and the relevant proofs
can be found, for example, in [21] and [10], [11], [36]. We formulate this property and, for
the reader’s convenience, we give its proof as well.

We consider a linear transformation
z(k) = Sy(k) (1.5)
with a nonsingular 3 x 3 matrix S. Then, the discrete system for y is
y(k+1) = Asy(k) + Bsy(k —m) (1.6)

with As = ST1AS, Bs = S7'BS. We show that the property of a system being weakly delayed
is preserved by every nonsingular linear transformation.



Lemma 1.3.2. If the system (1.1)) is weakly delayed, then its arbitrary linear nonsingular
transformation (1.5) again leads to a weakly delayed system (1.6)).
1.4 CRITERIA OF WEAKLY DELAYED SYSTEMS

Theorem 1.4.1 ( |9]). Let Il =3 in (1.3)). Then, (1.3)) is a weakly delayed system if and only
if conditions (1.7)) —(1.12)) below hold:

bi1 + bog + b3z = 0, (1.7)
b1 bz bi3
bgl b22 b23 - 0, (18)
bsi b3z bss
11 aiz2 A3 b1 bio b13 bi1 bio 513
bai  baa  bog| + |ag1 age ags| + [bar baa bog| =0, (1.9)
bsi  bsa  bss bsi b3y b3z a31 daszz 33

bi1 biz bzl |binr b2 i3 1 0 0
b21 b22 623 +10 1 0+ bgl b22 bg3 = 0, (]_]_0)
0 0 1 bs1  bsa  bss bs1  bza  bss

11 a1z A3 11 Q12 413 bi1 bio b13
a1 @ Qo3| + |bar baa  bog| + |ag1 agx ags| = 0, (1-11)
bsi bsa a3 a31 azz2 Aas3 a31 32 Q33

a1; Qi Aaig aj; a2 Aais 1 0 0
bor baa baz|+| 0 I 0]+ a2 ax a3
0 0 1 bs1 b3y b33 bs1 b3y b33
(1.12)
bin bz b3 bii bz b3 I 0 0
+ |a21 aze a|+ |0 I 0]+ |bar Doy byg|=0.
0 0 1 azy asp azz| |az1 a3z 433

Theorem 1.4.2. Let | = 3 and \p;, i = 1,2,3 be eigenvalues of matriz B. If (1.7), (L.8) and
(1.10) hold, then

Api=0, i=1,23.

Theorem 1.4.3. If (1.3)) is weakly delayed, then B is a nilpotent matriz.

2 CRITERIA FOR WEAKLY DELAYED SYSTEMS

2.1 JORDAN CANONICAL FORMS OF A AND CRITERIA FOR WEAKLY
DELAYED SYSTEMS

Throughout the remaining part of the thesis we will assume that [ = 3 in (1.3)).
It is known that, for every matrix A, there exists a nonsingular matrix S transforming it to
the corresponding Jordan matrix form A;. This means that

A;=81AS8



where A; has the following seven possible forms (denoted below by Ay, ..., A7), depending
on the roots of the characteristic equation

det (A — A\E) =0. (2.1)
If (2.1)) has three real distinct roots A;, g, Az, then

A 0 0
A=]0 X 0]. (2.2)
0 0 X3

If (2.1) has real single root A\; and two-fold real root Ay = A3, then

A 00
Ab=10 A 0 (2.3)
0 0 A
or
A 00
As=[0 x 1. (2.4)
0 0 A

In the case of one triple real root A = A; 23, the following forms are possible

A0 0

Ar=10 X 0], (2.5)
00 A
10

As=[0 X o], (2.6)
00 A
Al

Ae=10 X 1], (2.7)
00 A

Finally, if one root is real and two roots are complex conjugate, i.e. Ao 3 = p £ iq, with ¢ # 0,
then

A 00
Ar=10 p q]. (2.8)
0 —q p

In this part, we will simplify the general conditions f for each of the Jordan
forms —.

Since the property of a system to be weakly delayed is preserved (by Lemma [1.3.2 page
under arbitrary linear nonsingular transformation , in the following, we assume, without
loss of generality, that matrix A is given in the Jordan form — and, without defining
addditional notations, the matrix B is used again (instead of a transformed matrix Bs,

see (L.6)).



2.1.1 Criterion for Weakly Delayed Systems in the Case (2.2)

Consider system ([1.3)) with the matrix A = Ay, i.e.,
x(k+1) = Az(k) + Bx(k — m).
In [8] the following result is formulated.

Theorem 2.1.1. System (2.9)) is a weakly delayed system if and only if

bi1 = bag = b3z = 0,
b12ba3b31 + b13ba1bse = 0,
b12b21 + bi3bs1 + bagbsa = 0,
Agbi2ba1 + Aobi3bs1 + A1basbse = 0.
2.1.2 Criterion for Weakly Delayed Systems in the Case (2.3
Consider system (1.3]) with the matrix A = Ay, i.e.,

x(k+1) = Agx(k) + Bx(k —m).

Theorem 2.1.2. System (2.14)) is a weakly delayed system if and only if

bi =0,

bag + b33 = 0,

b12ba1 + b13b3; = 0,

baabsz — bagbza = 0,

b12023b31 + b13b21b32 — b13b22b31 — b12ba1bss = 0.

2.1.3 Criterion for Weakly Delayed Systems in the Case (2.4)
Consider system (|1.3]) with the matrix A = Ag, i.e.,

z(k 4+ 1) = Asz(k) + Bx(k —m).

Theorem 2.1.3. System ([2.20)) is a weakly delayed system if and only if

bll = Oa
by + b33 = 0,
b32 = 07

baabsz — biabay — b13b31 = 0,
(A1 — A2)baabss + biabsy =0,
b12b23b31 — D13b22b31 — bi1aba1bzs = 0.

10
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2.1.4 Criterion for Weakly Delayed Systems in the Case (12.5))
Consider system (1.3]) with the matrix A = Ay, i.e.,

z(k+1) = Az(k) + Bx(k —m).

Theorem 2.1.4. System (2.27)) is a weakly delayed system if and only if

bi1 + bag + b33 = 0,
b11b22 + b11b33 + ba2bzs — b12bay — b13b31 — bazbza = 0,
b11022b33 + b12b23b31 + b13b21032 — D13b22b31 — D12b21b33 — b11b23bza = 0.
2.1.5 Criterion for Weakly Delayed Systems in the Case (2.6))
Consider system (1.3]) with the matrix A = As, i.e.,

z(k+ 1) = Asz(k) + Bx(k —m).

Theorem 2.1.5. System (2.31)) is a weakly delayed system if and only if

b11 + bz + b33 = 0,

ba1 =0,

basbs; = 0,

b11b22 + b11b33 + bazbzs — b13bsr — bagbza = 0,
b11022b33 — b13bagb31 — b11basbse = 0.

2.1.6 Criterion for Weakly Delayed Systems in the Case (12.7))
Consider system ([1.3]) with the matrix A = Ag, i.e.,

x(k+1) = Agz(k) + Bx(k —m).

Theorem 2.1.6. System (2.37)) is a weakly delayed system if and only if

bi1 + bz + b33 = 0,

bo1 + b32 = 0,

bs1 = 0,

ba1b33 + b11b32 = 0,

b11baz + b11b33 + bazbzz — b12bay — bagbzy = 0,
b11b22b33 + b13b21b32 — D12b21b33 — b11b23b3a = 0.

2.1.7 Criterion for Weakly Delayed Systems in the Case (2.8)
Consider system (|1.3)) with the matrix A = A7, i.e.,

x(k+1) = Aqx(k) + Bx(k —m).

(2.27)

(2.28)
(2.29)
(2.30)

(2.31)

(2.37)



Theorem 2.1.7. System ([2.44) is a weakly delayed system if and only if

by, =0, (2.45)
bao + b3z = 0, (2.46)
bag — b3s = 0, (2.47)
baabsg — D1aba1 — bi3bsi — basbza = 0, (2.48)
(A = p)(br2bar + bi3bs1) + q(bi2bs1 — bizbar) = 0, (2.49)
b12b23b31 + b13b21b32 — b13bagb31 — b12ba1bsz = 0. (2.50)
3 SOLUTION OF WEAKLY DELAYED DIFFERENCE
SYSTEMS IN R3
3.1 CONSTRUCTION OF GENERAL SOLUTION OF SYSTEM
Below we investigate system (1.1]) with the initial data
=) =
z(0) =z0= |Zo2|,...,x(—m) =2_p, = | T2 (3.1)
Zo,3 Lm,3
where z; ;,1=0,...,m, j = 1,2,3, are real constants. To avoid complicated notation, we will

write just m in the right-hand side of (3.1) rather than —m as one would expect. This will
cause no problems in future computations.
Define new dependent 3-dimensional vector functions y;(k), i = 1,...,3(m+1) by the formulas

ys(k) = xs(k), (3.2)
ys+3(k> = $s(]€ - 1)?
ys+6(k> = xs(k - 2)?

ys+3m(k) = $s(k - m)>

where s = 1,2, 3. It is easy to see that

ys(k + 1) = Ays(k> +Bys+3m(k)>
Ys+3(k +1) = Eys(k),
Ysre(k +1) = By, 3(k),
Ysram(k +1) = EYsi3m-1) (k)
where s = 1,2, 3. The new system can be written in the matrix form
y(k+1) = Ay(k), k>0 (3.3)
where y(k) = (y1(k), ..., ysmm+1) (k)" and
A © ... 6 B
E 6 ... 6 6
A=|© £ © © (3.4)
©® 6 ... E 06
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is a 3(m+ 1) x 3(m + 1) matrix, © is a 3 X 3 zero matrix.
The initial data for the system (3.3]), in terms of (3.1]), are

y(0) = yo = (o, ., zm)" (3.5)
We will transform system ({3.3)) using the transformation
y(k) = Tw(k) (3.6)

where 7T is a regular transition 3(m + 1) x 3(m + 1) matrix and w(k) is a new dependent
3(m + 1)-dimensional vector into a system with a matrix of the Jordan form. We get

Tw(k + 1) = ATw(k)

N w(k +1) = Guw(k) (3.7)
where
G=T AT (3.8)
with the initial data for being, as it follows from (3.6)),
w(0) = T 'y(0). (3.9)

Then, the solution of the system ({3.7)) is
w(k) = G*w(0), k=1,2,3,....
If the matrix A in (3.4) is in its Jordan form, that is, A = A;, i € {1,...,7}, we will denote

the matrix A as A;, i € {1,...,7}, that is,

C) © B

© ... © 6

A = E ... 6 6| (3.10)

SO

® 6 ... £ 6
Considering system ({3.3]), suppose that an eigenvalue A of the matrix A has a geometric

multiplicity of m,(A). Then, the eigenvalue A of the matrix G in (3.7)) has the same geometric
multiplicity m,(\). We prove this property.

Theorem 3.1.1. Geometric multiplicities of identical eigenvalues of matrices A and G are
tdentical.

3.2 RELATIONSHIP BETWEEN THE EIGENVALUES OF A;, B, AND A4;

The main purpose of this part is to show that the set of all eigenvalues of matrices A;,
1 =1,...,7 can be written as the union of the sets of all eigenvalues of matrices A;,i =1,...,7,
and the relevant matrix B.

In other words, we prove the folloving theorem.

Theorem 3.2.1. Let system be weakly delayed and let the matriz A, having a Jordan
form A;, i € {1,...,7}, be fired. Then, the set of all the eigenvalues ,ué,j =1,...,3(m+1)
of the matriz A; equals the union of the sets of all the eigenvalues N}, j = 1,2,3 of the matriz
A;, Ags, s = 1,2,3 of the matriz B and the remaining eigenvalues equal zero, i.e.,

i =X,j =123
ph=0,j=4,...,3(m+1).

13



3.3 SOLUTION OF THE PROBLEM (1.1)), (3.1))
The solution of the problem (3.3)) on page and (3.5)) on page , that is, the problem

y(k+1) = Ay(k), k>0

y(0) = 5o = (z0, ..., 7m)".

is
y(k) = A*y(0) = (TGT )*y(0) = TGT y(0) = TG*w(0), k=1,2,3,...
where w(0) is given by (3.9).

In , the matrix A is defined by and takes seven different forms @D depending
on the Jordan forms A;, i = 1,...,7, of A. The matrix G defined by takes different
forms depending on the Jordan form of A and on geometric multiplicity of B. Therefore if
A=A,i=1,...,7then G = G;;,7 = 1,...,7 where j = 1 if geometric multiplicity of the
zero root of B equals 1 and 7 = 2 if geometric multiplicity of the zero root of B equals 2, and
T="Tj i=1,...,7, j = 1,2 where T;; is a transition matrix transforming A; to G;.

Using an auxiliary matrix

we can write the solution of the initial problem (L.I]), page [6, (3.1), page [12} that is, the
problem

z(k+1) = Az(k) + Bx(k — m),

Zo,1 Tm,1
J}(O):LL’O: Zo,2 ,...,x(m):xm: Tm2 |
Z0,3 Tm,3

in terms of transformation (3.2), as
(k) = QTG w(0), k=1,2,3,...,

where, by (3.9)
w(0) = T"y(0).

Therefore, the following theorems hold.

Theorem 3.3.1. Let the matriz A have the form (2.2) with three real distinct roots A1, Aa,
A3, let the elements of the matriz B satisfy (2.10)—(2.13)). Then, the solution of the initial

problem (1.1), (3.1) is given by the formula
z(k) = QTi;65,w(0), k=1,2,3,..., (3.11)

where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).

14



If j =1 and k > 3m then, by (3.11)),

A5w,(0)
k )‘]?fwfi(())
z(k) = QT1G1,w(0) = QT 0 - (3.12)
0
If j=2 and k > 3m — 1 then, by ,
A5w,(0)
k /\§IU3(O)
Ji(l{i) = Q7'12g12w<0) = Q7—12 0 . (313)
0

Theorem 3.3.2. Let the matrixz A have the form (2.3)) with a single real root Ay and a double
real Toot Ay, let the elements of the matriz B satisfy (2.15)—(2.19). Then, the solution of the

initial problem (1.1)), (3.1)) is given by the formula
z(k) = QT;G5w(0), k=1,2,3,..., (3.14)

where j = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).
If j =1 and k > 3m then, by (3.14)),

Afwi(0)
Asws(0) + kA3~ 'ws(0)
k Asws(0)
2(k) = QTnG5w(0) = QTx 0 . (3.15)
0
If j =2 and k > 3m — 1 then, by ,
Afwi(0)
Nsws(0) + kX5~ w3(0)
k Nsw3(0)
2(k) = QT22Gw(0) = QT2 0 . (3.16)
0

Theorem 3.3.3. Let the matriz A have the form (2.4) with a single real root Ay and a double
real Toot \o, let the elements of the matriz B satisfy (2.21)—(2.26)). Then, the solution of the
initial problem (1.1)), (3.1)) is given by the formula

x(k) = QT3;G5w(0), k=1,2,3,..., (3.17)

15



where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).

If j =1 and k > 3m then, by (3.17),

A (0)
Nsws(0) + kX5~ w3(0)
k Asws(0)
2(k) = QTG w(0) = QT 0 . (3.18)
0
If j =2 and k > 3m — 1 then, by ,
Ajwi(0)
)\gwg(O) + kf)\lgilwg(())
k A5ws3(0)
(k) = QT5203w(0) = QT2 0 . (3.19)
0

Theorem 3.3.4. Let the matriz A have the form (2.5) with one triple real root X = Ai 23,
let the elements of the matriz B satisfy (2.28)—(2.30). Then, the solution of the initial

problem (1.1), (3.1) is given by the formula
z(k) = QTyG5w(0), k=1,2,3,..., (3.20)

where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).

If j =1 and k > 3m then, by (3.20)),
Ny (0) + A Lawy (0) 4 BEZL k=24, (0)

Mews (0) + KAF~Lag (0)
2(k) = QTuGsw(0) = QT 0 : (3.21)
0
If j =2 and k > 3m — 1 then, by ,
/\kwl (0)
)\sz(O) + k)\k_lwg(O)

! Aws(0)

2(k) = QTG pw(0) = QT 0 : (3.22)
0

Theorem 3.3.5. Let the matriv A have the form (2.6) with one triple real root X = Aj 23,
let the elements of the matriz B satisfy (2.32)—(2.36)). Then, the solution of the initial

problem (1.1)), (3.1) is given by the formula
x(k) = QT5;G5w(0), k=1,2,3,..., (3.23)

16



where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).
If j =1 and k > 3m then, by (3.23)),

Aoy (0) 4 XLy (0) 4 HED NE=24,(0)
)\ka(O) + k)\k_lw:),(())

)\k
2(k) = QTG u(0) = QT us(0) R

If j =2 and k > 3m — 1 then, by (3.23)),

Ny (0) + kAL (0) 4 B NR=244,(0)
)\kwg(0> + k?/\k_1w3(0)

Aot (0
(k) = QT5:2G5,w(0) = Qs Ug’( ) : (3.25)

0
Theorem 3.3.6. Let the matriz A have the form (2.7) with one triple real root X = Ai 23,
let the elements of the matriz B satisfy (2.38)—(2.43)). Then, the solution of the initial

problem (1.1)), (3.1) is given by the formula
2(k) = QTe;G8w(0), k=1,2,3,..., (3.26)

where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).

If j =1 and k > 3m then, by (3.26)),

Aoy (0) + XLy (0) 4 HEL NE=244(0)

)\ka(O) + k)\k_lwg(())
k A3 (0)
z(k) = QT61Gg1w(0) = Q761 0 . (3.27)

If j =2 and k > 3m — 1 then, by (3.26),

Netwy (0) 4 EAF T (0) + EEZL B2, (0)
)\kwg(()) + k’/\kilwg,(())

Arws (0
(k) = QTe2Ggyw(0) = QT ug’( ) . (3.28)

0
Theorem 3.3.7. Let the matriz A have the form (2.8]) with one real eigenvalue \y = \ and

two complex conjugate eigenvalues o3 = ptiq, let the elements of the matriz B satisfy (2.45)) -
(2.50). Then, the solution of the initial problem (1.1)), (3.1]) is given by the formula

x(k) = QT7;G5w(0), k=1,2,3,..., (3.29)
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where 7 = 1 if the geometric multiplicity of the zero eigenvalue of B equals 1 and j = 2 if the
geometric multiplicity of the zero eigenvalue of B equals 2 and w(0) is given by (3.9).

If j =1 and k > 3m then, by (3.29)),

Akwl (O)
(r* cos kp)wy(0) + (r* sin kp)ws(0)

o) = QTaGhuw(0) = QT | R RRNa0) FTsinkusO) | g g

If j =2 and k > 3m — 1 then, by (3.29),

)\kwl (O)
(% cos kp)wy (0) + (r* sin kp)ws(0)

(k) = QTinGhw(0) = QT (=" cos k:go)wg(())o—i— (r* sin kp)ws(0) | (3:31)

3.4 INDEPENDENT INITIAL VALUES. EXAMPLES
From Theorems [3.3.143.3.7| we deduce the following

Theorem 3.4.1. If k£ > 3m and the geometric multiplicity of the zero root of the matrix
B is 1, then, as it follows from formulas (3.12)), (3.15)), (3.18), (3.21), (3.24), (3.27), (3.30)),
solution x(k) depends only on three independent initial values, that is, among the 3(m + 1)
initial values, there are only 3 independent.

If k > 3m — 1 and the geometric multipicity of the zero root of the matrix B is 2, then,
as it follows from formulas (3.13)), (3.16]), (3.19), (3.22), (3.25)), (3.28)), (3.31), solution (k)
depends only on three independent initial values, that is, among the 3(m + 1) initial values,
there are only 3 independent.

4 CONCLUSIONS

To our best knowledge, weakly delayed systems were first defined in [39] for systems of
linear delayed differential systems with constant coefficients and, in [21], for planar linear
discrete systems with a single delay (in these papers such systems are called systems
with a weak delay). Then, for the planar systems with multiple delays, weakly delayed
systems, were considered in [10] and [11]. The weakly delayed systems are simplified and
their solutions can be found in explicit analytical forms. Analytical forms of solutions
can be used to solve several problems for weakly delayed system, for example problems of
the asymptotical behavior of their solutions or conditional stability problems (we refer to [14]).

In the thesis, linear weakly delayed systems in R3 are considered. Rather than a direct
approach to solving such a system used in [10], [11], [21], the method of transformation of
a given system into a system of 3(m + 1) equations without delay has been used. The use
of a method adapted from [10], [11], [21] is impossible since it is not possible to predict the
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“ad-hoc” analytical form of the solutions as in the above paper paper. A new method leads
to general results and analytical formulas for solutions have been derived for every possible
Jordan form of matrix A in system (|1.1)).

Moreover, an analysis of the dependence of solutions on the initial values yielded a
general result as well — after several steps the solutions only depend on 3 initial values
that are suitable linear combinations of the 3(m + 1) values that formulate the original
problem. That is, after several steps, the behavior of the general solution of system ([1.1)
is the same as that of general solutions of without delayed terms, that is the system (|1.4]).

This remark, applied to systems considered in [10], [11], [21] will make it possible to
reconsider and improve the results given there related to statements on the number of
independent initial values. Of course, the general solutions derived in the thesis are well-suited
to solving some problems mentioned above, as, for example, the problem about the asymptotic
behavior of solutions or conditional stability problems.

As a topic for future research, an investigation of the case of A having a zero eigenvalue,

can be suggested. The new approach probably will be applicable to general weakly delayed
systems in R".
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ABSTRACT

The present thesis deals with construction of general solution of weakly delayed systems of
linear discrete equations in R? of the form

z(k+1) = Az(k) + Bx(k —m)

where m > 0 is a positive integer, z: Z>* — R3 Z* = {-m,—-m +1,...,00}, k € Z,
A = (a;j) and B = (b;;) are constant 3 x 3 matrices. The characteristic equations of weakly
delayed systems are identical with those of the same systems but without delayed terms.
Criteria ensuring that given system is weakly delayed are developed and then are specified for
every possible case of Jordan form od matrix A. System is solved by a method transforming
it to a higher-dimensional system but without delays

y(k+1) = Ay(k),

where dim y = 3(m + 1). Using methods of linear algebra it is possible to found Jordan forms
of A depending on eigenvalues of matrices A and B. Therefore, general solution of new system
can be found and, consequently, general solution of initial system is deduced.

ABSTRAKT

Dizerta¢ni prace se zabyva konstrukci obecného teseni slabé zpozdénych systému linearnich
diskrétnich rovnic v R? tvaru

x(k +1) = Az(k) + Bx(k —m),

kde m > 0 je kladné celé ¢islo, z: 2=, — R Z>=, := {—m,—m+1,...,00}, k € ZF, A = (a;j)
a B = (b;;) jsou konstantni 3 x 3 matice. Charakteristické rovnice téchto systémi jsou identické
s charakteristickymi rovnicemi systému, ktery neobsahuje zpozdéné ¢leny. Jsou ziskana kriteria
garantujici, Zze dany systém je slabé zpozdény a nésledné jsou tato kritéria specifikovana pro
vsechny mozné pripady Jordanova tvaru matice A. Systém je vyfeSen pomoci metody, ktera
ho transformuje na systém vyssi dimenze, ale bez zpozdéni

y(k+1) = Ay(k),

kde dim y = 3(m+1). Pomoci metod linedrni algebry je mozné najit Jordanovy formy matice
A v zavislosti na vlastnich ¢islech matic A and B. Tudiz lze nalézt obecné feseni nového
systému a v diisledku toho pak odvodit obecné feseni pocateéniho systému.
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