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Abstrakt
Účelem této práce je popis operačního systému Contiki pro vestavěné systémy, popis pro-
tokolu NTP pro synchronizaci času a vytvoření návrhu a implementace klienta protokolu
NTP pro operační systém Contiki.

Abstract
The purpose of this thesis is to describe the operating system Contiki for embedded systems,
NTP time synchronisation protocol and to design and implement an NTP client for the
Contiki operating system.
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Chapter 1

Introduction

Nowadays we live in a world where embedded systems are part of almost every electronic
device. Modern televisions contain embedded systems to allow you to browse the Web,
modern cars use embedded systems to control an engine or to give you a summary of your
journey using GPS, even fridges showing the list of things you should buy at a market are
becoming popular. Embedded systems are becoming more widespread than ever and so do
their needs for a network connection.

Contiki is an operating system targeted at embedded systems and developed by Adam
Dunkels from the Swedish Institute of Computer Science in Kista, Sweden. Contiki brings
new concepts to the embedded world and supports the Internet Protocol version 6 and 4.
Since Contiki aims for maximum portability, it is written in the C programming language.
Contiki therefore provides an ideal solution for connecting embedded systems to an existing
network on many different hardware platforms.

Time synchronisation is nowadays also important. Almost every modern system needs
to know the time - your video-recorder or home cinema automatically starts recording a
film at a scheduled time, your washing-machine should have finished a selected program
when you return home or your radio should automatically adjust its clock when the time
changes due to daylight saving.

Network Time Protocol (NTP) is a ubiquitous time synchronisation protocol between
computers in the modern Internet. Though being one of the oldest protocols, NTP is still
developed and updated to conform to the latest network standards. The actual version at
the time of writing is NTP version 4, which updates its previous version to accommodate
Internet Protocol version 6.

This thesis describes the operating system Contiki, its concepts and philosophy, Network
Time Protocol version 4 and design and implementation of an NTP client for the Contiki
operating system.
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Chapter 2

Contiki OS

Only 2% of all microprocessors that are sold today are used in PCs and the remaining 98%
of all microprocessors are used in embedded systems [5]. Embedded systems have much
smaller amounts of memory than PC computers. Moore’s law predicts that these devices
can be made significantly smaller and less expensive in the future. While this means that
embedded system networks can be deployed to greater extents, it does not necessarily imply
that the resources will be less constrained [11]. The memory constraints make programming
for embedded systems a challenge.

The operating system Contiki is targeted at embedded systems based on MSP430, AVR,
ARM, x86 and other architectures [7]. Contiki aims for maximum portability and therefore
is written in C. It is a feature-rich operating system and only some of its features are
described and used in this thesis.

Contiki is developed by a group of developers from industry and academia lead by
Adam Dunkels from the Swedish Institute of Computer Science. The Contiki team cur-
rently consists of sixteen developers from SICS, SAP AG, Cisco, Atmel, NewAE and TU
Munich [7]. Contiki is also deployed at RheinMain University in Wiesbaden. The 3-clause
BSD license places minimal restrictions on redistribution of Contiki. Version 1.0 of Contiki
OS was released in 2002, version 2.0 in 2007 and the latest version at the time of writing was
version 2.5, released in 2011. The actual development happens using an online repository
accessible on the Contiki homepage at http://www.contiki-os.org/ by the Git version
control system.

2.1 Features

Contiki OS features lightweight stackless threads called Protothreads. Protothreads intro-
duced a new concept to the embedded world. They are extremely lightweight and compat-
ible with standard C [13]. Each Protothread does not require a separate stack, which fits
Protothreads perfectly for use in memory constrained embedded systems. Protothreads are
discussed in more detail in section 2.2.

Apart from Protothreads, Contiki features a TCP/IP communication stack called uIP (mi-
cro IP) that conforms to the Request For Comments memorandums published by the Inter-
net Engineering Task Force. The uIP stack allows Contiki to communicate over both IPv4
and IPv6 [7]. Contiki with its uIP stack is IPv6 Ready Phase 1 certified and therefore has
the right to use the IPv6 Ready silver logo [16]. Before Contiki’s uIP, the embedded world
considered IP to be too heavyweight. All previous IP implementations for general pur-
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Figure 2.1: Screenshot of running Contiki OS with CTK (source: [7])

pose computers were much bigger than the memory constrained embedded systems could
use [30]. The uIP communication stack is further described in section 2.3.

In addition to uIP, Contiki is equipped with another communication stack called Rime.
Rime is a layered communication stack for sensor networks and it uses much thinner layers
than traditional architectures [6]. Rime is designed to simplify the implementation of
communication protocols on low-power radios. The communication primitives in the Rime
stack were chosen based on what typical sensor network protocols use - single-hop unicast,
single-hop broadcast or multi-hop [7, 6].

Besides Protothreads, uIP and Rime, Contiki further contains a very simple, relatively
small and easy to use filesystem called Coffee Filesystem (CFS), a graphical user interface
Contiki Toolkit (CTK) shown in figure 2.1, an Executable Linkable Format (ELF) loader
for loading object files into a running Contiki system and much more.

The operating system Contiki, uIP and Protothreads are used on embedded devices
by hundreds of companies in such diverse systems as car engines, oil boring equipments,
satellites, and container security systems [5]. The software is also used in academic research
projects and in university project courses all over the world.

2.2 Protothreads

Protothreads provide a way for C functions to run quasi-parallel, that is, a C function
works in a way similar to a thread [13]. In Contiki, Protothreads allow to wait for incoming
events without blocking the whole system. While waiting for an event to occur, another
function could be run. The core of this solution is a C switch statement used in conjunction
with a variable (called local continuation) containing the position, where the function was
blocked [13]. The function continues from this point when it is later invoked again.

The advantage of Protothreads over ordinary threads is that a Protothread does not
require a separate stack. The overhead of allocating multiple stacks can consume large
amounts of available memory in memory constrained systems [13]. In contrast, each Pro-
tothread requires only a few bytes for storing the state of execution.
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A Protothread is driven by repeated calls to the function in which the Protothread
is running. Each time the function is called, the Protothread will run until it blocks or
exits. Protothreads are implemented using the local continuations. The local continuation
represents the current state of execution at a particular position in the program, but does
not provide any call history or local variables [7].

The Protothreads API consists of four basic operations: initialisation PT INIT(), ex-
ecution PT BEGIN(), conditional blocking PT WAIT UNTIL() and exit PT END() [13].
However, experience with rewriting event-driven state machines to Protothreads revealed
the importance of an unconditional blocking wait PT YIELD(), which temporarily blocks
the Protothread until the next time the Protothread is invoked [5]. After invoked, the
Protothread continues executing the code following the PT YIELD() statement. To un-
derstand the implementation of Protothreads and how they actually work, please refer to
appendix A, where an example of use is shown.

Since Protothreads are implemented in standard C, a library providing Protothreads
can be used everywhere, where the C toolchain is available. But there are some constraints
to consider. Because Protothreads are stackless, a Protothread can run only within a
single C function. There is also no way of storing automatic local variables [7]. And since
Protothreads are implemented using a C switch statement, which can not be nested, the
code that uses Protothreads can not use switch statements itself. A workaround for storing
local variables is to prepend them with the static keyword, which makes them being put into
the data segment by the compiler and thus remembering their values between the function
calls [13].

2.3 uIP

The TCP/IP protocol suite is often used for communication over the Internet as well as
local networks. uIP (micro IP) is a complete TCP/IP communication stack developed by
Adam Dunkels for memory constrained systems such as embedded systems.

Before uIP, the TCP/IP architecture was considered to be heavyweight because of its
perceived need for processing power and memory. The IP protocol was seen as too large to
fit into the constrained environment - existing implementations of the IP protocol family for
general purpose computers would need hundreds of kilobytes, whereas a typical constrained
system has only a few tens of kilobytes of memory [30]. Several non-IP stacks were developed
for this reason.

In the early 2000’s, however, this view was challenged by lightweight implementations of
the IP protocol family for smart objects such as the uIP stack [30]. uIP showed that the IP
architecture would fit nicely into the typical constrained system without removing any of
the essential IP mechanisms. Note that these resources, which are considered constrained
today, are fairly close to the resources of general purpose computers that were available
when IP was designed [30]. The uIP stack has become widely used in networked embedded
systems since its initial release [30, 5].

uIP provides two different application programming interfaces to programmers: a BSD
sockets-like API called Protosockets and a raw event-driven API. Protosockets are based on
Protothreads, which puts the same limitations on them - such as no way to store the local
variables and an impossibility to use C switch statements. Protosockets only work with
TCP connections [7]. Because NTP uses the User Datagram Protocol (UDP), Protosockets
will not be further discussed in this thesis. For more information about Protosockets please
refer to the Contiki documentation [7].
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uIP contains only the absolute minimum of required features to fulfill the protocol
standard. It can handle only a single network interface and contains the IP, ICMP, UDP
and TCP protocols [7]. In order to reduce memory requirements and code size, the uIP
implementation uses an event-based API, which is fundamentally different from the most
common TCP/IP API, the BSD sockets API, present on Unix-like systems and defined by
the POSIX standard [5, 29]. An application is invoked in response to certain events and it
is up to the application, that receives the events from uIP, to handle all the work with data
to be transmitted - e.g. if the data packet is lost in the network, the application will be
invoked and it has to resend the packet. This approach is based on the fact that it should
be simple for the application to rebuild the same data. This way, the uIP stack does not
need to use explicit dynamic memory allocation. Instead, it uses a single global buffer for
holding the packets and it has a fixed table for holding the connection state. The global
packet buffer is large enough to contain one packet of a maximum size [7].

When a packet arrives from the network, the device driver places it in the global buffer
and calls the uIP stack. If the packet contains data, the uIP stack will notify the cor-
responding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy
the data into its own buffer for later processing. The packet buffer will not be overwritten
by new packets before the application has processed the data [7]. Packets arriving when
the application is processing the data must be queued either by the network device or by
the device driver. This means that uIP relies on the hardware when it comes to buffering.
Most single-chip Ethernet controllers have on-chip buffers that are large enough to contain
at least 4 maximum sized Ethernet frames [7]. This way, uIP does not have to have its own
buffer structures and thus requires only a minimal memory amount. A possible packet loss
is a trade-off for minimal memory requirements. It is not such a big problem for communi-
cation using TCP on the transport layer because of the acknowledgement scheme used in
TCP to prevent data loss. However, data carried on UDP can be irrecoverably lost.

As was expected, measurements show that the uIP implementation provides very low
throughput, particularly when it communicates with a PC host [4]. However, small sys-
tems that uIP is targeting, usually do not produce enough data to make the performance
degradation a serious problem [4].

Despite being so small, uIP is not only RFC compliant, but also IPv6 Ready Phase
1 certified. uIP is written in the C programming language and it is fully integrated with
the Contiki operating system. In uIP, there are even some more tricks to shrink the stack
but its complete description is outside the scope of this thesis. Please refer to the Contiki
documentation for more details [7].

2.4 Kernel and processes

The Contiki kernel is event-driven and provides a cooperative multitasking environment, but
the system also supports preemptive multithreading that can be applied on a per-process
basis [11]. The preemptive multithreading support is not implemented in the kernel, instead
it is implemented as a library that is linked only with programs that explicitly require
multithreading [11]. The kernel itself contains no platform specific code. It implements
only CPU multiplexing and lets device drivers and applications communicate directly with
hardware [11].

From high levels of abstraction, applications in Contiki OS are implemented and run
as processes. Protothreads, the lightweight threads described in section 2.2, are used in
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Figure 2.2: Contiki execution contexts (source: [9])

Contiki to implement processes. Both the Contiki kernel and applications use Protothreads
extensively to achieve cooperative multitasking [12]. Every Contiki process consists of a
process control block and a process thread [9]. The process control block contains run-time
information about the process and the process thread contains the code of the process.
Among other things, the process control block contains a textual name of the process, a
pointer to the process thread and a state of the process. The process thread is implemented
as a single Protothread, that is invoked from the process scheduler in the Contiki kernel [9].

From low levels of abstraction, every application is implemented as a simple C function
and the process control block remembers the actual state of execution of this function in
the same way as the local continuation works by Protothreads. Processes are therefore
running quasi-parallel in Contiki.

The process control block is not declared or defined directly, but through the PRO-
CESS() macro. This macro takes two parameters: a variable name of the process control
block and a textual name of the process, which is used when debugging the system [9]. The
process control block is shown in listing 2.1.

s t r u c t p roce s s {
s t r u c t p roce s s *next ;
const char *name ;
i n t (* thread ) ( s t r u c t pt * , p r o c e s s ev en t t , p r o c e s s d a t a t ) ;
s t r u c t pt pt ;
unsigned char s tate , n e ed spo l l ;
} ;

Listing 2.1: Process control block in Contiki OS (source [9])

All code execution is initiated by the Contiki kernel that acts like a simple dispatcher
calling the functions [7]. Just like Protothreads, processes are also implemented using
macros, making them standard C compatible.

In Contiki, code runs in either of two execution contexts: cooperative, in which code
never preempts other code, and preemptive, which preempts the execution of cooperative
code and returns control when the preemptive code is finished. Processes always run in
the cooperative mode, whereas interrupt service routines and real-time timers run in the
preemptive mode [9]. The code running in both execution contexts is illustrated in figure 2.2.

Interprocess communication is achieved by posting events in Contiki OS - processes
communicate with each other by posting events to each other [11]. There are two types of
events: synchronous and asynchronous. Synchronous events are directly delivered to the
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receiving process when posted and can only be posted to a specific process [9]. Because
synchronous events are delivered immediately, posting synchronous event is equivalent to
a function call: the process to which an event is delivered is directly invoked, and the
process that posted the event is blocked until the receiving process has finished processing
the event [9].

Asynchronous events are delivered to the receiving process some time after they have
been posted [9]. Before delivery, the asynchronous events are held on an event queue inside
the Contiki kernel. The kernel loops through this event queue and delivers the event to
the process by invoking the process. The receiver of an asynchronous event can be either a
specific process or all running processes [9].

2.5 Timers

The Contiki kernel does not provide support for timed events, instead an application that
wants to use timers needs to explicitly use a timer library. The timer library provides
functions for setting, resetting and restarting timers, and for checking if a timer has ex-
pired. An application must manually check if its timers have expired - this is not done
automatically [7].

Contiki has one clock library and a set of timer libraries: timer, stimer, ctimer, etimer,
and rtimer [8]. The clock library provides functionality to handle the system time and to
block the CPU for short time periods. It is the interface between Contiki and the platform-
specific hardware clock [7]. The timer libraries are implemented with the functionality of
the clock library as a base [8].

The timer and stimer libraries provide the simplest form of timers and are used to check
whether a time period has passed. The difference between these two is the resolution of
time - timers use system clock ticks, whose value is incremented when an interrupt from
the hardware clock occurs, while stimers use seconds to offer much longer time periods [8].
The value representing seconds is also incremented in the interrupt service routine (ISR),
but only when enough clock ticks since last increment occurred. The number of clock
ticks within one second is represented by the CLOCK SECOND macro provided by the
clock library. That means there are CLOCK SECOND interrupts from the hardware clock
per second. The usage of the timer library and CLOCK SECOND macro is shown in
appendix A.

The simplest timer and stimer libraries are not able to post an event when a timer
expires. Event timers should be used for this purpose. Event timers (etimer library)
provide a way to generate timed events. An event timer will post an event to the process
that set the timer when the event timer expires [7]. The etimer library is implemented as
a Contiki process and uses the timer library as a base.

Callback timers (ctimer library) provide a timer mechanism that calls a specified C
function when a ctimer expires [7]. Thus, they are especially useful in any code that does
not have an explicit Contiki process [8].

The Real-time timers (rtimer library) handle the scheduling and execution of real-time
tasks with predictable execution times [7]. The rtimer library provides real-time task sup-
port through callback functions - the rtimer immediately preempts any running Contiki
process in order to let the real-time tasks execute at the scheduled time [8]. This behaviour
is illustrated in figure 2.2. The rtimer library uses a separate hardware clock to allow a
higher clock resolution [8]. The small part of the rtimer library is architecture-agnostic,
but the particular implementation is platform-specific.
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Chapter 3

Network Time Protocol

The Network Time Protocol provides a mechanism for synchronising systems’ clocks over
a variable-latency data network. NTP was introduced and is still developed by David
Mills from the University of Delaware in Newark, United States of America [19]. NTP
is arguably the longest running, continuously operating, ubiquitously available protocol
in the Internet [20]. Despite being one of the oldest protocols in the Internet, it is not
old-fashioned at all. NTP version 4, described in RFC 5905 [26], updates the older NTP
version 3 to accommodate NTP to IPv6. Version 4 also includes improvements in mitigation
and clock discipline algorithms that extend potential accuracy to the tens of microseconds
with modern computers and fast LANs [26]. NTPv4 corrects some errors in NTPv3 design
and includes an optional extension mechanism that can be used for adding more capabilities
to NTP, e.g. the Autokey security protocol, described in RFC 5906, for authenticating
servers to clients.

The Simple Network Time Protocol is a simplified NTP implementation, lacking com-
plex synchronisation algorithms used by NTP [26]. SNTP is also described in RFC 5905 [26].
The packets of SNTP have the same structure and content as packets of NTP [26]. From
observing the network communication, one can not tell, whether the client is a full blown
NTP implementation or just SNTP. SNTP is a simplified sub-set of algorithms used by
the NTP protocol, making the client implementation not only easier, but also suitable for
resource constrained systems, such as embedded systems. Because NTP and SNTP servers
and clients are completely interoperable and can be intermixed in NTP subnets [26], this
thesis refers to an SNTP client for Contiki OS as NTP client.

3.1 Topology and hierarchy

NTP uses two different communication modes: one to one, referred as unicast mode, and
one to many, referred as broadcast mode [26]. In unicast communication mode, an NTP
client sends requests and an NTP server sends responses. In broadcast communication
mode, the client sends no request and waits for a broadcast mode message from one or
more servers [26].

NTP servers are rated with stratum (plural form strata) number representing their
level in an NTP hierarchy and their possible accuracy [26]. Primary (stratum 1) servers
synchronise to the reference clock directly traceable to UTC via radio, satellite or modem.
The stratum 2 servers synchronise to stratum 1 servers via a hierarchical subnet. The
stratum 3 servers synchronise to stratum 2 servers, and so on. The maximum stratum is 15,
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Figure 3.1: Topology and hierarchy of NTP (source: [14])

number 16 means unsynchronised server and higher numbers (up to 255) are reserved [26].
Synchronisation between servers in the same stratum level is also possible. Figure 3.1
shows a brief hierarchy of NTP. The subnet topology should be organised to avoid timing
loops and to minimise synchronisation distances [26]. To achieve this in NTP, the subnet
topology is determined using a variant of the Bellman-Ford distributed routing algorithm,
which computes the shortest-distance spanning tree, rooted on the primary (stratum 1)
servers [26]. As a result of this design, the algorithm automatically reorganises the subnet
to produce the most accurate and reliable time, even when one or more primary or secondary
servers or the network paths between them fail [26].

3.2 Time and timescales

To express the time, NTP always uses the Coordinated Universal Time (UTC) [26]. UTC is
maintained by the International Bureau of Weights and Measures in Paris, France. It is the
time scale that forms the basis for the coordinated dissemination of standard frequencies and
time signals [28]. The time specified by UTC is the same for all timezones. Its calculation
is practically the same as with Greenwich Mean Time (GMT), except the daylight savings
are not accounted.

The UTC timescale represents mean solar time as disseminated by national standard
laboratories [26]. This timescale is adjusted by the insertion of leap seconds to ensure
approximate agreement with the time derived from the rotation of the Earth, which peri-
odically speeds up and slows down due to the action of tides and changes within the Earth’s
core [28]. The goal of a leap second is to compensate UTC with these changes. A leap
second is inserted or deleted on advice of the International Earth Rotation and Reference
Systems Service [28]. NTP is well designed for a leap second occurrence - there is a Leap
Indicator field in the structure of an NTP packet and there are also fields intended for the
information about the leap second in structures that the NTP algorithm uses [26]. The
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formal definition of UTC does not permit double leap seconds [29].
In a computer, the system time is represented by a system clock, maintained by hard-

ware and the operating system. The goal of the NTP algorithms is to minimise both the
time difference and frequency difference between UTC and the system clock. When these
differences have been reduced below nominal tolerances, the system clock is said to be syn-
chronised to UTC [26]. It has never been a goal of NTP to take care of local time, it is up
to the operating system to provide users the correct local time [20].

The NTP and POSIX timescales are based on the UTC timescale, but not always
coincident with it [23]. Both timescales reckon the time in standard (SI) seconds since the
prime epoch, but the origin of the NTP timescale, the NTP prime epoch, is 00:00:00 UTC
on 1 January 1900, while the prime epoch of the POSIX timescale is 00:00:00 UTC on
1 January 1970 [23]. So upon the first tick of the POSIX clock on 1 January 1970 the NTP
clock read 2 208 988 800, representing the number of seconds since the NTP prime epoch.

3.3 Network and timestamps

The network specification of NTP defines the protocol to use the User Datagram Protocol
(UDP) on port number 123 [1, 26]. Reliable message delivery such as the Transmission
Control Protocol (TCP) can actually make the delivery of NTP packets less reliable because
retries would increase the delay value and other errors [26]. This is mostly because of the
communication overhead.

NTP handles the time through timestamps - records of time. An NTP timestamp has
two fields: a seconds field expressing the number of seconds and a fraction field expressing
a fraction of a second [26]. All NTP timestamps are represented in 2’s complement format,
with bits numbered in big-endian fashion from zero starting at the left, or high-order po-
sition [26]. There are two timestamp formats in the NTP packet structure: a long 64-bit
format and a short 32-bit format, as shown in figure 3.2. The 64-bit long timestamp consists
of a 32-bit unsigned seconds field, spanning 232 seconds (approx. 136 years from 1900 to
2036), and a 32-bit fraction field, resolving 2−32 seconds (approx. 232 picoseconds) [26].
The short 32-bit timestamp includes a 16-bit unsigned seconds field and a 16-bit fraction
field.

Besides these two formats, there is one more NTP timestamp format - the 128-bit NTP
Date format. It includes a 64-bit signed seconds field and a 64-bit fraction field. For
convenience in mapping between the formats, the seconds field of this format is divided
into a 32-bit Era Number field and a 32-bit Era Offset field. This 128-bit NTP Date format
is, however, not transmitted over the network and is only used where sufficient storage
and word size is available [26]. There is practically no need of knowing about this format
for embedded systems at least until the year 2036, when the 64-bit long timestamp wraps
around and the Era Number will be incremented from zero to one. But strictly speaking,
the NTP timestamp is a truncated NTP Date format [26].

The standard NTP packet structure without extension fields and Autokey security pro-
tocol is shown in figure 3.3. This structure is 48 bytes long and contains the following
thirteen fields:

� Leap Indicator is a 2-bit integer, warning of an impending leap second to be inserted
or deleted in the last minute of the current month [26].

� Version Number is a 3-bit integer, representing the NTP version number, currently 4.

12



Figure 3.2: Time formats used in NTP packet

Figure 3.3: Basic NTP packet structure (source: [22])
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� Mode is a 3-bit integer, representing the protocol mode. This is the only field dis-
tinguishing between servers and clients in NTP. In the client-server communication
model, the client sets this field to value 3 (client) in the request, and the server sets it
to value 4 (server) in the response. In the broadcast communication model, the server
sets this field to value 5 (broadcast). Other modes are not used by SNTP servers and
clients [26].

� Stratum is an 8-bit integer, representing the stratum as described in section 3.1. If
the Stratum field is 0, which implies unspecified or invalid, the Reference Identifier
field can be used to convey messages useful for status reporting and access control.
These messages are called Kiss-o’-Death (KoD) packets and the ASCII messages they
convey are called kiss codes [26].

� Poll is an 8-bit signed integer, representing the maximum interval between successive
messages, in log2 seconds. Suggested default limits for minimum and maximum of
the poll interval are 6 and 10, respectively [26].

� Precision is an 8-bit signed integer, representing the precision of the system clock,
in log2 seconds. For instance, a value of -20 corresponds to a precision of about one
microsecond (2−20 s) [26].

� Root Delay is a short 32-bit NTP timestamp, expressing the total round-trip delay
to the reference clock [26].

� Root Dispersion is a short 32-bit NTP timestamp, expressing the total dispersion to
the reference clock [26].

� Reference Identifier is a 32-bit code, identifying the particular server used for syn-
chronisation or the reference clock. For packet stratum 0, this is a four-character
ASCII string called kiss code. Kiss codes are particularly used by the server to tell
the client to stop sending packets or to increase its polling interval. For stratum 1,
this is a four-octet, left-justified, zero-padded ASCII string assigned to the reference
clock (e.g.

”
GPS“ when synchronising against the Global Position System clock).

Above stratum 1, this is the reference identifier of the server used for synchronisa-
tion and can be used by the client together with the stratum field to detect loops
in the NTP hierarchy. If communicating over IPv4, the identifier is IPv4 address.
If communicating over IPv6, it is the first four octets of the MD5 hash of the IPv6
address [26].

� Reference Timestamp is a long 64-bit NTP timestamp, expressing the time when the
system clock was last synchronised against the reference clock [26].

� Originate Timestamp (or Origin Timestamp) is a long 64-bit NTP timestamp, ex-
pressing the time at the client when the request departed for the server [26]. The
Originate Timestamp field is copied unchanged by the server from the Transmit
Timestamp field of the client’s request. It is important that the server copies this
field intact, as the NTP client uses it to check the server’s response.

� Receive Timestamp is a long 64-bit NTP timestamp, expressing the time at the server
when the request arrived from the client [26].

14



Figure 3.4: NTP unicast communication scenario

� Transmit Timestamp is a long 64-bit NTP timestamp, expressing the time at the
server when the response left for the client [26].

The short 32-bit timestamp format is used for the Root Dispersion and Root Delay
fields, because they do not need the scope and precision of the long 64-bit timestamp
format. To better understand the NTP packet filling process and the meaning of Originate
(org), Receive (rec) and Transmit (xmt) timestamps, a common unicast communication
scenario is shown in figure 3.4. Please note that this figure shows only the timestamps used
by NTP for the local clock offset and round-trip delay calculation. Algorithms used for the
calculations are described in section 3.4.

3.4 Algorithms

Because of network latency, the received Transmit Timestamp will never be exactly corre-
sponding to the current time. One of the main goals of NTP is to deal with the network
latency [20].

As described in section 3.3, there are the following 64-bit long timestamps in the NTP
packet: Origin, Receive and Transmit Timestamp. Upon NTP packet arrival, the client
determines another timestamp called, Destination Timestamp [26]. This timestamp is
represented as T4 in figure 3.4 and is not part of the NTP packet structure.

Using these four timestamps, the NTP client using unicast communication mode can
compute the local clock offset which is given by θ = 1

2 [(t2 − t1) + (t3 − t4)], where t1 is the
time of the request packet transmission (Origin Timestamp), t2 is the time of the request
packet reception (Receive Timestamp), t3 is the time of the response packet transmission
(Transmit Timestamp) and t4 is the time of the response packet reception (Destination
Timestamp) [21, 26]. The implicit assumption in the above is that the one-way delay is
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Figure 3.5: Intersection algorithm (source: [15])

statistically half of the round-trip delay [26], which is given by δ = (t4 − t1)− (t3 − t2).
In broadcast communication mode, Origin and Receive Timestamps are not accounted.

The client computes its local clock offset which is given by θ = t3 − t4. The implicit
assumption in the above is that one-way delay from server to client is zero. Because this
is never the case, it is useful to provide an initial volley where the client exchanges several
packets with the server in order to calibrate the propagation delay [26].

When computing the result from more servers, the intersection algorithm is used for
selecting the possible most exact timestamp received from various servers [18, 26]. Intersec-
tion algorithm is derived from Marzullo algorithm but the basic computation remains the
same [19]. First of all, a selection of bad and good servers must be made. Bad servers are
called Falsetickers and good are called Truechimers [26]. The division to these sets is based
on their response. As one can assume, for a sensible result there must be more Truechimers
than Falsetickers [26].

After selecting a set of reliable servers, the NTP algorithm compute the resulting times-
tamp. The resulting timestamp does not have to be the same as one of those provided
by the servers. The NTP algorithm calculates using the clock accuracy estimates, deter-
mined by Root Dispersion, Root Delay and Precision fields of the server’s response. These
estimates are converted to intervals. Figure 3.5 shows the computation for the following
example: If we have the estimates 10±2, 12±1 and 11±1 then these intervals are < 8; 12 >,
< 11; 13 > and < 10; 12 > which intersect to form < 11; 12 > or 11.5 ± 0.5 as consistent
with all three values. The arithmetic mean is used as the result value. When querying
servers again, the algorithm repeats but the new result computation also depends on the
previous result [26, 19]. This eliminates possible jitter which can be caused by repeatedly
querying the servers and getting slightly different answers from them.
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Chapter 4

Analysis

To keep, measure and resolve the time, a computer needs a clock. A computer clock is an
electronic device with a counter register counting oscillations in a quartz crystal oscillator
with a particular frequency [27]. The operating system can keep and manipulate the system
time using the hardware clock. Accessing the hardware clock is done through the operating
system clock interface.

On top of the clock interface is an interface for providing the system time. To implement
a reasonably useful NTP client, the operating system must be able to set, get and eventually
adjust the system time through the time interface. Though not mandatory, adjusting the
time is important in case the time shall be always a monotonically increasing function.
Apart from that, an ability to communicate over UDP is also required for the NTP client.
This is a task of the operating system network interface.

The NTP client is an application, that communicates with the NTP server through the
network interface and uses the time interface of the operating system. It further calculates
the local clock offset as described in section 3.4. In order to develop the NTP client
for Contiki, the operating system Contiki and the hardware platform must provide the
necessary components, as shown in figure 4.1.

To develop and test the Contiki NTP client, the AVR Raven platform with the 8-bit
ATmega1284P CPU [3] will be used. This platform features IEEE 802.15.4 (Low-Rate
Wireless Personal Area Network) link layer support. Together with an adaptation layer
called 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), AVR Raven is
able to communicate over IPv6.

4.1 Hardware clock

On AVR Raven, Contiki uses the 8-bit Timer/Counter 2 module, clocked from an asyn-
chronous 32 768 Hz crystal oscillator, as the hardware clock by default. The oscillator is
independent of any other clock, can only be used with Timer/Counter 2 and it enables the
use of Timer/Counter 2 as a Real Time Counter [3]. The Timer/Counter 2 prescale value
8 is used in Contiki on the AVR Raven platform - the oscillator frequency of 32 768 Hz is
effectively divided by 8 and the counter register is hence incremented with the frequency of
fT2 =

fasy
prescaler = 32768

8 = 4096 Hz. Figure 4.2 shows the Timer/Counter 2 module used by
Contiki.

The Timer/Counter 2 module is used in the Clear Timer on Compare Match (CTC)
mode by Contiki. In this mode, the counter register TCNT2 is incrementing and the
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Figure 4.1: NTP client overview

Figure 4.2: Timer/Counter 2 hardware clock module on AVR Raven

compare register OCR2A defines the maximum value of the counter register. A compare
match between the counter register and the compare register sets the Output Compare
Flag OCF2A and resets the counter register to zero [3]. This behaviour is illustrated in
figure 4.3 - the TOP value is equal to the value in the compare register and the BOTTOM
value is equal to zero.

Additionally, when the compare match occurs, an interrupt is raised and the inter-
rupt service routine is executed. The flag indicating occurred match OCF2A is cleared
automatically by hardware when executing the interrupt service routine in this case [3].

The interrupt service routine can be further used for updating the value in the OCR2A
compare register. However, changing OCR2A to a value closer to zero while the counter is
running must be done with care because the CTC mode does not have a double buffering
feature. If the new value written to OCR2A is lower than the current value of TCNT2, the
compare match will be missed [3].

4.2 Contiki clock interface

As described in section 2.5, Contiki provides a basic clock interface particularly for use of
timers with a simple goal - measuring time. This interface is common for all supported
hardware platforms, but the particular implementation is platform-specific. The definition
of the common interface is located in the core/sys/clock.h file and the specific implemen-
tations can be found in the clock.c file in the cpu/ directory of the Contiki source code.

The clock interface provides the clock init call for initialising the hardware clock, that is
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Figure 4.3: Timing diagram in CTC mode with prescaler 8 (source: [3])

automatically called during the boot sequence of Contiki. On AVR Raven, the clock init call
sets up appropriate registers and the interrupt service routine as described in section 4.1.

This call is implemented as a C macro and is defined for AVR CPUs in the file
cpu/avr/dev/clock-avr.h. This macro evaluates to a specific setup code for each differ-
ent AVR CPU during the compile time. The setup code is not common to all AVR CPUs
because of differences among them - e.g. there are usually only three Timer/Counter mod-
ules, but AVR ATmega1284P has four Timer/Counter modules [3].

The hardware clock interrupt, described in section 4.1, is called clock tick, or timer tick.
At each clock tick, the interrupt service routine increments a system clock value stored in
the memory. On AVR CPUs, there is a variable counting these clock ticks, called scount,
and a variable counting seconds, called seconds. These variables are defined together with
the interrupt service routine in the cpu/avr/dev/clock.c file. As described in section 2.5,
there are exactly CLOCK SECOND ticks in one second. When the scount variable reaches
the CLOCK SECOND value, the seconds variable is incremented and the scount variable
is reset. The seconds variable is used by the Contiki stimers, discussed in section 2.5.

To obtain CLOCK SECOND interrupts per second, there must be fT2
CLOCK SECOND

counter register increments between two successive interrupts. On compare match in CTC
mode, the TCNT2 counter register is reset to zero as shown in figure 4.3. The value zero
is also included in the counting - the 0th count of the timer also takes one tick. Therefore
the value of the OCR2A compare register must be fT2

CLOCK SECOND −1 in CTC mode. The
default value of CLOCK SECOND for AVR Raven in Contiki is 128, which implies the
default value of the compare register 4096

128 −1 = 31. The CLOCK SECOND value is defined
in the platform/avr-raven/contiki-conf.h file. The value of the compare register is specified
in the clock init call and is computed during the compile time.

4.3 Time interface

The low-level clock interface described in the previous section is used by Contiki to provide
the system time through the time interface. Because the value of the seconds variable
is zero after the system booted, it actually represents the system uptime. The seconds
variable is of the long data type and its value can be obtained using the clock seconds call
by the application. However, there is no call for setting this variable in Contiki 2.5. In the
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current Git version at the time of writing, a new call clock set seconds can be used for this
purpose. Because this call simply rewrites the seconds variable, it breaks the stimer library,
and should therefore be avoided by the NTP client. Similarly, setting the scount variable
would cause unbalanced increments of the seconds variable.

The precision of one second is also not adequate for the NTP client. Further precision
can be acquired by reading the scount variable, as it provides a resolution of 1

CLOCK SECOND
seconds. Moreover, the hardware counter can be also queried, as it includes the time passed
since the last update of the scount variable. Two read operations are needed then - read
scount and read TCNT2. Because the scount variable depends on asynchronous interrupts
produced by the clock module, the followed query of the counter register causes a race
condition. The clock module runs asynchronously from the CPU clock and the result may
be unpredictable if read while the module is running. To provide consistent time values, a
proper solution must be designed.

If stimers should not be broken by setting the seconds or scount variable, and Contiki
should be able to provide the current time in a higher precision, a new call interface must
be designed. This call interface shall use the timescale and the time specification structure
in compliance with the POSIX standard [29]. Such a structure for representing the time
values is also not present in Contiki.

Similarly, there is no call for adjusting the time in Contiki. Because of memory con-
straints, software structures controlling the time adjustments are too heavyweight for use
in an embedded operating system on 8-bit CPUs. Because of low CPU frequencies, the
code of an interrupt service routine can not be complex and sophisticated clock discipline
algorithms should be avoided. A call for adjusting the time should therefore use abilities
provided by the hardware clock as much as possible.

Updating the value in the OCR2A compare register can be used to adjust the time,
because decrementing the compare register value causes a faster increment of the scount
variable, which in turn causes a faster increment of the seconds variable and vice versa.
Such changes would influence the system time and the dependent Contiki timers. How-
ever, applications requiring uninfluenced timers could use the Contiki rtimers, described
in section 2.5, because they use a separate hardware clock unaffected by these changes
(Timer/Counter 3 in case of the AVR Raven platform).

4.4 NTP client application

Apart from the time interface, the NTP client application also needs to use the operating
system network interface. Thanks to the uIP stack, described in section 2.3, the UDP
network communication is not an issue for Contiki OS. The NTP client needs server asso-
ciations in the NTP unicast communication mode. However, too many server associations
complicate the client design. In fact, in the most common case, there can be only a single
NTP master server in the whole network [26]. A single server association requires only a
simple calculation of the local clock offset θ, whereas more server associations require the
intersection algorithm described in section 3.4. Implementation of such an algorithm, re-
quiring advanced data structures, should be avoided in a memory constrained environment.

The NTP broadcast communication mode, on the other hand, requires no server as-
sociations and no packet filling process on the client side. Moreover, because the client
does not have to actively send any NTP packets, an energy consumption of the client is
reduced. Contiki supports broadcast packets as well as sending multicast packets [7]. An
implementation of NTP broadcast mode is therefore also possible. Joining multicast groups
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through Internet Group Management Protocol (IGMP) and receiving non-local multicast
packets was not supported at the time of writing [7].

The NTP client should be able to communicate over both IPv4 and IPv6. Thanks to
the uIP stack, this is not an issue for Contiki. The only constraint is that both IP versions
can not be used simultaneously and the decision must be made during the compilation [7].
Although the UIP CONF IPV6 macro can be used to determine what IP version support is
being compiled, the NTP client application should be written IP-version agnostic. Contiki
is also able to use the Domain Name System for the resolution of IPv4 addresses. DNS
resolution of IPv6 addresses was not implemented in Contiki OS at the time of writing [7].

A problem might be a possible packet loss when communication uses UDP on the trans-
port layer. The reason, why this can happen often in Contiki, is explained in section 2.3.
In NTP unicast mode, the packet loss might occur either for the client’s query to the server
or for the server’s response to the client. If the client’s query loss occurs, no server response
will be sent. Similarly, if the server’s response loss occurs, no message will be received by
the client. Not to block the whole system till the response arrives is therefore a desired
behaviour of the client.

The NTP client will further calculate the local clock offset using the NTP timestamps,
as described in section 3.4. As mentioned in section 3.2, the NTP timescale is not coincident
with the POSIX timescale. If the new calls in the time interface use the standard POSIX
timescale, conversion between the NTP and POSIX timestamps will have to be calculated.

The client can set the Transmit Timestamp in its query to any arbitrary value. This is
in compliance with the NTPv4 specification [26]. It is important for the client to store the
sent timestamp, because it is later used by the client to check the server response. That
practically means, that the conversion from the POSIX timestamp to the 64-bit long NTP
timestamp is not needed when the client sends the request. However, the conversion vice
versa is needed when the client calculates the local clock offset from the received timestamps.

Since both timescales reckon the time in seconds, the conversion between the seconds
fields of the timestamps is simple. However, the conversion from the NTP fraction field
value (2−32) to the POSIX fraction field value (microseconds or nanoseconds) is problematic.
The relation between the POSIX fraction field and the NTP fraction field is given by
POSIX.frac = NTP.frac × POSIX.res ÷ 232, where POSIX.frac is the POSIX
fraction field value, NTP.frac is the NTP fraction field value and POSIX.res is the POSIX
timestamp resolution (106 or 109). The problem is that there is no portable solution for the
operation of type int 64 := int 32 × int 32 [17]. Therefore, the conversion requires either
floating point operations or operations including 64-bit numbers. These operations can be
memory expensive, especially on 8-bit microcontrollers, and their use must be considered
carefully or another suitable solution must be designed.
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Chapter 5

Design

The analysis showed, that just an implementation of the NTP client application is not
sufficient, because of missing calls in the time interface. Analysis further described the
necessary components of the NTP client.

The uIP stack, described in section 2.3, provides a feature-rich communication interface
for the NTP client application. The communication interface is therefore not an issue.
However, the time interface must be extended with new calls, that must be further im-
plemented in the clock library. Figure 5.1 shows the overview of the NTP client on AVR
Raven.

Figure 5.1: NTP client design overview

5.1 Time interface extension

Section 4.3 described, that there is no proper way of setting, getting and adjusting the
time for an NTP client in Contiki OS. A new interface for setting, getting and eventually
adjusting the time must therefore be developed.

Setting the time should not cause the misbehaviour of the Contiki timers, described
in section 4.3. A modification of the scount and the seconds variable must be therefore
avoided. This can be achieved using an additional variable, containing the system boot
time, and modifying only this variable by a call for setting the time. This way, the seconds
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variable will be further representing the system uptime and the current real time can be
obtained by boottime+seconds. Since the scount also can not be changed, setting the time
is only possible within a resolution of one second. The call for adjusting the time takes one
parameter - the time to set, that is, the current real time in seconds since the POSIX prime
epoch (1 January 1970). Because the current real time can not be negative, the parameter
is of the unsigned data type. Listing 5.1 shows the call interface for setting the time.

void c l o c k s e t t ime ( unsigned long sec ) ;

Listing 5.1: Call interface for setting the time

By contrast, a call for getting the current time must be able to provide a higher precision.
The one second resolution is also not adequate for adjusting the time. Therefore, a new time
specification structure must be introduced. To conform to the POSIX standard [29], this
structure consists of two parts. The structure definition is shown in listing 5.2. The struc-
ture name was chosen time spec to avoid collisions with existing POSIX-compliant systems.
This structure consists of two signed long values representing seconds and nanoseconds. The
nanosecond precision was chosen because modern systems also aim towards this precision
and the microsecond precision would require at least the same data width [29, 24]. The
value 0 seconds and 0 nanoseconds is equal to the POSIX prime epoch (1 January 1970).
In case of the seconds part, the long data type was chosen because the already present
value seconds is also of the long type in Contiki. To conveniently represent real-time values
as well as local clock adjustment values, which may also be negative, the type was chosen
to be signed. In case of the nanoseconds part, the signed long data type was chosen to
conform to the POSIX standard [29] and to be able to represent positive as well as negative
values for local clock adjustments.

s t r u c t t ime spec {
long sec ;
long nsec ;

} ;

Listing 5.2: Time specification structure

Listing 5.3 shows the call interface for getting the time. The call for getting the time
fills the time specification structure pointed to by the ts parameter. The part representing
seconds is simply filled with the value of boottime + seconds, while the part representing
nanoseconds should be filled with the maximum precision the clock model allows. As
described in section 4.3, this can be achieved by reading the scount variable and by querying
the hardware counter that is used for interrupt generation and includes the time passed since
the last update of the scount variable. This way, a resolution of 1

CLOCK SECOND × counts =
1

128 × 32 = 0.000244140625 seconds can be acquired, where counts is the number of counter
register increments between two successive interrupts, which is 32 by default on AVR Raven,
as explained in section 4.2.

void c l o c k g e t t ime ( s t r u c t t ime spec * t s ) ;

Listing 5.3: Call interface for getting the time

Since setting the current time is possible only within one second precision, finer time
setting must be made using the time adjustments. Section 4.3 explained, that adjusting
the time should use the hardware clock as much as possible. Therefore, adjusting the time
changes the value in OCR2A compare register to delay or shorten the clock tick interval,
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Figure 5.2: Multiple read and result comparison

which in turn speeds up or slows down the system time. To comply with other operating
systems, the amount of required adjustments is specified by the time specification structure.
If the amount of required adjustments is positive, then the system clock is speeded up until
the adjustment has been completed. If the amount of required adjustments is negative,
then the clock is slowed down in a similar fashion. Because the application specifies the
amount of adjustments by the time specification structure, a new call must be introduced
to determinate how many clock ticks will be delayed or shortened, respectively. Listing 5.4
shows the call interface for adjusting the time.

void c l o c k ad j u s t t ime ( s t r u c t t ime spec * de l t a ) ;

Listing 5.4: Call interface for adjusting the time

As a result of this design, a leap second occurrence will be handled like an unexpected
change of time - the operating system will continue with the wrong system time for some
time, but the NTP client will set or adjust the system time. This will effectively cause the
leap second correction to be applied too late [31], which is a trade-off for smaller memory
requirements.

5.2 Clock library extension

The previous section described how the call for getting the time acquires the maximum
precision the clock model allows. Section 4.3 showed that there can be unpredictable results
caused by a race condition when reading the scount variable and the counter register TCNT2
afterwards. Although the read could be wrapped with an interrupt disable, the common
solution on AVR CPUs in Contiki is to perform more read operations, compare the results
and perform read operations again if the results are not consistent. Figure 5.2 shows such
a solution.

The call for adjusting the time computes the number of clock ticks with a longer or
shorter tick interval. To store the result, a new variable must be introduced. If the value
of this variable is zero, no adjustments are in progress. Otherwise, the default value of the
compare register is incremented or decremented by 1 and written to OCR2A. This effectively
causes adjusting the time, as described in section 4.3. When the time was adjusted enough,
the default value of the compare register is written back to OCR2A.

Section 4.2 explained, that the default value of the compare register for AVR Raven
in Contiki is 31, but the number of counter register increments between two successive
interrupts is 32. Incrementing the compare register value causes one real second to be
experienced as fT2

CLOCK SECOND×(32+1) = 4096
128 × 33 = 0.96 seconds by the operating sys-

tem. Decrementing the compare register value causes one real second to be experienced as
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fT2

CLOCK SECOND×(32−1) =
4096

128 × 31
.
= 1.032258 seconds by the operating system.

Each increment of the counter register TCNT2 takes 1
128×32 = 0.000244140625 seconds.

This is also the minimal possible clock adjustment, that can be achieved by changing the
compare register value just for one clock tick. The fastest possible adjustment is approx-
imately 0.03 s

s . If faster adjustments were needed, the compare register would have to be
updated with different values. However, updating the compare register with more differ-
ent values would require a more complicated software design and lower values could cause
missing of the compare match as described in section 4.1.

5.3 Contiki NTP client

The client application itself is a Contiki process, which uses the designed operating system
interface from the previous sections and the uIP communication stack.

The client is able to use both NTP communication modes, the NTP broadcast mode
and the NTP unicast mode. If the client will use only the broadcast mode, the structures
and code related to the unicast mode should not be included in the resulting program.
NTP broadcast mode packets can be received and processed from any NTP server in the
network. To avoid a complicated design when the NTP unicast mode is used, the client is
able to communicate only with one specified NTP server.

The NTP client fills and checks only the seconds part of the NTP timestamp, because
the conversion to the NTP format would increase the interval between the timestamp
determination and the dispatch of the filled packet. After the filled NTP packet is sent, the
client schedules sending the next NTP packet in 2τ seconds by using the event timer library.
In NTPv4, τ ranges from 4, resulting in NTP poll interval of 16 seconds, to 17, resulting
in NTP poll interval of 36 hours. However, the event timer library imposes a limit on
the scheduled time. This limit is platform specific and depends on the CLOCK SECOND
value, e.g. the τ value can not be greater than 8 on AVR Raven assuming 128 interrupts
per second. Upon scheduling the event timer, the client process yields and another process
could be run. The client process is later invoked either by an event announcing the server
response or by the event timer in case no server response arrived.

For the lack of a simple solution for IPv4 communication over IEEE 802.15.4 link layer,
only IPv6 communication will be tested on the AVR Raven platform. DNS resolution is
not supported by the NTP client for this reason and the remote server must be specified
by address.

The packet loss problem was described in section 4.4. However, a packet loss is not an
issue if the client process uses the event timer library. In broadcast mode, a lost server
packet causes no setting or adjusting the system time. The client simply waits without
disruption for the next NTP broadcast message. If the client needs to figure out its local
clock offset at the moment, it can query the server by using the NTP unicast mode. In
unicast mode, the client process is invoked in response to the expired event timer and
queries the server again.

When the server response arrives, the destination timestamp determination is one of the
first tasks the client does. After that, the client makes packet sanity tests, such as checking
whether the response is from a synchronised server. In unicast mode, the Originate Times-
tamp is compared with the stored sent timestamp. The received packet is considered bogus
in case of mismatch and further processing is stopped. Otherwise, the NTP timestamps are
converted to the local timestamp format and the local clock offset is computed as described
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in section 3.4. After the local clock offset is computed, the stored transmitted timestamp
is immediately set to zero to protect against a replay of the last transmitted packet. In
broadcast mode, the received packet is always considered correct and the local clock offset
is computed as the difference between the local stored timestamp and the received Transmit
Timestamp. The local clock offset determined from the broadcast mode is influenced by
the network propagation delay and therefore less accurate. The NTP client could exchange
several packets with the server to calibrate the propagation delay. But since local variables
can not be reused in the Contiki process when the process yields, this would cause either
an extra memory overhead or a complicated client design.

Dynamic increasing or decreasing the client’s Poll interval in response to Kiss-o’-Death
packets, described in section 3.3, would also require a complicated design. The client
instead assumes, that an exhausted NTP server rather drops the incoming client’s query
than sending a response with the KoD code.

Section 5.1 described that the client uses the POSIX timescale, whereas NTP uses the
NTP timescale. Since both timescales reckon the time in seconds, the number of seconds
between the NTP epoch and the POSIX epoch can be simply subtracted from the seconds
part of the NTP timestamp. But the conversion from the fraction part of the long 64-bit
NTP timestamp to nanoseconds, used in the local timestamp structure, is one of the most
problematic tasks for memory constrained systems. An accurate conversion requires either
floating point operations or operations including 64-bit numbers [17]. The conversion is
given by nsec = fractionl × 109 ÷ 232, where nsec is the nanoseconds part of the local
timestamp and fractionl is the fraction part of the long 64-bit NTP timestamp.

Because there is no native hardware support for floating point nor 64-bit arithmetic
operations, the compiler supplies these operations in form of a library, called libgcc in case
of the GCC compiler. This causes a significantly bigger resulting binary file (kilobytes in
case of floating point operations and hundreds of bytes in case of 64-bit operations). The
greatest common divisor of 109 and 232 is 29, so in fact, a relatively simple multiplication
of fractionl by 59
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must be computed. This could be computed on 32 bits using sequential

divisions by the power of 2 and multiplications by the power of 5. In the standard C
programming language, the bitwise right shift operator divides the unsigned data type by
the power of 2 and the bitwise left shift operator multiplies the unsigned data type by the
power of 2 [17]. Therefore, the multiplication by 5 can be done using two left shifts and
adding the original value (5x = 4x+ x). The only constraint is that the overall coefficient
of these operations must not be greater than 1, that is, the value must be in the range from
0 to 232 − 1 in every step. Otherwise, the value could overflow and the result would be
incorrect. Division can not cause such a situation but multiplication could. The original
value could be divided by a greater divisor, but this would lead to a greater inaccuracy
because of loosing the least significant bits. Because of this, the multiplication done as soon
as possible provides more accurate results. The ideal conversion sequence is therefore given
by formula 5.1.

nsec = fractionl × 5

23
× 5

23
× 5

23
× 52

23
× 5

23
× 5

23
× 52

23
× 1
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(5.1)

It must be noted, that the above presented conversion is not exactly accurate, because the
least significant bits are lost because of right shifting. The accuracy can be determined
by iterating over all the possible values of fractionl and comparing the results with the
reference algorithm that uses the floating point operations. Such a measurement reports
the maximum error of 5 nanoseconds, which is totally adequate for most platforms without
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the floating point unit or for platforms where 64-bit multiplications are expensive. The
implementation of the above as well as the program used for the error determination can
be found on the CD attached to this thesis. The table of CD contents is listed in appendix E.

After the timestamps were converted, the local clock offset is computed as given in
section 3.4. Depending on the absolute value of the local clock offset, the system time is
either set or adjusted using the clock set time or clock adjust time call, respectively. The
clock is set if the time difference is greater than or equal to the offset threshold value. The
NTP specification suggests 0.125 seconds as the default offset threshold value [26]. Because
the designed call for setting the time, described in section 5.1, can set the time only within
a resolution of one second, the threshold value must be at least one second.

27



Chapter 6

Implementation

This chapter describes the implementation of the designed interface extensions and the
implementation of the designed NTP client application. The following software was used for
the development: Ubuntu 10.10, GCC 4.3.5, Binutils 2.20.1, AVR Libc 1.6.8 and Contiki 2.5.
The AVR Dragon programmer and AVRDUDE 5.10 were used for flashing the AVR Raven
hardware.

How to get a working setup with Contiki on the AVR Raven platform is described in
the documents on the CD enclosed to this thesis. The table of CD contents is listed in
appendix E.

6.1 Time interface extension

Since there is no proper way of setting, getting and adjusting the time in Contiki OS, the
interface for setting, getting and adjusting the time must have been developed. The imple-
mentation uses the designed call interface and time specification structure from section 5.1.

6.1.1 Time specification structure

A new structure for expressing time values was implemented. This structure is shown in
listing 6.1. Section 5.1 described the reasons for the chosen data types in this structure.
The implicit assumption is that the compiler chooses at least 32-bit data width for the long
data type. According to ISO C99 standard [17], the maximum value for an object of type
signed long shall be greater or equal 231-1 (2 147 483 647) [17]. This in fact results in at
least a 32-bit variable unless the compilation setting is changed. Such a time representation
will wrap around in the year 2038.

s t r u c t t ime spec {
long sec ;
long nsec ;

} ;

Listing 6.1: Time specification structure

6.1.2 Setting the time

Setting the time is only possible within one second precision - finer time setting must
be made using the time adjustments. The implemented clock set time function computes
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when the system booted in seconds since the POSIX epoch and saves the result in the newly
implemented boottime variable. This avoids the misbehaviour of Contiki stimers, described
in section 5.1.

Thanks to the implemented clock set time function and boottime variable, the running
Contiki system is able to tell the uptime, the current real time and the time when the
system was booted. Listing 6.2 shows the function for setting the time.

v o l a t i l e unsigned long boottime ;

void c l o c k s e t t ime ( unsigned long sec )
{
boottime = sec − seconds ;

}

Listing 6.2: Function for setting the time

6.1.3 Getting the time

Getting the correct current real time is only possible if it was set using the clock set time
function before. The implemented clock get time function is then able to tell the current
time in seconds since the POSIX epoch by simply adding boottime and seconds.

The nanoseconds part is filled by reading the scount variable and the hardware counter
register. The comparison avoids the need to disable clock interrupts to prevent unexpected
results. This is a common practice on the AVR CPUs in Contiki, as described in 5.2. In
order to minimise the possible comparison mismatch, the consistent values are obtained first
and used for computation afterwards. The seconds part is compared in a similar manner
- if the seconds part is not consistent, the other values might not be consistent as well.
Listing 6.3 shows the function for getting the time, where CLOCK CTC MODE equals 1
and CLOCK COMPARE DEFAULT VALUE is equal to the value of the compare register
when no time adjustments are in progress.

void c l o c k g e t t ime ( s t r u c t t ime spec * t s )
{
u i n t 8 t counter , tmp scount ;
do {
ts−>s ec = boottime + seconds ;
do {
counter = CLOCK COUNTER REGISTER;
tmp scount = scount ;

} whi le ( counter != CLOCK COUNTER REGISTER) ;

ts−>nsec = tmp scount * (1000000000 / CLOCK SECOND) +
counter * (1000000000 / (CLOCK SECOND *

(CLOCKCOMPAREDEFAULTVALUE + CLOCKCTCMODE) ) ) ;
} whi le ( ts−>s ec != ( boottime + seconds ) ) ;

}

Listing 6.3: Function for getting the time

Because both 1000000000 and CLOCK SECOND are constants, the compiler is able to
calculate the result of the division during the compile time. Furthermore, as both numbers
are integers, the result is integer as well [17]. Most of the CPU time is therefore spent
on the multiplications where the variables counter and tmp scount are involved. If the
code is compiled using GCC version 4.3.5, one such a multiplication of two 32-bit variables
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takes 33 instructions including the call and ret instructions for entering and returning
from the mulsi3 routine, which computes the result. This results in 48 clock cycles of
overhead, which takes 6 000 nanoseconds with an 8 MHz CPU clock, according to the
AVR Instruction Set manual [2]. The timestamp provided is therefore not exact. Because
the time consumed strongly depends on the architecture and compiler specifications, no
correction was implemented to remove this inaccuracy. The application must be instead
aware that the timestamp is not exactly accurate.

6.1.4 Adjusting the time

A new function computing the amount of required adjusted ticks was implemented. The
clock adjust time function stores the computed result in a new variable called adjcompare,
which is further discussed in section 6.2. If the amount of required adjustments is positive,
then the system time is speeded up until the adjustment has been completed and vice versa.
If the amount of required adjustments is 0 seconds and 0 nanoseconds, then are the eventual
adjustments in progress stopped, but any already completed part is not undone. The time
values that are between two successive multiples of the clock resolution are truncated.
Listing 6.4 shows the function for adjusting the time.

void c l o c k ad j u s t t ime ( s t r u c t t ime spec * de l t a )
{
i f ( de l ta−>s ec == 0L) {
i f ( de l ta−>nsec == 0L) {
adjcompare = 0 ; // stop adjustments
re turn ;

} e l s e {
adjcompare = −de l ta−>nsec / (1000000000 / (CLOCK SECOND *

(CLOCKCOMPAREDEFAULTVALUE + CLOCKCTCMODE) ) ) ;
}

} e l s e {
adjcompare = −de l ta−>s ec * (CLOCK SECOND *

(CLOCKCOMPAREDEFAULTVALUE + CLOCKCTCMODE) ) +
−de l ta−>nsec / (1000000000 / (CLOCK SECOND *

(CLOCKCOMPAREDEFAULTVALUE + CLOCKCTCMODE) ) ) ;
}

}

Listing 6.4: Function for adjusting the time

6.2 Clock library extension

Section 4.2 described, that the clock init call evaluates to a specific setup code for each
different AVR CPU during the compilation. Other AVR CPUs can be using a different
hardware clock. However, the time interface is common for all AVR CPUs. Therefore, new
general names for each part of the hardware clock must be defined in the clock init call.

The compare register OCR2A is defined by macro as CLOCK COMPARE REGISTER,
the counter register TCNT2 is defined as CLOCK COUNTER REGISTER, the default
value of the clock compare register, when no time adjustments are in progress, is defined
as CLOCK COMPARE DEFAULT VALUE and CLOCK CTC MODE is defined as 1, be-
cause the hardware clock is used in CTC mode, as described in section 4.1. So in fact, the
code presented in the previous section is not a pseudocode. Such an extension also makes
porting the code to other platforms simple.
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The clock adjust time function uses the new adjcompare variable, as described in the
previous section. The data type of this variable was chosen to be of the signed 16-bit
type. The limit imposed on time adjustments is therefore 215 counter register incre-
ments for slowing down the clock and 215 − 1 for speeding up the clock. This equals
to 215 × 0.000244140625 = 8 seconds and (215−1) × 0.000244140625

.
= 7.999756 seconds,

respectively. A wider data type of the adjcompare variable would cause greater scope, but
also an additional memory overhead. Since it has to be possible to adjust the time at least
within one second, a smaller data width of adjcompare would cause too small scope. The
volatile modifier must be used in conjunction with this variable, because the variable may
be updated in the interrupt service routine. Listing 6.5 shows the variable definition and
its use in the interrupt service routine for adjusting the time.

v o l a t i l e i n t 1 6 t adjcompare ;

ISR(AVROUTPUT COMPARE INT)
{
. . .
i f ( adjcompare == 0) { // i f not ad ju s t i ng
CLOCKCOMPAREREGISTER = CLOCKCOMPAREDEFAULTVALUE;

} e l s e i f ( adjcompare > 0) { // i f s lowing down
adjcompare−−;
CLOCKCOMPAREREGISTER = CLOCKCOMPAREDEFAULTVALUE + 1 ;

} e l s e { // i f speed ing up
adjcompare++;
CLOCKCOMPAREREGISTER = CLOCKCOMPAREDEFAULTVALUE − 1 ;

}
. . .

}

Listing 6.5: Pseudocode of adjustments in interrupt service routine
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6.3 Contiki NTP client

The structure representing an NTP message was borrowed from the OpenNTPD daemon
and the Dragonfly NTP daemon. This structure is not using the GCC extension for rep-
resenting a bit field, instead it uses a single 8-bit integer called status for Leap Indicator,
Version Number and Mode fields of the NTP packet structure, described in section 3.3.
Accessing each field of the status byte is done using the bitmasks. Unlike using the bit field
extension, this is compliant with the standard C language [17].

Parameters such as the remote NTP server address, the offset threshold value or the τ
exponent of the NTP poll interval can be configured by a standard C define macro in the
source code or in the Makefile. The default offset threshold value was chosen 3 seconds.
Approx. 1% of this amount can be adjusted in 1 second. The unicast mode can be turned
off by specifying no remote host. In this case, all of the code related to the unicast mode
will not be compiled.

The client is IP-version agnostic and the UIP CONF IPV6 macro is used only when
printing the remote server address for debugging purposes. The remote NTP server ad-
dress can be either IPv4 or IPv6 address, but can not be specified by a domain name.
Communication over IPv4 was not tested though, for the lack of a simple solution for IPv4
communication over IEEE 802.15.4.

The NTP client is written as an event-driven process, that never exits. Upon sending
the NTP query, the NTP client process sets the event timer, yields and waits for the next
event by using the PROCESS WAIT EVENT statement. This is comparable to the daemon
mode in other operating systems. The NTP process is later invoked either in response to the
incoming packet event or in response to the timer expiration event. The type of the event
is determined by the if statement. This way, no active waiting blocks the whole system.
Before entering the main loop, the client sends its first NTP query after 6 seconds of uptime
to set the system time. Otherwise, the first set of the system time would happen after the
event timer expires (2τ seconds). The value of 6 seconds should provide enough time for
Contiki to configure the network interface. If the network interface is not configured at that
time, the client enters the main loop and schedules sending the next packet as described
above.

If any other application wants the NTP client to query the server, it can send the
PROCESS EVENT MSG event to the NTP process at any time. However, no event is sent
to that application when the server response arrives or when the system time is changed.
The application can instead experience a change of the system time using the clock get time
call. Listing 6.6 shows the Contiki NTP client pseudocode.
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PROCESS THREAD( event )
{
f o r ( ; ; ) { // main loop
PROCESS WAIT EVENT() ;
i f ( event == tcp ip even t ) {
t cp ip hand l e r ( ) ;

}
#i f d e f REMOTEHOST // un i ca s t mode support

e l s e i f ( e t ime r exp i r ed ( ) ) {
t imeout handler ( ) ;
e t im e r r e s t a r t ( ) ; // s e t et imer to 2ˆTAU seconds

} e l s e i f ( event == PROCESS EVENTMSG) // event from another app l i c a t i on
{
t imeout handler ( ) ;

}
#end i f
}

}

t cp ip hand l e r ( void ) // proce s s incoming s e r v e r packet
{
c l o c k g e t t ime ( ) ;
o f f s e t = compute o f f s e t ( ) ;
i f ( abs ( o f f s e t ) >= ADJUST THRESHOLD) {
c l o c k s e t t ime ( ) ;

} e l s e {
c l o c k ad j u s t t ime ( ) ;

}
}

#i f d e f REMOTEHOST
t imeout handler ( void ) // send query to REMOTEHOST
{
c l o c k g e t t ime ( ) ;
f i l l a n d s e nd n t p p a c k e t ( ) ;

}
#end i f REMOTEHOST

Listing 6.6: NTP client pseudocode

Listing 6.7 shows the conversion from the NTP timestamp to the POSIX timestamp,
as presented in section 5.3. The conversion uses only shifts and additions, which makes the
resulting binary file significantly smaller. Because the current NTP Era ends in 2036, the
conversion between the seconds fields has to be changed in the future [25].

According to the output from the avr-size tool, the use of 64-bit arithmetic operations
for the conversion takes 728 bytes more in the resulting binary file (GCC supplies routines
for multiplication and shifting 64-bit integers) and the use of floating point operations
takes 3 358 bytes more than the developed algorithm. Besides significantly smaller memory
requirements, it was observed that this algorithm provides on AVR Raven more accurate
results than the libgcc floating point library supplied by GCC.
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#de f i n e JAN 1970 2208988800UL /* 1970 − 1900 in seconds */

void n tp t o t s ( const s t r u c t l f i x e d p t *ntp , s t r u c t t ime spec * t s )
{
ts−>s ec = ntp−>i n t p a r t l − JAN 1970 ;
ts−>nsec = f r a c t i o n l t o n s e c ( ntp−>f r a c t i o n l ) ;

}

unsigned long f r a c t i o n l t o n s e c ( u i n t 32 t f r a c t i o n l )
{
unsigned long nsec ;
nsec = f r a c t i o n l ;
nsec = ( nsec >> 1) + ( nsec >> 3) ; // nsec = nsec /2 + nsec /8 = (5* nsec ) /8
nsec = ( nsec >> 1) + ( nsec >> 3) ; // nsec = (5* nsec ) /8 = (25* f r a c t i o n l ) /64
nsec = ( nsec >> 1) + ( nsec >> 3) ; // nsec = f r a c t i o n l * 5ˆ3/2ˆ9
/* Now we can mult ip ly by 5ˆ2 because then the t o t a l
* mu l t i p l i c a t i o n c o e f f i c i e n t o f the o r i g i n a l number f r a c t i o n l
* w i l l be : f r a c t i o n l * (5ˆ5) / ( (2ˆ3) ˆ4) = f r a c t i o n l * 0 .762939453 ,
* which i s l e s s then 1 , so i t can not over f l ow .
*/
nsec = ( nsec << 1) + nsec + ( nsec >> 3) ; // nsec *3 + nsec /8 = (25* nsec ) /8

nsec = ( nsec >> 1) + ( nsec >> 3) ;
nsec = ( nsec >> 1) + ( nsec >> 3) ;

/* Again we can mult ip ly by 5ˆ2 . The t o t a l c o e f f i c i e n t w i l l be
* f r a c t i o n l * (5ˆ9) / ( (2ˆ3) ˆ7) = f r a c t i o n l * 0.931322575
*/
nsec = ( nsec << 1) + nsec + ( nsec >> 3) ; // nsec *3 + nsec /8 = (25* nsec ) /8

/* Last s h i f t to agree with d i v i s i o n by 2ˆ23 can not be done e a r l i e r
* because the t o t a l c o e f f i c i e n t would always be g r e a t e r than 1 .
*/
nsec = nsec >> 2 ;
re turn nsec ;

}

Listing 6.7: Conversion from NTP timestamp to POSIX timestamp

6.4 Code metrics

The developed NTP client and patches for Contiki version 2.5 as well as the actual Contiki
Git version (at the time of writing) are provided on the CD attached to this thesis. The
NTP client application is common for both Contiki versions. The code uses the Contiki
indentation style.

The patch extending the Contiki operating system version 2.5 inserts 72 new lines of
code and modifies 1 line of code. The modified line is a backport from the actual Contiki
Git version to prevent missing the compare match between the scount variable and the
CLOCK SECOND value.

The patch extending the actual Contiki Git version (committed on 27 June 2012) inserts
78 new lines of code and modifies 1 line of code. The modified line fixes a reported bug,
which was not fixed at the time of writing. This bug causes a wrong decision of the C
preprocessor whether the CLOCK SECOND value is a power of two, which in turn may
cause a division operation in the clock interrupt service routine.
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The NTP client application has 2 code files and 1 header file. The code file containing
the definition of the NTP process has 198 lines of code. The second code file contains
various conversions from NTP fraction part to nanoseconds. The user may choose by using
the C define macro which conversion will be used by the NTP client application. This file
has 52 lines of code.

Various code metrics of the NTP client application code shows listing 6.8. These metrics
were acquired using the cloc program.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Language f i l e s blank comment code
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C 2 52 122 198
C/C++ Header 1 19 54 52
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SUM: 3 71 176 250
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 6.8: NTP client application code metrics
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Chapter 7

Measurements

There are several factors that can be measured. The clock interrupt frequency measure-
ments show the influence of the clock adjustments on the number of clock ticks (interrupts)
per second. The clock offset measurements show the time difference between the reference
clock and the local clock. The clock phase measurements show the phase difference between
the reference clock and the local clock, that is, when each second is accounted. All of the
presented plots and their respective source values can be found on the CD attached to this
thesis. The table of CD contents is listed in appendix E.

Figure 7.1: Network topology for measurements

Figure 7.1 shows the network topology used for the measurements. The reference clock
for all of the presented measurements was the Meinberg M600 NTP stratum 1 server, which
was synchronised using the GPS. The NTP client was running on the AVR Raven platform
in a room at 23 �.

7.1 Clock interrupt frequency

The AVR Raven’s bit 7 of Port D and the ground pin were connected to the UNI-T 2025CEL
digital oscilloscope to measure the clock interrupt frequency. At the beginning of the
interrupt service routine a logic 1 was written to the bit 7 of Port D, what caused a high
level of voltage. At the end of the interrupt service routine a logic 0 was written to the bit
7 of Port D, what caused a low level of voltage.

When there are no clock adjustments in progress, the value of the output compare
register is 31 by default. The clock interrupt frequency is supposed to be equal to the value
of the CLOCK SECOND macro, which is 128 by default on AVR Raven and is given by
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formula 7.1. Figure B.1 in appendix B shows the oscilloscope output for this case.

fasy
prescaler

counts
=

32768
8

32
= 128 (7.1)

Figure B.2 in appendix B shows the oscilloscope output when slowing down the clock.
The clock interrupt frequency is supposed to be equal to 124.12 Hz and is given by for-
mula 7.2.

fasy
prescaler

counts+ 1
=

32768
8

32 + 1
= 124.12 (7.2)

Figure B.3 in appendix B shows the oscilloscope output when speeding up the clock.
The clock interrupt frequency is supposed to be approximately equal to 132.129 Hz and is
given by formula 7.3.

fasy
prescaler

counts− 1
=

32768
8

32− 1

.
= 132.129 (7.3)

The measured values are not exactly equal to those expected. This is mostly because
of a room temperature influence on the clock source (32 768 Hz quartz crystal oscillator),
but it could also be air pressure or magnetic fields, etc.

7.2 Clock offset

Figure 7.2: Local clock offset without NTP client

Figure 7.2 shows the local clock offset in case no NTP client runs on the device. The time
is set with the initial offset of about 45 milliseconds. However, the clock progresses faster
because of frequency errors. This compensates the initial clock offset at first, but then it
causes the offset increase. The clock is running faster with approximately 100 PPM, where
1 PPM is equal to 10−6 s

s (0.0001%). That is, the clock error is about 9 seconds a day in
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this case. The offset increase is not exactly linear because of the frequency jitter, which
can be also observed.

Figure 7.3 shows the local clock offset acquired from the serial output in case the Contiki
NTP client runs on the device. When the developed NTP client receives a response from
the server, it calculates the local clock offset and prints its value to the serial output. The
NTP poll interval was set to 16 seconds, that means, the local clock offset is calculated and
eventually corrected every 16 seconds.

Figure 7.3: Local clock offset with adjustments and NTP poll interval 16s

The blue line shows the mean local clock offset value, which should be equal to zero
in a perfect case. This is however not the case, because of the oscillator frequency error
shown in figure 7.2. More figures showing the local clock offset measurements can be found
in appendix C.

7.3 Clock phase

The GPS based clock Meinberg GPS 167 and digital oscilloscope UNI-T 2025CEL were
used for measuring the clock phase difference. Meinberg GPS clock rises an impulse when
each second is accounted. Contiki on AVR Raven was configured to write a logic 1 to bit 7
of Port D when each second is accounted and to write a logic 0 to the same bit after 25
clock ticks.

When the NTP client uses the clock adjust time call, the local clock offset as well as the
phase is being adjusted. Figure 7.4 shows the phase while adjusting the clock. The yellow
line is the output signal from Meinberg GPS clock and the blue line is the output signal
from AVR Raven.
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Figure 7.4: Second impulses when clock adjustments are in progress

Figures showing the clock out of phase and in phase with the reference clock can be
found in appendix D.
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Chapter 8

Conclusion

As of early 2012, the Network Time Protocol has been operating for over 30 years and re-
mains the longest running, continuously operating application protocol in the Internet [25].
This thesis demonstrates, that its use can be further extended to a new platform of con-
strained devices, such as embedded systems.

The developed time interface extends Contiki OS towards the real-time support, while
requiring minimal memory amounts. This interface provides new calls to get, set and adjust
the system time without any modification of the existing code. The clock library was
extended to provide a platform-agnostic hardware clock interface with a minimal memory
overhead. The time interface could therefore be ported to different hardware platforms
easily. The call for getting the time provides the maximum precision the hardware clock
allows. Setting the time is only possible within the precision of one second in order to
avoid the misbehaviour of the existing timer libraries. The time adjustments, that require
sophisticated clock discipline algorithms, were not implemented because of complicated
design and memory constraints.

The developed NTP client for Contiki OS uses the developed time interface to keep
an accurate time on the device. The Contiki NTP client is able to use the NTP unicast
and broadcast modes. The unique timestamp conversion provides a portable solution to
avoid memory expensive floating point or 64-bit arithmetic operations in a constrained
environment. The measurements show that the Contiki NTP client provides an accurate
time synchronisation mechanism to the Contiki operating system. The Contiki NTP client
is a Simple Network Time Protocol client, that can send requests to only one specified
NTP server. NTP algorithms for the time determination from more server responses were
therefore not implemented.

The Network Time Protocol is suitable for embedded systems and constrained devices,
forming the modern Internet and it will arguably find its place among them in the near
future.
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Appendix A

Protothreads Example

Listing A.1 shows an example of delaying text on an LCD panel using Protothreads. It is
taken from Adam Dunkels’ Protothreads website [10] and slightly modified. Protothreads
can be used to introduce delays inside a function without using a full threading model. The
example shows a function writing characters to an LCD panel. Suppose that each character
is shown for one second, then the next character replaces the previous.

1 #inc lude ”pt . h”
2 #inc lude ” t imer . h”
3 #inc lude <s t r i n g . h>
4
5 typede f unsigned shor t l c t ;
6 s t r u c t pt {
7 l c t l c ; /* Local cont inuat i on */
8 } ;
9
10 s t r u c t pt s t a t e ;
11 s t r u c t t imer t imer ;
12
13 PT THREAD( d i s p l a y t e x t ( s t r u c t pt *pt , const char *msg) )
14 {
15 PT BEGIN( pt ) ;
16 f o r ( i n t i = 0 ; i < s t r l e n (msg) ; i++) {
17 l c d d i s p l a y c h a r (msg [ i ] ) ;
18 t ime r s e t (&timer , CLOCK SECOND) ; /* Wait f o r one second . */
19 PT WAIT UNTIL( pt , t ime r exp i r ed (&timer ) ) ;
20 }
21 PT END( pt ) ;
22 }
23
24 i n t main ( void )
25 {
26 PT INIT(& s t a t e ) ;
27 f o r ( ; ; ) {
28 d i s p l a y t e x t (&state , ”He l lo world” ) ;
29 /* Here could be another thread run */
30 }
31 return 0 ;
32 }

Listing A.1: Example using Protothreads

The PT WAIT UNTIL macro actually causes the function to return. While the function is
waiting for the timer to expire another function could be called and run. When the function
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is entered again, the execution continues with the PT WAIT UNTIL macro which causes
the function to check the condition it is waiting for (timer expired). If the condition is met,
the function resumes, and it returns again if not. Strictly speaking, the amount of time
between showing each character can be more than one second. This is because Protothreads
are not running simultaneously: if the timer expired and another Protothread was running,
this Protothread would have to wait until it is entered again. When the condition specified
in PT WAIT UNTIL is met, the next iteration of the for loop (line 16) is started and the
next character is displayed.

How does it work? The macro PT BEGIN is expanded to a switch statement by the
preprocessor. The PT WAIT UNTIL macro expands to case and setting the local contin-
uation to the value, so that the next time this function is run, it jumps to this case. The
structure holding the state is defined outside of the function, so its context is not lost when
the function returns. The simplest state structure would hold just the local continuation
variable. Listing A.2 shows the same example after a simplified preprocessing.

1 #inc lude ”pt . h”
2 #inc lude ” t imer . h”
3 #inc lude <s t r i n g . h>
4
5 typede f unsigned shor t l c t ;
6 s t r u c t pt {
7 l c t l c ; /* Local cont inuat i on */
8 } ;
9
10 s t r u c t pt s t a t e ;
11 s t r u c t t imer t imer ;
12
13 i n t d i s p l a y t e x t ( s t r u c t pt *pt , const char *msg) /* Expanded PTTHREAD */
14 {
15 switch ( pt−>l c ) { case 0 : /* Expanded PT BEGIN( pt ) ; */
16 f o r ( i n t i = 0 ; i < s t r l e n (msg) ; i++) {
17 l c d d i s p l a y c h a r (msg [ i ] ) ;
18 t ime r s e t (&timer , CLOCK SECOND) ; /* Wait f o r one second . */
19
20 /* The f o l l ow i ng two l i n e s are expanded */
21 pt−>l c = 31 ; case 31 : /* PT WAIT UNTIL( pt , t ime r exp i r ed (&timer ) ) ; */
22 i f ( ! ( t ime r exp i r ed (&timer ) ) ) { re turn PT WAITING; } /* macro */
23
24 }
25 pt−>l c = 0 ; re turn PT ENDED; } /* Expanded PT END */
26 }
27
28 i n t main ( void )
29 {
30 s tate−>l c = 0 ; /* Expanded PT INIT */
31 f o r ( ; ; ) {
32 d i s p l a y t e x t (&state , ”He l lo world” ) ;
33 /* Here could be another thread run */
34 }
35 return 0 ;
36 }

Listing A.2: Preprocessed example using Protothreads
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Appendix B

Clock Interrupt Frequency
Measurements

Figure B.1: Interrupt frequency without clock adjustment
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Figure B.2: Interrupt frequency when speeding up the clock

Figure B.3: Interrupt frequency when slowing down the clock
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Appendix C

Clock Offset Measurements

The serial output from AVR Raven, the TechTools DigiView DV3100 logic analyser and the
Meinberg GPS 167 clock were used for measuring the local clock offset. Meinberg GPS 167
rises an impulse when each second is accounted. AVR Raven was configured to write a
logic 1 to bit 7 of Port D when each second is accounted, and to write a logic 0 to the same
bit after 25 clock ticks.

Figure C.1 shows the local clock offset from long-term uptime observation when NTP
client sets the time, but no adjustments are applied. A linear offset increase can be observed,
until the threshold value for setting the time is reached. The offset threshold value was 3
seconds.

Figure C.1: Local clock offset with NTP client setting the time but without adjustments

Figure C.2 shows the local clock offset acquired from logic analyser when the Contiki
NTP Client runs on the device. The logic analyser captures the rising and the falling edge
from the Meinberg GPS clock and from AVR Raven. The difference between the rising
edge from Meinberg GPS clock and the rising edge from AVR Raven gives the local clock
offset.
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Figure C.2: Local clock offset with adjustments and NTP poll interval 16s
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Appendix D

Clock Phase Measurements

The following figures show the phase difference between the reference clock (Meinberg
GPS 167) and AVR Raven. The figures were acquired from the UNI-T 2025CEL digital
oscilloscope. The yellow line on channel 2 shows the impulses from the GPS synchronised
clock Meinberg GPS 167. The blue line on channel 1 shows the impulses from AVR Raven
running Contiki OS with the developed NTP client. The rising edge occurs when each
second is being accounted. Figure D.1 shows the clock out of phase and figure D.2 shows
the clock in phase.

Figure D.1: Second impulses when the clock is out of phase
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Figure D.2: Second impulses when the clock is in phase
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Appendix E

CD Contents

Directory Contents
docs/ Setup guides for running and debugging Contiki OS on AVR Raven
docs/datasheets/ Datasheets for used hardware
docs/img/ Images from Dopsy group laboratory at RheinMain University
sw/ Software used in this thesis including Contiki source code and patches
sw/ntpd/ Contiki NTP Client source code
sw/utils/plots/ Scripts and measured results for plots
sw/utils/tests/ Programs used for testing Contiki NTP Client
text/ LaTeX source files of this thesis
text/fig/ Figures used in this thesis
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