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Abstract
This thesis addresses the topic of object detection on graphics processing units. As a part
of it, a system for object detection using NVIDIA CUDA was designed and implemented,
allowing for realtime video object detection and bulk processing. Its contribution is mainly
to study the options of NVIDIA CUDA technology and current graphics processing units
for object detection acceleration. Also parallel algorithms for object detection are discussed
and suggested.

Abstrakt
Tato práce se zabývá detekcí objektů pomocí grafických procesorů. Jako její součást byl
navržen a naimplementován nástroj pro detekci objektů na technologii NVIDIA CUDA,
umožňující detekovat objekty ve videu v reálném čase nebo zpracovávat velké množství
fotografií. Jejím cílem je prozkoumat aktuální možnosti technologie NVIDIA CUDA vzh-
ledem k detekci objektů a navrhnout, jak by se daly akcelerovat.
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Chapter 1

GPGPU

With high demand for real-time image processing, computer vision applications and a need
for fast calculations in the scientific world, general-purpose computing on GPU (Graphics
Processor Units), also known as the GPGPU, has become a popular programming model
to accelerate programs traditionally coded on the CPU (Central Processing Unit).

Until the last decade or so, when technologies for GPGPU became available, the GPU
was used mostly to render data given to it by the CPU. This has changed in a way, that
the GPU, with its massive parallel capabilities, isn’t used only for displaying, but also for
computation. The approach to this is to transfer data bidirectionally between the CPU and
the GPU, which on one hand brings the overhead of copying the data, but on the other, it
enables to do the calculations much faster due to the architecture of the GPU. As shown
in figure 1.1, many more transistors are dedicated to data processing instead of cache or
control, which leads to a higher memory bandwidth.

Figure 1.1: CPU and GPU architecture comparison (taken from [15])

GPUs are also designed with floating-point calculations in mind, which can be taken
advantage of, in applications such as object detection, where most of the math is done using
single-precision floating-point arithmetic.
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Figure 1.2: Floating-Point operations per second for the CPU and GPU (taken from [15])

1.1 Parallel computing platforms

In November 2006 the first parallel computing platform - CUDA (Compute Unified Device
Architecture) was introduced by NVIDIA. Since then the world of GPUs and computer
graphics have changed significantly. The GPU stopped to be viewed only as a tool for
displaying, but became another processing unit. By introducing CUDA to programmers,
suddenly its programming model and memory model became available for use.

The most widely used GPGPU platforms are the following.

• CUDA - NVIDIA

• OpenCL - Khronos Group

• C++ AMP - Microsoft

• Compute shaders - OpenGL

• DirectCompute - Microsoft

All of the technologies above allow access to the GPU computing capabilities. The first
two - CUDA and OpenCL work on a kernel basis. As a programmer, you have access to
low-level GPU capabilities and have to manage all the resources yourself. The standard
approach is the following:

1. Allocate memory on the GPU
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2. Copy data from the CPU to the allocated memory on the GPU

3. Run a GPU based kernel (written in CUDA or OpenCL)

4. Copy processed data back from the GPU to the CPU

C++ AMP is a more higher-level oriented library. Introduced by Microsoft as a new
C++ feature for Visual Studio 2012 with STL-like syntax, it is designed to accelerate code
using massive parallelism. Currently it is supported by most GPUs, which have a DirectX
11 driver.

The last two - Compute shaders and DirectCompute also work in a more high-level
fashion, but quite differently from C++ AMP. They are not a part of the rendering pipeline,
but can be set to be executed together with other OpenGL or DirectX shaders.

1.1.1 Evolution of the graphics pipeline

This change towards a more general-purpose use of GPUs can be also viewed in the current
OpenGL pipeline, with which most graphics programmers are familiar. In OpenGL 2.0
(2004) shader programs were introduced enabling to partially program the pipeline itself.
With OpenGL 3.* (2008-2010) the shader language had improved significantly and geometry
shaders were introduced. Later on in 2010 another programmable stage was introduced
with OpenGL 4.0 - the tesselation shader, but still these were set stages with a predefined
purpose. The most significant year for the GPGPU was 2012 with OpenGL 4.3 and the
Compute Shaders.

Compute shaders are very specific. They don’t have a predefined number of inputs,
outputs or a place in the pipeline. It is up to the programmer to specify these and also to
specify a space on which they operate, like per-pixel or per-vertex basis, by fetching the
data itself. This means that even the graphics pipeline, traditionally used for visualization,
changed in a way, that it can be programmed without the use of traditional shaders, with
compute shaders only, and a more general-purpose use in mind.

1.2 NVIDIA CUDA

NVIDIA CUDA is a programming model enabling direct access to the instruction set
and memory of NVIDIA GPUs. The other main competitor to CUDA, on the market,
is OpenCL. Both of these models are designed with direct access to the GPUs capabilities
in mind compared to other parallel platforms. OpenCL has the advantage of not being
platform specific. It is supported by both major GPU vendors AMD and NVIDIA. CUDA
is only usable on NVIDIA cards, but generally offers more options to the programmer and
a better debugging environment.

1.2.1 Programming model

CUDA uses a language called CUDA C, which is an extension to C and uses NVCC compiler
to generate code for the GPU. It also allows to write C-like functions called kernels. A
kernel is defined by the __global__ declaration specifier and is executed using a given
configuration wrapped in <<< ... >>>. The configuration is specifies a grid and takes as
parameters the number of blocks and the number of threads per block. The same kernel
code is run by the whole grid. Code run by the kernel on the GPU is called the device
code, whereas the code run outside of the kernel by the CPU is called the host code.
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Thread hierarchy

Threads are a basic computational unit uniquely identified by 3-dimensional indexes
threadIdx (an index within a block) and blockIdx (an index of a block).

Blocks are groups of threads, where every block resides on a single processor core, there-
fore a kernel can be run with the maximum of 1024 threads. Each block is uniquely
identified by a 3-dimensional index blockIdx. Threads within a block can be synchronized
by a __syncthreads call, but blocks themselves can’t be synchronized, and so a new kernel
must be run to do so.

The code is executed in a SIMT (Single Instruction, Multiple Thread) fashion, which is
very similar to the commonly known SIMD (Single Instruction, Multiple Data) architecture.
In reality the code is executed in groups of 32 threads, referred to as warps and a single
Kepler or Maxwell multiprocessor supports up to 64 active warps. The important thing to
mention about warps is, that when a single thread within a warp is active, the whole warp
stays active and so performance-wise it is important to optimize the code to occupy warps
as much as possible.

Figure 1.3: A grid of blocks and threads run by a kernel (taken from [15])

Kernel configuration parameters can be passed as integers or dim3 structures. dim3 spec-
ifies the number of threads or blocks in every dimension, therefore a dim3 threadsPerBlock(4,4,1)
would run a kernel with 16 threads per block, where threadIdx.x would range between 0
and 3 and the same for threadIdx.y.

Example 1.4 shows how to add 2 arrays in parallel using N threads and 1 block.

Scheduling

After a kernel is launched, the grid is organized in blocks, grids and threads, which are
described in section 1.2.1. Depending on the architecture, blocks can have only up to
certain number of warps and threads. For every architecture, these values are summarized
in table 1.2.

Blocks are assigned between multiprocessors, where for modern GPUs, their count
ranges between a single multiprocessor for average GPUs and 16 for the high-end. Threads
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// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

...

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

...

}

Figure 1.4: Example of vector addition in CUDA (taken from [15])

within a block are then divided into warps. Warp execution is controller by a warp scheduler
using a prioritized scheduling policy.

All threads within a warp execute the same instruction at the same time. In case the
instruction is not active for the given thread, an active mask is used and as soon as all the
threads within the warp finish or are stalled by synchronization, a new warp is assigned.
This is shown in figure 1.5, where as soon as an instruction finishes, another instruction,
processed by a different warp, is assigned.

Figure 1.5: As soon as an instruction has its operands ready, it is scheduled by the warp
scheduler for execution.

1.2.2 Memory model

Another important aspect of CUDA are the types of memories, which can be used. They
range from locally accessible registers with extremely fast access to globally accessible global
memory, which takes hundreds of cycles to read or write to or from. They are summarized
by the following table:
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Memory Keyword Scope Access Lifetime
Registers - Thread Read/Write Kernel
Local memory - Thread Read/Write Kernel
Shared memory __shared__ Block Read/Write Kernel
Global memory __device__ Grid Read/Write Application
Texture mem-
ory

- Grid Read-only Application

Constant mem-
ory

__constant__ Grid Read-only Application

Table 1.1: CUDA Memory types

Global memory is accessible by all threads in a grid and allows both reading and writing.
It is also the slowest memory type. Its access is the bottleneck for most applications with
access latency ranging from 400 to 800 cycles. There are several strategies for it to be fast
like coalescing access with 32-, 64-, 128-byte transactions, described in section 1.2.3.

Figure 1.6: Memory hierarchy ([15])

Texture memory can be regarded similarly to global memory. Cache is optimized for
2D spatial access pattern and address modes or interpolation can be used at no additional
cost.
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Constant memory is the third memory type, which can be accessed by all threads and
is typically used to store constants or kernel arguments. It doesn’t bring any speed-up
compared to global or texture memory, but it is optimized for broadcast, which means that
it is optimal to use it, when the same data is accessed by all the blocks.

Shared memory can be accessed by all threads within a block. It is much faster than the
other types, but is commonly subjected to bank conflicts. It is mainly used for acceleration.

Unified memory is a memory type introduced in CUDA 6.0 (version of CUDA Toolkit).
It enables to use the same memory addresses both in host and device code, which simplifies
writing code. On the other hand, as of spring 2014, there doesn’t seem to be any hardware
support and performance-wise the unified memory performs very similar to global memory.

Local memory is a part of global memory, where everything which doesn’t fit into
registers is stored. For devices with Compute Capability 2.x there are 32768 32-bit registers.

1.2.3 Optimization methods

Global memory coalescing

Using global memory is generally slow, but it is unavoidable to use, because it is the only
type of GPU memory, which can be copied to from the CPU. On the other hand, since
Compute Capability 1.1, global memory loads and stores can be optimized by coalescing,
thus making it much faster.

GPU can access memory in 32-, 64- or 128-byte transactions. Therefore, in case the
memory access is aligned, multiple banks can be read or written to in a single transaction.
On the other hand when it is not, more transactions have to be initialized, making the
memory bandwidth much lower. Examples of coalesced (top) 1.7 and uncoalesced (bottom)
1.8 access with stride of 4 bytes are shown in figure 1.9.

tmp = globalmem[blockIdx.x * blockDim.x + threadIdx.x];

Figure 1.7: Example of coalesced global memory load.

tmp = globalmem[blockIdx.x * blockDim.x + threadIdx.x + stride];

Figure 1.8: Example of uncoalesced global memory load with a stride.

It is a common optimization technique, to use shared memory in cases, where strided
access is needed. Data is copied between global memory and shared memory in a coalesced
fashion, but then strided access is used on shared memory without a penalty.

Thread synchronization and stalling

Threads cannot be synchronized across the whole grid, but only across a block. Therefore,
if a result of a certain computation is needed by all the threads, a whole new kernel has to

9



Figure 1.9: Coalescing access to global memory. Top part shows coalesced access, whereas
bottom part shows strided uncoalesced access.

be launched. Synchronization across a block is done by the __syncthreads call. When a
thread reaches this call, it waits idly until all the threads within the block also reach the
call.

In certain scenarios, it might take a lot longer for a certain thread to process its code,
then for another. An example is the prefix-sum, as described later on in section 4.6.4, where
the number of iterations of a for-cycle depends on the thread ID. The problem is, that after
the for-cycle finishes, threads must be synchronized. Most of the threads in this case are
stalled and cannot be freed until all of them finish to run another warp.

When writing a kernel, it is important to keep this in mind and try to minimize the use
of __syncthreads calls, where this would lead to stalling most of the threads.

1.2.4 Compute capability

NVidia GPUs vary not only by their parameters, but also by their architecture. There
are 4 architectures supporting CUDA: Tesla (November 2009) [10], Fermi (March 2010)
[12], Kepler (March 2012) [13] and Maxwell (March 2014) [14]. Another way to describe
the architecture is its compute capability, which is 1.x for Tesla, 2.x for Fermi, 3.x for
Kepler and 5.x for Maxwell. The higher the compute capability, the more features such
GPU supports, also all of the compute capabilities have different parameters summarized
in table 1.2.

1.2.5 Maxwell improvements

In march 2014 the new Maxwell architecture was released and it brought several improve-
ments, which affect application performance and are taken heavy use of in the implemen-
tation described in chapter 4. These are summarized below.
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Compute Capabil-
ity

2.x 3.x 5.x

Architecture Fermi Kepler Maxwell
Max. number of
blocks per SM

8 16 32

Max. number of
warps per SM

48 64 64

Max. number of
threads per SM

1536 2048 2048

Max. number of
threads per block

1024 1024 1024

Local memory per
thread

512 KB 512 KB 512 KB

Max. shared mem-
ory per SM

48 KB 48 or 112 KB 64 or 96 KB

L2 cache size 768 KB 512 KB 2048 KB

Table 1.2: Limits of devices for every architecture. SM stands for Streaming Multiprocessor.

Larger shared memory

Shared memory, described in section 1.2.2, is increased from 64 KB to 96 KB per multipro-
cessor. Shared memory is the faster memory type, because it resides on the multiprocessor
itself. This means, that it is available only for the given block. On the other hand it’s by
far the faster memory type and is used mainly for performance optimization. Increasing its
size makes it more available.

Larger L2 cache

The size of L2 cache is increased 4× from 512 KB to 2048 KB. This allows for performance
benefits for bandwidth-bound applications such as image processing.

Shared memory atomic operations

Maxwell implements native shared memory atomic operations for 32-bit integers and native
shared memory 32-bit and 64-bit compare-and-swap (CAS), which can be used to implement
other atomic functions with reduced overhead.

The difference can be seen in PTX assembly, where atomicAdd compiled for Kepler
shown in figure 1.10 is made up of 4 instructions, where the same code for Maxwell shown
in figure 1.11 is made up of a single instruction.

/*00c8*/ LDSLK P0, R2, [RZ];

/*00d0*/ @P0 IADD R2, R2, 0x1;

/*00d8*/ @P0 STSCUL P1, [RZ], R2;

/*00e0*/ @!P1 BRA 0xc0;

Figure 1.10: atomicAdd compiled with nvcc -arch=sm 35 (Kepler) (taken from [1])
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/*00f0*/ @!P0 ATOMS.ADD RZ, [RZ], R4;

Figure 1.11: atomicAdd compiled with nvcc -arch=sm 50 (Maxwell) (taken from [1])

New multiprocessor design

The new Maxwell multiprocessor is called SMM (multiprocessor for Kepler was called SMX).
All the different parameters are described in table 1.2. Apart from that, most of the other
improvements were made with improved occupancy without increasing the parallelism, in
mind, such as dependent arithmetic instruction latency being reduced, warp schedulers
having dedicated CUDA cores or having more active warps per SMM.

Figure 1.12: Maxwell’s multiprocessor, SMM. Taken from [14].
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Chapter 2

Object detection

Object detection is the process of localizing an object in input image data. The type of
object depends on which data the detector was trained for. Typical applications are human
faces, pedestrians, cars, traffic signs and others. A more detailed description of such use
cases is discussed in section 2.7.

In this chapter, we will briefly discuss different approaches to object detection and in
more detail, the implemented method, which is WaldBoost, a meta-algorithm used to train
classifiers and classify samples.

2.1 Approaches to object detection

Objects are mostly classified using a features, which were first introduced by Viola in [22].
To explain them more thoroughly, let’s take a face as an example. Despite the differences
such as lighting, color of eyes or skin or the length of hair, we as humans, can identify we
are looking at another human face based on certain similarities. For example a pair of eyes,
a nose and a pair of ears in their corresponding positions. These similarities can be called
a set of features. To a computer, on the other hand, they are still too abstract and cannot
be enumerated, and so a lot of different feature methods were devised.

Classifying an object by a feature-based method can be approached using different
strategies. One such classification of object detection was summarized by Yang, Kriegman,
Ahuja [8].

Knowledge-based methods. These methods encode knowledge of a certain object and
capture relationships between its features. For a face this means capturing relationships
between the positions of eyes, mouth, nose or ears.

Feature invariant approaches. These algorithms try to find similarities which don’t
depend on lighting, viewpoint or pose.

Template matching. Patterns to describe an object as a whole are stored. Correlations
between the input image and the patterns are then computed to detect the object.

Appearance-based methods. Models are learned from a set of training images, which
capture a variability of the object. Such set of training images contains positive and negative
samples.
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2.2 Appearance-based methods

The most exploited approach to object detection and mainly face detection is the appearance-
based. In general, these rely on methods from machine learning or statistical analysis to
develop a model for the sought object. Such methods can be characterized from a statistical
point of view, where a sample from an image is classified by a Bayesian classification as an
object or a non-object. In reality more advanced methods are used.

2.3 AdaBoost

One such algorithm to analyze a sample is AdaBoost, an algorithm originally introduced
in 1995 by Viola, Jones [23]. The main idea is combining several weak classifiers into a
single strong classifier. This means, that every weak classifier decides to which class the
given sample belongs to. In object detection this is usually a yes or no decision, and after
processing all of the weak classifiers a final decision is made, also a called a strong classifier.
The strong classifier is evaluated as sum of decisions made by the weak classifiers.

2.4 WaldBoost

Another algorithm and one, which we will discuss in more detail is WaldBoost, because it
is used for the implementation. WaldBoost is an algorithm, which combines AdaBoost and
Wald’s Sequential Propability Ratio Test (SPRT). SPRT is a strategy to determine what
class a sample belongs to, based on a series of measurements. It’s main advantage over
AdaBoost, which was briefly explained in section 2.3 is, that it doesn’t have to process all
of the weak classifiers, but can make a decision throughout the process.

SPRT =


+1 if Rm ≤ B
−1 if Rm ≥ A
# else take another measurement

Rm is the likelihood ratio and A, B are constants to compute the wanted false negatives
α and false positives β ratios as follows:

Rm =
p(x1, ..., xm|y = −1)
p(x1, ..., xm|y = +1)

(2.1)

A =
1− β
α

,B =
β

1− α
(2.2)

As mentioned in [19] with face detection in mind, the positive rate β can be set to 0
and the required false negative rate α to a small constant. As such the equations can be
simplified to

A =
1− 0

α
=

1

α
,B =

0

1− α
= 0 (2.3)

Rm is always positive and therefore the algorithm will only classify the sample as a face
when it finishes its training cycle or discard it as a background when the ratio gets greater
than the given constant A. Therefore the whole strategy can be simplified to the following.
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SPRT =

{
−1 if Rm ≥ 1

α

# else take another measurement

2.5 WaldBoost as an object detector

Now we have an idea of how AdaBoost introduced in section 2.3 and mainly WaldBoost
explained in section 2.4 work, we may explain this in terms of object detection.

The detector scans an image using a scanning window, usually the size of 24 × 24 or
26× 26 pixels, for every possible location and searches for the object. Such scanned region
of interest is called a sample and to make a decision, whether it’s the given object or not,
it is processed by a strong classifier (produced by the WaldBoost algorithm).

The algorithm processes weak classifiers and for each one of them compares them to the
constant A mentioned in equation 2.4. Such weak classifiers are trained based on a given
method such as LBP, LRD and so on (these methods are covered later on in section 2.6.

After processing all of the weak classifiers, the sample is classified as an object or gets
discarded throughout the process. A more detailed explanation is given for the implemen-
tation in section 4.1.

2.6 Image features

What we haven’t discussed yet is how these image features, which are statistically processed
are described. A method of extracting such features from a texture or an image has to be
devised. Fortunately, there are many such methods, where the choice heavily affects the
performance of the detector. Examples of such features are summarized below.

• Haar-like features [23]

• Local Binary Patterns [16]

• Local Rank Differences [6]

• Local Rank Patterns [7]

Figure 2.1: Haar-like features. (a) Edge feature (b) Line feature (c) Four-rectangle feature.
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2.6.1 Haar-like features

A method originally used by Viola and Jones [23] in their object detection framework.
Haar-like features are described in figure 2.1, where the sum of the pixels in the black
area is subtracted from the sum of the pixels in the white area. The calculation can be
accelerated by using integral images, which store the image as already precalculated sums.

2.6.2 Local Binary Pattern

Another method to describe image features, which is used in the implementation, are Local
Binary Patterns (LBP) [16]. They are based on encoding local intensities of an image
with 8-bit codes. In their elementary form, they take a 3× 3 area as an input and compare
intensity values of all the pixels with the central one as shown in figure 2.2. Mathematically
LBP evaluation is summarized below.

compare(pmiddle, pi) =

{
1 if pi ≥ pmiddle
0 else

(2.4)

lbp(pmiddle) =

7∑
i=0

2icompare(pmiddle, pi) (2.5)

Figure 2.2: Evaluation of the LBP feature.

LBPs can be extended to be used not only for single pixels and thus 3x3 areas, but also
for larger areas. When comparing larger areas, the sum of the areas is compared instead of
single pixel values. For example a 2x2 LBP would sum up areas of 4 pixels and compare
them with the sum in the middle.

LBP features are invariant to lighting changes, because even though the image is lighter
or darker, the sign of intensity differences stays the same. On the other hand they are not
invariant to geometrical transformations such as scale or rotation.

As mentioned later on in section 4.4, in reality the sum of the areas doesn’t have to be
used and an average can be used instead. This is then exploited on the GPU using texture
memory.

2.7 Uses cases of object detection

Object detection isn’t only used on its own, but also is a part of use cases. These range
from uses in security surveillance, to traffic analysis or biometrics. Object detection doesn’t
have to be bound to humans, there are works researching detection on dogs [9]. A short
summary of such applications is given below.
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2.7.1 Face tracking and recognition

In order to recognize a face and track it afterwards, it has to be detected at first. Recognition
is done usually by comparing the detected region of interest with a reference and deciding
whether it’s similar enough. This can be done by different techniques such as comparing
image histograms. Face tracking is a similar use case, but for a video, which compares
detections in consecutive frames.

2.7.2 Biometrics

An extension to face recognition is the use of biometrics. These are metrics describing
human characteristics. Examples can be an iris, retina, fingerprints, palm veins or a face.
They are used mainly for authentication, and as such these metrics have to be detected first.
Apart from authentication, they these are starting to be used in modern vehicle systems,
which detect whether a person is tired or sleeping and try to wake him or her up.

2.7.3 Traffic analysis

A very important application of object detection is traffic analysis. A trivial use case is
vehicle speed measurement, where in order to measure the car’s speed, it has to be detected
in consecutive frames of a video, after which the speed can be calculated based on framerate
and distance traveled.

In traffic analysis, object detection actually has many more uses. Traffic congestion
can be analyzed and afterwards data sent to inform traffic control or an intersection can
be monitored in order to analyze how dangerous it is by measuring the angle or speed at
which vehicles enter it. Example of such a work is described in [20].

2.7.4 Other uses

There are many more uses, not only those described above. Other examples can be video
stabilization, vehicle parking systems, image panoramas, detecting parts of an image in
order to perform more complicated object detection. A smart device GUI can be developed,
which adapts itself based on where or at which angle the user is looking.
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Chapter 3

Analysis

In this chapter, the general design of an object detector is discussed and later on tools for
measuring its performance and profiling. It does not cover implementation specifics. These
are discussed later on in chapter 4.

The idea of implementing a WaldBoost object detector with the use of LBP features on
a parallel platform such as CUDA is not a new one and mainly for face detection, it is well
researched. On the other hand, since it was first proposed, both OpenCL and CUDA have
undergone many changes, and so research done in this area tends to get out of date.

The implementation of a WaldBoost detector on a CPU, where every pixel is processed
sequentially isn’t complicated. The general idea, as explained in section 2.4, is that a
sample, in our case a pixel, is processed by a series of weak classifiers (also called stages).
These stages accumulate a response, always adding or subtracting a value based on how
the LBP feature is evaluated. In case the accumulated response gets greater than a certain
value, the sample is discarded, the program skips the rest of the classifiers and continues
with the next pixel.

Image processing tasks are generally suitable for parallel acceleration. On the other
hand it is not as simple. The number of pixels is huge and as shown in figure 3.1, most of
the samples get discarded as background after few initial stages. On a parallel platform,
such as the GPU, this presents a problem, because most of the processors have to wait for
the few samples, that are still being processed and thus wasting a lot of resources.

Figure 3.1: Surviving percentage of samples gets below 5% after few initial stages. Taken
from [5].
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Most of the current implementations of WaldBoost detectors are based on a work pro-
posed by Herout [5], which is summarized in sections 3.1 and 3.2.

3.1 Pyramidal image

The detector uses a window for scanning the image, usually 24x24 or 26x26 pixels. In order
to detect the object in such window, a pyramidal image was proposed. Such image contains
many sub-sampled images stored in a pyramid fashion. The structure of the pyramidal
image and the way how to construct it is discussed in section 4.3.2.

3.2 Thread rearrangement

As shown in figure 3.1, only a few samples are being processed after the few initial stages.
Without a thread rearrangement scheme, these few surviving samples compute, meanwhile
the others, which were already discarded, wait for these to finish. As such, they occupy
GPU resources and most of the computational power and parallelism is wasted. The rest
of the samples still occupies GPU resources and waits for these to finish. To free these
resources and use them accordingly, a method of thread rearrangement has to be proposed.

At the time of writing the paper, detectors with 512 or 1024 stages were used (this
implementation uses a detector with 2048 stages). Herout proposed [5], that every sample
can be processed up to a set number of stages, after which thread rearrangement is done
and the process continues. This is described in figure 3.2.

Figure 3.2: Surviving threads (green) after each thread rearrangement. Every thread pro-
cesses a single sample. (a) 144 initial threads, 7 survive (b) Threads reorganized into 7
threads, 3 survive. (c) Threads reorganized into 3 threads, none survive.

Implementation details on how threads are rearranged are covered in section 4.6.

3.3 Debugging and profiling tools

One of the main advantages of CUDA over OpenCL are its debugging and profiling envi-
ronments, which are important for writing optimized and error-free code. There are several
CUDA-specific options to use. CUDA Profiler API also provides functions to help with
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profiling. Only specific parts of the code can be profiled by using cudaProfilerStart and
cudaProfilerStop calls. This allows to collect data only for important parts of the code.

3.3.1 Visual Profiler

The first option to profile and optimize code is the Visual Profiler. As the name itself says,
it displays a visual representation of all the GPU calls, where statistics such as memory
bandwidth (shared, local, global, . . . ), instruction throughput, occupancy and much more
can be displayed. It is well documented 1 and provides a simple interface to use (shown in
figure 3.3).

Figure 3.3: Visual profiler interface.

To profile a program, only four things need to be set up: binary file to run, CUDA
toolkit version, working directory and command line arguments. The profiler allows to
export the results to a CSV file.

3.3.2 nvprof

Nvprof has basically the same options as the Visual Profiler, with the difference, that it is
a command-line tool. As such it can be used as a part of a script, which can automate the
whole process of profiling.

1http://docs.nvidia.com/cuda/profiler-users-guide/#visual-profiler

nvprof --analysis-metrics -o myprog-analysis.nvprof ./myprog --benchmark -i=1

Figure 3.4: An example how to run nvprof to output profiling data.
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3.3.3 NVIDIA Nsight

Another handy tool to use is NVIDIA Nsight, which is a set of tools developed for Microsoft
Visual Studio 2 and Eclipse 3 allowing to debug and analyze GPU and graphics applications.

It consists of two main modules and allows for simple profiling. On the other hand
dedicated tools such as visual profiler, described in section 3.3.1, or nvprof, described in
section 3.3.2, are better for the job.

CUDA Debugger allows to set breakpoints inside GPU code and view the local vari-
ables, inspect the memory or perform other debugging tasks such as memory checks.

Graphics Debugger allows to debug vertex shaders, pixel shaders and view the current
state of the graphics pipeline.

3.4 Metrics

Apart from the choice of profiling tools, there is also a lot of metrics and events to be
measured. Below, a short introduction will be given to those, which will be discussed and
measured later on in section 5.2.

3.4.1 Achieved occupancy

Achieved occupancy is the number of active warps per clock cycle divided by the maximum
warps per streaming multiprocessor. In other words, it is the percentage of used up GPU
computational resources. It is one of the key factors influencing every GPU application,
because as long as there are resources available, they can be used. Maximum occupancy
doesn’t always lead to the best results, because other areas of optimization, such as memory
access, atomic operation stalls or cache hit rate may outperform it. Typical case of slow
kernels with full occupancy are kernels with large blocks (for example 1024 threads).

3.4.2 Memory load/store throughput

Memory throughput is the amount of data transferred by the kernel per second, either by
writing into the memory (store) or reading from it (load). It is not a metric, which can be
directly optimized in code, but gives the programmer an insight into performance of the
application.

3.4.3 Atomic and L2 throughput (for atomic requests)

As of Visual Profiler 6.5, there isn’t a good metric to measure the performance of atomic
operations, or at least in a way, which would be useful to our implementation. However a
general insight into their performance can be gained by either their throughput or the L2
cache throughput for atomic requests. It doesn’t measure how the kernel gets stalled, when
multiple threads are writing to a single location using atomic instructions, but it is directly
affected, which means the higher the throughput, the lower the stalls.

2https://www.visualstudio.com/
3https://eclipse.org/
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3.4.4 L2 hit rate (texture reads)

The last measured metric is the L2 hit rate for texture reads, which is the percentage of
texture reads, which were found in the L2 cache. L2 cache is located in between global
memory and the multiprocessor as shown in figure 1.12. All data which is read from the
global memory or the texture memory goes through this cache. Texture memory is generally
as fast as global memory. On the other hand it utilizes one thing, that the global memory
doesn’t - spatial data locality. As such, a lot of data can be fetched from the cache and
greatly speed up the application. A metric to measure the percentage of data fetched from
the cache is the L2 hit rate.
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Chapter 4

Implementation

The object detector is implemented in C++ with dependencies on OpenCV1 - an open
source computer vision library with C and C++ interfaces and CUDA2 - a library for
writing NVIDIA GPU code with a CUDA C interface, which is an extension to C compiled
by the NVCC compiler.

It is implemented as an easy-to-use class, which takes a dataset or a video on the input
and outputs detections. Current implementation uses an open-source face detector trained
by R. Juranek3 under Brno University of Technology license. As such, it can be used as
a part of an application such as face tracking or face recognition, but not only faces have
to be processed. Depending on what detector is trained on, anything from traffic signs to
humans can be detected.

Figure 4.1: A sample output with debug information shown.

1http://www.opencv.org
2http://www.nvidia.com/object/cuda_home_new.html
3http://medusa.fit.vutbr.cz/LBPDetector/
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A CMake4 project is included, therefore it can be built on multiple platforms. As for
the project itself, it is logically separated into the following modules and sub-modules (in
code this is done using C++ namespaces):

• wbd - wrapper around the whole detector

• wbd::simple - CPU implementation of the waldboost detector

• wbd::gpu - WaldboostDetector class, an interface to use the detector and most of the
methods used for GPU acceleration

• wbd::gpu::pyramid - pyramidal image generation on the GPU

• wbd::gpu::detection - object detection on the GPU

4.1 Detector

The detector can be used to detect any object it is trained to, not only faces. Most detectors
are stored as XML files, which brings the overhead of reading and parsing a file and so an
exported version of an XML detector to a C++ header file is used. As such 2 header files
(wbd_detector.h, wbd_alphas.h) must be compiled with the detector.

These headers are be obtained by parsing a XML detector 5. The detector consists
of two main parts, the stages or also called the weak classifiers, which are loaded into a
structure described in 4.2 and an α-table, which is stored as an array of floating-point
values. Every stage points to a specific range inside the α-table, where responses for all the
LBP values are stored. Training of a detector is not the subject of this thesis and as such
it will not be discussed.

struct Stage {

uint8 x, y; // X, Y offsets

uint8 width, height; // width, height of the feature

float thetaB; // threshold

uint32 alphaOffset; // alpha table offset

};

Figure 4.2: Stage structure

The detector uses a 26x26 pixel-wide scanning window, where x and y are offsets inside
the window and width and height describe the size of the feature. It is the size of 1x1,
1x2, 2x1 or 2x2, because of this knowledge, hardware provided bilinear interpolation can
be used. alphaOffset is an offset inside the α-table corresponding to appropriate LBP
values. thetaB is the threshold value, which decides if the sample gets discarded or not in
the current stage.

4http://www.cmake.org/
5https://github.com/mmaci/classifier-export
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4.2 Interface

The object detector is designed to be used using a class WaldboostDetector, to simplify
the detection as much as possible it is able to be run only by loading a video or a dataset
and then running the run() method, which returns a list of detections. Optionally the
programmer can set specific settings described such as the method used ir block configu-
ration. On the other hand when not set, these are set optimally based on results obtained
by measurements on different GPUs.

The whole interface is described in the added Doxygen6 documentation.

4.3 Program cycle

The detector processes both videos and image datasets, which are passed to the detector
as a filename. For a dataset, a text file is used with filenames of the images separated by
a newline. OpenCV is used to load both images and videos and as such it supports most
common formats.

The application pipeline (described in figure 4.3) of the detector is a bit different for a
dataset, than for a video, but both use the following steps as described in sections 4.3.1 to
4.3.4.

For a video, the detector can be initialized only once with the initial frame. All the
other frames have the same size and so the same memory structures can be used. Image
setup and the Detection are then run multiple times for every frame. After the video is
processed, memory is freed.

For a dataset, every image can be different and so the whole process must be run
multiple times for every loaded image.

4.3.1 Initialization

The initialization of the detector can be separated into two parts. The first being the tasks,
that have to be done only once for both datasets and videos. This means copying the
detector into GPU memory (the detector contains weak classifiers/stages and an α-table).
This is done in the constructor of the WaldboostDetector class.

The other part being allocating GPU memory for the image itself, which is allocated
dynamically due to dependence on the size of the input image. For a video this can also be
done only once, because every frame has the same size and as such, everything is allocated
based on the initial frame. On the other hand a dataset can have completely different image
sizes and so this must be done for every photo separately.

4.3.2 Setting an image

After the initialization is complete, an image or a frame is loaded by OpenCV and then
copied over to the GPU. This must be done both for every image or every frame. It is
copied over to the global memory, there it is preprocessed, as discussed in section 4.3.2, and
set as a texture. From the texture, a pyramidal image is generated, as described in section
4.3.2. After that, everything is ready for object detection.

6http://www.doxygen.org
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Figure 4.3: Application pipeline. On the GPU side, kernel methods are mentioned.

Preprocessing

The first kernel to be run is the preprocessing kernel. There are 2 operations to be done -
conversion from the initial integers to a floating-point representation and then a conversion
to grayscale.

Floats are needed in order to work with textures. Texture memory enables hardware
implemented bilinear interpolation for subsampling images, which is done mainly in creating
the pyramidal image. Even though bilinear interpolation should only be supported for
floating-point values, due to official documentation, it is not the case. On the other hand
it might be a bug, which might get fixed in the future and it would be wise not to be used.

The detector itself is trained on grayscale images, and so the input must also be in
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grayscale. After the kernel finishes, the result is saved as a texture.

Dynamic texture and texture objects

As of CUDA 5.0 and Kepler GPUs textures don’t have to be defined globally as static
textures, but they can be used dynamically using Texture Objects (cudaTextureObject_t
class API [2]).

This has several advantages. One of them being the slight overhead (up to 1.5µs) by
binding and unbinding static textures during kernel launch, which is eliminated. Even
though this is not our case and doesn’t sound as much, it might be quite a significant
overhead while launching large quantities of fast kernels.

The main advantage in our case is, that texture objects can be passed as arguments,
set to store variable image sizes and therefore easily be used as a part of a library. Also
multiple textures can be created using given parameters, which is exploited in pyramidal
image creation and explained in section 4.3.2.

Pyramidal image

All the pixels are processed using a 26x26 pixel-wide window. The size again depends on
how the detector is trained. The basic idea is that for the given object, all the features
describing it fit inside this window. On the other hand objects, such as faces, are usually
much larger in the initial image, therefore we have to create many sub-sampled images and
run the detection on every one of them. In order to do this a the second kernel to be run
is the pyramid kernel.

The straight forward method is to create a single pyramidal image and store it as a
texture on which the detection is run.

As mentioned previously, the implementation uses hardware bilinear interpolation pro-
vided by the texture memory for sub-sampling the image. It has to be kept in mind, that
bilinear interpolation has some negative side-effects, one of them being the sub-sampling of
an image below half its original width.

Figure 4.4: Error when sub-sampling an image below twice the original width using bilinear
interpolation
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As shown in figure 4.3.2, when sub-sampling an image below half its original width, pix-
els are left out and a sampling error is created. Other methods, such as Lanczos resampling,
solve this at the cost of a computational overhead, because a software implementation has
to be used instead of the hardware-based provided by using a floating-point 2D texture.

The image is generated in octaves. An octave is a structure of several images, where the
smallest image has half the width/height of the original image. Depending on the number
of images in an octave, every image is 21/numberofimages smaller than the previous. The
following octave is then sub-sampled from the previous octave.

Two methods were tested. The first one using a single texture for both writing a reading
the individual octaves. This proved to be very costly and therefore another method had
been implemented and is described below:

1. A pyramidal image of N images is generated, where each image is 21/N smaller then
the previous. Every image is sub-sampled from the original image.

2. Generated pyramidal image is stored as a dynamic texture. Simultaneously the pyra-
mid is being written inside a final image used for detection.

3. A pyramidal image is generated, by sub-sampling the previously generated pyramid.
Width and height of the sub-sampled pyramid are twice smaller than that of the
original.

4. Generated pyramidal image is saved as a dynamic texture.

5. Steps 3 and 4 get repeated for a set number of octaves.

Figure 4.5: Pyramidal image
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The implementation itself uses 8 levels and 4 octaves. This results in the sides of the
smallest image being 16× smaller than the original. By reducing the number of octaves or
levels, better performance can be gained at a cost of the quality of the detections.

4.3.3 Detection

To detect an object, the detector has to successfully evaluate a given number of stages
(weak classifiers) described in section 4.1, which are processed sequentially. In our case
2048. This number can be reduced, but it will have an impact on the number of detections.
Every weak classifier the algorithm processes, a response is given. The response is a number
read from the α-table, from the address given by the stage offset and the calculated LBP
value. It is then added to the accumulated response. The sample is discarded in case the
accumulated value falls below the stage threshold thetaB.

for every pixel (a GPU thread is created) do
for every stage do

1. compute LBP coefficient
2. add response for the given LBP to the accumulated response
if accumulated response ≥ stage threshold thetaB then

discard sample
end

end
end

Algorithm 1: Object detection algorithm simplified

4.3.4 Freeing the memory

After everything has been processed, the GPU memory can be freed. This also must be
done for every image in case of a dataset, but only once in case of a video.

4.4 Memory organization

The use of GPU memory is one of the most important parts of programming on GPU
architectures. The types of CUDA memories are described in section 1.2.2.

Below we will discuss, how the most important parts of the detector are stored and why.

• Stages/Weak classifiers - constant memory
Stages are stored in the constant memory. Even though it’s not as fast as let’s say
shared memory, its capability to broadcast simultaneously accessed data is ideal.
Every thread processes a single image position, for which it loops through a for-cycle
of stages. Every read from the constant memory is then not only broadcast to a
half-warp (a group of 16 threads), but also cached. The only problem can be the size,
which is limited to 64 KB. The detector uses 2048 stages, where each stage is 12 B.
This leads to 24 KB, which is enough, but has to be accounted for when storing other
data in the constant memory.

• α-table - texture memory
There are 256 coefficients for every stage and every coefficient is stored as a float. This
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leads to 256 ∗ 2048 ∗ 4 = 2MB and by far exceeds the memory available for constant
memory. Another reason the constant memory cannot be used is that the access is
random, due to the fact, that we are likely to get different LBP values for every pixel.
In this case we wouldn’t utilize the broadcast and it would even be slower.

• Original image and pyramidal image - texture memory
Both are stored in the texture memory. Original image is used to create a pyramidal
image using hardware accelerated bilinear interpolation for creating down-sampled
images as described in section 4.3.2. It is highly optimized for random read-only
access, which is exactly what we want.

4.5 Thread allocation

A GPU thread is allocated for every sample, therefore every pixel/sample. Based on [5] only
a fraction of samples (around 1%) is still processed by the classifier after the few initial
stages. On the other hand the GPU organizes threads in warps - groups of 32 threads,
which are organized in blocks across with they can be synchronized. The problem is, that
when only a single thread within a warp is active, the other threads have to wait for it until
it finishes, thus wasting GPU resources.

4.6 Thread rearrangement

Herout in [5] proposed, that every few stages, threads can be checked if they are still
evaluating the classifier stages or they have been dropped. Surviving threads can then be
rearranged and the process continues only with the remaining samples.

The detector uses several ways of reorganizing surviving threads. Every one of them
works better under different conditions. To discuss and measure such conditions is one of
the goals of this thesis. All the implementations are summarized below using the types of
functions and memory used.

• atomic functions / global memory

• atomic functions / shared memory

• atomic functions / hybrid global-shared

• prefix-sum / global memory

The whole implementation is based around three functions, which are implemented as
__device__ functions in case of the shared memory implementation, otherwise they are
kernels on their own. The shared memory is specific by the fact, that it operates only
within shared memory space and doesn’t use global memory at all and as such, it doesn’t
have to be synchronized by rerunning the whole kernel, but only using __syncthreads
calls.

• detectSurvivorsInit - processes all samples for a given number of stages and out-
puts the surviving threads. Called at the beginning.

• detectSurvivors - processes surviving samples for a given number of stages and
outputs the surviving threads. Called multiple times.
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• detectDetections - processes remaining surviving threads and outputs detections.
Called at the end.

4.6.1 Atomic functions and global memory

The first proposed method uses a counter stored in global memory to count the number
of surviving threads within a block and global memory for storing the surviving sample
information. After processing a given number of stages of a classifier, every sample which
wasn’t discarded by the classifier is assigned an ID in global memory by reading the current
value of the surviving sample counter and incrementing it. It then saves the information
about the surviving sample (structure is described in figure 4.6.1) to global memory based
on the assigned ID.

struct SurvivorData {

uint32 x, y; // X, Y coordinates of the sample

float response; // current response

};

Figure 4.6: Stage structure

Threads cannot be synchronized across the whole grid, which means, that it is not
possible for all the samples to stop at a given stage and write down the surviving samples.
In other words, it is possible, that a thread processing survivors after, let’s say 512 samples,
would write to memory at the same time, as another thread processing survivors after 256
stages, therefore a new kernel must be launched.

Advantages

• Samples are tightly packed together after synchronization, using up as little memory
(and warps) as possible.

Disadvantages

• A global memory counter might become a serious bottleneck on an image with a lot
of detections, because threads will get stalled waiting for the atomic increment to be
processed.

• The use of global memory is generally slow, even though it can be optimized by its
coalescing, explained in section 1.2.3.

• An overhead of running a new kernel.

4.6.2 Atomic functions and shared memory

To solve these issues a method exploiting the use of shared memory was proposed. All the
survivors are stored in shared memory and so is the counter, which only counts surviving
threads within a block. This means, that all the threads are processed locally within their
block.

Functions are not implemented as kernels, like in the previous case, but only as __device__
functions. The kernel doesn’t have to be run again, in this case.
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After processing a given number of stages the surviving sample is assigned an ID based
on the value of the counter, which is a number ranging from 0 to max threads per block
and atomically increments it. Threads are then synchronized and evaluation of the stages
continues. This leads to warps being freed.

Advantages

• Shared memory is much faster than global memory (the bandwidth of shared memory
is 1.7TB/s compared to that of global memory which is 150GB/s.

• Counters and atomic increments are distributed across shared memory removing the
single counter bottleneck, as threads increment their counter separately based on the
block they are in.

• Only a single kernel can be run with the use of __syncthreads to synchronize threads
inside a block every given stage.

Disadvantages

• More warps are being run, because as long as there is at least a single sample being
processed a warp has to be scheduled and the same happens for the whole block. As
long as there is a single warp surviving inside a block, the block occupies a multipro-
cessor.

• An overhead of synchronizing threads, resetting the counter and checking for surviving
threads is added.

4.6.3 Hybrid method using both shared and global memory

The overhead of rerunning a kernel is quite low and so a third method was proposed, which
would solve the issue with having a lot of resources wasted on only a few threads occupying
whole warps or blocks.

The hybrid method removes the global memory counter bottleneck and still preserves
the efficiency of organizing survivors in global memory. It uses two counters, a local counter
stored in shared memory, which assigns a local ID the same way as in described in section
4.6.2 and a global counter, which gets increased by the total number of its survivors. Adding
to the global counter can happen only when a block is synchronized, because a final number
of survivors within a block must be known. It is used as an offset to the global memory
array for the block of surviving samples, whereas the local counter is used an offset within
this block of memory.

Basically this method can be looked at as a compromise between the global memory im-
plementation, explained in section 4.6.1 and the shared memory implementation explained
in section 4.6.2.

Advantages

• Distributed use of counters. The maximum number of atomic increments inside a
block is the size of the block and the maximum number of atomic adds to the global
counter is the number of blocks.
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• An efficient use of global memory and GPU resources by tightly storing the surviving
samples.

Disadvantages

• Synchronization of a block is needed before the global counter can be added to, which
stalls a large portion of the threads inside a block.

• An overhead of running new kernels.

4.6.4 Prefix-sum

The last proposed method tries to remove the use of a counter altogether and thus removing
a possible bottleneck. A parallel prefix-sum is an algorithm commonly used for such tasks.
It allows to sum up values on a parallel architecture with a logarithmic complexity.

The main idea behind is, that it produces an array of values, where every element is
the sum of the previous values. For an array of 0’s and 1’s, where 1 is a surviving thread
and 0 is a discarded thread, it not sums up all the survivors in the last element, but also
assigns a unique id for every thread. This is done using shared memory, where the size of
the memory is the same as the number of threads in a block.

The algorithm can be viewed as a tree and be represented as an array in shared memory.
It consists of two phases an up-sweep phase and a down-sweep phase. The tree is a binary
tree with the values (in our case 1’s and 0’s) as leaves.

In the up-sweep phase, the tree is traversed from its leaves to the root, where in every
stage the values are summed up in their parent as shown in figure 4.7.

Figure 4.7: Up-sweep phase of the prefix sum algorithm (taken from [4])

At the beginning half of the threads in a block are used to calculate the corresponding
sums. The next iteration the number of threads used is halved and so on, until the root is
reached, in which the total sum of all the values is stored.

In the down-sweep phase as shown in figure 4.8, the root is zeroed and traversed back to
the leaves. Using the partial sums a sum of all the previous values for every leaf is gained.

Every surviving thread is then assigned an ID based on its value in the prefix-sum array
and the total number of surviving threads inside the block is the last value inside the array.
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Figure 4.8: Down-sweep phase of the prefix sum algorithm (taken from [4])

4.7 Setting the thread-rearrangement stages

Thread rearrangement is a costly process, but greatly enhances the performance, therefore
a balance between rearranging threads and running the detection has to be found. Every
detection function call has a starting stage and an ending stage. For the initial function
call, the stating stage is set to 0 and for the final stage, it’s set to the total number of
stages, which is in our case 2048. It is important to set these optimally, because it will have
large impact on the overall performance.
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Figure 4.9: Surviving samples after processed number of stages.

The implementation allows to output the number of surviving threads after each thread
rearrangement or in another words after returning from the kernel. A few experiments were
conducted and a single strategy had to be devised to be able to measure the performance
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and profile the implementations. The best results were on average obtained by the config-
uration 1, 8, 64, 256, 512, which are the numbers of processed stages, after with the thread
rearrangement occurred.

Figure 4.9 shows the number if surviving samples after each rearrangement stage or
in another words after each kernel run. It can be argued, that the last 2 rearrangement
stages aren’t needed, because only around 10% of the surviving samples get discarded. It’s
important to note in these cases, that there is a lot of stages being processed afterwards,
and so every active warp affects the performance much more, than during the previous
kernels.

Thread rearrangement strategies are specific to every video or dataset, therefore it can’t
be said, there there is only one, which is the best. They must be thoroughly measured for
every use case.
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Chapter 5

Performance measurements and
profiling

This chapter evaluates performance, which means the time it takes for the detector to
process an image. The results obtained by measurements were not only measured, but also
profiled on different GPUs.

- NVidia GeForce
GTX 980

NVidia GeForce
GTX 780Ti

NVidia Quadro
K1000M

Architecture Maxwell Kepler Kepler
SM’s1 16 15 1
CUDA Cores2 2048 2880 192
Base Clock (MHz) 1126 875 850
Memory (MB) 4096 3072 2048
Memory bandwidth
(GB/s)

224 336 28.8

Table 5.1: Parameters of graphics cards used for performance measurements

The technology used in the implementation is supported only by the Kepler architecture
and newer (CUDA 5.0+). Because of this the high-end Kepler and Maxwell GPUs were
chosen (GTX 980 for the Maxwell architecture and GTX 780Ti for the Kepler architecture)
to test the limits of the implementation. Also an average notebook GPU (Quadro K1000M)
was used to test the performance in more standard user conditions. Specifications of the
GPUs can be found in table 5.1. The driver version used was 340.62 and for the CPU
Intel(R) Core(TM) i7-3610QM CPU @ 2.30 GHz.

The detector can process both image datasets and videos. As such the following tested
use cases were chosen.

• 720× 480 video

• 1280× 720 video

• 1920× 1080 video
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• BioID face dataset with 1512 grayscale images

As a video, a section of the movie
”
The Game“ (1997) was chosen, with a larger group

of people, having 10-50 faces per frame. The detector also has many configurations. One
of them being the different implementations, which were discussed in section 4.6 and the
second being the block sizes. For a general overview, they are summarized below.

Implementations (based on the CUDA feature they exploit)

• Global memory

• Hybrid-shared memory

• Shared memory

• Prefix-sum

• CPU

Block sizes (number of threads per block)

• 8× 8 (64 threads)

• 16× 16 (256 threads)

• 32× 32 (1024 threads)

The most important things, that depend on the size of a block are the size of the shared
memory and the number of threads, which are synchronized using the __syncthreads call.
Only 2N sizes of the blocks were tested, because specifically the prefix-sum implementation
works only for those.

5.1 Detection time

In order for the detector to be a real-time object detector, it must process a single frame
of a video in under 1/framerate seconds, and so as a unit of performance, detection time
was measured.

5.1.1 Global and shared memory usage

The most interesting thing to note is that, for the Quadro K1000M, the fastest implemen-
tation is the global memory implementation. Originally it was thought, that the fastest im-
plementations would be the shared, explained in section 4.6.2 or the hybrid-shared method,
explained in section 4.6.3, because of a single counter in global memory, which is accessed
by all the threads.

There seem to be two bottlenecks here, on being the use of a single counter, accessed by
all the threads and tje second being the single multiprocessor, which in case of the shared
memory implementation doesn’t process the blocks fast enough, as there is many synchro-
nization calls. This can be seen in figure 5.1, where the global memory implementation
works the best for all the configurations.
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Figure 5.1: Comparison of detection times of different implementations on Quadro K1000M
(Kepler)

5.1.2 Selecting the optimal block configuration

In all of the measurements in figures 5.1, 5.3 and 5.2, the best results were obtained for
the 16× 16 configuration, with the exception of the global memory implementation, which
wasn’t affected all that much by the configuration. For the Maxwell architecture, the best
results were obtained by the 32× 32 configuration.

The main reason being, that mainly on the high-end GPUs, the bottleneck is the counter
in global memory and it doesn’t depend that much on how threads are divided into blocks,
but rather on usage of atomic increment for the counter and the occurring stalls.

5.1.3 Shared memory and block size

The size of the block affects the shared memory implementation the most, because the
samples within a block share a counter, therefore the larger the number of threads within
a block, the more stalls by the atomic increments of the counter. This would lead to the
conclusion, that the smaller the block, the better.

It is however not the case, because of thread occupancy. The Kepler and Maxwell
architectures have their limits of blocks per multiprocessor or warps per block, as mentioned
in table 1.2. As such, even though the 8×8 configuration performs better, than the 32×32,
and in terms of stalls even better, than the 16 × 16, it is not occupied to its maximum.
Occupancy is discussed later on in section 5.2.2.
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Figure 5.2: Comparison of detection times of different implementations on GeForce GTX
980 (Maxwell)

5.1.4 Hybrid-shared memory method

The hybrid-shared memory method, which was originally thought to be the most effective,
didn’t perform that well at the end. For the high-end GPUs, it performed worse in most
cases, than the shared memory implementation. A huge difference between the two can
be seen for the Maxwell architecture in figure 5.2. This seems to be because of the great
improvement of shared memory atomic operations in Maxwell.

For the Kepler architecture GPUs it performed slightly worse for the GTX 780Ti and
better for the Quadro K1000M, than the shared memory method. This is a result of the
GTX 780Ti having 16 streaming multiprocessors, which get occupied by the larger number
of blocks with the shared memory method, whereas for the Quadro K1000M, its single
multiprocessor becomes the bottleneck.

5.1.5 Prefix-sum

The prefix-sum implementation performed worse in terms of detection time, than all the
other implementations using atomic methods. This is due to the algorithm design, where
all the threads inside a block have to be synchronized and wait for a single thread to read
the thread offset. All the warps inside a block are therefore stalled until the very end, where
the number of surviving threads is finally calculated.

5.1.6 Summary

In terms of the best implementation for a given GPU, the implementation was tested on
high-end Kepler and Maxwell GPUs, with 16 and 15 multiprocessors and an average Kepler
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Figure 5.3: Comparison of detection times of different implementations on GeForce GTX
780Ti (Kepler)

GPU with a single multiprocessor. The proposed methods in terms of their performance
are summarized below in table 5.2.

Category Proposed method
high-end Maxwell 16× 16 shared memory implementation
high-end Kepler 16× 16 shared memory implementation
Average Kepler 16× 16 global memory implementation

Table 5.2: Proposed implementation for every GPU category

5.2 Profiling

To further analyze the performance of all the implementations, metrics measurements in-
troduced in section 3.4 will be discussed. Compared to other GPU technologies, CUDA
allows for great profiling tools described in section 3.3, and as such a thorough analysis
of the implementations can be made. The main focus will be not only on the best im-
plementations performance-wise, and why they performed so well, but also on why some
implementations performed worse, where are their problems, why are they not viable for
the given implementation and how these issues can be solved.
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5.2.1 L2 hit rate (texture reads) for global and shared memory imple-
mentations

GPU L2 Hit Rate (Texture Reads) (%)
GTX 980 (Maxwell) 93.263
GTX 780Ti (Kepler) 94.37
Quadro K1000M (Kepler) 85.804

Table 5.3: L2 hit rate (texture reads). Shared memory implementation, 16× 16 block size,
1920× 1080 video.

Results obtained for the L2 hit rate (texture reads) for the shared memory imple-
mentation are summarized in table 5.3. These values are averaged across all the thread
rearrangement stages, because the implementation only uses a single kernel. It is interesting
to note, that both of the high-end GPUs, also have almost 10% bigger hit rate. First, this
supports the claim, that it is better to use the shared memory implementation on high-end
GPUs. Second, and more importantly, the values for the first two GPUs are close to 100%.
This means, that the implementation only accesses texture memory for the initial reads
and later on, the data is mostly read from the cache. For Quadro K1000M it’s not as high
and it’s also one of the reasons another implementation should be used instead.
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Figure 5.4: L2 Hit Rate (Texture Reads) for all three GPUs throughout the computation.
Global memory method, 16 × 16 block size, 1920 × 1080 video. Values on the X-axis
enumerate kernels in the order, they a run. 1: detectSurvivorsInit, 2-5: detectSurvivors, 6:
detectDetections.

The hybrid-shared method and the global memory method both use global memory to
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reorganize the surviving samples and after each rearrangement stage, they run a new kernel.
Thread rearrangement stages used were 1, 8, 64, 256, 512, which means that the first kernel
ran only for the first stage (weak classifier), the second processed all stages from the 2nd
until the 8th and so on. Figure 5.4 shows L2 hit rate for the global memory method. The
hybrid-shared implementation uses the same way of reorganizing the threads, so the results
are very similar. The critical part to note is during the 3rd kernel (stages 8-64), where the
hit rate significantly decreases, to around 20-30% for all the GPUs and then it starts to
increase again.

The sudden decrease in hit rate can be explained by the behavior of the detector. The
first kernel utilizes the cache very well on Maxwell and a bit worse on Kepler, because it
has 4× bigger cache size. The kernel only runs for a single stage of the detector. After this
only 10-15% of the samples survive, as seen in figure 4.9. Most of the surviving samples are
in clustered areas, where data locality is utilized very well and so the texture reads are still
cached. On the other hand, during the 3rd kernel, which runs after processing 8 stages,
there is a huge decrease in hit rate, to around 20-30%. This is because after the 2nd thread
rearrangement only around 1% of the samples survive, most of them being scattered all
over the pyramidal image and not being clustered anymore. These samples don’t utilize
the data locality very well and the hit rate is very low. It improves later on, when only a
few candidate samples remain, and so a lot of them simply fall in the cache. This is shown
in figure 4.9, that after processing 64 stages, 30% of the processed samples survive until the
end. After 256 stages, it’s almost 90%. These values correlate with the increase in hit rate.

There are two proposed improvements in order to improve L2 cache hit rate. The
first being adding more thread rearrangement stages, and therefore kernels. Experiments
with this lead to a decrease in performance, because adding kernels leads to an additional
overhead of loading, storing a reorganizing surviving samples. Second improvement can
be made by setting the rearrangement stages differently. This is specific to the videos
or datasets being used and should be statistically measured for the given case. The cur-
rent implementation enables to output the number of surviving samples to conduct such
experiments.

5.2.2 Achieved occupancy

Global memory implementation

There are several things to note in figure 5.5, which shows the achieved occupancy for
Quadro K1000M and global memory implementation. The first is the low occupancy of
the 8 × 8 configuration, which varies between 30.9% and 46.5%. This can actually be
predicted from parameters mentioned in table 1.2, where the maximum number of blocks
per streaming multiprocessor for compute capability 3.0 is 16, but the maximum number
of threads is 2048. This means, that to reach full or almost full occupancy, at least 128
threads per block are needed. In case of the 8× 8 configuration, there are only 64 threads
and so only half of the maximum occupancy can be reached.

Another fact to note is that for the last 3 kernels the occupancy is lower for all 3
configurations anyway, because the number of surviving samples is lower than the maximum
occupancy and so this doesn’t matter much anyway. Lower occupancy doesn’t always mean
worse performance. In the case of the global memory implementation, even though the
achieved occupancy of the 8 × 8 configuration is twice smaller than that of the 32 × 32
configuration, it still performs much better as shown in figure 5.1

The significant downside of this implementation is the low occupancy for the last 3
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Figure 5.5: Achieved occupancy on Quadro K1000M (Kepler) for the global memory
method. Values on the X-axis enumerate kernels in the order, they are run. 1: detect-
SurvivorsInit, 2-5: detectSurvivors, 6: detectDetections.

kernels. When we look at figure 4.9, this means stages 64 to 2048. For better GPUs, the
global memory method is not viable as shown in figures 5.3 and 5.2 and was profiled only
for the 16×16 block configuration. The achieved occupancy for these cards gets even lower.

A proposed improvement to this issue would be to implement a method to process the
future stages using the unused resources and utilize them as a cache in a way, that the
surviving samples would use the preprocessed stages instead of processing them on their
own.

Shared memory implementation

GPU L2 Achieved occupancy [%]
GTX 980 (Maxwell) 62.1
GTX 780Ti (Kepler) 46.6
Quadro K1000M (Kepler) 47.5

Table 5.4: Achieved occupancy. Shared memory implementation, 16×16 block size, 1920×
1080 video.

Achieved occupancy for the shared memory implementation, summarized in the table
5.4, is generally low. Thread rearrangement in this case works similarly to the global or
hybrid-shared methods, only it utilizes a single kernel and synchronization across blocks.
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This means, that even when the overall number of samples decreases, as long as there is a
single thread within a warp running, that warp would stay active, and so there should be
a slight increase in the number of active warps.

An increase in occupancy can be seen for the Maxwell architecture. This is a result
of a change mentioned in section 1.2.5, that Maxwell can have more active warps per
multiprocessor (32 compared to 16 for Kepler), which helps in cases like this, where blocks
with a small number of threads are run.

As mentioned previously, at the end of section 5.2.2, a proposed improvement would be
to process future stages and utilize GPU in a better way.

5.2.3 Global memory store, load and atomic throughput

Global memory implementation

The load and store global memory throughput and the atomic throughput all correlate with
each other, because the main bottleneck here is actually the use of atomic operations before
the global memory stores are processed, and so the store throughput is only as high as the
atomic throughput.
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Figure 5.6: Atomic throughput on Quadro K1000M (Kepler) for the global memory method.
Values on the X-axis enumerate kernels in the order, they are run. 1: detectSurvivorsInit,
2-5: detectSurvivors, 6: detectDetections.

The 8 × 8 configuration has a lower overall achieved occupancy as shown in figure 5.5
and the 32 × 32 on the other hand creates more conflicts when issuing atomic operations,
this leads to the 16 × 16 being the best compromise between these three configurations.
This is also shown in figure 5.5. The low atomic throughput for the kernels 4-6 is the result
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of a low number of samples and thus lower atomic operation. For kernel 3 it’s also a result
of longer detection time due to lower L2 hit rate mentioned in section 5.2.1.

The atomic operation bottleneck is also one of the reasons, why the global memory im-
plementation cannot be used with high-end GPUs. Their increased computational capacity
allows them to process more threads at a time, which results in more stalling caused by
waiting for atomic operations and so this resource advantage isn’t used to its maximum.

Shared memory atomic throughput

Maxwell architecture doesn’t allow to measure atomic throughput and so L2 throughput
for atomic requests was measured. As mentioned in section 1.2.5, Maxwell architecture
implements native shared memory atomic operations compared to the previous architec-
tures (Kepler and Fermi), where shared memory atomic operations were implemented in a
software fashion using lock-modify-unlock pattern.
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Figure 5.7: L2 throughput for atomic requests.

The shared implementation relies heavily on the use of shared memory atomic instruc-
tions to update a single location in memory, which turned out to be very expensive in case
of the Kepler/Fermi architecture, but in case of the Maxwell architecture, it emphasized
its advantages. The results in figure 5.7 show, that the performance on GTX 980 is almost
2×, than that of GTX 780Ti for L2 atomic throughput.
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5.3 Summary of proposed improvements

Throughout the thesis different methods to the problem of object detection on GPU were
implemented, measured and finally profiled. Every implementation always came with some
conclusions about its usability, possible problems and raised ideas how to handle these
issues.

Measurements and profiling on more GPUs. It was clear, that for the high-end
GPUs the best results were obtained by the shared memory implementation and for the
opposite extreme - a single multiprocessor GPU, the best results were measured for the
global memory implementation. The hybrid-shared memory method didn’t perform all
that well, but it performs better on single multiprocessor GPUs, than the shared memory
implementation and better on high end GPUs, than the global memory implementation.
Based on this, it can be predicted, that it might perform better than both of these on more
average GPUs, such as GTX 960, which has 8 streaming multiprocessors.

Exploit parallelism. Even on a GPU with a single streaming multiprocessor, the oc-
cupancy decreased below 50% for most of the stages and GPU resources were left unused.
These resources might be used to process future stages and use them in a similar fashion
as a cache. A way of mapping such stages, which were preprocessed to the ones being
processed can be discussed.

Prefix-sum. The prefix-sum method should be researched more, if it can be optimized
to discard unused threads throughout the computation.

Dataset initialization overhead. When processing a dataset, GPU memory is allocated
and freed specifically for every image. This brings a lot of overhead to the whole process, an
overhead almost as large as the detection itself. A single texture can be allocated to copy
the images to. The size of such has to be discussed, as it will stay the same throughout
processing the whole dataset.

Minimize size of the block for shared memory implementation. We found out,
that even though 16 × 16 configuration performed the best, 8 × 8 configuration had good
results, even though it had very low occupancy. Based on the architecture, a strategy can
be devised for the size of the block, to be as small as possible and still fully occupy the
GPU.

Pyramidal image. Pyramidal image doesn’t have to be used. A 1D texture containing
pixel values can be used instead, which enables much smaller textures. On the other hand,
this approach doesn’t allow for hardware accelerated bilinear interpolation and doesn’t
utilize L2 cache as much for spatial data locality.
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Chapter 6

Conclusion

The goal of this thesis was to design a high-performance application or a library for object
detection on the GPU. The topic of WaldBoost object detection on the GPU using LBP is
well researched, on the other hand there is much less research done on the implementations
themselves, and so the main focus was to research how different options of the NVidia
CUDA Toolkit affect object detection.

Different approaches to implement the detector were proposed described in section 4.6,
concentrating on the use of specific features of the GPU programming. Every approach
had different bottlenecks and was thoroughly measured and profiled in chapter 5. Based on
this research a framework, called WBD, was implemented, which allows to run a specific
implementation on a large range of devices, based on their parameters. The framework
itself has 4 CUDA C implementations, which are optimized for specific GPUs and a simple
C++ implementation to be run on non-CUDA devices.

The detector1 can process both image datasets, independent on the image size and
videos, outputting detections as regions of interest inside an image. As such, it doesn’t
have to be used on its own, but can also be used as a part of another application, which
uses object detection to greater benefits.

The two main contributions of this thesis are, first, the implementation itself, which
doesn’t have to be used on its own, but can also be used as a part of another application,
which uses object detection to greater benefits. Second, new ways of looking at GPU
implementations of WaldBoost detectors, which can be further optimized and bring even
better results.

1Latest version is available at: https://github.com/mmaci/vutbr-fit-waldboost-detector
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Appendix A

DVD contents

Below, the structure of the DVD is described. Before using the binary, please read the
README.md file.

bin Win32 binary including sample videos and images.

docs/doxygen Doxygen generated documentation in HTML and pdf.

docs/poster A poster for presentation.

docs/thesis The thesis itself in TeX and PDF.

measurements Measurements taken throughout the work on the thesis.

src Source codes with a CMake file.

README.md A README file containing information about building a binary or usage
of the command-line tool.

LICENSE.md MIT License.
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Appendix B

Command-line tool description

-D –dataset [filename] Input textfile containing dataset filenames.

-V –video [filename] Input video.

-c –csv CSV output.

-v –verbose Verbose output.

-t –timer Measure detection time.

-o –visualoutput Shows a visual output.

-s –survivors Outputs surviving threads every stage of the classifier.

-d –visualdebug Shows a visual output including pyramidal and preprocessed image.

-b –blocksize [8/16/32] Sets block size. Should be set to 8, 16 or 32 for (64, 256 or
1024 threads)

-l –limitframes [number] Process only a given number of frames.

-m –detectionmode [global/shared/prefixsum/hybrid/cpu] Sets the specific im-
plementation to use.

51


	GPGPU
	Parallel computing platforms
	Evolution of the graphics pipeline

	NVIDIA CUDA
	Programming model
	Memory model
	Optimization methods
	Compute capability
	Maxwell improvements


	Object detection
	Approaches to object detection
	Appearance-based methods
	AdaBoost
	WaldBoost
	WaldBoost as an object detector
	Image features
	Haar-like features
	Local Binary Pattern

	Uses cases of object detection
	Face tracking and recognition
	Biometrics
	Traffic analysis
	Other uses


	Analysis
	Pyramidal image
	Thread rearrangement
	Debugging and profiling tools
	Visual Profiler
	nvprof
	NVIDIA Nsight

	Metrics
	Achieved occupancy
	Memory load/store throughput
	Atomic and L2 throughput (for atomic requests)
	L2 hit rate (texture reads)


	Implementation
	Detector
	Interface
	Program cycle
	Initialization
	Setting an image
	Detection
	Freeing the memory

	Memory organization
	Thread allocation
	Thread rearrangement
	Atomic functions and global memory
	Atomic functions and shared memory
	Hybrid method using both shared and global memory
	Prefix-sum

	Setting the thread-rearrangement stages

	Performance measurements and profiling
	Detection time
	Global and shared memory usage
	Selecting the optimal block configuration
	Shared memory and block size
	Hybrid-shared memory method
	Prefix-sum
	Summary

	Profiling
	L2 hit rate (texture reads) for global and shared memory implementations
	Achieved occupancy
	Global memory store, load and atomic throughput

	Summary of proposed improvements

	Conclusion
	DVD contents
	Command-line tool description

