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Abstract

An accurate numerical Laplace inversion
algorithm is presented. In comparison with
oniginal multi-step inversion method, some
improvements are made. The concrete
Turbo Pascal routines are introduced.
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Introduction

Various numerical Laplace inversion algorithms
have been published so far [1],{2]. However, loss of
accuracy with the growing time is their common disad-
vantage.

An interesting multi-step algorithm is described in
[3]. This method is very accurate and numerically stable
and also provides accurate periodical solutions. The
problem of polynomial Laplace inversion

Fig.1
System with transfer function (1), m = n+1,
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is discussed with restrictions

m=n, n>1 (2)

List of computer program in Fortran is available.
However, some misprint probably occurred because
the program does not provide right results, The authors
set out in [3] that the special form of below mentioned
matrix A enables to simplify their algorithm, but without
closed explanation. _

In view of that facts we decided to form own algo-
rithm, In comparison with [3], our algorithm has less
strict conditions:

m=n+1 n>=>1 (3)

Multi-step Laplace inversion [3]

Equation (1) can be rewritten as follows:
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The state system model with the input w and output
y in Fig.1 corresponds with this equation. The state
cquations are true:

x1 "0 1 0 0 _ o]
X2 0 0 1 0 0
di. R B
d[ . - . . . . - .
Xn—1 0o 0 0 0 -1
Xn —b1 —b2 —b3 —ba —bn
w1 o
x2 0 ‘
) +.lw ®)]
An—1
Xn 1
2 = A.x+B (6)
S X=AX W
Applying the Laplace transform yields
s.E—-A).X=R
R=B.W+xX (7

where

= [R1,Rz, R

X = [x?,xg, -

conditions;

] -- right side vector;

xg] — state vector of initial

E — identity matrix.
In harmony with [3], the numerical Laplace inversion
of (1) will be solvcd as follows:
1- We set ° = 0, W =1, the time step ¢ =k
and final time trnar.
2- Solution of matrix equation (7) for s = zA,
i=1,..,MA
The complex numbers z; are the approximating co-
efficients of rational function RmN (2) = €* [3]. The
accuracy of Laplace inversion depends on numbers M
and N. The precise values of zj for M = 2, 4 and 10 are
published in [3].
Solving (7), we obtain M4 state vectors X/,
i =1, .., M2 in complex domain.
3- Compute the state vector in time t:

—= E Re{KP‘ x‘} (8)

1—1

where K P!, i = 1, ..., M4 is set of complex con-
stant published in [3].

4- The output y in time ¢ can be computed
from Eq. (6).

5-Lett =t + h. Ift > tmay, the program is ter-
minated.

6- We setx° = x, W = 0, and go to the step 2,
Inthe first step we set W= 1- the Laplace transform
of Dirac impulse. The impulse response

g(t=h) =L_1{K(s)}, t = h, is computed in following

Program INVLAP;

{SN + }

uses ¢rl;

consl

nmax = 20,

type

vee = array{1..nmax] of double;
mat = array[1..nmax] of vec;
complex = record

Re: double;
im: double;
end;

vece = array{1.
matc = artay[1..
var

l,ardar: integer;
a,b,x, wivec;
1,7espon:real;

.nmax] of complex;
nmax] of vecs;

Procedures addc,subc,mulc and dive {or complex addition, substrac-
tien,
multiplication and division must be included

{
procedure VECTORZERQ [var b:ivec};
begin fillchar (b,slzec!{b), #0}; end;

ptocedurs VECTORZEAOUG (var bivece);
begin fillchar (b, slzeol(b) £0); end;

procedure Hi(a,b:vec;n:integeritmax;real;nump:word);
{Laplace invarsion of pnlynumlai vanster function Ki{s)
in time Instants [1,2,3,..,nump}*tmax/nump }

label BEG ,FIN;

var i,j, kr:inleger;
X:vec,
Kp,w,7e8, XpOm vecc,
step:double;
z,pomeicomplex;
begln

siep: = tmax/nump;
fllichar (res,sizecf(res), #0}; { 1

z.re: = 1/step;2.im: m 210 ;pome.re:; = O;pome,im; = 0;

ferj: = 1 ton-1 de

bagln

resf]: = pome;res([].re: = res[jl.re + b[j]; { LU decomposition }
DIVG (res[{},z,7es[]]) ipome: = resi]];

end;

tes{n].re: = z.re + pome.re + b[n};res[n}.Im: = z.im + pomc.im; {----e-
VECTORZEROC (whiwln).re: = 1 ;kt: = 1 ;respon: =a[n+ 1];
ifafn+ 1] < > 0then wnloln(‘Dirnc impulse in

t=0,strength =",a[n + 1]};

BEGI:VECTORZEROQ {x) \VECTORZEROC (xpam) ;xpomin]: = w[n];
for|: = 1 ton-1do

begin

MULC(res[]] il pome) ;SUBC (kpom [n],peme,xpom[n]};

DIVC(xpom[n] res[n], xpnm[n]).

far]: = n-1 downto 1 d

begin

ADEC(*PGM[I + 1],w{jl.xpom[]]); DIVC (xpom (j] ,z,xpomijl};
B

for|: = 1 tondo x{j]: =~ -2*xpom[]].im/step

fori: = 1 to n do respon: = respon + {ali] -a‘[n + 1]'b[i]]}'x[i];

{response plotting, for example}

writeln {I*ke/nump,sin t*kr/nump) ,respon};

respon; = Q;kr: = kr + 1;if kr > nump then gota FIN;
VECTORZEROC (w);

forl: = 1 to n do w[i].re: = x[i];

geole BEG;

FiN:end;

= = = MAIN PRO-

GRAM = = = = = @ m m = = = = = = = = = = = = = = = =
begin

[Kis) = {at +a2s +.. +a(n+ 1}s " np/(b1 +b2s+ ..+ 1*s " n) }
order: = 2; VECTOHZEHO(&) ;VECTORZERO (b} ;a{1}: = 1 bft]:=1;

t: = 20}

Ht(a.b.ordar.t.zon);

repeat until keypreased;

end.

Fig.2
List of program for numerical Laplace inversion;, M = 2,
N =0,
Procedures ADDC, SUBC, MULC and DIVC for complex
addition, subtraction, multiplication and division must be
completed
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steps 2 to 4. At the end of first run, the state vector
becomes the vector of initial conditions for the transient
analysis in second run, The input signal ¥ must already
be zero.

Taking entire response solution to pieces, the nu-
merical mistake of classical "single-step” inversion algo-
rithm is essentially reduced.

Solution of complex matrix state equa-
tion

The most computationally expensive part of algo-
rithm is concentrated in step 2. In accordance with |3},
the LU decomposition was used for equation (7). We
describe our procedure how to do it fast and economi-
cally.

The LU decomposition of matrix sSE — A can be
performed as follows:

procedure Hi(a,bives;n:integer;tmax:real;nump:word};
{Laplace inversion of polynomial transfer function K(s)
in time instants (1,2,3,..,nump) *tmax/nump }

label BEG,FIN;

varl, ], kriinteger;

Kivec;

z,kp,w,xpom:vecc;

res:array[4..2,1..nmax + 1] of complex;

step:double;

pomeicomplex;

begin

z[1].re: = 3.77901 98670101 83;2[1].im: = 1.380176524272843;
z[2] .re: = 2,220080032880807;z(2].im: = 4. 160301 4455068832;

kp{1].re: = 2.256958744418140;kp[1].Im: = -39.633087000501 73;
Kp[2].re: = -2.256058744418140;kp[2].im! = 11.108821 83737590.
slap; = tmax/nump;

ﬂllchur(ru sizeot(res), #0);

fert: =4 1o2do

begin

z[1].re: = z{i].refstep;z[1].Im: = z{i].Im/step;

pome.re: = O;peme.im: = 0;

forj: = 1 ton-1 do

begin

res{i,]]: = pomec;ros|i,j].re: « res[i,j}.re + b[]];

DIVC(res [}, B ,2[1] ,res[i.i]) ;pome: = rea[,}];

end;

lesll n].re: = z[ij.re + pomec.re + bin];

ln[i nl.m: = 2[i}.im + pomc.im;

VECTORZEROC(W) ;win].re: = 1 kr: = 1;respon: =an+ 1];
ifaln + 1] < > 0 then writeln ['Dlrac lmpuiso in

t= 0. strength = *.a[n + 1]);

BEG!VECTORZERO {x}; VECTOHZEHOC[xpom],

forl: = 1 to 2do

begin

xpamin]: = w[n};

for]: = 1 tan-1 do

begin

MULC(ro:[I,]] M[],pome) ;SUBC (xpom [n],pomc,xpom[n]};

DWC(xpum[n] reafl, n].xpom[n]),
lor] ~=n-1 downto t d

E)C(xpom[] + 1].w(if.xpom(f)) ; DIVG{xpom[]}, z[i],xpom[i1};
and;

for|: = 1 to n do x[]}: = x{]] + {kp[l].im*xpom[]].im-

kpg] .re*xpomf[]].re}/step;

end;

fori: = 1 lo n do respon; = respon + [a[t]-a{n + 1]'b[i}]}'x[l];

response plotling, for example}
writeln (i *kefnump in {i*ki/nump} respon) ;

respon;: = O;ke: = kr + §;if kr > nump then goto FiIN;
VECTORZERGG (W} ;

fori: = 1 ton dow|[l].re: = x[i];

goto BEG;

FIN:end;

Fig.3a
Procadure Ht for more precise calculation, M =4, N =2

In procedure Ht, below mentloned coefficients must be used:

z[1).re: = 11.83000a73818819;z{1].Im: = 1.583753005685813;
z[2].re: = 11,22085377038510;2[2].lm: = 4.7020641 67568566%;
z[3].re: = §.533383722175002,2[3] .im: = 8.033108334268258; -
z{d].re; = 7,781 146284464818;z[4].im: = 11.35888184804693;
z[5]).re: = 4.234522404787000;2(5).im: = 14,887043781 261586;

kpl1].re; = 18285.823688050479;kp[1].im: =-135074.71 15518051

kpl2].re: = -28178.11171305182;kp[2].im: = 74357.582372741 78;
kpid].re: = 14820.74025232142;kp([3].Im: =-19181.8081 6501 836;
kpid].re: = -2870.418181032078;kp[4].Im; = 1874,108484084304;
kp{S].re: = 132,165084124748785Kkp[5).Im: = 17,4T874798877184;

Cyclas invariable | are now from 1 1o 5.
Variable res is now

rag; array {1..5,1..nmax + 1] of complax;

Fig.3b
Procedure Ht for more precise calculation, M = 10, N 8

s§=1 0 0.0 O

0 s-1 0.0 0
sSE-A=|: =

0 ¢ 0 0.5 -1

b1 bz b3 .0 by
1 0.0 o0 fs-1 0.0 p]
01 .0 0y |0 s-1.0 ¢

=|: RN d®
g0 .1 07 |0

a1 az . an-11; (0

L U

The ai,.,an and 8 coefficients are computed by
following procedure:

b1
a _ —
1=

b2 + a1
az = p

(10)

. bp-1+ an-2
tp-1=————

Y
ﬁ=.§'+bn+‘an—1

Investigating Eq.(9), the single véctor is sufficient for
storing all needed elements of matrices L and U:

vec = [al, - anul,ﬁ] .

After calculating (11), set of equations {7) can be
solved in classical manner. Taking account of L and U
matrices structure, the resulting vector
X= [X], X, .., Xn] components are

(11)
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Ry —a1R1 —a2Ry — .. — ap—1Rp—-1
Xn = ﬂ

Xn + Rn—l
5
Xy—1+ Ro-2 (12)
s

Xn-1=
Xp—2=

Xo+ R

X1=
s

Results

The list of Turbo Pascal program for numerical
Laplace inversion is in Fig.2. For simplicity, only ap-
proximation R2,0 (z) - M = 2, N = 0 bas been used. For
more precise calculation, a better approximation can be
chosen, but with longer computing time (see proce-
dures Ht in Fig.3:

aA)M=4N=2,
b)M =10, N = 8.

Comparison of precision in numerical inversion for
the three aforementioned approximations is in Fig4.
The curves were derived by inversion of
K(s) = Ys* +1) with periodical solution sin(f),
tmax = 20 sec.
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