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Abstract. Use of the Gaussian inverse Wishart probability 
hypothesis density (GIW-PHD) filter has demonstrated 
promise as an approach to track an unknown number of 
extended targets. However, when targets of various sizes 
are spaced closely together and performing maneuvers, 
estimation errors will occur because measurement parti-
tioning algorithms fail to provide the correct partitions. 
Specifically, the sub-partitioning algorithm fails to handle 
cases in which targets are of different sizes, while other 
partitioning approaches are sensitive to target maneuvers. 
This paper presents an improved partitioning algorithm for 
a GIW-PHD filter in order to solve the above problems. 
The sub-partitioning algorithm is improved by considering 
target extension information and by employing Mahalano-
bis distances to distinguish among measurement cells of 
different sizes. Thus, the improved approach is not sensi-
tive to either differences in target sizes or target maneuver-
ing. Simulation results show that the use of the proposed 
partitioning approach can improve the tracking perform-
ance of a GIW-PHD filter when target are spaced closely 
together. 

Keywords 
Target tracking, extended target, filtering, GIW-PHD 
filter, measurement partition. 

1. Introduction 
Multi-target tracking (MTT) typically assumes that 

each target can produce at most one measurement per scan. 
Many studies have been done on MTT based on random 
finite sets (RFSs), such as [1], [2], and this kind of tracking 
has been used in several fields, such as those in [3], [4]. 
However, along with the development of modern and high-
resolution sensors, a target may have a larger volume than 
the sensor resolution cell has and produce more than one 
measurement per scan. Such a target is called an extended 

target. Extended target tracking (ETT) is a vibrant area of 
research and has received increasing attention in recent 
years [5–10]. This is especially true for multiple extended 
target tracking (METT) [11–17]. 

An RFS-based observation model for MTT based on 
finite set statistics (FISST) was first introduced by Mahler. 
One RFS implementation is the probability hypothesis 
density (PHD) filter [1], which can estimate target states by 
computing the function of the first order moment over the 
target state space. The Gaussian mixture PHD (GM-PHD) 
filter, presented in [2], is an effective approach to MTT in 
which the target state is approximated with a Gaussian 
mixture method. 

In contrast to typical single-point targets, target exten-
sion is considered by ETT approaches as an extended state. 
Random hypersurface models (RHMs) for ETT are intro-
duced in [5–7]. These methods assume that target measure-
ments are produced from a certain hypersurface by random 
selection. Thus, the targets can be tracked and their shapes 
can be estimated by computing the parameters of a given 
hypersurface function. Another typical ETT approach is 
the random matrix (RM) model [8–10]. Because target 
extension is usually treated as elliptical extension, RM 
models assume that it follows a Wishart distribution. 
Therefore, the target extension state can be estimated with 
an inverse Wishart distribution. 

To track an unknown number of extended targets, 
a METT PHD framework is presented in [11] by Mahler. 
Granström et al. employ both this framework and the Gaus-
sian mixture method, presenting an extended target GM-
PHD (ET-GM-PHD) filter for METT [12], [13]. This filter 
uses the distance partitioning (DP) and sub-partitioning 
(SP) methods to provide partitions, and then the partitions 
are used to update the Gaussian components by computing 
the likelihood function. The ET-GM-PHD filter can track 
an unknown number of extended targets effectively, but it 
cannot estimate target extension states (i.e., the geometrical 
target extension must be a predetermined value). To solve 
this problem, a GIW-PHD filter is presented in [14]. This 
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filter assumes that “the last estimated PHD is approximated 
with an unnormalized mixture of Gaussian inverse Wishart 
distributions”. Therefore, the RM approach can be em-
ployed in ETT to estimate the target extension state of 
a METT PHD filter. More discussion on determining the 
parameters of a GIW-PHD filter can be found in [15], [16], 
and the implementation of a GIW-PHD filter in X-band 
marine radar is introduced in [17]. However, when targets 
are spatially close and performing maneuvers, the target 
states will be incorrectly estimated. The reason for this is 
that the partitioning approaches applied fail to provide the 
correct partitions, which leads to the failure of the GIW-
PHD filter in successive scans.  

This paper presents an extension of the GIW-PHD 
filter, and its main contributions are as follows: 

1) We present an adaptive sub-partitioning (ASP) 
approach to a GIW-PHD filter in order to solve the parti-
tioning problems that occur when targets are spaced closely 
together. First, the candidate extension information is com-
puted by using the GIW components that are around the 
measurements. Then the extension information is used to 
improve SP by employing Mahalanobis distances. As 
a result, the proposed ASP will not be sensitive to either 
the differences in target extensions or target maneuvers. 

2) Since the GIW-PHD filter cannot provide the iden-
tities of the estimated targets, we present a labeling ap-
proach and introduce label evolvement. 

The paper is organized as follows. Section 2 intro-
duces the GIW-PHD filter. Section 3 presents the ASP 
algorithm. The labeling approach for the GIW-PHD filter 
is presented in Sec. 4. Simulation results are presented in 
Sec. 5. Section 6 contains our conclusions. 

2. Background: The Gaussian Inverse 
Wishart PHD Filter 
The GIW-PHD filter is an important implementation 

of the extended target PHD framework. The target states at 
time k are defined as 
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where Nx,k is the unknown number of targets, and xk
(i and 

Xk
(i) are the kinematic and the extension states, respec-
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where dW denotes the probability intensity of cell W, and wp 
is the weight of a partition p. γ(j) is the mean number of the 
measurements produced by a target, and βFA,k is a rate 
parameter to determine the clutter measurements per 
surveillance volume per scan. δW,1  is the Kronecker delta 
and pD is the detection probability. Lk

(j,W) denotes the likeli-
hood between the jth components and the cell W. 

Since we have not made original contributions in this 
section, only the known basic methods and functions are 
introduced. The details of the GIW-PHD filter can be 
found in [14], and the measurement partitioning methods 
are discussed in Sec. 3. 

3. Adaptive Sub-partitioning 
Algorithm 
Measurement partitioning is an integral part of an ex-

tended target PHD filter, because incorrect partitions will 
lead directly to estimation error. However, the difficulty of 
partitioning closely spaced targets is still an unresolved 
issue that leads to serious errors in GIW PHD filtering (see 
[14], section VI). This section proposes an ASP algorithm 
to improve the estimation performance of a GIW PHD 
filter when targets are closely spaced. 

3.1 Problems and Key Methods 

Several partitioning approaches to extended target 
PHD filtering have been proposed, such as distance parti-
tioning (DP) [12], SP [13], mixture partitioning (MP) [18], 
expectation maximum partitioning (EMP), and prediction 
partitioning (PP) [14]. However, MP, EMP, and PP are all 
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sensitive to target maneuvers because of their uses of pre-
dicted target positions. DP is not sensitive to target maneu-
vers, but it fails to handle closely spaced targets correctly. 
SP is an additional partitioning that follows DP to divide 
the measurement cells produced by multiple targets. Thus, 
SP is not sensitive to target maneuvers and can handle 
cases in which targets are closely spaced. However, when 
targets are closely spaced and their extensions are different, 
SP will provide incorrect partitions because a clustering 
error occurs in K–means++ (an algorithm employed in SP) 
[19]. Therefore, the typical partitioning approaches en-
counter the following problems: 1) no partitioning ap-
proach can handle cases in which targets are both closely 
spaced and performing maneuvers; 2) the use of additional 
partitioning approaches can indeed improve the perfor-
mance of the GIW-PHD filter (DP-SP, EMP and PP are 
used in [14]), but doing so will require more computations. 

The SP algorithm is comprised of two steps: detecting 
and dividing. Suppose   1

n
W z


  

 denotes a measurement 
cell of a partition obtained by DP. First, SP will detect 
whether W should be divided into sub-cells with 
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where N̂ denotes the possible number of targets. Pois(·)and 
· denote the Poisson distribution and the number of 
elements in a set, respectively. 

If N̂  2, the cell W should be divided into N̂ sub-cells 
by the K–means++ algorithm as follows: 

Step 1: Choose the initial centers  
ˆ

1

N

j j
C c


  using the 

method in [19]. 

Step 2: For each j  {1,…, N̂}, assign each z to the 

cluster with the shortest distance D, j between z and cj. 

Thus, N̂ sub–cells W͠j are obtained. 

Step 3: Update the centers with 1
=

j
j z W

j

c z
W 


 

. 

Step 4: Repeat Steps 2 and 3 until no W͠j values 
change any longer. 

The distance D, j is generally considered a Euclidean 
distance, meaning 

    T

, =j j jD z c z c    . (6) 

Using a Euclidean distance is similar to using 
a straight line to divide the measurements. However, if 
target extensions differ sufficiently, such a line may con-
verge to the incorrect position, as shown in Fig. 1.  

In contrast to Euclidean distances, Mahalanobis dis-
tances are scale-invariant distances that can employ covari-
ance matrices to eliminate the influence differences in 
target sizes. A key innovation of the proposed approach is 

employing Mahalanobis distances to improve the  
K–means++ algorithm. When this is done, (6) becomes 

    T 1
, =j j j jD z c z c S    (7) 

where Sj  
denotes the corresponding covariance matrix of 

W͠j. Note that the parameter Sj is not given, but it can be 
calculated using the inverse scale matrix provided by the 
GIW-PHD filter. The primary method of determining Sj  
can be summarized as follows: 

Find the predicted components around the cell W. The 
extension matrices {X̃i} of these components can be em-
ployed to calculate the candidates for {Sj}. For each sub-
cell W͠j, a corresponding Sj can be initialized using these 
candidates. 

Do Step 2 and Step 3 of the K–means++ algorithm. 

Calculate the covariance matrix Ψj for each sub-cell 
W͠j and assign each X̂i to its most similar Ψj. For example, 
suppose X̂1 and X̂2 are the covariance matrices of the large 
and small targets, respectively, in Fig. 1; Ψ1 and Ψ2 denote 
the covariance matrices of cluster 1 and cluster 2, respec-
tively, in Fig. 2 (c). {X̂1, X̂2} will be assigned to {Ψ1, Ψ2} 
(i.e., S2 = X̂1 and S1 = X̂2) because of the similarity of their 
extensions (the details are shown in Sec. 3.2). Thus, the 
partitioning result will converge to the extension similarity 
maximum. 

Figure 2 shows an example the partitioning process: 

 (a) shows the result of the first loop. The triangles are 
the initial centers, which are obviously inaccurate. 
The original K–means++ result may converge to the 
result shown in Fig. 1, because the use of (6) is like 
using a straight line to divide measurements, and the 
situation in Fig. 1 demonstrates the best convergence 
result.  

 However, as shown in (b), Equation (7) ensures that 
the proposed approach converges to an elliptical ex-
tension. Thus, the result in (b) is more similar to two 
elliptical extensions than that of (a). 

 (c) shows the results of the third loop. As we would 
intuitively expect, the measurements are divided al-
most correctly with the exceptions of several points. 
The extension of cluster 2 is similar to that found in 
X̂1, and the extension of cluster 1 is similar to that 
found in X̂2. Hence, the covariance matrices in (7) be-
come S1 = X̂2 

and S2 = X̂1.  

 Finally, the proposed algorithm converges to the re-
sult shown in (d). The proposed method can ensure 
the coverage of results whose clusters are similar to 
those of X̂1 and X̂2. This is why the proposed method 
can achieve a better performance than the algorithm 
originally used in the GIW-PHD filter can. 

Remark: the proposed method applies only to the 
situation that the number of elements in {X̂j} is equal to N̂. 
If this condition are not established, the number of targets 
may be estimated  incorrectly in the last  time step  (i.e., the 
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Fig. 1. The partitioning result of SP. 
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Fig. 2. Illustration of ASP. 

extension information of the predicted components may be 
incorrect). Thus, the original K–means++ algorithm should 
be used in this step. 

3.2 Implementation 

3.2.1 Initialization 

Suppose  | 1

kNi
k k i
   denotes the set of predicted com-

ponents and  ,
| 1

kNi d
k k i

m   denotes the corresponding d–dimen-

sional set of predicted positions. The states of the predicted 
components around W can be defined as 
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where  is the maximum threshold of DP. M includes the 
predicted positions around the cell W, and   includes the 
corresponding extension matrices. X̂i

kk – 1 is the extension 
matrix and can be calculated by  
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where d denotes the number of dimensions of the physical 
space [9]. Vi

kk – 1 and vi
kk – 1 are the predicted inverse scale 

matrix and the inverse Wishart degrees of freedom, respec-
tively.  

ASP is only used when M= N̂. The calculation of 
the initial centers can give results equal to those of the 
original K–means++. In addition, to improve the accuracy 
of the initialization, the centers can be obtained by translat-
ing the corresponding ,

| 1
i d
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where | 1k km   and z  are the mean positions of M and W, 
respectively. cj 

indicates the relative position and removes 
the influence of target maneuvers. Thus, the initialization 
of the covariance matrix is 

  
ˆ

1
=

N

j j
S .  (11) 

3.2.2 Modification of K–means++ 

In the modified K–means ++ algorithm, the dividing 
process remains the same as in Step 2 and Step 3 in 
Sec. 3.1, but the distance D, j should be calculated by (7) 

instead. Then the covariance matrix Ψj  
of each sub-cell W͠j  

can be calculated by 
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Sj is updated based on the similarity of Ψj and X̂i
kk – 1. 

Suppose  
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of matrices is defined as 
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4. Track Maintenance 
The GIW-PHD filter cannot provide the trajectories 

of individual extended targets. This section proposes 
a track maintenance approach to a GIW-PHD filter based 
on a component labeling technique [20]. The proposed 
approach consists of the following steps: 

1) Prediction: 

Suppose that at time k – 1 (k  2), the labels of the 
GIW components are denoted by 
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where Jk – 1 is the number of GIW components at time k – 1 
and that l(j)

k–1 denotes the label of the jth GIW component. 
The labels of predicted GIW components can be written as 
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where l(i)
β denotes the labels of the birth GIW components 

and Jβ is the number of birth components. 

2) Update: 

Suppose that Ñk denotes the total number of all cells 

in all partitions (i.e.,  
,

,
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ber of partitions at time k, and Ñ(i)
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cells of the ith partition). According to (2), there would 
now be Ñk + 1 times the number of predicted GIW compo-
nents. Thus, each predicted component gives rise to Ñk + 1 
corresponding updated components. The corresponding 
labels can be expressed as  
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3) Pruning & merging: 

When the GIW components with low weights are 
pruned, the corresponding labels and their attributes should 
be also pruned. Note that if several components 

  |, ,n
k k   are merged and  

|
n

k k  has the largest weight, the 

label of the merged component is equal to the label of  
|
n

k k . 

5. Simulation Results 
The extended targets are modeled by 

   T
kU AX A R  [9], where Xk is a symmetric positive 

definite (SPD) matrix, A is the rotation matrix determined 
by the motion model, and R is the Gaussian measurement 
noise. The number of measurements of each target follows 
the Poisson distribution. 

The parameters of simulated scenarios are given as 

 2 7
s ,1 s, =4000 4000 m , 6.25 10FA kT     

, (18a)
 

      diag 1,1 , diag 0.5, 0.5, 0, 0k k R Q  (18b) 

where Ts is the sensor-scanning interval.   denotes the 
surveillance volume with a rate parameter (i.e., the Poisson 
mean of clutter measurements is 

, =10FA k ). Rk and Qk 

are the covariances of process noise and measurement 
noise, respectively. 

The parameters of the GIW-PHD filter are 

 
 

0 00.1, 7, 5, =15jw v     , (19a)
 

   0 diag 50, 50V , (19b) 

   0 diag 25,100P  (19c) 

where w0 is the weight of the birth GIW component. γ(j) is 
the mean number of measurements produced by each target 
each time and v0, V0 and P0 are inverse Wishart degrees of 
freedom, the inverse scale matrix, and the Gaussian covari-
ance of generated GIW components, respectively. Meas-
urements are partitioned by DP with d = {1,3,5,10,15,…, 
30} as the distance thresholds. Then, either SP or ASP is 
used to divide cells containing more than one target into 
sub-cells. Thus, the partitioning approaches are called  
DP-SP and DP-ASP. 

5.1 Extended Target OSPA (ET–OSPA) 

According to [21], the Optimal SubPattern 
Assignment (OSPA) distance is employed to evaluate the 
performance of a PHD filter. For METT, the ET-OSPA is 
defined as 

     
      

1

1

1
, min , , ,

n

m pp
c c p

p i i i i
i

d X Y d x X y Y c n m
n   

         
   ,

  (20a) 

  
       

 ,
, , , = +

i i

p p
c p

i i ii i i X Y
d x X y Y x y RMSE

    
  , (20b) 

 
    2

,
= tr

i i

p
p

i iX Y
RMSE

 
      

X Y 
   (20c) 

where 
 ,i i

p
X Y

RMSE


   denotes the extension error and {X̃i} 

and {Ỹπ(i)} are the estimated and true extension matrices, 
respectively. The first term on the right hand side of (20b), 
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namely the localization error, is equivalent to original 
function of the OSPA algorithm. The second term is the 
added extension error. Therefore, the error function d(c) 
involves both localization and extension errors.  

5.2 Results 

The target tracks simulated in this study are shown in 
Fig. 3. The targets moved closer together from 0–20 s and 
then moved linearly together from 21–40 s. They began 
circular motion at 41 s and moved uniformly again from 
61–80 s. Finally, they separated from each other at 81 s. 
The edges of the targets separated from each other by 2 m. 
The shape matrices were X(1) = diag([20, 4]) and X(2) = 
diag([10, 2]).  

Figure 4 shows the average results of 100 Monte 
Carlo (MC) runs. The ET-OSPA distance of each approach 
is shown in (a). The ET-OSPA values from 20–80 s are 
higher when DP-SP is used than they are when other ap-
proaches are used. This means that DP-SP cannot provide 
the correct partitions when targets with different extensions 
are closely spaced. The results of using DP-SP with EMP 
and PP are better than those of using just DP-SP because 
EMP and PP consider the target extension information and 
can provide the correct partitions. However, the ET-OSPA 
values increase significantly during the times 20–25 s and 
40–60 s. The reason for this is that PP and EMP are sensi-
tive to target maneuvers. The ET-OSPA values of the pro-
posed DP-ASP were clearly lower than those of DP-SP 
with EMP and PP when the targets were both closely 
spaced and performing maneuvers. Equation (10) insured 
that DP-ASP was not sensitive to target maneuvers, while 
the use of target extension information made DP-ASP 
insensitive to differences in target extensions. Therefore, 
DP-ASP could provide more correct partitions than other 
partitioning approaches could when the targets were 
closely spaced. This conclusion is also evident in Fig. 4(b), 
which shows the sums of the weights of each approach. 

Figure 5 shows the average time costs of making 100 
MC runs for each partitioning approach. The use of more 
partitioning approaches required a greater number of com-
putations. Thus, the values of DP-SP with EMP and PP 
were significantly larger than those of the other two ap-
proaches. The time costs of DP-ASP and DP-SP were 
roughly the same because the two approaches provided the 
same number of partitions. Note that providing a greater 
number of correct partitions can reduce the number of GIW 
components. Thus, the time costs of DP-ASP are some-
times lower than those of DP-SP. 

Figure 6 shows the association results of a single trial, 
and Figure 6(a) shows the results of the GIW-PHD filter 
using DP-SP with EMP and PP. When the targets were 
maneuvering, many incorrect and excrescent tracks oc-
curred. The reason for this is that the partitioning ap-
proaches failed to provide accurate partitions. Then, the 
inaccurate partitions led to estimation errors in the filter, 
which ultimately resulted in association problems. The 

association results when using DP-ASP, shown in (b), were 
relatively better than those in (a) (i.e., most of the tracks 
were correct, and the number of excrescent tracks was 
lower than that of (a)). This means that even though 
an error may occur during an individual scan, DP-ASP can 
generally provide more accurate partitions than other ap-
proaches when targets are closely spaced. 
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Fig. 3. True tracks. 
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Fig. 4. Results of 100 MC runs. 
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(a) Results of DP-SP with EMP and PP. 
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 (b) Results of DP-ASP. 

Fig. 6. Track association results. 

6. Conclusions 
This paper proposes a measurement partitioning algo-

rithm for a GIW PHD filter, called ASP, which can provide 
better partitioning results than other approaches can when 
targets are closely spaced. In addition, a track maintenance 
approach is included in the GIW PHD filter. In the future 
works, we plan to apply ASP to other METT particle filters 
as was done in [22], [23]. ASP is a promising approach for 
dividing particle swarms. Thus, the performance of METT 
particle filters can be improved when targets are closely 
spaced. 
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