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ABSTRACT This paper introduces the generalization of the classical Transitional Butterworth-Butterworth
Filter (TBBF) to the Fractional-Order (FO) domain. Stable rational approximants of the FO-TBBF are
optimally realized. Several design examples demonstrate the robustness and modeling efficacy of the pro-
posed method. Practical circuit implementation using the current feedback operational amplifier employed
as an active element is presented. Experimental results endorse good agreement (R2

= 0.999968) with the
theoretical magnitude-frequency characteristic.

INDEX TERMS Analog filter approximation, analog signal processing, current feedback operational
amplifier, fractional-order filter, transitional filter.

I. INTRODUCTION
Themodeling techniques and realization of classical (integer-
order) analog filters are well-established. To further improve
the performance of such filters (e.g., reduction in pass-
band error, sharper transition-band characteristic), the use of
graphical methods [1] and optimal procedures [2]–[4] have
been adopted.

Recently, the theoretical concept of fractional calculus,
which deals with the generalization of the classical defi-
nitions of differentiation and integration, has been applied
to achieve a more precise attenuation behavior of analog
filters [5]. This is possible due to the generalization of the
classical Laplacian operator s to the Fractional-Order (FO)
form sα , where α ∈ (0, 1), which causes additional degrees
of freedom in system modeling. The impedance function
containing the sα operator may be realized using fractance
devices or Constant Phase Elements (CPE) [6]. Due to the
commercial unavailability of these devices, CPE emulators
in the integrated form [7] or discrete-components-based [8]
have been reported. The sα operator forms the basic building
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block of the FO transfer functions, which can lead to gener-
alizations of classical Butterworth filter [9], oscillators [10],
and resonators [11]. Both active and passive elements have
been employed to realize the FO impedances [12], [13].
Another popular method is to approximate the FO system
using the integer-order transfer function [14]. The exact
dynamics of a FO system can be theoretically achieved by
a system of infinite integer order. For practical purposes,
the characteristics of the FO filter need to be approximated
using a finite-order rational approximant. An integer-order
model of lower-order is desirable since it results in smaller
hardware overhead. The rational approximation of sα may
be achieved using frequency-domain-based curve fitting [15],
a weighted sum of first-order optimal high-pass filter
sections [16], etc.

Transitional filters merge the frequency responses of var-
ious classical filters (e.g., Butterworth, Chebyshev, Bessel,
Legendre, Thomson) to attain conciliation between the ampli-
tude and group delay characteristics [17]. Transitional filters
may be designed by combining different filter poles using
the arithmetic or geometric interpolation, as exemplified by
the transitional Legendre-Thomson filter [18], and the transi-
tional ultraspherical-ultraspherical filter [19]. An alternative
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TABLE 1. Comparison with the existing FOBF and TBBF design techniques.

design technique involves combining the classical filter poly-
nomials [20]. Themagnitude squared function of the classical
Transitional Butterworth-Butterworth Filter (TBBF) is given
by (1) [20]:

|H (jω)|2 =
1

1+ ε2(ω2n + ω2k )
, (1)

where n and k are integers, 0 ≤ k ≤ n; ε is the ripple
constant; andω is the angular frequency in radians per second
(rad/s). For n = k , and rewriting the ripple constant as ε/

√
2,

the magnitude characteristics of the nth order Butterworth
filter can be also obtained from (1). The response of the
TBBF comprises the arithmetic interpolation between two
classical Butterworth filters. It may be inferred from (1) that
for n > k , the dominating responses in the passband and
stopband regions are due to the kth order and the nth order
Butterworth filters, respectively. Hence, the passband and
stopband responses of the TBBF can be nearly independently
adjusted.

Optimization techniques were employed to approximate
the characteristics of the FO Butterworth Filter (FOBF)
[21], [22]. However, to the best of the authors’ knowledge,
no literature exists on the FO modeling of TBBFs. This
paper introduces the definition of FO-TBBF characteristic
by removing the restrictions of integer values for n and k
imposed in (1). Optimal rational approximations are pro-
posed, which can meet the theoretical magnitude-frequency
behavior of the FO-TBBF. Design stability is ensured by
representing the denominator polynomial of the proposed
model as a cascade of first-order and second-order terms
comprising positive coefficients. Thus, inequality constraints
are avoided to meet the s-domain stability criteria. Table 1
compares the advantages and limitations of the proposed
methodwith those of the FOBF [9], [21], [22], and TBBF [20]
design techniques. Several design cases are considered to
evaluate the performance of the proposed technique. Cur-
rent Feedback Operational Amplifier (CFOA) [23] based
hardware circuit implementation of the proposed FO-TBBF
approximant is demonstrated. Simulation and experimental
results confirm excellent agreement with the ideal magnitude
characteristics.

In the rest of the paper, the proposed technique is pre-
sented in Section II. MATLAB simulations are carried out to
highlight the modeling efficiency in Section III. Section IV
presents the circuit implementation and measurement results,
while conclusions are drawn in Section V.

II. DESIGN METHODOLOGY
A. DEFINITION
The theoretical squared-magnitude function for the FO-
TBBF is proposed according to (2):

|B(jω)|2 =
1

1+ ε2[ω2(n1+α) + ω2(n2+β)]
, (2)

where n1 and n2 are integer numbers, α, β ∈ [0, 1], and
(n1+ α) ≥ (n2+ β). For α = β = 0 and 1, the TBBF can be
treated as a special case of the FO-TBBF. Note that (2) may
yield the definition of a FOBF when (n1+α) = (n2+β). The
proposed definition also allows the exponents of ω in (2) to
attain any value between 0 and 2, which is not possible using
the classical TBBF.

B. PROPOSED TECHNIQUE
The proposed FO-TBBF approximant G(s) is modeled
according to (3):

G (s) =



k(s2 + z1s+ z2)
(n1+3)/2∏
i=1

(s2 + pis+ p′i)

, if n1 is odd;

k(s2 + z1s+ z2)

(s+ p0)
(n1+2)/2∏
i=1

(s2 + pis+ p′i)

, if n1 is even.

(3)

The resulting integer order of the approximant G(s),
as defined by (3), is determined as n1+3. The approximation
of the magnitude-frequency response of the normalized FO-
TBBF is formulated as an optimization problem by minimiz-
ing the cost function f, as proposed in (4):

f =
L∑
i=1

|20 log10 |B(jωi)| − 20 log10 |G(jωi,X )||
2. (4)

Subject to:
zi > 0, (i = 1, 2);

pi, p′i > 0, (i = 1, 2, . . . ,
n1 + 3

2
) if n1 is odd;

p0 > 0; pi, p′i > 0, (i = 1, 2, . . . ,
n1 + 2

2
) if n1 is even.

where L denotes the total number of frequency points loga-
rithmically distributed in the interval ω ∈ [ωmin, ωmax] rad/s;
and X represents the vector of decision variables. For odd
values of n1, X = [k z1 z2 p1 p′1 p2 p

′

2 . . .p(n1+3)/2 p
′

(n1+3)/2
];
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TABLE 2. Optimal design variables vector (X ) and the coefficient of determination (R2) for the proposed FO-TBBFs.

if n1 is even, then X = [k z1 z2 p0 p1 p′1 p2 p
′

2 . . .p(n1+2)/2
p′(n1+2)/2].
The constraints can be satisfied by choosing a positive

value for the lower bound of the decision variables. Hence,
the proposed optimization problem can be solved using any
unconstrained global search optimization technique.

C. ALGORITHM IMPLEMENTATION
Algorithm 1 presents the pseudocode to implement the pro-
posed optimization routine for a single trial run. In order to
guarantee the generation of a stable rational approximant,
the lower bound (Lb) for all decision variables (except k) is set
as 10−4; in the case of k , Lbmay be fixed as 0. A large value of
upper bound (Ub) needs to be avoided since it may result in a
large dispersion of the decision variables. A wide variation
in the coefficients of the FO-TBBF transfer function will
lead to larger spreading (ranging from a few ohms to several
mega-ohms) in the values of passive components, which is
undesirable for the practical implementation. To attain the
passive components values within practical limits, Ub may
be chosen as 1000. The initial point is randomly varied iter
times between Lb and (Lb+ c), where c ∈ Z+. A single trial
run of the optimization algorithm generates an iter number
of solutions; the best solution (Xbest) is the one that attains
the smallest value of the error fitness function (fmin). Thirty
independent trial runs of the algorithm are executed for each
design case to identify the most accurate model.

III. SIMULATION RESULTS
The MATLAB based optimization routine uses the solver
fmincon (algorithm: ‘active-set’) with the following argu-
ments: MaxFunEvals = 50000; MaxIter = 5000; TolFun =
1E–10; and TolX = 1E–10. The optimal values of the deci-
sion variables for 15 design examples, with [ωmin, ωmax] =
[10−2, 102] rad/s, ε2 = 0.5, L = 50, iter = 100, c = 10, and
Ub = 1000, are presented in Table 2. To quantify the effec-
tiveness of the modeling accuracy, the coefficient of deter-
mination (R2) index (evaluated for L magnitude-frequency
data sample points) is also shown in Table 2. A higher
value of R2 (in ideal case 1) indicates a better fitting of the
proposed model to the theoretical one. Except for no. 1 and
4 [(n1, n2, α, β) = (0, 0, 0.8, 0.5) and (2, 0, 0.4, 0.7)], all

Algorithm 1 The Proposed Algorithm Pseudocode
Inputs : n1, n2, α, β
Outputs: Xbest, fmin

1 begin
2 Set ωmin, ωmax, L, iter , c, Lb, Ub
3 for i = 1 to iter do
4 X0 (Initial point of X ) ∈ rand(Lb,Lb+ c)

B(s)← ks2 + kz1s+ kz2
5 if (n1 == Odd) then
6 A(s)← 1
7 for j = 1 to (n1 + 3)/2 do
8 A(s)← A(s)× (s2 + pjs+ p′j)

9 else
10 A(s)← (s+ p0)
11 for j = 1 to (n1 + 2)/2 do
12 A(s)← A(s)× (s2 + pjs+ p′j)

13 G(s)← B(s)/A(s)
14 Minimize (4) and store fi
15 Store Xi

16 fmin← min{fi}
17 Xbest← Xi corresponding to fmin

other designs achieve R2 > 0.9999, which highlights a
good agreement in the magnitude responses of the optimal
model with the ideal FO-TBBF. The proposed method can
also attain the same solution quality for other values of c, such
as 100 and 1000.

Table 3 presents the minimum (min), maximum (max),
mean, and standard deviation (SD) indices of fmin for all
considered design cases based on 30 runs. Out of the 15 exam-
ples, 13 cases yield the same fitness values for min, max, and
mean indices. This implies that the same solution quality is
obtained irrespective of the number of independent trial runs
of the optimization technique. The excellent robustness of the
proposed technique is further highlighted by the small value
of the SD index.

The magnitude plot of the proposed model for no. 1
[(n1, n2, α, β) = (0, 0, 0.8, 0.5)] attains agreement with the
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TABLE 3. Statistical indices to evaluate the average performance of the
fitness value based on 30 runs.

FIGURE 1. MATLAB-simulated magnitude-frequency response
comparison plots of the proposed FO-TBBFs. Note that the numbers
within the parenthesis represent (n1,n2, α, β).

theoretical behavior, as shown in Figure 1 (top). This fig-
ure also demonstrates that the roll-off characteristics for the
FO-TBBF can extend below the one obtained for the lowest
order of the classical TBBF (n = k = 1). As another test
case, Figure 1 (bottom) shows the magnitude response for
the proposed design no. 5 [(n1, n2, α, β) = (2, 1, 0.5, 0.5)].
A close match with the ideal characteristics (R2

= 0.999996)
may be noted. The fractional stepping for the proposed
FO-TBBF is highlighted in the same figure by presenting
the magnitude plots of the TBBFs for (n = 2, k = 1)
and (n = 3, k = 2).

Figure 2 (top) illustrates the smaller group delay of the
proposed model no. 1 compared to the classical TBBF
(n = k = 1) reported in [20]. Group delay comparisons of
the proposed approximant for no. 5 with the classical TBBFs
cited in [20] for (n = 2, k = 1) and (n = 3, k = 2) are shown
in Figure 2 (bottom). Results reveal that the group delay
behavior of the optimal model lies in-between the responses
of the classical filters.

To further highlight the FO modeling behavior of the pro-
posed designs, the magnitude (top) and group delay (bottom)
plots of the FO-TBBF for model no. 9 [(n1, n2, α, β) =

FIGURE 2. MATLAB-simulated group delay plots of the proposed
FO-TBBFs as compared with the classical TBBFs reported in [20]. Note
that the numbers within the parenthesis represent (n1,n2, α, β).

FIGURE 3. Comparisons of MATLAB-simulated magnitude and group
delay plots of the proposed FO-TBBF with the classical TBBFs reported
in [20]. Note that the numbers within the parenthesis represent
(n1,n2, α, β).

(3, 2, 0.5, 0.2)] are compared with the classical TBBFs [20]
for (n = 3, k = 2) and (n = 4, k = 3), as shown in Figure 3.
Both these plots confirm that the proposed FO-TBBF can
achieve the frequency responses which may not be yielded
using the classical TBBFs.

The effectiveness of the proposed models in attaining a
smaller group delay in the passband as compared to the FOBF
is also demonstrated. For this purpose, the magnitude (top)
and group delay (bottom) responses of the 1.6th-order FOBF
reported in [22] are compared with the proposed FO-TBBF
model no. 2 [(n1, n2, α, β) = (1, 0, 0.6, 0.8)], as presented
in Figure 4. It may be noted that since the stopband atten-
uation characteristic for the FO-TBBF is dominated by the
(n1 + α)th-order Butterworth filter, hence, the magnitude
roll-off rate for the proposed FO-TBBF is similar to that of
the FOBF of order 1.6. The magnitudes of the FO-TBBF
at the frequencies of 10 rad/s and 100 rad/s are −29.06 dB
and −61.08 dB, respectively. Therefore, the roll-off rate for
the FO-TBBF is −32.02 decibel/decade (dB/dec), which is
close to the theoretical value of −32.0 dB/dec obtained for
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FIGURE 4. Comparisons of MATLAB-simulated magnitude and group
delay plots of the proposed FO-TBBF with the FOBF reported in [22]. Note
that the numbers within the parenthesis represent (n1,n2, α, β).

FIGURE 5. CFOA-based circuit implementation of the proposed FO-TBBF
approximant.

the 1.6th-order FOBF. However, the maximum group delay
achieved for the proposed FO-TBBF (1.217 s) is substan-
tially smaller as compared to the reported FOBF model [22]
(1.392 s). This is due to the fact that the dominating response
in the passband for the FO-TBBF depends on the (n2 + β)th-
order Butterworth filter, which is of order 0.8 in the present
case. Thus, the proposed design achieves an improved group
delay performance as compared to the FOBF without com-
promising the stopband behavior.

IV. CIRCUIT IMPLEMENTATION AND EXPERIMENTAL
VERIFICATION
The circuit realization of the FO-TBBF approximants is
demonstrated using the CFOA employed in a follow-the-
leader feedback topology [24]. The complete circuit can be
constructed using the nodal connections shown in Figure 5.
For e.g., nodes P and X are respectively represented as P©
and X© in the figure. Source input and signal output voltages
of the circuit are denoted by VI and VO, respectively. The
series connections of the CFOAs between the nodes P© and

P+1© are carried out for P varying from 1 to N − 1, where

N = n1 + 3. The total number of amplifiers, resistors,
and capacitors needed to realize the FO-TBBF model are
N + 1, 2N + 4, and N , respectively. Thus, 3N + 4 number of
design variables is required to realize the circuit. The transfer
function of the proposed circuit is given by (5):

VO(s)
VI(s)

=

2∑
k=0

RGN+1s
k

R3−k
N−k∏
i=1

CiRGi

sN +
sN−1

RF1C1
+

N−2∑
k=0

sk

C1RFN−k

N−k∏
i=2

CiRGi

. (5)

The values of the R-C components are determined by
comparing (3) and (5), which results in (N + 3) independent
equations. Hence, the values for (2N + 1) number of pas-
sive components can be initially chosen. As a representative,
the circuit realization steps of the proposed FO-TBBF model
no. 5 for (n1, n2, α, β) = (2, 1, 0.5, 0.5) are presented as
follows:
(i) Set n1 = 2. Therefore, N = 5. The circuit comprises

6 CFOAs, 14 resistors, and 5 capacitors. The value of P
is incremented from 1 to 4,

(ii) Set the desired cut-off frequency of the filter, such as
fc =1 kHz,

(iii) Eight modeling equations relate the circuit transfer func-
tion to the coefficients of G(s). The number of design
variables is 19. Therefore, the values of 11 passive ele-
ments are initially set,

(iv) The passive components are selected from the E-24 stan-
dard industrial series for the resistors and the E-12 series
for the capacitors. The following resistor values are set
as: RF1 = RF2 = RF3 = RF4 = RF5 = 10 k�,
RG1 = 100 k�, RG2 = 1 k�, RG3 = RG4 =

RG5 = 10 k�, and R1 = 270 k�. The values of the other
R-C components are derived as follows: RG6 = 8.2 k�,
C1 = 0.12 nF, C2 = 10 nF, C3 = 4.7 nF, C4 = 15 nF,
C5 = 27 nF, R2 = 7.5 k�, and R3 = 750 �.

The circuit for the proposed FO-TBBF no. 5 was assem-
bled on a breadboard using the above listed R-C component
values. The supply voltage for Analog Devices AD844AN
amplifiers was provided by the Agilent E3630A power sup-
ply. The frequency responses of the FO-TBBFweremeasured
by the OMICRON Lab Bode 100 network analyzer. 401 log-
arithmically spaced frequency points in the range 10 Hz to
100 kHz were considered. The level of the testing harmonic
signal was set to 10 dBm (0.7071 VRMS). The receiver band-
width of the analyzer was fixed at 10 Hz to obtain precise
results. The THRU calibration of the analyzer was performed
before the measurement to eliminate the influence of the
measurement setup. After connecting the proposed FO-TBBF
circuit to the analyzer, the frequency responses were mea-
sured and displayed by the connected computer with the Bode
Analyzer Suite software. The photograph of the hardware set-
up is presented in Figure 6.
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FIGURE 6. Photo of the experimental set-up.

FIGURE 7. Magnitude, phase, and group delay vs. frequency plots of the
proposed FO-TBBF for (n1,n2, α, β) = (2, 1, 0.5, 0.5).

The magnitude-frequency response measurements of the
proposed FO-TBBF are compared with the ideal and simu-
lated ones in Figure 7 (top). The practical filter demonstrates
excellent agreement with the ideal characteristic up to nearly
70 kHz. The magnitude of the approximant at fc = 1 kHz
for measurement (–3.100 dB) demonstrates conformity with
the ideal (–3.010 dB) andMATLAB simulations (–3.029 dB).
R2 of 0.999968 is achieved for the measured magnitude
response data compared to the theoretical one. Figure 7 also
depicts the experimental results for the phase (middle) and
group delay frequency responses (bottom) of the FO-TBBF.
Comparisons with the simulated plots highlight excellent
matching of the phase plot for nearly 3 decades and the group
delay for the entire design bandwidth.

V. CONCLUSION
Optimal and robust modeling of several frequency charac-
teristics for the FO-TBBF is introduced. The generalization
of the classical TBBF results in more precise control of the

magnitude, phase, and group delay behaviors. The efficient
modeling performance of the proposed technique is validated
through numerical simulations and experiments made on
CFOA-based circuit implementation.
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