
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2020 Bc. Miroslav Šiklóši

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

SYSTEM LOG ANALYSIS FOR ANOMALY DETECTION
USING MACHINE LEARNING
VYUŽITÍ STROJOVÉHO UČENÍ PRO DETEKCI ANOMÁLIÍ NA ZÁKLADĚ ANALÝZY SYSTÉMOVÝCH LOGŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Miroslav Šiklóši

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Jiří Hošek, Ph.D.

BRNO 2020

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Master's Thesis
Master's study field Communications and Informatics

Department of Telecommunications
Student: Bc. Miroslav Šiklóši ID: 164414
Year of
study: 2 Academic year: 2019/20

TITLE OF THESIS:

System Log Analysis for Anomaly Detection Using Machine Learning

INSTRUCTION:

The thesis deals with implementing an anomaly detection tool that can analyze the system log utilizing machine
learning methods. First, student needs to compare between traditional way of log analysis and the machine
learning one. Moreover, student should illustrate in detail the machine learning methodology used in the system
log analysis. The proposed tool should be able to automatically learn log patterns and decide if new log is
considered as anomalous or not. The tool should be able also to handle specific conditions, for example, system
log is considered as anomalous if its pattern is more likely belong to anomalous area, plus the anomalous
situation remains for some specific time.

RECOMMENDED LITERATURE:

[1] Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms,
ISBN:1107057132, 9781107057135, Pages: 397, Year: 2014.

[2] Adrian Mouat, Using Docker: Developing and Deploying Software with Containers, ISBN:1491915927,
9781491915929, Pages: 35, Year: 2015.

Date of project
specification: 3.2.2020 Deadline for submission: 1.6.2020

Supervisor: doc. Ing. Jiří Hošek, Ph.D.
Consultant: Ing. Nabhan Khatib, Ph.D.

 prof. Ing. Jiří Mišurec, CSc.
Subject Council chairman

WARNING:
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

ABSTRACT
This thesis deals with system log analysis for anomaly detection using machine learning
models. The proposed models are based on supervised, unsupervised and deep learning
algorithms. However, the functionality and behaviour of these algorithms have been clar-
ified theoretically and practically in the thesis. Moreover, many preprocessing methods
and logics were used to preprocess the data before it was fed to the machine learning
model. At the end and to confirm the workability of proposed models, many metrics were
calculated and unseen syslogs were fed to the best-proposed machine learning models
to detect the anomalies. However, models Decision Tree Classifier, One-class SVM and
Hierarchical Clustering demonstrated the best performance, correctly predicting 93.95%,
85.66% and 85.3% of all anomalies respectively.

KEYWORDS
Anomaly detection, Syslog messages, Python, Machine Learning

ABSTRAKT
Táto diplomová práca sa venuje problematike využitia strojového učenia na detekciu
anomálií na základe analýzy systémových logov. Navrhnuté modely sú založené na al-
goritmoch strojového učenia s učiteľom, bez učiteľa a na hlbokom učení. Funkčnosť
a správanie týchto algoritmov sú objasnené ako teoreticky, tak aj prakticky. Okrem toho
boli využité metódy a postupy na predspracovanie dát predtým, než boli vložené do mo-
delov strojového učenia. Navrhnuté modely sú na konci porovnané s využitím viacerých
metrík a otestované na syslogoch, ktoré modely predtým nevideli. Najpresnejší výkon po-
dali modely Klasifikátor rozhodovacích stromov, Jednotriedny podporný vektorový stroj
a model Hierarchické zoskupovanie, ktoré správne označili 93,95%, 85,66% a 85,3%
anomálií v uvedenom poradí.

KĽÚČOVÉ SLOVÁ
Detekcia anomálií, Systémové logy, Python, Strojové učenie

ŠIKLÓŠI, Miroslav. System Log Analysis for Anomaly Detection Using Machine Learn-
ing. Brno, 2020, 83 p. Master’s Thesis. Brno University of Technology, Faculty of
Electrical Engineering and Communication, Department of Telecommunications. Ad-
vised by doc. Ing. Jiří Hošek, Ph.D. and Ing. Nabhan Khatib, Ph.D.

ROZŠÍRENÝ ABSTRAKT
Diplomová práca sa zaoberá problematikou využitia strojového učenia na detekciu
anomálií na základe analýzy systémových logov. Súčasný rast počítačových sietí
distribuovaných systémov je časovo veľmi náročný na monitorovanie. Všetky zari-
adenia nonstop zasielajú stavové správy, tzv. systémové správy. Napriek tomu, že
sú tieto správy veľmi dôležité, je veľmi náročné a neefektívne ich manuálne moni-
torovať a analyzovať. K zjednodušeniu spracovávania týchto logov existuje niekoľko
desiatok rôznych programov, či už platených alebo open-source.

Tieto programy sú ale založené na tradičných metódach, ktoré často vyžadujú
mnoho pravidelných úprav, aby boli schopné držať krok a analyzovať stále aktuali-
zované správy. Využitie strojového učenie však môže zabezpečiť lepšiu robustnosť a
zlepšiť schopnosti týchto programov zvládať spomenuté problémy.

Strojové učenie je vetva umelej inteligencie a umožňuje počítačom učiť sa bez
toho aby k tomu boli explicitne naprogramované. K tomu využívajú algoritmy z
rôznych oblastí ako napríklad štatistika, teória pravdepodobnosti a lineárna algebra.
Strojové učenie využíva tieto poznatky k analýze historických dát a následne k
predpovedaniu podobných situácií.

Algoritmy strojového učenia sú v tejto práci využité na detekciu anomálií, ktoré
môžu znamenať bezpečnostné riziko. Anomália znamená odchýlku od normálne
stavu, neočakávaný stav.

Táto práca aplikuje algoritmy na detekciu anomálií v sieťových paketoch a v
systémových správach. Na detekcii sú využité viaceré metódy strojového učenia s
učiteľom a bez učiteľa. Okrem toho je využitý aj algoritmus pre hlboké učenie.

Na začiatku práce je teoretická časť, obsahujúca dve kapitoly. Kapitola 1 popisuje
teoretické a matematické základy všetkých metód strojového učenia a rozdiely medzi
nimi. Kapitola 2 predstavuje teoretický základ predprípravy dát a spracovania
prirodzeného jazyka.

Nasleduje praktická časť práce. Kapitola 3 popisuje praktickú implementáciu
generátora systémových správ, jeho funkčnosť a využitie. Kapitola 4 popisuje log-
ickú štruktúru a implementáciu navrhnutých súčastí na spracovanie dát a modelov
strojového učenia. Navrhnuté programy a ich funkčnosť sú popísané v kapitole 5,
spolu s ukážkou ich spustenia.

Na konci praktickej časti práce sa nachádza kapitola 6, ktorá navzájom porovnáva
jednotlivé navrhnuté modely strojového učenia. Tieto porovnania sú zobrazené ako v
príslušných tabuľkách, tak aj v graficky. Nachádza sa tu tiež krátka ukážka využitia
navrhnutých programov v reálnych situáciách.

Navrhnuté programy boli naprogramované v jazyku Python. Modely strojového uče-
nia s učiteľom a bez učiteľa využívajú voľne prístupnú knižnicu Scikit-learn. Model

hlbokého učenia využíva taktiež voľne prístupnú knižnicu Keras.
Jednotlivé modely boli najskor natrénované na označených dátach a následne

otestované na dátach, aké dovtedy nemali k dispozícii. Tým došlo k overeniu nie-
len ich presnosti pri detekcii anomálií, ale aj k overeniu robustnosti v prípade, že
vkladané dáta sa budú meniť. Pri testovaní bol taktiež porovnaný vplyv množstva
trénovaných dát na výslednú presnosť jednotlivých modelov strojového učenia.

Ako najpresnejší model sa ukázal Klasifikátor rozhodovacích stromov, ktorý bol
schopný správne označiť až takmer 94% anomálií. Veľmi tesne za ním sa nachádzali
modely Jednotriedneho podporného vektorového stroja a Hierarchického zoskupova-
nia.

Tieto výsledky boli dosiahnuté vďaka manuálnej úprave ich parametrov, na zák-
lade predchádzajúcich znalostí a náhodných testov. Jednotlivé modely sa môžu v
budúcnosti vylepšiť využitím automatizácie úpravy týchto parametrov. Jednou z
možností je využitie tzv. Algoritmu mriežkového vyhľadávania, ktorý využíva pred-
definované mriežky parametrov a hrubou silou navzájom porovnáva ich presnosť a
výkonnosť. Jedná sa ale o veľmi zdĺhavý a náročný proces, ktorý musí byť navyše
aplikovaný na každý model strojového učenia samostatne.

Ďalšou možnosťou môže byť inšpirovanie sa programom H20 AutoML, ktorý
automatizuje vytváranie a vzájomné porovnávanie väčšieho množstva modelov.

DECLARATION

I declare that I have written the Master’s Thesis titled “System Log Analysis for Anomaly
Detection Using Machine Learning” independently, under the guidance of the advisor and
using exclusively the technical references and other sources of information cited in the
thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I want to thank my supervisor doc. Ing. Jiří Hošek, Ph.D. and consultant Ing. Nabhan
Khatib, Ph.D. from AT&T Global Network Services Czech Republic s.r.o. for providing
valuable knowledge, guidance, patience and helpful suggestions. I would like to extend
my sincere thanks to my parents for moral and financial support throughout the studies.

This thesis was created as part of the key activity KA6 - Individual teaching and involvement

of students of bachelor's and master's degree programs in research within the project OP RDE

Creation of a double-degree doctoral study program Creating double-degree doctoral study

program Electronics and Information Technology and creating doctoral study program

Information Security reg. no. CZ.02.2.69/0.0/0.0/16_018/0002575.

The project is co-financed by the European Union.

Contents

Introduction 15

I Theoretical Part 17

1 Machine Learning 18
1.1 Machine Learning For Anomaly Detection 18
1.2 Supervised Machine Learning . 19

1.2.1 Logistic Regression . 20
1.2.2 K-Nearest Neighbors . 21
1.2.3 Support Vector Machine . 22
1.2.4 Naive Bayes . 24
1.2.5 Decision Tree . 25
1.2.6 Random Forest . 25

1.3 Unsupervised Machine Learning . 27
1.3.1 Isolation Forest . 28
1.3.2 Local Outlier Factor . 29
1.3.3 K-Means . 30
1.3.4 Hierarchical Clustering . 31

1.4 Neural Networks and Deep Learning 32

2 Natural Language Processing 35

II Practical Part 37

3 Implementation of Syslog Generator 38
3.1 Structure of Syslog Generator . 38

4 Implementation of Analysis Tools 45
4.1 Structure of Proposed Tools . 45
4.2 Data Preprocessing . 50

4.2.1 Natural Language Processing 50
4.2.2 Data Splitting . 51

4.3 Machine Learning Structure and Models 55
4.3.1 Logistic Regression Model . 55
4.3.2 K-Nearest Neighbor Model . 56
4.3.3 Kernel SVM Model . 56

4.3.4 One-class SVM Model . 57
4.3.5 Naive Bayes Model . 57
4.3.6 Decision Tree Classification Model 57
4.3.7 Random Forest Classification Model 58
4.3.8 Isolation Forest Model . 58
4.3.9 Local Outlier Factor Model 59
4.3.10 K-Means Model . 59
4.3.11 Hierarchical Clustering Model 59
4.3.12 Artificial Neural Network Model 60

4.4 Machine Learning Metrics and Performance 61

5 Functionality of Tools 63
5.1 Syslog Generator . 63
5.2 Traffic Analysis Tool . 63
5.3 Syslog Analysis Tool . 64

6 Comparison of Performance of Machine Learning Models 65
6.1 Traffic Analysis Performance . 66
6.2 Syslog Messages Analysis Performance 67

Conclusion 74

Bibliography 75

A Attachments 83

List of Figures
1.1 Example of Anomaly . 18
1.2 Function of Logistic Regression . 20
1.3 Example of Support Vector Machine in 2D [25] 23
1.4 Example of Support Vector Machine in 3D [25] 23
1.5 Example of Decision Tree [35] . 26
1.6 Example of Random Forest [39] . 26
1.7 Example of formation of clusters [43] 28
1.8 Isolation Forest algorithm . 29
1.9 Local Outlier Factor . 30
1.10 Agglomerative Hierarchical Clustering 31
1.11 Artificial Neural Network [56] . 33
3.1 Flowchart of Syslog Generator . 39
4.1 Flowchart of the proposed tools . 46
4.2 Flowchart of Research mode . 48
4.3 Flowchart of Production mode . 49
6.1 Confussion Matrix . 65
6.2 Recall results of Machine Learning Models on CICIDS2017 dataset . 68
6.3 Recall results of syslog analysis on 50k of seen messages 69
6.4 Recall results of syslog analysis trained on 5000 messages 71
6.5 Recall results of syslog analysis trained on 50000 messages 72
6.6 Comparison of recall results of machine learning models 73

List of Tables
6.1 Performance results of Machine Learning Models on CICIDS2017

dataset . 67
6.2 Performance results of syslog analysis on 50k of seen messages 68
6.3 Performance results of syslog analysis trained on 5000 messages . . . 70
6.4 Performance results of syslog analysis trained on 50000 messages . . . 71

List of Listings
3.1 Message Templates . 40
3.2 Method to fill in a message . 41
3.3 Generate random IP address . 41
3.4 Generate a log message . 42
3.5 Method to pick a seen message . 42
3.6 Method to pick an unseen message . 43
3.7 Method generating log file . 43
3.8 Argument parser of Syslog Generator 43
3.9 Calling method generating log file with arguments 44
3.10 Example how to run Syslog Generator from Powershell 44
4.1 Argument Parser of proposed tools . 45
4.2 Preprocessing labelled CICIDS2017 dataset 51
4.3 Missing and incorrect data preprocessing 52
4.4 Splitting the dataset into the Training and Test set 53
4.5 Preprocessing unlabelled CICIDS2017 dataset 53
4.6 Preprocessing labelled dataset of syslog messages 54
4.7 Preprocessing unlabelled dataset of syslog messages 54
4.8 Method Bag of Words . 55
4.9 Logistic Regression Model . 56
4.10 Prediction of supervised model . 56
4.11 K-Nearest Neighbor Model . 56
4.12 Kernel SVM Model . 56
4.13 One-class SVM Model . 57
4.14 Loop to adjust predicted values . 57
4.15 Naive Bayes Model . 57
4.16 Decision Tree Classification Model . 58
4.17 Random Forest Classification Model 58
4.18 Isolation Forest Model . 58
4.19 Local Outlier Factor Model . 59
4.20 K-Means Model . 59
4.21 Hierarchical Clustering Model . 59
4.22 Artificial Neural Network Model . 60
4.23 Prediction of ANN model . 61
4.24 Print Confusion Matrix . 61
4.25 Method printing metrics . 61
4.26 Print predictions into a text file . 62
4.27 Example of labelled messages with results 62

5.1 Script to run Syslog Generator . 63
5.2 Script to run Syslog Generator with certain parameters 63
5.3 Script to run Traffic Analysis Tool 64
5.4 Script to run Syslog Analysis Tool . 64
6.1 Exampe of live analysis . 73

Introduction
With current growth of computer networks and distributed systems it is very chal-
lenging and time-consuming to monitor them. All these devices are flooding servers
with their runtime information, reporting their current state 24/7. This runtime
information is so-called syslogs. However, even though such information is very im-
portant, it is not efficient to use human power to monitor and analyze such large
datasets. To ease the analysis of such logs, there are dozens of different kinds of
software available on the market, either open source or paid.

However, software based on traditional programming might require many peri-
odical adjustments in their codes to be able to analysis new pattern of system logs.
In other words, traditional analyzing process of syslogs is complex, prone to human
errors and time-consuming. With the advent of machine learning methods, they can
be more robust and more convenient to deal with the aforementioned difficulties.

Machine learning is a subset of artificial intelligence that enables computers to
learn without being explicitly programmed with predefined rules. It has borrowed
concepts from different fields like Statistics, Probability Theory and Linear Algebra
and applied to solve practical problems. It focuses on the development of computer
programs that can learn from the historical data and formulate a solution which can
be used to solve similar problems in the future [1].

One of the biggest features of machine learning algorithms is their ability to
improve over time. Machine learning technology can improve their efficiency and
accuracy due to the increasing amounts of data that are processed. This gives the
algorithm more experience which results in making better decisions or predictions.

Anomaly detection is a technique used to identify or detect unusual patterns
that differs majorly from the rest of the data. It is critical in detecting a rare data
pattern or potential problem in the form of financial frauds, medical events, system
logs and many others. However, anomaly detection can use the machine learning
and deep learning algorithms to achieve its tasks [2].

In this thesis, anomaly detection algorithms are implemented on network packets
and syslog messages, looking for anomalous behaviours that may indicate a security
threat. Several machine learning methods were utilized, e.g. supervised and unsu-
pervised. Moreover, deep learning algorithm was utilized as well. Furthermore, the
thesis illustrates which group of algorithms are the most suitable and have the best
performance for anomaly detection.

The thesis is organized as follows:
Chapter 1 presents theoretical and mathematical behaviour of machine learning

techniques and the difference between them. Chapter 2 deals with the theory of

15

preprocessing the dataset through Natural Language Processing. In chapter 3 a
practical implementation of syslog generator is shown and explained. Chapter 4
presents the logical structures and implementation of the proposed tools of data
preprocessing and the machine learning models.

In chapter 5 the functionality of the proposed tools is demonstrated. The com-
parison of the proposed machine learning models is illustrated in the chapter 6. In
the last chapter, the conclusion and future work are summarized.

16

Part I

Theoretical Part

17

1 Machine Learning
Machine learning is a branch of Artificial Intelligence for data analysis, that gives
computers ability to learn and improve from experience [3]. Machine learning al-
gorithms are built on mathematical models, which are searching for patterns and
relations in given data. These models are then capable of making decisions and
predictions, even though they were not explicitly programmed to do so [4].

Machine learning is widely used across different fields - from weather forecast-
ing, through finances, computer sciences, image and language processing to tumor
detection in biology. Utilization options for machine learning are almost endless and
it can be used in almost every aspect of our lives [5].

1.1 Machine Learning For Anomaly Detection
Anomalies are events or items that differ from standard behaviour. They are rare
and do not fit into normal pattern [6]. Anomalies can indicate whether there is some
kind of problem, for example finance fraud, medical complication or cyber attack.
Anomaly detection is a task to identify such events [7].

Figure 1.1 a) illustrates example of point not fitting into cluster and figure 1.1 b)
illustrates example of a spike in a time-series data.

Fig. 1.1: Example of Anomaly

There are dozens of machine learning algorithms. Each algorithm has its own
specifications, due to which some algorithms are better in solving certain problems
than others and vice versa.

18

Some of the algorithms suitable for anomaly detection are Isolation Forests, One-
class SVMs and Local Outlier Factor [6].

This thesis deals with implementation of these algorithms and compare them to
others.

1.2 Supervised Machine Learning
The majority of existing machine learning algorithms are using supervised learning.

Supervised learning algorithms are developing machine learning model from la-
belled data. In other words, process of learning from labelled data can be viewed as
a teacher supervising the learning process. Learning process is iterative - is running
repeatedly until algorithm accomplishes sufficient level of performance [8].

Learning algorithm is mapping input variables (X) and an output variable (y)
to find pattern. However, the goal is to create mapping function that can predict
the output variable as precisely as possible.

𝑦 = 𝑓(𝑋) (1.1)

Based on problems algorithm is dealing with, supervised learning can be divided
into two groups - Regression and Classification.

Regression

Regression is a supervised learning algorithm used to predict continuous responses
[9]. For example, it can be used in finding relationship between price of a flat and
it’s location, number of bedrooms, etc. Regression is one of the earliest machine
learning algorithms and is still widely used [10]. There are multiple types of regres-
sion methods, such as Simple Linear Regression (SLR), Multiple Linear Regression
(MLR), Polynomial Regression (PR), Support Vector Regression (SVR), Decision
Tree Regression (DTR), Random Forrest Regression (RFR), etc.

Due to character of the data that this thesis deals with, none of the regression
methods are used.

Classification

Classification is a supervised learning algorithm, which is grouping given set of data
points into classes. Sometimes classes are called also categories, labels or targets
[11].

Basic example of classification is spam detection in emails. A classifier trains to
understand how given dataset associate with labels spam and non-spam [12].

19

Spam detection falls under binary classification, as there are only two labels
(classes). To deal with problems with multiple classes, such as whether an image is
a dog, a cat or a mouse, there are Multi-class classifiers [13].

There are multiple types of classification methods, such as Logistic Regression
(LR), K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Kernel SVM
(kSVM), Naive Bayes NB), Decision Tree Classification (DTC), Random Forrest
Classification (RFC), etc.

1.2.1 Logistic Regression

Logistic Regression (LR) is extending Linear Regression model to be used for clas-
sification problems [14].

Logistic Regression is not predicting exact number values (like 0 or 1), but it is
using logistic sigmoid function to generate a probability value - for example value
between 0 and 1 [15].

To compress output between 0 and 1, function of logistic regression is defined as
following [14]:

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂) = 1
1 + 𝑒𝑥𝑝(−𝜂) . (1.2)

Visual representation of Logistic function is shown in figure 1.2.

Fig. 1.2: Function of Logistic Regression

As mentioned above, logistic regression is extending linear regression. Linear
regression model is used for regression problems and defined by following equation:

𝑦(𝑖) = 𝛽0 + 𝛽1𝑥
(𝑖)
1 + ... + 𝛽𝑝𝑥(𝑖)

𝑝 . (1.3)

20

As logistic regression is compressing outputs between values 0 and 1, function of
logistic regression model is defined as:

𝑃 (𝑦(𝑖) = 1) = 1
1 + 𝑒𝑥𝑝(−(𝛽0 + 𝛽1𝑥

(𝑖)
1 + ... + 𝛽𝑝𝑥

(𝑖)
𝑝))

. (1.4)

Probability 𝑃 will be a value between 0 and 1. As the output of the model needs
to be either 0 or 1, threshold have to be set up. Usually, threshold is set up to be
in the middle of values as following:

𝑝 ≥ 0.5, 𝑐𝑙𝑎𝑠𝑠 = 1𝑝 < 0.5, 𝑐𝑙𝑎𝑠𝑠 = 0. (1.5)

In case threshold is set up as above and prediction model returns value 0.67, it
will be classified as 1. If returned value is for example 0.48, it will be classified as 0
[15].

Implementation of Logistic Regression model in Python is described in the Sec-
tion 4.3.1.

1.2.2 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is simple, yet powerful classification algorithm. How-
ever, it can be used for regression problems as well [16]. The KNN algorithm is
based on assumption that similar data points lay close to each other [17].

Decision to which class should a node be assigned to is based on majority of votes
of its neighbors [18]. Number of neighbors depends on chosen value of parameter 𝐾.
Nearest neighbors are then calculated by one of the following distance functions:

Euclidean function:

𝐷(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑘∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2. (1.6)

Manhattan function:
𝐷(𝑥, 𝑦) =

𝑘∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|. (1.7)

Minkowski function:

𝐷(𝑥, 𝑦) = (
𝑘∑︁

𝑖=1
(|𝑥𝑖 − 𝑦𝑖|)𝑞)1/𝑞. (1.8)

However, these functions are accurate only for continuous variables. For classi-
fication problems is more suitable to use Hamming distance function:

𝐷𝐻 =
𝑘∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖|. (1.9)

21

𝑥 = 𝑦 ⇒ 𝐷 = 0. (1.10)

𝑥 ̸= 𝑦 ⇒ 𝐷 = 1. (1.11)

There is no specified method to choose the best value of 𝐾, but the following
recommendations should be taken into consideration [19]:

• Large value of 𝐾 means more precise model.
• Choose an odd value of 𝐾 for a problem with two classes - if 𝐾 = 2 for such

a problem, there might be a tie of what should be a class of the node.
• Multiple of number of classes should not be chosen.

𝐾 = 1 is a special case of KNN, when node is assigned to class of its closest neighbor
[20].

Implementation of K- Nearest Neighbors model in Python is described in the
Section 4.3.2.

1.2.3 Support Vector Machine

Another supervised learning algorithm that can be used for both classification or
regression problems is Support Vector Machine (SVM). However, when it is used to
solve regression problems, it is mainly referred as Support Vectore Regression [21].
Same as KNN, SVM is mostly used for classification problems [22]. SVM’s goal is
to find and "draw" the best hyperplane that can divide n-dimensional dataset into
classes [23]. Hyperplanes are basically boundaries separating different classes. They
can be multidimensional and it is all depending on amount of input variables. If
there are only two input variables (for example x and y), hyperplane is going to be
just a line. If there are three input variables, hyperplane is going to be a 2D plane,
etc.

• Support vectors "support" the hyperplane. They are the closest data point to
the hyperplane and are affecting position of it.

• Positive and negative hyperplanes are "touching" border points of each classes
as shown in figure 1.3 c).

• Margin is a distance between positive and negative hyperplanes [24].

Figure 1.3 a) ilustrates two classes. Figure 1.3 b) ilustrates same two classes sepa-
rated by hyperplanes with small margin, which is not ideal, and with large margin.
Ideal hyperplane with maximum margin (large margin multiplied by 2) is shown in
figure 1.3 c).

Figure 1.4 a) shows one class "besieged" by the other class. When the visualisa-
tion is taken into third dimension as shown in figure 1.4 b), classes are now separable

22

Fig. 1.3: Example of Support Vector Machine in 2D [25]

Fig. 1.4: Example of Support Vector Machine in 3D [25]

more easily. How hyperplane from figure 1.4 b) will look in initial view is shown in
figure 1.4 c).

Kernel SVM

Calculating nonlinear data into multi-dimensional spaces can be pretty demanding
on computer performance. Fortunately, there is a smart solution - kernel trick,
sometimes referred to as a Kernel SVM. Instead of working with actual vectors, it
can work with only dot products1 in between them [25]. Due to this advantage, this
thesis implements Kernel SVM instead of classic SVM.

Implementation of Kernel SVM model in Python is described in the Section
4.3.3.

1Dot Product of two vectors is equal to the cosine of the angle between them, multiplied by the
lengths of each of the vectors [26].

23

One-class SVM

Even though One-class SVM (OC-SVM) is unsupervised machine learning algo-
rithm, it is extension of SVM, hence it is placed in this section. Description of
unsupervised machine learning algorithms can be found in the Section 1.3.

As it is clear from it’s name, One-class SVM is a classification algorithm used
on datasets that should contain only one class - normal data. Such algorithm can
be used to find anomalies. It is designed to find patterns and relations in one class
and based on this knowledge, it marks all data points that do not fit [27].

One-class SVM algorithm creates function which returns +1 for data points that
resides in area of most of the data points and -1 for data points from elsewhere [28].

Implementation of One-class SVM model in Python is described in the Section
4.3.4.

1.2.4 Naive Bayes

Naive Bayes (NB) is an algorithm calculating probability of class for given data
based on learned knowledge [29].

Bayes’ Theorem

Bayes’ Theorem is a mathematical formula describing conditional probability - prob-
ability of an event based on knowledge of other related conditions [30]. For example,
an internet search for "movie with a yellow car" brings up "Transformers". How the
search engine knows this? Has it watched the movie? No it hasn’t, but it learned
it from similar searches of other people who probably were looking for it. Search
engines calculated this probability using Bayes’ Theorem.

Formula of Bayes’ Theorem is defined as following [31]:

𝑃 (𝐴|𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴)
𝑃 (𝐵) , (1.12)

where 𝐴 represents hypothesis and 𝐵 represents observed evidence. 𝑃 (𝐴|𝐵) is
called Posterior Probability, 𝑃 (𝐵) is called Prior Probability and 𝑃 (𝐵|𝐴)

𝑃 (𝐵) is called
Likelihood Ratio [32].

Naive Assumption

Bayes’ Theorem applied to dataset will be defined as following:

𝑃 (𝑦|𝑋) = 𝑃 (𝑋|𝑦)𝑃 (𝑦)
𝑃 (𝑋) . (1.13)

24

𝐴 is replaced by class variable 𝑦 and 𝐵 is replaced by n-sized vector of features
𝑋, defined as [33]:

𝑋 = (𝑥1, 𝑥2, ...𝑥𝑛). (1.14)

Following on this, formula will be defined as:

𝑃 (𝑦|𝑥1, ...𝑥𝑛) = 𝑃 (𝑥1|𝑦)...𝑃 (𝑥𝑛|𝑦)𝑃 (𝑦)
𝑃 (𝑥1)...𝑃 (𝑥𝑛) . (1.15)

After few adjustments, equation used by classifier will look like this:

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 (𝑦)
𝑛∏︁

𝑖=1
𝑃 (𝑥𝑖|𝑦). (1.16)

Implementation of Naive Bayes model in Python is described in the Section 4.3.5.

1.2.5 Decision Tree

Decision Tree (DT) is a simple algorithm with tree-like structure, where attributes of
dataset are represented by internal nodes of a tree, decision rules are represented by
branched and outcome values are represented by leafs [34]. Internal nodes are called
Decision Nodes and are used to make decision. They can have multiple branched
going out of them. Leafs are called Leaf Nodes and are representing final output
values. They do not have any brunches but the one incoming towards them from
associated decision node [35]. DT algorithm can be used for either regression and
classification problems. They can be called Decision Tree Regression (DTR) and
Decision Tree Classification (DTC) algorithms respectively [34].

As it can be seen in figure 1.5, decision tree starts with the root node, expands
into further branches and forms tree-like structure. Each branch represents decision
rule which can have two or more outcomes, for examples Yes/No, Red/Green/Blue
or numeric data as well.

Implementation of Decision Tree Classification model in Python is described in
the Section 4.3.6.

1.2.6 Random Forest

Random Forest (RF) are multiple DT algorithms running at once - it is a "forest" of
a "decision trees". As well as DT, RF is supervised learning algorithm which is being
used for both, regression and classification problems [36]. When it is used to solve
the regression problems, it is referred to as Random Forest Regression (RFR) and as
Random Forest Classifier (RFC) when used to solve classification problems. Figure
1.6 illustrates main concept of a RF algorithm. Training dataset is randomly split

25

Decision Node

Decision Node

Decision Node

Decision Node

Leaf Node Leaf Node Leaf Node

Leaf Node Leaf Node

Root Node
Decision Rule

Fig. 1.5: Example of Decision Tree [35]

into multiple training samples, one for each tree. RFC is then collecting predictions
from each decision tree and is selecting the best solution. Selection of the best
solution is done by "voting". Prediction, on which most of trees have agreed on, is
selected [37]. The more trees in forest, the more accurate the result will be [38].

Train Data 1

Train Set

Train Data 2 Train Data n

Decision Tree 1 Decision Tree 2 Decision Tree n

Test Set
Voting

Prediction

...

...

Fig. 1.6: Example of Random Forest [39]

Random Forest algorithm has two stages. In the first stage, algorithm creates

26

random forest of n decision trees. In the second stage, algorithm makes predictions
utilizing random forest created in previous stage. At the end of the second stage it
is "voting" of each decision tree.

Process of the first stage is described as followin [36]:
1. Random number of features k from training dataset is selected.
2. Decision tree for selected features is created.
3. Steps 1 and 2 are repeated n times to create n number of trees.

Process of the second stage can be described as following:
1. Test dataset is taken and the features are inserted into each decision tree

created in the first stage.
2. Predictions of each decision tree are taken and votes for each predicted target

is calculated.
3. Target with highest votes (predictions) is selected as final prediction.

Implementation of Random Forest Classification model in Python is described in
the Section 4.3.7.

1.3 Unsupervised Machine Learning
In some cases, the training dataset is containing only input variables (X) and no
output variables (y). In such cases, the goal might be to find certain patterns [40].
To do so, unsupervised machine learning algorithms can be used. These algorithms
can be used to find groups (clusters) based on similarities. Unsupervised machine
learning algorithms are also often used for anomaly detection purposes. They can
"group" normal behaviour data into one group and mark all data not fitting into
this group as anomalies.

Unsupervised learning problems can be grouped into following groups [8]:
• Association mining is identifying associations in data points, for example peo-

ple that buy A might buy also B.
• Clustering is grouping data points based on similarities.

Association Mining

Association mining is algorithm that is searching and uncovering relations between
input variables [41]. These relations are formed into so-called association rules,
which are then used to make predictions by calculating probabilities [42]. Example
of association mining is Apriori algorithm [43].

27

Clustering

Clustering is the most common unsupervised learning method [44]. It is searching
for similarities in uncategorized dataset and grouping (clustering) them based on
found patterns. Clustering algorithms are simple and quite effective. Number of
clusters can be modified. It can help to improve granularity of created clusters.
Figure 1.7 illustrates simple example how certain data point can be formed into
clusters.

Fig. 1.7: Example of formation of clusters [43]

Most common clustering algorithms are K-Means clustering, Hierarchical clus-
tering, Gaussian mixture models, Self-organizing maps and Hidden Markov models.

1.3.1 Isolation Forest

Isolation Forest is a machine learning algorithm used exclusively for anomaly de-
tection. Instead of searching for pattern of normal data points as most of such
algorithms do, Isolation Forest algorithm explicitly isolates anomalies [45]. Process
of searching for anomalies is based on effectively constructed tree structure. In this
tree, anomalies are closer to the root of the tree and normal data point lays deeper
in the structure. Basically, it is harder to isolate normal data point than anomaly -
it takes more time to find its exact location.

Set of these trees is called Isolation Forest. The only two parameters of this
algorithm are number of trees and sub-sampling size.

Process of separating each point is shown in figure 1.8. Figure 1.8 a) illustrates pro-
cess of separating of a not anomalous data point and figure 1.8 b) illustrates process
of separating of an anomalous data point. It is iterative and pretty straightforward:

28

Fig. 1.8: Isolation Forest algorithm

1. Selected data point to be isolated.
2. Minimum and maximum range to isolate for each feature needs to be set.
3. Random feature needs to be chosen.
4. Chosen random value to be from the range:

• If the point is above, replace minimum of the range with this value.
• If the point is below, replace maximum of the range with this value.

5. Steps 3 and 4 need to be repeated until the point is isolated.
6. Amount of iterations of steps 3 and 4 return Isolation number.

Algorithm selects data point as anomaly if isolation number is low, meaning it is
close to the root of the tree.

Implementation of Isolation Forest model in Python is described in the Section
4.3.8.

1.3.2 Local Outlier Factor

Local Outlier Factor (LOF) is a method for calculating neighbors density of certain
data point and it is comparing it to neighbors density of other points. If the density
of a point is lower than density of other points, it is marked as outlier (anomaly)
[46].

Function of estimated density is defined as [47]:

𝑓(𝑝) = 𝑘∑︀
𝑥∈𝑁(𝑝) 𝑑(𝑝, 𝑥) , (1.17)

29

Fig. 1.9: Local Outlier Factor

where 𝑁(𝑝) are neighbors of data point 𝑝, 𝑘 represents number of points in
dataset and 𝑑(𝑝, 𝑥) represents distance between points 𝑝 and 𝑥. Local Outlier Factor
of data point 𝑝 is then defined as:

𝐿𝑂𝐹 (𝑝) =
1
𝑘

∑︀
𝑥∈𝑁(𝑝) 𝑓(𝑥)
𝑓(𝑝)

. (1.18)

Figure 1.9 illustrates example of how the LOF demonstrates the data points
with corresponding outlier score. Implementation of Local Outlier Factor model in
Python is described in the Section 4.3.9.

1.3.3 K-Means

K-Means is a simple and one of the most popular unsupervised learning algorithms
[48]. It is creating groups (clusters) around centroids, which are basically defining
the cluster. Centroids are also called means as they basically hold mean values of
data points inside the cluster [49]. Data points are assigned to cluster based on
distance between the data point and centroid. It is assigned to cluster of the closest
centroid. Each data point can be part of only one cluster.

Process of how K-Means algorithm works is pretty straightforward [50].
1. Number of clusters K is specified manually.
2. K data points are randomly selected as centroids.

30

3. All data points are assigned to the closest centroid.
4. Centroids of newly created clusters are recalculated (centroids now might be

"virtual" - not actual data points but real center of cluster).
5. Steps 3 and 4 are repeated until one of following criteria are matched:

• Centroids are not changed.
• Data points remain in same clusters.
• Algorithm reaches maximum number of iterations.

Implementation of K-Means model in Python is described in the Section 4.3.10.

1.3.4 Hierarchical Clustering

Hierarchical Clustering (HC) is an unsupervised machine learning algorithm that
creates clusters with predetermined order from top to bottom [51]. Main principle
of HC algorithm is shown in figure 1.10.

Fig. 1.10: Agglomerative Hierarchical Clustering

There are two types of hierarchical clustering approaches [52].
• Agglomerative hierarchical clustering.
• Divisive hierarchical clustering.

Agglomerative hierarchical clustering

Agglomerative method is also called bottom-up method and process of creating
clusters is following:

1. Each data point is assigned into its own cluster.
2. Similarities between each cluster are calculated.
3. Two most similar clusters are merged together.
4. Steps 2 and 3 are repeated until 𝑛 number of clusters is created or until only

a single cluster is left.

31

Divisive Hierarchical clustering

Divisive method is also called top-down method and process of creating clusters is
exactly opposite to Agglomerative method:

1. All data points are assigned into one cluster.
2. The cluster is divided into two least similar clusters.
3. Step 2 is repeated until 𝑛 number of clusters is created or until each data point

has its own cluster.

There are following methods to calculate distance between clusters [51]:
• Single Linkage: Distance between clusters is defined as the shortest distance

between two points in each cluster.
• Complete Linkage: Distance between clusters is defined as the greatest dis-

tance between two points in each cluster.
• Average Linkage: Distance between clusters is defined as the average distance

between all points from one cluster and all points from the second cluster.
• Centroid Linkage: Distance between clusters is defined as a distance between

centroids of each cluster.

Implementation of Hierarchical Clustering model in Python is described in the Sec-
tion 4.3.11.

1.4 Neural Networks and Deep Learning
Artificial Neural Network is a branch of machine learning modeled to mimic the
network of neurons in a brain. On other hand, deep learning is an advanced sub-
field of machine learning that uses algorithms inspired by the structure and function
of the Artificial Neural Networks. Deep learning is trained by using large sets of
labelled data that learn features directly from the data without the need for manual
feature extraction [53].

Common deep learning algorithms include convolutional neural networks and
recurrent neural networks. Deep learning models are often referred to as deep neural
networks. The term “deep” usually refers to the number of hidden layers in the
neural network. Traditional neural networks only contain two to three hidden layers,
while deep networks can have much more [54].

Neural Network algorithms are constructed with following connected layers:
• Input Layer: this layer accepts all provided inputs.
• Hidden Layer: this layer is between the input and the output layers where com-

putations are performed. In case of deep learning then it means the network
joins neurons in more than two to three layers.

32

• Output Layer: output is delivered via this layer.

The most basic unit of a Neural Network is a Perceptron. A Perceptron is a sin-
gle layer Neural Network that is used to classify linear data. It has 4 important
components:

1. Inputs.
2. Weights and Bias.
3. Summation Function.
4. Activation or transformation Function.

X1

X2

Processing Element
(Summation) Y

Xn

Wn

W2

W1

Transfer Function
F(S)

...

Y1

Y2

Yn

...

Input Output

Fig. 1.11: Artificial Neural Network [56]

The inputs X received from the input layer are multiplied with their randomly
chosen assigned weights w. While the weights determine the slope of the classifier
line, bias allows to shift the line towards left or right. Normally, bias is treated as
another weighted input with the input value 𝑥0. However, the multiplied values are
then added to form the Weighted Sum. The weighted sum of the inputs and their
respective weights are then applied to a relevant Activation Function. The activation
function maps the input to the respective output. This process is illustrated in figure
1.11.

Output of neuron can be expressed mathematically as [55]:

𝑦 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑆𝑈𝑀(𝑖𝑛𝑝𝑢𝑡 * 𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠). (1.19)

Activation function does a nonlinear transformation of the input data and thus
enables the neurons to learn better. Some examples of activation functions are
Sigmoid, ReLU and Softmax [56].

33

Sigmoid Function is defined as:

1
1 + 𝑒−𝑥

. (1.20)

ReLU (Rectified Linear Unit) function is defined as:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). (1.21)

Keras

Keras is the most used deep learning framework, it is written in Python and supports
multiple back-end Neural Network computation engines.

The Model is the core Keras data structure. There are two main types of models
available in Keras, the Sequential model, and the Functional one. The Sequential
model is a linear stack of layers, and the layers can be described very simply. On
other hand, The Keras Sequential model is simple but limited in model topology.
The Keras Functional API is useful for creating complex models, such as multi-
input/multi-output models, directed acyclic graphs (DAGs), and models with shared
layers [57].

Implementation of Artificial Neural Network model in Python using Keras library
is described in the Section 4.3.12.

34

2 Natural Language Processing
Syslog messages are sort of human language. However, human language is complex
set of huge variety of words which are used to express huge amounts of information.
Different combination of words, different shapes of chosen words and even different
topics can add or change meaning of expressed information. Given the nature of
computers, it is challenging to interpret such information correctly. However, to
override these obstacles the Natural Language Processing (NLP) is used. NLP is a
branch of artificial intelligence that helps to interpret human language to computers.
The objective of NLP is to read, decode and understand human language [58].

There are several NLP techniques [59]:
• Named Entity Recognition.
• Tokenization.
• Stemming and Lemmatization.
• Word Embeddings.
• Natural Language Generation.
• Sentiment Analysis.
• Sentence Segmentation.

Named Entity Recognition (NER) is popular NLP, which is identifying
names, nouns, etc. in given phrase or paragraph. It is widely used for example
for news categorization, in search engines or to help categorize feedbacks provided
by customers’ reviews.

Tokenization technique, as it is obvious from its name, is splitting the text into
tokens. Tokens can be understood as words, sentences, characters, numbers, etc.

Stemming is a process reducing words into their root shape. It basically removes
the suffixes, for example, it adjusts word "denied" to "den".

Lemmatization is a process that returns the base form of the word. For exam-
ple, it adjusts word "denied" to "deny".

Word Embeddings is the collective name for a set of language modeling and
feature learning techniques in NLP, where words or phrases are mapped to vectors
of real numbers. Such techniques are Bag of Words (BoW) and Term Frequency-
Inverse Document Frequency (TF-IDF). However, BoW is the most used one. It
creates "a bag" of all occurrences of each word, without caring about the position
of the word in the text. Each word is basically represented by its own variable and
the value of the variable means number of occurrences of the word.

To demonstrate this technique, the following two sentences are considered: "Deny
IP due to Land Attack." and "Deny protocol connection spoof.". At first, it tokenizes

35

the sentences and creates list of all words: "Deny", "IP", "due", "to", "Land", "At-
tack", "protocol", "connection" and "spoof". Then words are mapped to vectors of
real numbers. First sentence is transformed into vector [1, 1, 1, 1, 1, 1, 0, 0, 0] and
second sentence is transformed into vector [1, 0, 0, 0, 0, 0, 1, 1, 1].

This technique is evaluated in this thesis and its implementation is described in
section 4.2.1.

Natural Language Generation (NLG), as it is clear form the name, it is a
technique to convert structured data into desired language. It is also called data
storytelling, because it can help to understand patterns or insights in structured
data. It can compose structured data into understandable reports, for example
financial reports from stock market.

Sentiment Analysis is the most common preprocessing technique analysing
"the emotion" of written text. Mostly it is analyzing subjective texts, such as re-
views, whether they are positive, negative or neutral. That helps companies to bet-
ter understand reputation of their products and services and understand customer
experience.

The process of sentiment analysis is pretty straightforward: at first it breaks the
text down into tokens (words, phrases, sentences, etc.), identifies token(s) carrying
sentiment and assign an sentiment score to it from within the range of -1 to 1 [60].

Sentence Segmentation is dividing text into sentences or phrases. It is also
called Sentence boundary detection as it identifies sentence boundaries between
words. Sentence Segmentation is one of the basic NLP techniques as it is quite
easy to understand and use.

There are several libraries that support NLP such as Natural Language Toolkit
(NLTK) and Spacy [61].

36

Part II

Practical Part

37

3 Implementation of Syslog Generator
Since machine learning algorithms need data to learn from, then syslog data needs
to be available in our case. However, finding a suitable and labelled dataset of
syslog messages was a big challenge. There are basically no such datasets available
to download and use in this thesis.

Labelled dataset of syslogs from network devices of any vendor was crucial for
this thesis.

Due all of this, a script generating desired dataset was developed for this thesis
and can be found also on Github1. This script is generating syslog messages of
Cisco ASA devices. Message templates are randomly chosen from official Cisco
webpage [62]. Chosen messages are of two types - anomalous and informational.
As anomalous messages are messages marked by vendor as a cause of an attack.
However, informational messages are various messages that notify about common
state update etc.

It is worth to mention here, that if we take the anomalous and informational
messages as per vendor recommendation, then we might end in incorrect prediction
for some type of messages. Reason of that, the message templates provided by
vendor don’t take into consideration the words in the message itself to express about
anomalous or informational messages. For example syslog message %ASA-6-778007:
VXLAN: Packet from ifc-name:IP-address/port to IP-address/port was discarded
due to invalid NVE peer. is considered as "informational" by the vendor, while in
reality it will be most probably considered as anomalous by the ML model. Due to
that, machine learning models were trained on messages that contain discarded to
be as anomalous message.

3.1 Structure of Syslog Generator
Structure of Syslog Generator is shown on figure 3.1. The tool first verifies how many
syslog messages were requested to generate. The it checks whether the messages
should be labelled or not. Each branch then checks whether the messages should be
seen or unseen and based on it, it picks the messages from either templates of seen
or unseen messages.

More detailed description of each used method can be found below.
1Github: https://github.com/miroslav-siklosi/Syslog-Generator

38

Run
syslog_generator.py

Number of
messages to
generate?

Labelled? No

UnseenSeen

Yes

logs.csv

Generate labelled
dataset of seen

messages

Generate labelled
dataset of unseen

messages

Generate unlabelled
dataset of seen

messages

Generate unlabelled
dataset of unseen

messages

Yes No Yes No

Fig. 3.1: Flowchart of Syslog Generator

Message Templates

At first, a class for templates needs to be created. There are four arrays containing
70 templates of anomalous and 86 templates of informational messages. Example
are shown on listing 3.1.

First array, anomalous_messages, contains 50 "seen" anomalous messages. These
are messages on which machine learning models will be trained. Second array,
anomalous_unseen, contains 20 "unseen" messages - such messages will be used to
test how well machine learning models are trained and how good are they adapting
to new, unseen variables. Last two arrays, informational_messages and informa-
tional_unseen, are containing 60 and 26 messages respectively. Idea of seen and
unseen messages is the same as with anomalous messages.

39

1 class logTemplates:
2 anomalous_messages = [
3 "%ASA-2-106017: Deny IP due to Land Attack from {source_address} to

{dest_address}.",→˓

4 ...
5]
6 anomalous_unseen = [
7 "%ASA-1-106022: Deny protocol connection spoof from {source_address} to

{dest_address} on interface {interface_name}.",→˓

8 ...
9]

10 informational_messages = [
11 "%ASA-1-101001: (Primary) Failover cable OK.",
12 ...
13]
14 informational_unseen = [
15 "%ASA-1-101002: (Primary) Bad failover cable.",
16 ...
17]

Listing 3.1: Message Templates

Filling in Templates

There are brackets inside of the templates, which contain arguments such are source_address,
dest_address, interface_name, etc. As expected, they are used to fit respective val-
ues. To generate as production-like messages as possible, these values are generated
randomly, but with certain restrictions - private IP addresses are generated from
respective IP pools etc.

First, there are defined so-called generators. They are used to match certain
expressions inside the brackets. To find brackets inside the template, there is simple
for loop to parse it, as shown on listing 3.2.

Values inside these brackets are generated by method specific for each generator.
Most of the methods are using Python package Faker, which is generating random
fake data [63].

For example, to fill in IP addresses into brackets containing generators such as
source_address and dest_address, there is simple method using Faker, as shown on
listing 3.3. Since there are templates that have to contain specific types of addresses,
namely private and public, there are specific methods for such generators.

Faker is also used to generate random and fake URL links and MAC Addresses,
using same logic as in previous methods.

40

1 def fill_message(message):
2 generators = {"source_address": generate_ip_address,
3 "dest_address": generate_ip_address,
4 "interface_name": generate_interface_name,
5 "source_port": generate_port,
6 "dest_port": generate_port,
7 "local_address": generate_local_address,
8 "remote_address": generate_remote_address,
9 "user": generate_user,

10 "url": generate_url,
11 "mac_address": generate_mac_address,
12 "number": generate_number,
13 "service": generate_service}
14 parts = message.split("{")
15 result = ""
16 for part in parts:
17 if "}" in part:
18 value_type, rest = part.split("}")
19 value = generators[value_type.lower()]()
20 result += str(value) + rest
21 else:
22 result += part
23 return result

Listing 3.2: Method to fill in a message

1 def generate_ip_address():
2 ip_addr = Faker().ipv4()
3 return ip_addr
4 def generate_local_address():
5 return Faker().ipv4(private=True)
6 def generate_remote_address():
7 return Faker().ipv4(private=False)

Listing 3.3: Generate random IP address

Message Generating

Messages are generated based on requirements. Method to generate them is pretty
straight forward and is shown on listing 3.4.

At first, date and time are generated, then a template is chosen from the needed
array, and at the end, the device name is generated. These components compose
the syslog message.

Method pick_message (shown on listing 3.5) is generating "seen" messages from

41

1 def generate_log(add_label, gen_seen):
2 now = datetime.datetime.now().strftime("%b %d %Y %H:%M:%S")
3 if add_label:
4 if gen_seen: # add_label == True and gen_seen == True
5 message, is_anomaly = pick_message()
6 else: # add_label == True and gen_seen == False
7 message, is_anomaly = pick_unseen_message()
8 filled_message = fill_message(message)
9 filled_message = f"{filled_message}\t{int(is_anomaly)}"

10 else: # add_label == False
11 if gen_seen: # add_label == False and gen_seen == True
12 message, is_anomaly = pick_message()
13 else: # add_label == False and gen_seen == False
14 message, is_anomaly = pick_unseen_message()
15 filled_message = fill_message(message)
16 device = f"FW{str(random.randint(0, 25)).zfill(2)}" # generate device name
17 log = f"{now} {device} : {filled_message}" # compose syslog message
18 return log

Listing 3.4: Generate a log message

both seen anomalous and informational templates. To ensure more informational
messages than anomalous are in place, there is at first randomly generated number
from 1 to 20. If the number equals 1, it will pick anomalous template, otherwise
it will pick informational template. This gives us potential ration of generated
messages to 1:20 for anomalous and informational messages respectively, meaning
only 5% of messages should be anomalous.

Logical values True and False in here are used later on to label generated message
if it is anomalous (True) or informational (False).

1 def pick_message():
2 x = random.randint(1, 20)
3 if x == 1:
4 return random.choice(logTemplates.anomalous_messages), True
5 else:
6 return random.choice(logTemplates.informational_messages), False

Listing 3.5: Method to pick a seen message

Method pick_unseen_message, as it can be clear from its name, is used to pick
unseen templates. These are picked randomly from unseen templates. The rest of
the code has same purpose as in method pick_message. This method is shown on
lisitng 3.6.

42

1 def pick_unseen_message():
2 x = random.randint(1, 20)
3 if x == 1:
4 return random.choice(logTemplates.anomalous_unseen), True
5 else:
6 return random.choice(logTemplates.informational_unseen), False

Listing 3.6: Method to pick an unseen message

At last, whole log file is generated by method generate_logs_file, shown on listing
3.7.

1 def generate_logs_file(log_count, add_label, gen_seen, filename):
2 with open(filename, "w") as logs_file:
3 for i in range(log_count):
4 log = f"{generate_log(add_label, gen_seen)}\n"
5 logs_file.writelines((log))

Listing 3.7: Method generating log file

Argument Parser

To obtain the desired functionalities of the tool such as changing amount of generated
logs, efficient Argument Parser was implemented as shown on listing 3.8 [64].

1 parser = argparse.ArgumentParser(prog="syslog_generator.py")
2 parser.add_argument("--number", dest="number", type=int, required=False,

default=100)→˓

3 parser.add_argument("--labelled", dest="labelled", choices=["yes", "no"],
required=False, default="yes")→˓

4 parser.add_argument("--seen", dest="seen", choices=["yes", "no"],
required=False, default="yes")→˓

Listing 3.8: Argument parser of Syslog Generator

There are three arguments. First one is number and it serves to adjust number
of syslog messages to be generated. However, default number is set to 100. Second
argument is labelled and it serves to select whether generated dataset should be
labelled or not. However, default value is set to yes. Last argument is seen. It
serves to select whether generated messages should be chosen from templates of
seen messages or from both templates, seen and unseen. However, default option is
set to yes.

43

All three arguments are then put into method shown on listing 3.9 to generate
logs file.

generate_logs_file(int(args.number), args.labelled == "yes", args.seen == "yes",
"logs.csv")→˓

Listing 3.9: Calling method generating log file with arguments

Script to generate unlabelled and unseen dataset of 25000 messages would then
look like as shown on listing 3.10.

python syslog_generator.py --number 25000 --labelled no --seen no

Listing 3.10: Example how to run Syslog Generator from Powershell

44

4 Implementation of Analysis Tools
This thesis deals with implementation of two proposed tools for analysis, Traffic
Analysis tool 1 and Syslog Messages Analysis tool2. Each can be found in its own
repository on Github.

Traffic Analysis tool deals with implementing machine learning algorithms on
network security traffic. While, Syslog Messages Analysis tool deals with imple-
menting machine learning algorithms on syslog messages.

This chapter shows implementation of each tool with description of important
methods and parts of the code.

4.1 Structure of Proposed Tools
Both proposed tools, Traffic Analysis tool and Syslog Analysis tool, are using argu-
ment parser to call methods based on required action. This parser is same for both
tools and it is described in this section.

Arguments parser is created by the code shown on listing 4.1.

1 # Create parser
2 parser = argparse.ArgumentParser(prog="IDS_traffic_analysis.py")
3 parser.add_argument("--mode", dest="mode", choices=["research", "prod"],

required=True)→˓

4 parser.add_argument("--command", dest="command", choices=["train", "predict",
"trainandpredict"], required=True)→˓

5 parser.add_argument("--model", dest="model", choices=models_flags,
required=True)→˓

6 parser.add_argument("--source", dest="source", required=True)

Listing 4.1: Argument Parser of proposed tools

There are four different arguments created, each serves different purpose.
• - -mode <research/prod>
• - -command <train/predict/trainandpredict>
• - -model <LR/K-NN/kSVM/NB/DTC/RFC/ocSVM/iF/LOF/K-Means/HC

/ANN>
• - -source <filename>
Argument mode specifies in which mode the tool should run. Options are re-

search(research) and production(prod). Each mode differentiates in output it re-
turns. Research mode returns metrics of predictions of machine learning models,

1Github: https://github.com/miroslav-siklosi/Traffic-Analysis-Tool
2Github: https://github.com/miroslav-siklosi/Syslog-Messages-Analysis

45

such as confusion matrix, accuracy, precision, recall and F1-Score. Production mode
labels imported messages whether they are anomaly (1) or not (0). Labelled dataset
is then saved into text file in the folder Results.

Argument command chooses what action should the tool do. Options are to
train the machine learning model (train), predict anomalies based on learned weights
(predict) or train and predict machine learning model on the same dataset (trainand-
predict). Train and predict is specific command usable only in mode research. Using
it in mode prod will return an error.

Argument model chooses which machine learning model to use. Options are
Logistic Regression(LR), K-Nearest Neighbors(K-NN), Kernel SVM(kSVM), Naive
Bayes(NB), Decision Tree Classifier(DTC), Random Forest Classifier(RFC), One-
class SVM(ocSVM), Isolation Forest(iF), Local Outlier Factor(LOF), K-Means(K-
Means), Hierarchical Classifier(HC) and Artificial Neural Network(ANN).

Last but not least argument is source. This argument specifies which file (dataset)
should be imported into the tool for training or predictions. If the file is not in the
same folder as the tool, full filepath needs to be specified.

Flowchart of Analyzing Tools

Run traffic_analysis.py|
syslog_message_analysis.py

Mode ?

Research Production

Research flow Production flow

Fig. 4.1: Flowchart of the proposed tools

Depending on values of each argument, parser will decide which method should
be called. At first, parser is looking at argument mode as shown by flowchart in

46

figure 4.1. There are only few differences between modes Research and Production.
Mode Research is returning performance metrics such as confusion matrix, accuracy,
precision, etc. Hence, mode Research works only with labelled dataset. On other
hand, mode Production is labelling the messages and returning labelled dataset. This
mode is using labelled dataset for training and unlabelled dataset for predictions.

Depending on chosen mode, the tool will continue through respective flowchart.
Flowchart of mode Research is shown in figure 4.2.

Command Train is for training of supervised methods on labelled dataset. In case
a combination of mode Research, and command Train is chosen for unsupervised
machine learning model, the tool will return an error as: Unsupervised doesn’t need
training on labelled dataset. If chosen model is supervised or deep learning, flow
of the tool then continues by checking format of imported dataset. The tool will
accept either .csv file as dataset or classifier (learned weights of a machine learning
model) with extension of .joblib or .h5. If it is a classifier, it will immediately save
it into folder classifier within the folder of the tool. If it is a dataset, it will import
the dataset, preprocess it and send to a model of chosen machine learning model
for training. Machine learning model will return trained classifier and it will be also
saved into folder classifier within the folder of the tool.

Command Predict is to make the predictions based on classifier trained previ-
ously by command Train. The tool verifies whether the imported dataset has exten-
sion .csv and continues by importing and preprocessing it. Preprocessed dataset is
then forwarded to chosen machine learning model. If the chosen model is Unsuper-
vised, the model will train itself on matrix of independent variables X and predict
the labels for the messages. If the chosen unsupervised machine learning models are
One-class SVM or Isolation Forest, it will also edit label 1 to 0 and label -1 to 1.
This is due to functionality of these two models, described in subsections 1.2.3 and
1.3.1.

If chosen model is Supervised, the tool will compare if it is a Deep Learning
model or not. If yes, it will load classifier with extension .h5, makes the predictions,
inverts predicted labels to either 0 or 1 and prints out performance results. If it is
not a deep learning model, it will load classifier with .joblib extension, makes the
predictions and prints out the performance results.

Third command called Train and Predict is specific only for Research mode. It
is a specific command splitting the dataset into train set and test set. It is usable
when there is one big labelled dataset and it would be uncomfortable to split it
manually or when it is desired to quickly verify the functionality of a model (for
example when tuning the hyper-parameters of the model).

Command Train and Predict will verify extension of imported dataset same way
as command Predict. It continues by checking whether chosen model is Unsupervised

47

C
om

m
an

d
 ?

Tr
ai

n

M
o

de
l

U
ns

up
er

vi
se

d

Er
ro

r:
 U

n
su

p
er

vi
se

d
d

oe
sn

’t
 n

ee
d

tr

ai
ni

n
g

o
n

la
b

el
le

d

d
at

a.

Su
pe

rv
is

ed
 &

 D
ee

p
Le

ar
n

in
g

So
ur

ce

D
at

as
et

-
Im

p
or

t
la

be
lle

d
d

at
as

et
-

Tr
ai

n
 t

h
e

m
o

de
l

C
la

ss
ifi

er

Sa
ve

 c
la

ss
if

ie
r

P
re

di
ct

Is
 d

at
as

et
 .c

sv

fi
le

?
N

o
Er

ro
r:

 In
co

rr
ec

t
fo

rm
at

 o
f

im
p

o
rt

ed

d
at

as
et

Ye
s

Im
p

or
t

la
be

lle
d

d
at

as
et

D
at

as
et

M
o

de
l

C
al

l m
od

el
, t

ra
in

 a
nd

d

o
pr

ed
ic

ti
on

s

C
la

ss
ifi

er

U
ns

up
er

vi
se

d

Is
 it

 o
cS

V
M

 o
r

iF

m
od

el
?

Ye
s

C
ha

n
ge

 1
 t

o
 0

 a
n

d
-1

to

 1

N
o

P
ri

nt
 r

es
u

lt
s

Su
pe

rv
is

ed
 &

 D
ee

p
Le

ar
n

in
g

-
Lo

ad
 s

a
ve

d
.jo

bl
ib

cl

as
si

fi
er

-
D

o
pr

ed
ic

ti
on

s

N
o

Is
 it

 D
e

ep

Le
ar

ni
ng

 m
o

de
l?

Ye
s

-
Lo

ad
 .h

5
cl

as
si

fi
er

-
D

o
pr

ed
ic

ti
on

s
-

In
ve

rt
 p

re
di

ct
ed

va

lu
es

 t
o

 0
 a

n
d

 1

Tr
ai

n
 a

nd
 P

re
di

ct

C
la

ss
ifi

er
C

la
ss

ifi
er

Is
 d

at
as

et
 .c

sv

fi
le

?

Ye
s

M
o

de
l

N
o

C
al

l m
od

el
 a

n
d

do

p
re

di
ct

io
ns

Is
 it

 o
cS

V
M

 o
r

iF

m
od

el
?

C
ha

n
ge

 1
 t

o
 0

 a
n

d
-1

to

 1

U
ns

up
er

vi
se

d

Ye
s

Su
pe

rv
is

ed
 &

 D
ee

p
Le

ar
n

in
g

-
Im

p
or

t
la

be
lle

d
d

at
as

et
 a

n
d

sp
lit

 it
-

Tr
ai

n
 o

n
 t

ra
in

 s
et

-
P

re
di

ct
 t

es
t

se
t

Is
 it

 D
e

ep

Le
ar

ni
ng

 m
o

de
l?

Ye
s

In
ve

rt
 p

re
di

ct
ed

va

lu
es

 t
o

 0
 a

n
d

 1

N
o

N
o

Fig. 4.2: Flowchart of Research mode

48

or not. If yes, the flow will follow similar path as in Predict Unsupervised mentioned
above. If the chosen model is not unsupervised, it will continue by importing the
dataset, splitting it into train and test set, training the model on training set and
predicting the labels on test set. It then checks if the model is Deep Learning. If yes,
it will invert predicted values of labels to 0 and 1 and prints out the performance
results. If it is not deep learning model, it will print out the performance results
right away.

Command

ModelUnsupervised
Error: Unsupervised

does not need
training.

Supervised & Deep Learning

Source

Dataset

- Import labelled
dataset

- Train the model

Classifier

Save classifier

Classifier

Train

Is dataset .csv
file?

Import unlabelled
dataset

Model

Call model, train and
do predictions

Is it ocSVM or iF
model?

Change 1 to 0 and -1
to 1

Create file with
labelled messages

- Load saved .joblib
classifier

- Do predictions

Is it Deep
Learning model?

- Load .h5 classifier
- Do predictions

- Invert predicted
values to 0 and 1

Predict

Yes

Supervised & Deep Learning

Unsupervised

Yes

No

Yes

No

Error: Incorrect
format of imported

dataset
No

Classifier

Classifier

Train and Predict

Error: Train and
Predict is possible
only in Research

mode

Fig. 4.3: Flowchart of Production mode

The flowchart of mode Production is shown in figure 4.3. Command Train in this
mode is pretty much the same as in mode Research. Command Train and Predict
is disabled in this mode, hence it will return an error message. Command Predict
is very similar to the one in mode Research. It verifies whether imported file has

49

extension .csv. If not, it will return an error, if yes, it will continue by import of
unlabelled dataset. This import is different than the one used in mode Research as it
is returning only matrix of independent variables X, without the vector of dependent
variables y as method to import labelled dataset.

When the dataset is imported and preprocessed, the tool will continue by check-
ing if the chosen model is Unsupervised or not. If yes, it will follow similar path as
in Train of Research mode. It will train the model and do the predictions. Then
it will check if the chosen model is One-class SVM, Isolation Forest or neither of
them. If one of them, it will change labels 1 to 0 and labels -1 to 1.

If the model is not unsupervised, it will check if it is Deep Learning. If yes, it
will load classifier with extension .h5, makes the predictions based on weights in the
classifier, inverts the labels to 0 and 1 and at the end, it will create file with labelled
messages.

If the model is not deep learning, it will load the classifier with extension .joblib,
predicts the labels and creates with labelled messages.

4.2 Data Preprocessing
Collected datasets can have various formats and contain various data. For example,
there are two different datasets used in this thesis. First one is dataset CICIDS2017,
which is containing benign traffic and some of the common attacks [65]. It is labelled
dataset of generated traffic and it is parsed into multiple .csv files.

Second dataset used in this thesis is generated by tool Syslog Generator, men-
tioned above in section 3.

Data preprocessing is crucial for data before being applied into machine learning
models. It contains many steps like Tokenization, removing stop-words, Normaliza-
tion (Stemming and Lemmatization). Moreover, it also contains feature extraction
(Word Embeddings) where the data are encoded into numerical feature vectors.
However, data preprocessing is handled by NLP as described in subsection 4.2.1.

Further step that it is needed before applying the data into the machine learning
model is the data splitting. Data splitting is a process that splits the data to
training features, training labels and testing features, testing labels, as described is
the subsection 4.2.2 below.

4.2.1 Natural Language Processing

All machine learning algorithms are based on certain mathematical calculations. In
order for algorithm to be able to process dataset as a text, then this text has to be
tokenized. Moreover, these tokens need to be normalized and then transformed into

50

numbers. There are multiple options how to transfer words into numbers. However,
a model Bag of Words was chosen. BoW is pretty easy to implement and it provides
suitable outputs for machine learning, which are the reasons why this technique was
chosen.

In Bag of Words model, each word is represented by its own variable (column).
Set of all words used in dataset is then called Bag of Words.

If a word occurs in a certain log message, then its variable will have value 1,
otherwise it will have value 0. If this word is in the log message twice, value will be
2, etc.

4.2.2 Data Splitting

Given the nature of this thesis, there are two types of datasets being used: labelled
and unlabelled. To ensure proper data preprocessing and feature extraction, there
are two methods created. Difference between labelled and unlabelled dataset is
pretty clear: labelled dataset contains log message and label and unlabelled dataset
contains only log message. However, since log message will be represented by matrix
of independent variables X and label will be represented by dependent variable
y, difference in importing and splitting of the data will be in returned variables:
importing and splitting labelled dataset will return matrix X and vector y, importing
unlabelled dataset will return only matrix X.

Since this thesis is dealing with two completely different datasets, there are two
different methods to import and split data. Both methods are described bellow.

Preprocessing and Splitting CICIDS2017 Dataset

As mentioned above, there are two types of datasets: labelled and unlabelled.
Method importing labelled dataset is described in listing 4.2. At first, dataset is
loaded into memory and then it is splitted into matrix of independent variables X
and vector of dependent variable y.

1 # Load the dataset
2 dataset = pd.read_csv(filename)
3 # Splitting the dataset into independent and dependent variables
4 X = dataset.iloc[:, list(range(4, 6)) + list(range(7, 84))].values
5 y = np.array([0 if val == "BENIGN" else 1 for val in dataset.iloc[:,

-1].values])→˓

Listing 4.2: Preprocessing labelled CICIDS2017 dataset

51

To ensure only relevant values are imported into matrix X, there are few columns
from dataset excluded. Namely, first column contains Flow ID, second one contains
Source IP address, third one contains Source port, forth one contains Destination
IP address and sixth one contains timestamp. All these values are irrelevant, hence
are not imported into matrix X.

Importing values into vector y needs to be specified as well. Since dataset CI-
CIDS2017 contains different written labels and this thesis is focusing on anomalies,
anomalous labels are transformed into value 1 and benign traffic is transformed into
value 0.

Some of the values in this dataset are not processable. There are two columns
which instead of numeric values contains nothing (nan) or infinity (inf). To take
care of such data, there are two simple for loops, shown on listing 4.3. First one
goes through both columns and calculates average value inside of them and also to
find maximum value. Second one goes through the same columns again and replaces
nan with average value and inf with maximum value.

1 # Taking care of missing and incorrect data
2 SUM = 0
3 MAX = 0
4 COUNT = 0
5 # Count average values in columns 15 and 16
6 for i, row in enumerate(X):
7 for j in [15, 16]:
8 sx = str(float(X[i,j])).lower()
9 if (sx != "nan" and sx != "inf"):

10 SUM = SUM + X[i,j]
11 if X[i,j] > MAX:
12 MAX = X[i,j]
13 COUNT = COUNT + 1
14 AVERAGE = SUM/COUNT
15 for i, row in enumerate(X):
16 for j in [15, 16]:
17 sx = str(float(X[i,j])).lower()
18 if sx == "nan":
19 X[i, j] = AVERAGE
20 if sx == "inf":
21 X[i, j] = MAX

Listing 4.3: Missing and incorrect data preprocessing

Once the data are processable, they are ready to be forwarded into machine learn-
ing models. However, if there is chosen argument mode as trainandpredict, the data
needs to be split into train and test set. This is done by function train_test_split

52

from Sklearn library as shown on listing 4.4. To ensure model is trained properly,
80% of dataset is assigned to training and 20% to testing (a.k.a prediction).

1 # Splitting the dataset into the Training set and Test set
2 if split:
3 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state = 0)→˓

4 else:
5 X_train = X
6 X_test = X
7 y_train = y
8 y_test = y

Listing 4.4: Splitting the dataset into the Training and Test set

Because this method is always returning variables (X_train, X_test, y_train
and y_test), values from matrix X and vector y are allocated into them if chosen
mode is not trainandpredict.

Preprocessing of unlabelled dataset is similar to preprocessing of labelled dataset.
Missing and incorrect data are processed same way (see listing 4.3). Only difference
is that this method returns only matrix X, so loading and spliting of the dataset is
done by code shown on listing 4.5.

1 # Load the dataset
2 dataset = pd.read_csv(filename)
3 # Load dataset into matrix of independant variables
4 X_test = dataset.iloc[:, list(range(4, 6)) + list(range(7, 84))].values

Listing 4.5: Preprocessing unlabelled CICIDS2017 dataset

Preprocessing and Splitting Dataset of Syslog Messages

Preprocessing of the dataset of syslog messages is similar to preprocessing of CI-
CIDS2017 dataset. However, there are some key differences since both datasets are
very different.

As shown in listing 4.6, dataset is loaded into memory by the same function
pd.read.csv, but with different parameters. As a delimiter is chosen tabular, quoting
is disabled, dates are parsed (to be removed by BoW more easily) and names of
the columns are specified as Syslog and Anomaly. Matrix X is then created using
method extract_BoW, described in section 4.2.1 and shown in listing 4.8. Vector y
is created by taking out last column from imported dataset, also shown in listing
4.6.

53

1 # Importing the dataset
2 dataset = pd.read_csv(filename, delimiter = "\t", quoting = 3, header = None,

parse_dates = True, names = ["Syslog", "Anomaly"])→˓

3 # Splitting the dataset into independent and dependent variables
4 X = extract_BoW(dataset["Syslog"])
5 y = dataset.iloc[:, -1].values

Listing 4.6: Preprocessing labelled dataset of syslog messages

Preprocessing of unlabelled dataset is practically the same as preprocessing of
labelled dataset, but without importing vector y. See listing 4.7.

1 # Importing the dataset
2 dataset = pd.read_csv(filename, delimiter = "\t", quoting = 3, header = None,

parse_dates = True, names = ["Syslog"])→˓

3 # Calling method BoW to create matrix X
4 X_test = extract_BoW(dataset["Syslog"])

Listing 4.7: Preprocessing unlabelled dataset of syslog messages

Matrix X and vector y are then split by same method as shown on listing 4.4 if
chosen mode of the tool is trainandpredict.

Method creating Bag of Words shown on listing 4.8 creates corpus called sys-
logs. Before put into corpus, lines of the dataset are then processed one-by-one and
stripped down of not needed symbols. At first, MAC Addresses, all symbols ex-
cept letters and spaces are removed. The letters are then lower-cased. This creates
string of lower case words divided by spaces. Words are then put in apostrophes
and inserted into function PorterStemmer for normalization. The PorterStemmer
adjusts words into their root shape, while stopwords such as the, and, etc. are being
removed. Last step before adding a line into a corpus is merging words back into
string divided by space.

Words asa and fw are removed from created corpus as they are in every single
message and are irrelevant. The corpus is also reduced to contain only 200 of most
used words. At the end, the toarray function is used to transfer the feature vector
into two-dimensional array [n_samples, n_features] so machine learning model can
accept it.

54

1 def extract_BoW(syslogs_column):
2 syslogs = []
3 for line in syslogs_column:
4 syslog = re.sub(r"(?:[0-9a-fA-F]:?){12}", "", line) # remove MAC

Addresses→˓

5 syslog = re.sub('[^a-zA-Z]', ' ', syslog) # keep letters and spaces
6 syslog = syslog.lower()
7 syslog = syslog.split() # split text into words
8 syslog = [PorterStemmer().stem(word) for word in syslog if not word in

set(stopwords.words('english'))] # PS - keep to root of the words→˓

9 syslog = ' '.join(syslog) # merge words back into string
10 syslogs.append(syslog)
11 stop_words = text.ENGLISH_STOP_WORDS.union({"asa", "fw"}) # remove asa and

fw from BoW→˓

12 cv = CountVectorizer(max_features = 200, stop_words = stop_words) # consider
only 200 most used words→˓

13 X = cv.fit_transform(syslogs).toarray()
14 return X

Listing 4.8: Method Bag of Words

4.3 Machine Learning Structure and Models
After the data are preprocessed, they are ready to be fed to the machine learn-
ing models. Almost all models are implemented using Python library for machine
learning Scikit-learn [66]. Only Artificial Neural Network model is implemented
using Python library Keras [67]. However, since the thesis deals with classification
problem then the implementation of classification machine learning models will be
described. As an unsupervised learning the clustering algorithms will be used. The
machine learning models described below will cover both tools of Syslog Analysis
tool and Traffic Analysis tool, just some parameters will be adjusted based on the
need of every tool.

4.3.1 Logistic Regression Model

The model has slightly different parameters in Syslog Analysis tool than in Traffic
Analysis tool. Parameters were chosen by manual tests and comparison of the
precision. In Syslog Analysis tool, the model uses no penalization, random stat
0 and default number of iterations: 100. In Traffic Analysis tool, the model uses
penalization l2, random state 0 and 1000 iterations. This tool, when trained on
CICIDS2017 dataset, reached maximum number of iterations even when the number
of iterations was 20000, the tool was taking too much time to process and results

55

were not different than with 1000 iterations. Due to that, the number of iterations
was set back to 1000. Implementation is shown on listing 4.9.

1 classifier_LR = LogisticRegression(penalty='none', random_state = 0)
2 classifier_LR.fit(data["X_train"], data["y_train"])

Listing 4.9: Logistic Regression Model

Predictions are then made using function predict as shown on listing 4.10.

y_pred = classifier.predict(data["X_test"])

Listing 4.10: Prediction of supervised model

4.3.2 K-Nearest Neighbor Model

The model uses function Hamming and utilizing 5 neighbors. Hamming function was
chosen as it is recommended for classification problems as mentioned in subsection
1.2.2. Number of neighbors was chosen randomly, only following simple rule to not
use multiple of number of classes. Implementation is shown on listing 4.11.

1 classifier_KNN = KNeighborsClassifier(n_neighbors = 5, metric = 'hamming')
2 classifier_KNN.fit(data["X_train"], data["y_train"])

Listing 4.11: K-Nearest Neighbor Model

Predictions are then made using function predict as shown on listing 4.10.

4.3.3 Kernel SVM Model

The model uses kernel function Radial Basis Function and random state 0. This
function was chosen as it has lower performance requirements. Implementation is
shown on listing 4.12.

1 classifier_kSVM = SVC(kernel = 'rbf', random_state = 0)
2 classifier_kSVM.fit(data["X_train"], data["y_train"])

Listing 4.12: Kernel SVM Model

Predictions are then made using function predict as shown on listing 4.10.

56

4.3.4 One-class SVM Model

The model uses kernel function Radial Basis Function. This function was chosen as
it has lower performance requirements and it is also default function for this model.
Fitting of features and predictions are made at once using function fit_predict.
Implementation is shown on listing 4.13.

1 ocSVM = OneClassSVM(kernel="rbf")
2 y_pred = ocSVM.fit_predict(data["X"])

Listing 4.13: One-class SVM Model

Since the model returns values 1 and -1 for normal and anomalous data points
respectively (see subsection 1.2.3 for explanation), these values need to be adjusted
in order to be applicable in functions calculating metrics and performance. This is
done by simple for loop as shown on listing 4.14.

1 for i, row in enumerate(y_pred):
2 if y_pred[i] == 1:
3 y_pred[i] = 0
4 else:
5 y_pred[i] = 1

Listing 4.14: Loop to adjust predicted values

4.3.5 Naive Bayes Model

The model uses the Gaussian Naive Bayes algorithm, which is specifically written for
classification problems, hence effective for challenge of this thesis. Implementation
is shown on listing 4.15.

1 classifier_NB = GaussianNB()
2 classifier_NB.fit(data["X_train"], data["y_train"])

Listing 4.15: Naive Bayes Model

Predictions are then made using function predict as shown on listing 4.10.

4.3.6 Decision Tree Classification Model

The model uses default number of samples for a node to be leaf of 1, minimum of
number of samples to split internal node of 2 and strategy to choose split of each

57

node, splitter, is chosen as best. To measure the quality was chosen function entropy
and it uses random state of 0. These parameters were chosen by manual tests and
comparison of the precision. Implementation is shown on listing 4.16.

1 classifier_DTC = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
2 classifier_DTC.fit(data["X_train"], data["y_train"])

Listing 4.16: Decision Tree Classification Model

Predictions are then made using function predict as shown on listing 4.10.

4.3.7 Random Forest Classification Model

The model uses default number of samples for a node to be leaf of 1 and minimum
of number of samples to split internal node of 2. To measure the quality was chosen
function entropy, number of trees is 50 and random state 0. These parameters were
chosen by manual tests and comparison of the precision. Implementation is shown
on listing 4.17.

1 classifier_RFC = RandomForestClassifier(n_estimators = 50, criterion =
'entropy', random_state = 0)→˓

2 classifier_RFC.fit(data["X_train"], data["y_train"])

Listing 4.17: Random Forest Classification Model

Predictions are then made using function predict as shown on listing 4.10.

4.3.8 Isolation Forest Model

The model in default utilizes 100 estimators with automatically choosing maximum
number of samples. Random state was chosen 0. These parameters are default
ones for this model. Fitting of features and predictions are made at one once using
function fit_predict. Implementation is shown on listing 4.18.

1 iF = IsolationForest(random_state=0)
2 y_pred = iF.fit_predict(data["X"])

Listing 4.18: Isolation Forest Model

Since model returns values 1 and -1 for normal and anomalous data points
respectively (see subsection 1.3.1 for explanation), values need to be adjusted in
order to be applicable in functions calculating metrics and performance. This is
done by same simple for loop as previously shown on listing 4.14.

58

4.3.9 Local Outlier Factor Model

The model uses function Hamming and utilizes 20 neighbors (default value). This
function is chosen based on the same recommendation as model K-Nearest Neigh-
bors, subsection 4.3.2. Fitting of features and predictions are made at one once
using function fit_predict. Implementation is shown on listing4.19.

1 lof = LocalOutlierFactor(metric = 'hamming')
2 y_pred = lof.fit_predict(data["X"])

Listing 4.19: Local Outlier Factor Model

4.3.10 K-Means Model

The model is using method k-means++ to initial cluster centers, algorithm full,
creating 2 clusters (normal and anomalous data points) and random state of 42. The
parameters were chosen by manual tests and comparison of the precision. Fitting of
features and predictions are made at once using function fit_predict. Implementation
is shown on listing 4.20.

1 kmeans = KMeans(n_clusters = 2, init = 'k-means++', algorithm = 'full',
random_state = 42)→˓

2 y_pred = kmeans.fit_predict(data["X"])

Listing 4.20: K-Means Model

4.3.11 Hierarchical Clustering Model

The model’s chosen approach is Agglomerative and creates 2 clusters (normal or
anomalous data points). Metric used to calculate linkage between clusters is euck-
lidean and linkage criterion used is ward. The parameters were chosen by manual
tests and comparison of the precision. Fitting of features and predictions are made
at once using function fit_predict. Implementation is shown on listing 4.21.

1 hc = AgglomerativeClustering(n_clusters = 2, affinity = 'euclidean', linkage =
'ward')→˓

2 y_pred = hc.fit_predict(data["X"])

Listing 4.21: Hierarchical Clustering Model

59

4.3.12 Artificial Neural Network Model

Apart from the previous models, Artificial Neural Network model is implemented
using Python library Keras. Implementation of this model is shown in listing 4.22.

1 # Initialising the ANN
2 classifier_ANN = Sequential()
3 # Adding the input layer and the first hidden layer
4 classifier_ANN.add(Dense(activation="relu", input_dim=200, units=101,

kernel_initializer="uniform"))→˓

5 # Adding the hidden layers
6 h_layers = 10
7 for i in range(h_layers):
8 classifier_ANN.add(Dense(activation="relu", units=101,

kernel_initializer="uniform"))→˓

9 # Adding the output layer
10 classifier_ANN.add(Dense(activation="sigmoid", units=2,

kernel_initializer="uniform"))→˓

11 # Compiling the ANN
12 classifier_ANN.compile(optimizer = 'adam', loss =

'sparse_categorical_crossentropy', metrics = ['accuracy'])→˓

13 # Fitting the ANN to the Training set
14 classifier_ANN.fit(data["X_train"], data["y_train"], batch_size = 10, epochs =

10)→˓

Listing 4.22: Artificial Neural Network Model

At first, the model needs to be initialized. Second, the first (input) layer needs
to be created. In Syslog Analysis tool, this layer has 200 input dimenstion, because
input matrix X has 200 columns. Parameter units specifies how many "neurons"
will the input layer have and it is set to 101, which is half of the number of input
variables and +1. On other hand, in Traffic Analysis tool, this layer has 79 input
dimensions and 39 units. Parameter activation was chosen to be relu and parameter
kernel_initializer was chosen to be uniform.

After input layer the hidden layers appear. There are 10 hidden layers. In Syslog
Analysis tool, all of them have 101 "neurons", same as input layer, and 39 units in
Traffic Analysis tool. Parameters activation and kernel_initializer are same as in
input layer.

Last layer is the output layer, which uses same kernel_initializer as all previous
layers, but as an activation is chosen function sigmoid. This layer has only two
neurons, since there are only two output values: 1 (as anomaly) and 0 (as not
anomaly).

60

The model is then compiled using function adam as an optimizer. Loss is set as
sparse_categorical_crossentropy and metrics is set to accuracy.

At the end, data are fit into the model for training. Number of epochs is chosen
to 10, same as batch size.

Predictions are then made by simple function predict, show on listing 4.23.

y_pred = classifier.predict(data["X_test"])

Listing 4.23: Prediction of ANN model

4.4 Machine Learning Metrics and Performance
To compare the performance of the machine learning models, there are different
performance comparison methods implemented. First one is confusion matrix, which
is a table that shows summary of correct and incorrect predictions of a model.
Confusion matrix is printed out by simple line of code shown on listing 4.24 [68].

print(confusion_matrix(data["y_test"], y_pred))

Listing 4.24: Print Confusion Matrix

Next ones are metrics such as accuracy, precision, recall and F1-score. These
are calculated and printed out by simple method shown on listing 4.25.

1 def print_metrics(model, data, y_pred):
2 # accuracy: (tp + tn) / (p + n)
3 accuracy = accuracy_score(data["y_test"], y_pred)
4 print(f"Accuracy of Machine Learning model {model} is", accuracy)
5 # precision tp / (tp + fp)
6 precision = precision_score(data["y_test"], y_pred)
7 print(f"Precision of Machine Learning model {model} is", precision)
8 # recall: tp / (tp + fn)
9 recall = recall_score(data["y_test"], y_pred)

10 print(f"Recall of Machine Learning model {model} is", recall)
11 # f1: 2 tp / (2 tp + fp + fn)
12 f1 = f1_score(data["y_test"], y_pred)
13 print(f"F1-Score of Machine Learning model {model} is", f1)

Listing 4.25: Method printing metrics

As a manual method to compare predicted labels with actual labels is shown on
listing 4.26. This method prints out initial message with label. Below each labelled

61

message is written whether the prediction was correct or not based on comparison
with actual label.

1 def print_prediction_result(data, y_pred, input_filepath):
2 # [X_test, y_pred] Prediction is correct/Prediction is NOT correct
3 y_test = data['y_test']
4 np.set_printoptions(threshold=np.inf, linewidth=np.inf)
5 with open(f"Results/prediction_result.csv", 'w') as f:
6 with open(input_filepath) as input_file:
7 for index, input_line in enumerate(input_file):
8 if index == 0:
9 continue

10 i = index - 1
11 f.write(f"{input_line.rstrip()}, {y_pred[i]}, ")
12 if y_test[i] == y_pred[i]:
13 f.write("Prediction is correct\n")
14 else:
15 f.write("Prediction is NOT correct\n")
16 print(f"Prediction results saved into prediction_result.csv")

Listing 4.26: Print predictions into a text file

Example of labelled output can be found on listing 4.27.

May 17 2020 16:44:07 FW15 : %ASA-4-400038: IPS:6100 RPC Port Registration
150.60.80.114 to 21.56.146.99 on interface GigabitEthernet0/3 0→˓

Prediction is correct
May 17 2020 16:44:08 FW01 : %ASA-6-304004: URL Server 175.136.4.15 request

failed URL https://nguyen.com/ 1→˓

Prediction is NOT correct

Listing 4.27: Example of labelled messages with results

Description of confusion matrix and metrics can be found in chapter 6.

62

5 Functionality of Tools
This chapter briefly describes how to run each of the proposed tools. Description
shows examples on how to run the tools using command line and how to use argu-
ments of each tool. There is also brief description of what all arguments are utilized
for.

5.1 Syslog Generator
Syslog Generator is a tool to generate Cisco ASA system log messages. Generated
messages can be either labelled or not, and can be generated from within seen or
unseen message templates. Seen messages will be used to train machine learning
models and unseen messages will be used to test how well machine learning models
are trained and how good are they adapting to new, unseen variables.

Tool can be run by simple command from the tool’s folder:

python syslog_generator.py

Listing 5.1: Script to run Syslog Generator

By default, generated dataset will contain 1000 messages, it will be labelled and
it will use only "seen" message templates. However, these arguments can be changed.
There are three different arguments as following:

• - -number <number of lines>; default 1000
• - -labelled <yes/no>; default yes
• - -seen <yes/no>; default yes

So for example, unlabelled and unseen dataset of 25000 messages will be generated
using following command:

python syslog_generator.py --number 25000 --labelled no --seen no

Listing 5.2: Script to run Syslog Generator with certain parameters

5.2 Traffic Analysis Tool
Traffic Analysis tool is analyzing CICIDS2017 dataset. This dataset is already
parsed into .csv file so it is easier to process. However, dataset is already labelled.
This tool is created to detect security anomalies using Machine Learning methods.

63

Tool can be run by command line from the tool’s folder. There are no default
arguments, so everything needs to be specified, as shown in listing 5.3.

python traffic_analysis.py --mode <> --model <> --command <> --source <>

Listing 5.3: Script to run Traffic Analysis Tool

As it can be seen in listing 5.3, there are four arguments and all of them are
mandatory. The options are as following:

• - -mode <research/prod>
• - -model <LR/K-NN/kSVM/NB/DTC/RFC/ocSVM/iF/LOF/K-Means/HC

/ANN>
• - -command <train/predict/trainandpredict>
• - -source <filename>
Meaning of each argument and their options are described in section 4.1.

5.3 Syslog Analysis Tool
Syslog Analysis tool is analyzing syslog messages created by Syslog Generator. The
tool can be run by command line from the tool’s folder. There are no default
arguments, so everything needs to be specified, see listing 5.4.

python syslog_messages_analysis.py --mode <> --model <> --command <> --source <>

Listing 5.4: Script to run Syslog Analysis Tool

As it can be seen in listing 5.4, there are four arguments and all of them are
mandatory. The options are as following:

• - -mode <research/prod>
• - -model <LR/K-NN/kSVM/NB/DTC/RFC/ocSVM/iF/LOF/K-Means/HC

/ANN>
• - -command <train/predict/trainandpredict>
• - -source <filename>
Meaning of each argument and their options are described in section 4.1.

64

6 Comparison of Performance of Machine
Learning Models

This chapter compares the performance of twelve different machine learning algo-
rithms mentioned above. Each has a different approach. For results comparison, the
confusion matrix and metrics calculated from it such as accuracy, precision, recall
and F1-score are used.

Confusion matrix is a table showing summary of predicted labels compared to
actual labels.

TN FP

FN TP

0 1

0

1

Predicted

Actual

Fig. 6.1: Confussion Matrix

As shown in figure 6.1, confusion matrix’s fields have certain names. As a positive
result, the label is considered as an anomaly, and as a negative result as a label not
anomaly. Explanation of each field is below:

• True Positive means predicted was positive label (anomaly) and it was correct.
• False Positive means predicted was positive label (anomaly), where actually

was supposed to be negative label (not anomaly). It is also called Type 1 Error
or False alarm.

• False Negative means that negative label (not anomaly) was predicted and it
was incorrect. It is also called Type 2 Error. This one is critical as it shows
anomaly was missed.

• True Negative means predicted negative label (not anomaly) was correct.

Metrics calculated from confusion matrix are Accuracy, Precision, Recall and
F1-Score. Accuracy (also called Classification Rate) is a ratio of all correct predic-
tions to all predictions and is calculated by equation shown below [68]:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
. (6.1)

Precision is a ratio of how many predicted anomalies are correct and is calculated
by following equation:

65

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (6.2)

Recall (sometime also called Sensitivity) is a ratio of how many actual anomalies
are predicted correctly. This metric will be key for comparison of implemented tools.
Recall is calculated by following equation:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (6.3)

F1-Score (also called F-measure) is harmonic mean of Recall and Precision. It
will be always closer to smaller value of either Recall or Precision. F1-Score is
calculated by following equation:

𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2 * 𝑅𝑒𝑐𝑎𝑙𝑙 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
. (6.4)

Implemented machine learning models are tested on two different datasets: CI-
CIDS2017 dataset and dataset of Cisco ASA syslog messages. However, CICIDS2017
was initially chosen only as temporary dataset to test models during their imple-
mentation.

6.1 Traffic Analysis Performance
Dataset CICIDS2017 contains generated benign traffic and some of the most com-
mon attacks. Dataset was generated for five days in a row, from Monday, July 3 to
Friday, July 7 in 2017. On Monday, there was only benign traffic, while for the rest
of the days there were different kinds of attacks simulated.

The Traffic Analysis tool was applied on logs from the day, when various kinds of
DoS/DDoS attacks were caputured: DoS Slowloris, DoS Slowhttptest, DoS Hulk and
DoS GoldenEye. As this dataset contains almost 700000 lines, is very demanding
for computing power. Hence, only 100000 randomly chosen lines were used. The
dataset was split to train and test set in ratio of 80% for train set and 20% for test
set.

Results of the machine learning performance can be seen in Tab. 6.1. The most
important metric for anomaly detection is Recall. The results show that the most
accurate predictions were made by Supervised machine learning models. Almost
100% accurate was model Decision Tree Classifier, followed closely by models Naive
Bayes, Random Forest Classifier and K-Nearest Neighbors. All were able to predict
almost all anomalies correctly. Surprisingly, model Logistic Regression was pretty
accurate as well.

66

Metrics
Accuracy Precision Recall F1-Score

Supervised
Models

LR 0.9161 0.8945 0.8696 0.8818
K-NN 0.9927 0.9835 0.9964 0.9899
kSVM 0.9106 0.9673 0.7783 0.8626
NB 0.5118 0.4236 0.983 0.592
DTC 0.9992 0.9957 0.999 0.9988
RFC 0.9988 0.9985 0.9981 0.9983

Unsupervised
Models

ocSVM 0.6456 0.512 0.6986 0.5909
iF 0.6417 0.5406 0.1461 0.2301
LOF 0.59 0.1626 0.0287 0.0488
K-Means 0.6873 0.613 0.3972 0.4821
HC 0.2201 0.1786 0.31 0.2263

Deep Learning ANN 0.6396 0 0 0

Tab. 6.1: Performance results of Machine Learning Models on CICIDS2017 dataset

Among the Unsupervised machine learning models was the most accurate model
One-class SVM, correctly identifying almost 70% of anomalies. Model K-Means
correctly identified almost 40% of anomalies and model Hierarchical Clustering only
31%, which are not very good performance results. Very poor performance in iden-
tifying anomalies was showed by models Isolation Forest and Local Outlier Factor.

However, the worst performance was showed by Artificial Neural Network model.
This model labelled all test messages as not anomalies. For better results, there is
a need of more "in-depth" tuning of parameters of this model.

Graphical comparison of results can be also seen in figure 6.2.

6.2 Syslog Messages Analysis Performance
Syslog Message Analysis tool was trained and tested on several various datasets
generated by Syslog Generator, described in chapter 3. Generated datasets were
containing 5000 or 50000 messages, and also datasets containing seen or unseen
syslog messages.

There were three tests performed. The first test was performed on dataset con-
taining 50000 seen messages and it was done in mode Research and command Train
and Predict. That means that the dataset was split into train set of 80% of the
messages and test set of 20% of the messages.

The results of the first test are shown in Tab. 6.2. All supervised machine
learning models and also deep learning model predicted all anomalies correctly. Even

67

Fig. 6.2: Recall results of Machine Learning Models on CICIDS2017 dataset

Metrics
Accuracy Precision Recall F1-Score

Supervised Models

LR 1 1 1 1
K-NN 1 1 1 1
kSVM 1 1 1 1
NB 0.9858 0.7852 1 0.8797
DTC 1 1 1 1
RFC 1 1 1 1

Unsupervised Models

ocSVM 0.4985 0.0595 0.6003 0.1081
iF 0.9494 0 0 0
LOF 0.9514 0.9813 0.0415 0.0796
K-Means 0.5281 0.044 0.4013 0.0793
HC 0.4624 0.0645 0.7112 0.1182

Deep Learning ANN 1 1 1 1

Tab. 6.2: Performance results of syslog analysis on 50k of seen messages

though model Naive Bayes correctly predicted all anomalies, it also returned few
false alarms. However, this is not a big issue as this tools is focusing on identifying
anomalies.

Unsupervised machine learning models were not as successful as supervised mod-
els. Most successful in identifying anomalies was model Hierarchical Clustering. Its

68

Recall is 0.7112, which means it correctly predicted 71.12% of anomalies. However,
as it can be seen from its Precision and F1-Score, which are very low, it returned a lot
of false alarms. The second most successful unsupervised model was One-clas SVM,
which correctly predicted 60% of anomalies, but same as model Hierarchical Clus-
tering, it returned a lot of false alarms. The third model is K-Means, which correctly
predicted 40% of anomalies, but also returned a lot of false alarms. Unsupervised
models Local Outlier Factor and Isolation Forest totally failed in predictions.

The Recall results of the first test can be also seen on graph shown in figure 6.3.

Fig. 6.3: Recall results of syslog analysis on 50k of seen messages

The second test was done to see how the machine learning models will perform
when making predictions on messages they have not seen before. All models were
trained on dataset of 5000 of seen messages and predictions were made on different
dataset of 5000 of unseen messages.

The results of this test are shown in Tab. 6.3. The most successful in predict-
ing anomalies were unsupervised machine learning models. Namely, it was model
Hierarchical Clustering, which correctly predicted 87.1% anomalies, and model One-
class SVM, which correctly predicted 86.29% anomalies. The third was model K-
Means, which correctly predicted 73.39% anomalies. Fourth most successful model
was supervised Decision Tree Classifier, almost tied up by unsupervised model Lo-
cal Outlier Factor, correctly predicting 47.98% and 45.56% anomalies respectively.
However, these models also returned a lot of false alarms.

69

Metrics
Accuracy Precision Recall F1-Score

Supervised Models

LR 0.9208 0.1864 0.1774 0.1818
K-NN 0.9556 0.7407 0.1613 0.2649
kSVM 0.9532 1 0.0546 0.1069
NB 0.9504 0 0 0
DTC 0.7856 0.1121 0.4798 0.1817
RFC 0.9216 0.2764 0.3589 0.3122

Unsupervised Models

ocSVM 0.5126 0.0818 0.8629 0.1439
iF 0.9524 1 0.0403 0.0775
LOF 0.945 0.4469 0.4556 0.4511
K-Means 0.4916 0.0685 0.7339 0.1253
HC 0.4984 0.0802 0.871 0.1469

Deep Learning ANN 0.9504 0 0 0

Tab. 6.3: Performance results of syslog analysis trained on 5000 messages

The rest of the models were not very accurate in predicting anomalies. Models
Naive Bayes and Artificial Neural Network did not even predict a single message as
anomaly, which means complete failure in this test for these models.

Visualization of recall results for this test can be seen on graph shown in figure
6.4.

In the third test, machine learning models were trained on dataset of 50000
syslog messages and tested on the same dataset of 5000 unseen messages to see how
increasing training dataset affects the performance.

The results of the third test are shown in Tab. 6.4. In this test, the most
successful machine learning model was supervised model Decision Tree Classifier
with 93.95% correctly predicted anomalies. The second were two unsupervised
models: Hierarchical Clustering with 85.66% correctly predicted anomalies and One-
class SVM with 85.3% correctly predicted anomalies. However, all three models
returned a lot of false alarms, as seen from their Precision.

Unsupervised model K-Means was fourth with only 46.1% correctly predicted
anomalies and precision only 5.61%. It was almost tied up by supervised model
Random Forest Classifier, with only 42.74% correctly predicted anomalies and pre-
cision only 7.87%. Supervised model Logistic Regression correctly predicted only
31.85% with precision only 5.95%.

The rest of the models failed the test, with models Kernel SVM and Local Outlier
Factor correctly predicting 0 anomalies.

Visualization of recall results of the third test can be seen in figure 6.5.

70

Fig. 6.4: Recall results of syslog analysis trained on 5000 messages

Metrics
Accuracy Precision Recall F1-Score

Supervised Models

LR 0.7164 0.0595 0.3185 0.1003
K-NN 0.7962 0.0187 0.0604 0.0286
kSVM 0.786 0 0 0
NB 0.863 0.0822 0.1734 0.1115
DTC 0.306 0.0632 0.9395 0.1184
RFC 0.7232 0.0787 0.4274 0.1328

Unsupervised Models

ocSVM 0.4583 0.0729 0.853 0.1342
iF 0.9562 1 0.1101 0.1983
LOF 0.937 0 0 0
K-Means 0.5915 0.0561 0.461 0.1
HC 0.4956 0.0782 0.8566 0.1433

Deep Learning ANN 0.7536 0.0205 0.0847 0.033

Tab. 6.4: Performance results of syslog analysis trained on 50000 messages

Comparison of how the size of the dataset affects training of machine learn-
ing model is shown in figure 6.6. Enlargement of the training dataset increased
the performance of almost all implemented machine learning models. The biggest
improvement was observed for supervised model Decision Tree Classifier, whose

71

Fig. 6.5: Recall results of syslog analysis trained on 50000 messages

performance in identifying anomalies improved by almost 50%. Improvement was
also observed for models Logistic Regression and Naive Bayes, and slightly also for
models Random Forest Classifier, Isolation Forest and Artificial Neural Network.
Models One-class SVM and Hierarchical Clustering stayed pretty much the same
and enlargement of the dataset did not affect them. However, performance of models
K-Nearest Neighbors, Kernel SVM, Local Outlier Factor and K-Means surprisingly
decreased with enlargement of training dataset.

72

Fig. 6.6: Comparison of recall results of machine learning models

Live Testing of Analysis Tools

Both analysis tools were designed to be usable in real life packet and syslog predic-
tion. They are able to label each log, whether it is anomaly or not. An example can
be seen on listing 6.1.

1 May 17 2020 12:33:37 FW22 : %ASA-1-105004: (Primary) Monitoring on interface
GigabitEthernet0/4 normal Not anomaly→˓

2 May 17 2020 12:33:37 FW25 : %ASA-4-733100: SYN attack drop rate 1 exceeded.
Current burst rate is 425 per second, max configured rate is 0 ; Current
average rate is 7532 per second, max configured rate is 0 ; Cumulative total
count is 45783364 Anomaly

→˓

→˓

→˓

Listing 6.1: Exampe of live analysis

The tool will label each log message and prints it out into file xxx_labelled.csv,
where xxx stands for the name of the machine learning model chosen for predictions.

73

Conclusion
Computer networks and distributed systems generate a big amount of logs every
day. These logs have to be parsed and analyzed to keep the track of the system
behaviour. Traditional analysis of system logs is complex, time consuming, and
prone to human errors. On the other hand, machine learning methods can improve
analyzing process and provide a solution to deal with complex and big amount of
the log data. However, in this thesis, the anomaly detection using machine learning
and deep learning algorithms were applied on network packets and syslog messages
to detect security threats. Many steps were followed to achieve better accuracy of
the proposed models, e.g., data preprocessing, algorithm tuning, and utilizing many
machine learning models.

However, the supervised algorithm Decision Tree Classifier achieved the best
accuracy in identification of anomalies, while unsupervised algorithms One-class
SVM and Hierarchical Clustering achieved almost as good accuracy as DTC. The
results were improved by algorithm tuning and increase of the training data set.

Interestingly, unsupervised algorithm K-Means and Local Outlier Factor were
more accurate on smaller dataset than on the big one. Similarly, supervised algo-
rithm K-Nearest Neighbors was little bit more accurate on smaller dataset.

Best algorithms of all was supervised algorithm Decision Tree Classifier, which
was applied on live prediction of syslogs. It achieved stunning recall score of 0.9395,
which means it correctly predicted almost 94% of all anomalies.

However, tuning of the parameters was not automatized. Chosen parameters
were either default or were tuned manually based on knowledge of the algorithm and
brute-force tests. As future work, multiple automatized approaches for parameters
tuning can be used. For instance, the Grid Search can be used to tune parameter of
each model by exhaustively generating candidates from specified grid of parameters
[69]. Since each model uses different parameters, each model needs its own grid
search. This might be time-consuming, given the amount of machine learning models
mentioned in this thesis.

Another approach can be inspired by H20 AutoML [70]. It automates process of
building large number of models, with intention to find the best model.

74

Bibliography
[1] SHARMA, Avneesh: How Different are Conventional Programming and

Machine Learning? [online; visited on 30. 05. 2020]. Available from URL:
<https://www.kdnuggets.com/2018/12/different-conventional-
programming-machine-learning.html>.

[2] How Machine Learning Can Enable Anomaly Detection [online]. Last update
13. 01. 2020 [visited on 30. 05. 2020]. Available from URL:
<https://medium.com/datadriveninvestor/how-machine-learning-can-
enable-anomaly-detection-eed9286c5306>.

[3] What is Machine Learning? A definition [online]. Last update 06. 05. 2020 [vis-
ited on 18. 05. 2020]. Available from URL:
<https://expertsystem.com/machine-learning-definition/>.

[4] Machine Learning [online; visited on 18. 05. 2020]. Available from URL:
<https://www.geeksforgeeks.org/machine-learning/>.

[5] What Is Machine Learning? 3 things you need to know [online; visited on
18. 05. 2020]. Available from URL:
<https://www.mathworks.com/discovery/machine-learning.html>.

[6] ROSEBROCK, Adrian: Anomaly detection with Keras, TensorFlow, and Deep
Learning [online]. Last update 02. 03. 2020 [visited on 18. 05. 2020]. Available
from URL:
<https://www.pyimagesearch.com/2020/03/02/anomaly-detection-
with-keras-tensorflow-and-deep-learning/>.

[7] FLOVIK, Vegard: How to use machine learning for anomaly detection and
condition monitoring [online]. Last update 31. 12. 2018 [visited on 18. 05. 2020].
Available from URL:
<https://towardsdatascience.com/how-to-use-machine-learning-for-
anomaly-detection-and-condition-monitoring-6742f82900d7>.

[8] BROWNLEE, Jason: Supervised and Unsupervised Machine Learning Algo-
rithms [online]. Last update 12. 08. 2019 [visited on 18. 05. 2020]. Available
from URL:
<https://machinelearningmastery.com/supervised-and-unsupervised-
machine-learning-algorithms/>.

75

https://www.kdnuggets.com/2018/12/different-conventional-programming-machine-learning.html
https://www.kdnuggets.com/2018/12/different-conventional-programming-machine-learning.html
https://medium.com/datadriveninvestor/how-machine-learning-can-enable-anomaly-detection-eed9286c5306
https://medium.com/datadriveninvestor/how-machine-learning-can-enable-anomaly-detection-eed9286c5306
https://expertsystem.com/machine-learning-definition/
https://www.geeksforgeeks.org/machine-learning/
https://www.mathworks.com/discovery/machine-learning.html
https://www.pyimagesearch.com/2020/03/02/anomaly-detection-with-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/03/02/anomaly-detection-with-keras-tensorflow-and-deep-learning/
https://towardsdatascience.com/how-to-use-machine-learning- for-anomaly-detection-and-condition-monitoring-6742f82900d7
https://towardsdatascience.com/how-to-use-machine-learning- for-anomaly-detection-and-condition-monitoring-6742f82900d7
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/

[9] Hrishikesh D. Vinod, C.R. Rao: Handbook of statistics 42: Financial, Macro
and Micro Econometrics Using R, North Holland, January 2020. 349 p. Hard-
cover ISBN: 9780128202500, eBook ISBN: 9780128202517.

[10] Mark Talabis; Robert McPherson; Inez Miyamoto; Jason Martin: Information
Security Analytics : Finding Security Insights, Patterns, and Anomalies in Big
Data, Syngress; 1. edition (December 10, 2014), 182 p. ISBN: 978-0-12-800207-0

[11] WASEEM, Mohammad: How To Implement Classification In Machine Learn-
ing? [online]. Last update 04. 12. 2019 [visited on 18. 05. 2020]. Available
from URL:
<https://www.edureka.co/blog/classification-in-machine-
learning/>.

[12] ASIRI, Sidath: Machine Learning Classifiers [online]. Last update 11. 06. 2018
[visited on 18. 05. 2020]. Available from URL:
<https://towardsdatascience.com/machine-learning-classifiers-
a5cc4e1b0623>.

[13] LEONEL, Jorge: Classification Methods in Machine Learning [online]. Last
update 09. 10. 2019 [visited on 18. 05. 2020]. Available from URL:
<https://medium.com/@jorgesleonel/classification-methods-in-
machine-learning-58ce63173db8>.

[14] MOLNAR, Christoph: Interpretable Machine Learning: A Guide for Making
Black Box Models Explainable. [online]. Last update 27. 04. 2020 [visited on
18. 05. 2020]. Available from URL:
<https://christophm.github.io/interpretable-ml-book/>.

[15] Logistic Regression [online; visited on 18. 05. 2020]. Available from URL:
<https://ml-cheatsheet.readthedocs.io/en/latest/logistic_
regression.html>.

[16] KNN(K-Nearest Neighbour) algorithm, maths behind it and how to find the
best value for K [online]. Last update 25. 10. 2019 [visited on 18. 05. 2020].
Available from URL:
<https://medium.com/@rdhawan201455/knn-k-nearest-neighbour-
algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-
6ff5b0955e3d>.

[17] HARRISON, Onel: Machine Learning Basics with the K-Nearest Neighbors
Algorithm [online]. Last update 10. 09. 2018 [visited on 18. 05. 2020]. Available

76

https://www.edureka.co/blog/classification-in-machine-learning/
https://www.edureka.co/blog/classification-in-machine-learning/
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://medium.com/@jorgesleonel/classification-methods-in-machine-learning-58ce63173db8
https://medium.com/@jorgesleonel/classification-methods-in-machine-learning-58ce63173db8
https://christophm.github.io/interpretable-ml-book/
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://medium.com/@rdhawan201455/knn-k-nearest-neighbour-algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-6ff5b0955e3d
https://medium.com/@rdhawan201455/knn-k-nearest-neighbour-algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-6ff5b0955e3d
https://medium.com/@rdhawan201455/knn-k-nearest-neighbour-algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-6ff5b0955e3d

from URL:
<https://towardsdatascience.com/machine-learning-basics-with-
the-k-nearest-neighbors-algorithm-6a6e71d01761>.

[18] K Nearest Neighbors - Classification [online; visited on 18. 05. 2020]. Available
from URL:
<https://www.saedsayad.com/k_nearest_neighbors.htm>.

[19] SUBRAMANIAN, Dhilip: A Simple Introduction to K-Nearest Neighbors
Algorithm [online]. Last update 08. 06. 2019 [visited on 18. 05. 2020]. Available
from URL:
<https://towardsdatascience.com/a-simple-introduction-to-k-
nearest-neighbors-algorithm-b3519ed98e>.

[20] SRIVASTAVA, Tavish: Introduction to k-Nearest Neighbors: A powerful
Machine Learning Algorithm (with implementation in Python & R) [online].
Last update 26. 03. 2018 [visited on 18. 05. 2020]. Available from URL:
<https://www.analyticsvidhya.com/blog/2018/03/introduction-k-
neighbours-algorithm-clustering/>.

[21] SETHI, Alakh: Support Vector Regression Tutorial for Machine Learning
[online]. Last update 27. 03. 2020 [visited on 18. 05. 2020]. Available from URL:
<https://www.analyticsvidhya.com/blog/2020/03/support-vector-
regression-tutorial-for-machine-learning/>.

[22] GANDHI, Rohith: Support Vector Machine — Introduction to Machine
Learning Algorithms [online]. Last update 07. 06. 2018 [visited on 18. 05. 2020].
Available from URL:
<https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learning-algorithms-934a444fca47>.

[23] RAY, Sunil: Understanding Support Vector Machine(SVM) algorithm from
examples (along with code) [online]. Last update 13. 09. 2017 [visited on
18. 05. 2020]. Available from URL:
<https://www.analyticsvidhya.com/blog/2017/09/understaing-
support-vector-machine-example-code/>.

[24] Support Vector Machine Algorithm [online; visited on 18. 05. 2020]. Available
from URL:
<https://www.javatpoint.com/machine-learning-support-vector-
machine-algorithm>.

77

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://www.saedsayad.com/k_nearest_neighbors.htm
https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm

[25] STECANELLA, Bruno: An Introduction to Support Vector Machines (SVM)
[online]. Last update 22. 06. 2017 [visited on 18. 05. 2020]. Available from URL:
<https://monkeylearn.com/blog/introduction-to-support-vector-
machines-svm/>.

[26] DUNLOP, Robert: Understanding the Dot Product [online]. Last update
26. 07. 2005 [visited on 18. 05. 2020]. Available from URL:
<http://www.mvps.org/DirectX/articles/math/dot/index.htm>.

[27] BROWNLEE, Jason: One-Class Classification Algorithms for Imbalanced
Datasets [online]. Last update 13. 03. 2020 [visited on 18. 05. 2020]. Available
from URL:
<machinelearningmastery.com/one-class-classification-
algorithms/>.

[28] SCHOLKOPF, Bernhard; WILLIAMSON, Robert; SMOLA, Alex; SHAWE-
TAYLOR, John; PLATT, John: Support Vector Method for Novelty Detection
[online]. 1999 [visited on 18. 05. 2020]. Available from URL:
<http://users.cecs.anu.edu.au/~williams/papers/P126.pdf>.

[29] BROWNLEE, Jason: Naive Bayes Classifier From Scratch in Python [online].
Last update 25. 10. 2019 [visited on 18. 05. 2020]. Available from URL:
<https://machinelearningmastery.com/naive-bayes-classifier-
scratch-python/>.

[30] HAYES, Adam: Bayes’ Theorem Definition [online]. Last update 10. 04. 2020
[visited on 18. 05. 2020]. Available from URL:
<https://www.investopedia.com/terms/b/bayes-theorem.asp>.

[31] Bayes’ Theorem Problems, Definition and Examples [online; visited on
18. 05. 2020]. Available from URL:
<https://www.statisticshowto.com/bayes-theorem-problems/>.

[32] ELLINOR, Andrew and others: Bayes’ Theorem and Conditional Probability
[online; visited on 18. 05. 2020]. Available from URL:
<https://brilliant.org/wiki/bayes-theorem/>.

[33] Naive Bayes Classifiers [online; visited on 18. 05. 2020]. Available from URL:
<https://www.geeksforgeeks.org/naive-bayes-classifiers/>.

[34] CHAKURE, Afroz: Decision Tree Classification [online]. Last update
06. 07. 2019 [visited on 18. 05. 2020]. Available from URL:

78

https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
http://www.mvps.org/DirectX/articles/math/dot/index.htm
machinelearningmastery.com/one-class-classification-algorithms/
machinelearningmastery.com/one-class-classification-algorithms/
http://users.cecs.anu.edu.au/~williams/papers/P126.pdf
https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
https://www.investopedia.com/terms/b/bayes-theorem.asp
https://www.statisticshowto.com/bayes-theorem-problems/
https://brilliant.org/wiki/bayes-theorem/
https://www.geeksforgeeks.org/naive-bayes-classifiers/

<https://towardsdatascience.com/decision-tree-classification-
de64fc4d5aac>.

[35] Decision Tree Classification Algorithm [online; visited on 18. 05. 2020]. Avail-
able from URL:
<https://www.javatpoint.com/machine-learning-decision-tree-
classification-algorithm>.

[36] Classification Algorithms - Random Forest [online; visited on 18. 05. 2020].
Available from URL:
<https://www.tutorialspoint.com/machine_learning_with_python/
machine_learning_with_python_classification_algorithms_random_
forest.htm>.

[37] POLAMURI, Saimadhu: How the random forest algorithm works in machine
learning [online]. Last update 22. 05. 2017 [visited on 18. 05. 2020]. Available
from URL:
<https://dataaspirant.com/2017/05/22/random-forest-algorithm-
machine-learing/>.

[38] How Random Forest Algorithm Works in Machine Learning [online]. Last
update 24. 10. 2017 [visited on 18. 05. 2020]. Available from URL:
<https://medium.com/@Synced/how-random-forest-algorithm-works-
in-machine-learning-3c0fe15b6674>.

[39] Random Forest Algorithm [online; visited on 18. 05. 2020]. Available from URL:
<https://www.javatpoint.com/machine-learning-random-forest-
algorithm>.

[40] MISHRA, Sanatan: Unsupervised Learning and Data Clustering [online]. Last
update 19. 05. 2017 [visited on 18. 05. 2020]. Available from URL:
<https://towardsdatascience.com/unsupervised-learning-and-data-
clustering-eeecb78b422a>.

[41] Unsupervised Machine Learning: What is, Algorithms, Example [online; visited
on 18. 05. 2020]. Available from URL:
<https://www.guru99.com/unsupervised-machine-learning.html>.

[42] BILYK, Volodymyr: Guide to Unsupervised Machine Learning: 7 Real Life
Examples [online; visited on 18. 05. 2020]. Available from URL:
<https://theappsolutions.com/blog/development/unsupervised-
machine-learning/#contents_11>.

79

https://towardsdatascience.com/decision-tree-classification-de64fc4d5aac
https://towardsdatascience.com/decision-tree-classification-de64fc4d5aac
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_classification_algorithms_random_forest.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_classification_algorithms_random_forest.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_classification_algorithms_random_forest.htm
https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/
https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/
https://medium.com/@Synced/how-random-forest-algorithm-works-in-machine-learning-3c0fe15b6674
https://medium.com/@Synced/how-random-forest-algorithm-works-in-machine-learning-3c0fe15b6674
https://www.javatpoint.com/machine-learning-random-forest-algorithm
https://www.javatpoint.com/machine-learning-random-forest-algorithm
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://www.guru99.com/unsupervised-machine-learning.html
https://theappsolutions.com/blog/development/unsupervised-machine-learning/#contents_11
https://theappsolutions.com/blog/development/unsupervised-machine-learning/#contents_11

[43] Apriori Algorithm [online; visited on 18. 05. 2020]. Available from URL:
<https://www.geeksforgeeks.org/apriori-algorithm/>.

[44] Machine learning technique for finding hidden patterns or intrinsic structures
in data [online; visited on 18. 05. 2020]. Available from URL:
<https://www.mathworks.com/discovery/unsupervised-learning.
html>.

[45] LIU, Fei Tony; TING, Kai Ming; ZHOU, Zhi-Hua: 2008 Eighth IEEE Interna-
tional Conference on Data Mining: Isolation Forest, Pisa, 2008. pp. 413-422.
ISBN: 978-0-7695-3502-9.

[46] BEUNIG, Markus M.; KRIEGEL, Hans-Peter; NG, Raymong T.; SANDER,
Jörg: LOF: Identifying Density-Based Local Outliers. Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, pp. 93–104.
ISBN 1-58113-217-4. Available from URL:
<https://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf>.

[47] Local Outlier Factor [online; visited on 18. 05. 2020]. Available from URL:
<https://turi.com/learn/userguide/anomaly_detection/local_
outlier_factor.html>.

[48] GARBADE, Dr. Michael J.: Understanding K-means Clustering in Machine
Learning [online]. Last update 12. 09. 2018 [visited on 18. 05. 2020]. Available
from URL:
<https://towardsdatascience.com/understanding-k-means-
clustering-in-machine-learning-6a6e67336aa1>.

[49] K means Clustering – Introduction [online; visited on 18. 05. 2020]. Available
from URL:
<https://www.geeksforgeeks.org/k-means-clustering-
introduction/>.

[50] SHARMA, Pulkit: The Most Comprehensive Guide to K-Means Clustering
You’ll Ever Need [online]. Last update 19. 08. 2019 [visited on 18. 05. 2020].
Available from URL:
<https://www.analyticsvidhya.com/blog/2019/08/comprehensive-
guide-k-means-clustering/>.

[51] Hierarchical Clustering [online; visited on 18. 05. 2020]. Available from URL:
<https://www.saedsayad.com/clustering_hierarchical.htm>.

80

https://www.geeksforgeeks.org/apriori-algorithm/
https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://turi.com/learn/userguide/anomaly_detection/local_outlier_factor.html
https://turi.com/learn/userguide/anomaly_detection/local_outlier_factor.html
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.saedsayad.com/clustering_hierarchical.htm

[52] SHARMA, Pulkit: A Beginner’s Guide to Hierarchical Clustering and how to
Perform it in Python [online]. Last update 27. 05. 2019 [visited on 18. 05. 2020].
Available from URL:
<https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-
hierarchical-clustering/>.

[53] Deep Learning Tutorial for Beginners: Neural Network Classification [online;
visited on 18. 05. 2020]. Available from URL:
<https://www.guru99.com/deep-learning-tutorial.html>.

[54] What Is Deep Learning? [online; visited on 18. 05. 2020]. Available from URL:
<https://www.mathworks.com/discovery/deep-learning.html>.

[55] Keras Tutorial - Layers [online; [visited on 18. 05. 2020]. Available from URL:
<https://www.tutorialspoint.com/keras/keras_layers.htm>.

[56] LATEEF, Zulaikha: What Is A Neural Network? Introduction To Artificial
Neural Networks [online]. Last update 28. 08. 2019 [visited on 18. 05. 2020].
Available from URL:
<https://www.edureka.co/blog/what-is-a-neural-network/>.

[57] HELLER, Martin: What is Keras? The deep neural network API explained
[online]. Last update 28. 01. 2019 [visited on 18. 05. 2020]. Available from URL:
<https://www.infoworld.com/article/3336192/what-is-keras-the-
deep-neural-network-api-explained.html>.

[58] GARBADE, Dr. Michael J.: A Simple Introduction to Natural Language
Processing [online]. Last update 15. 10. 2018 [visited on 18. 05. 2020]. Available
from URL:
<https://becominghuman.ai/a-simple-introduction-to-natural-
language-processing-ea66a1747b32>.

[59] KUMAWAT, Dinesh: 7 Natural Language Processing Techniques for Extract-
ing Information [online]. Last update 18. 11. 2019 [visited on 18. 05. 2020].
Available from URL:
<https://www.analyticssteps.com/blogs/7-natural-language-
processing-techniques-extracting-information>.

[60] Sentiment Analysis Explained: What is Sentiment Analysis? [online; visited on
18. 05. 2020]. Available from URL:
<https://www.lexalytics.com/technology/sentiment-analysis>.

81

https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
https://www.guru99.com/deep-learning-tutorial.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.tutorialspoint.com/keras/keras_layers.htm
https://www.edureka.co/blog/what-is-a-neural-network/
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
https://www.analyticssteps.com/blogs/7-natural-language-processing-techniques-extracting-information
https://www.analyticssteps.com/blogs/7-natural-language-processing-techniques-extracting-information
https://www.lexalytics.com/technology/sentiment-analysis

[61] BEDAPUDI, Praneeth: DeepCorrection 1: Sentence Segmentation of unpunc-
tuated text. [online]. Last update 17. 11. 2018 [visited on 18. 05. 2020]. Available
from URL:
<https://medium.com/@praneethbedapudi/deepcorrection-1-sentence-
segmentation-of-unpunctuated-text-a1dbc0db4e98>.

[62] Cisco ASA Series Syslog Messages: Chapter: Messages Listed by Severity Level
[online]. Last update 10. 04. 2020 [visited on 18. 05. 2020]. Available from URL:
<https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_
syslog/syslogs-sev-level.html#con_1009233>.

[63] Welcome to Faker’s documentation! [online; [visited on 18. 05. 2020]. Available
from URL:
<https://faker.readthedocs.io/en/master/>.

[64] argparse: Parser for command-line options, arguments and sub-commands [on-
line; visited on 18. 05. 2020]. Available from URL:
<https://docs.python.org/3/library/argparse.html>.

[65] SHARAFALDIN, Iman; LASHKARI, Arash Habibi; GHORBANI, Ali A.: To-
ward Generating a New Intrusion Detection Dataset and Intrusion Traffic Char-
acterization, 4th International Conference on Information Systems Security and
Privacy (ICISSP), Portugal, January 2018. Available from URL:
<https://www.unb.ca/cic/datasets/ids-2017.html>.

[66] PEDREGOSA et al.: Scikit-learn: Machine Learning in Python: Journal of
Machine Learning Research, pp. 2825-2830, 2011.

[67] CHOLLET, Francois and others: Keras, 2015. Available from URL:
<https://keras.io>.

[68] Confusion Matrix in Machine Learning [online; visited on 18. 05. 2020].
Available from URL:
<https://www.geeksforgeeks.org/confusion-matrix-machine-
learning/>.

[69] Tuning the hyper-parameters of an estimator [online; visited on 30. 05. 2020].
Available from URL:
<https://scikit-learn.org/stable/modules/grid_search.html>.

[70] H2O AutoML Tutorial [online; visited on 30. 05. 2020]. Available from URL:
<http://docs.h2o.ai/h2o-tutorials/latest-stable/h2o-world-
2017/automl/index.html>.

82

https://medium.com/@praneethbedapudi/deepcorrection-1-sentence-segmentation-of-unpunctuated-text-a1dbc0db4e98
https://medium.com/@praneethbedapudi/deepcorrection-1-sentence-segmentation-of-unpunctuated-text-a1dbc0db4e98
https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_syslog/syslogs-sev-level.html#con_1009233
https://www.cisco.com/c/en/us/td/docs/security/asa/syslog/b_syslog/syslogs-sev-level.html#con_1009233
https://faker.readthedocs.io/en/master/
https://docs.python.org/3/library/argparse.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://keras.io
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://scikit-learn.org/stable/modules/grid_search.html
http://docs.h2o.ai/h2o-tutorials/latest-stable/h2o-world-2017/automl/index.html
http://docs.h2o.ai/h2o-tutorials/latest-stable/h2o-world-2017/automl/index.html

A Attachments
xsiklo00_thesis_attachments.zip/
xsiklo00_thesis_attachments/

Syslog-Generator/
LICENSE.md...2 KB
README.md..2 KB
syslog_generator.py..26 KB

Syslog-Messages-Analysis/
classifiers/
Results/
data_preprocessing.py...4 KB
LICENSE.md...2 KB
ML_modules.py..6 KB
README.md..3 KB
syslog_messages_analysis.py.....................................12 KB

Traffic-Analysis/
classifiers/
Results/
data_preprocessing.py...4 KB
LICENSE.md...2 KB
ML_modules.py..6 KB
README.md..3 KB
traffic_analysis.py..13 KB

83

	Introduction
	I Theoretical Part
	Machine Learning
	Machine Learning For Anomaly Detection
	Supervised Machine Learning
	Logistic Regression
	K-Nearest Neighbors
	Support Vector Machine
	Naive Bayes
	Decision Tree
	Random Forest

	Unsupervised Machine Learning
	Isolation Forest
	Local Outlier Factor
	K-Means
	Hierarchical Clustering

	Neural Networks and Deep Learning

	Natural Language Processing

	II Practical Part
	Implementation of Syslog Generator
	Structure of Syslog Generator

	Implementation of Analysis Tools
	Structure of Proposed Tools
	Data Preprocessing
	Natural Language Processing
	Data Splitting

	Machine Learning Structure and Models
	Logistic Regression Model
	K-Nearest Neighbor Model
	Kernel SVM Model
	One-class SVM Model
	Naive Bayes Model
	Decision Tree Classification Model
	Random Forest Classification Model
	Isolation Forest Model
	Local Outlier Factor Model
	K-Means Model
	Hierarchical Clustering Model
	Artificial Neural Network Model

	Machine Learning Metrics and Performance

	Functionality of Tools
	Syslog Generator
	Traffic Analysis Tool
	Syslog Analysis Tool

	Comparison of Performance of Machine Learning Models
	Traffic Analysis Performance
	Syslog Messages Analysis Performance

	Conclusion
	Bibliography
	Attachments

