
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV MIKROELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF MICROELECTRONICS

ELECTRONIC INFORMATION CARD

ELEKTRONICKÝ INFORMAČNÍ ŠTÍTEK

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. VIKTOR ŠAFÁŘ
AUTHOR

VEDOUCÍ PRÁCE Ing. JOSEF ŠANDERA, Ph.D.
SUPERVISOR

BRNO 2011

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav mikroelektroniky

Diplomová práce
magisterský navazující studijní obor

Mikroelektronika

Student: Bc. Viktor Šafář ID: 78337
Ročník: 2 Akademický rok: 2010/2011

NÁZEV TÉMATU:

Elektronický informační štítek

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s principy, parametry a provedením elektronických informačních štítků ve světě.
Navrhněte a realizujte vzorek elektronického informačního štítku. Pro konstrukci použijte hotový aktivní
displej Z LED diod a mikrokontroler PIC. Sestavte obslužný program pro komunikaci s PC. Prověřte
možnosti napájení z baterií a vyberte vhodný typ baterie.

DOPORUČENÁ LITERATURA:

According of supervision instructions

Termín zadání: 7.2.2011 Termín odevzdání: 26.5.2011

Vedoucí práce: Ing. Josef Šandera, Ph.D.

prof. Ing. Vladislav Musil, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstract

In this project, an electronic information card based on an LED matrix display is

designed. The theoretical part shows an overview of microcontroller peripherals and

interfaces and character set discussion is held. It is shown how to design such a device

taking one step at a time. First, the device main features are outlined and its

functionality is described. Then, component selection is done taking into consideration

the requirements and an electronic schema is designed. The heart of the device is a

Microchip MCU for which a piece of software is designed. Consequently, a Windows

application is build to operate the device.

Key words

LED display, Microchip USB, PIC18F46J50, SPI EEPROM, encoding of Czech
characters, ISO 8859-2, display character set 5×7, USB device, WinUSB

Bibliografická citace díla:

ŠAFÁŘ, V. Elektronický informační štítek. Brno: Vysoké učení technické v Brně,
Fakulta elektrotechniky a komunikačních technologií, 2011. 53 s., 5 příloh. Vedoucí
diplomové práce Ing. Josef Šandera, Ph.D..

Declaration:

I declare that I have elaborated my master’s thesis on the theme of “Electronic

information card” independently, under the supervision of the master’s thesis supervisor

and with the use of technical literature and other sources of information which are all

quoted in the thesis and detailed in the list of literature at the end of the thesis.

As the author of the master’s thesis I furthermore declare that, concerning the

creation of this master’s thesis, I have not infringed any copyright. In particular, I have

not unlawfully encroached on anyone’s personal copyright and I am fully aware of the

consequences in the case of breaking Regulation S 11 and the following of the

Copyright Act No 121/2000 Vol., including the possible consequences of criminal law

resulted from Regulation S 152 of Criminal Act No 140/1961 Vol.

Brno, 26/05/2011

 ………………………………….

Acknowledgement:

I am thankful to my university supervisor Ing. Josef Šandera, Ph.D for his

continuous support during the work on this thesis.

6

Contents
1 Introduction ..7
2 Theoretical background...8

2.1 Designing a device..9
2.2 Displays ..10

2.2.1 LED matrix display ..10
2.3 Microcontroller unit (MCU)...12

2.3.1 Program ..12
2.3.2 Peripherals ..13

2.4 Memory ..13
2.5 Universal Serial Bus ...14

2.5.1 USB 2.0 Overview..14
2.5.2 Communication ..15
2.5.3 USB device classes...16
2.5.4 WinUSB ...16

2.6 Character set ...17
2.7 Development tools..19

3 Designing the device ...21
3.1 Device definition ..21
3.2 Component selection ..21
3.3 Circuit design..22

3.3.1 Power block ..22
3.3.2 Display columns ...23
3.3.3 Memory and buttons...25
3.3.4 Microcontroller...26
3.3.5 Display rows ...27
3.3.6 Universal Serial Bus ...28
3.3.7 Serial Peripheral Interface ..28

3.4 Printed circuit board ...29
4 Software for microcontroller...30

4.1 Microcontroller configuration ..30
4.2 Program overview ..31
4.3 Memory overview ..37

4.3.1 Memory write procedure ..38
4.3.2 Memory read procedure..40

4.4 Display..41
4.5 Universal Serial Bus ...42

5 Windows application ..44
6 User guide..46
7 Price summary ..48
8 Conclusion ...49
9 References..50
10 List of acronyms ...52
11 Appendices ..53

7

1 Introduction

Electronic devices presenting information in text form are widely used all over the

world. Ranging from large colorful screens alongside city roads to tiny one-character

displays, these devices are used on different kinds of places for advertising, time-telling, latest

information update and many more. The technologies used in them vary with respect to the

device working environment and the desired performance.

The goal of this thesis is to have a look at current market solutions dealing with

electronic information cards, an original design of one and a practical implementation. Our

main concern will be given to devices with active displays. The implementation will be based

on an existing LED matrix display designed by Department of microelectronics, FEEC, BUT

and a Microchip PIC microcontroller.

Usage of such device is intended on conferences and similar events, either as a general

name tag or a gift from the host. This sets out two basic parameters of the device: low cost

and light weighted. The device is expected to be paid for by the event sponsor so part of the

device is to be designed so that it can carry the sponsor’s advertisement.

The paper covers theoretical background regarding current market possibilities,

electrical device design, assorted peripheral overview and character set topic. Then, the

implementation is undertaken one step at a time covering the device definition, component

selection and circuit design. The next steps include designing the firmware of the device and

an application for PC. At the end, a user guide is available.

8

2 Theoretical background

Nowadays, the easiest way to find a product on the market is to look it up using a web

search engine on the Internet. By searching the term “electronic information card”, “electronic

name badge” or “electronic nametag” it can quickly determined that most of the currently sold

name tags come from various Chinese manufacturers and the prices range from 15 USD to 40

USD per piece.

 Figure 1: Electronic name badge by PromoTagZ [1]

Performance of these devices is very much determined by their price. The cheapest

devices can only hold one character string [2] of 120 characters while other devices

implement microphone, GPS and radio communication module [3], [4]. Table 1 shows some

of current possibilities when looking for an electronic information card. It is clear that features

of such a device can vary from very few to many making the device quite complex.

 Figure 2: Electronic name badge for Hitachi employees [4]

9

Table 1: Some of current market possibilities regarding electronic information cards

Manufacturer – Model Features

PromoTagZ – LED Badge [1] • 8 message storage capacity (250 characters per
message)

• 4 Button On-Board Message programming
• 168 LEDs
• Weight cca 30 grams
• Size: 8 cm × 4,2 cm × 6 mm
• Display size: 7.3 cm × 1.2 cm
• CR 2032 battery, lasts up to 45 hours

Unknown – AC-263 [2] • 1 message of 120 characters
• Weight: 33 g without battery
• Size: 79 × 42 × 7 mm
• Display size: 73 × 15 mm
• 147 LED
• 4 levels of speed to display
• Data communication: input by hand
• One CR2032 or two CR2016 battery
• Operation time: about 20 hours

Hitachi - AirLocation Tag-w [3,4] • Wi-Fi
• RFID
• emergency message function
• Price: $178
• Designed for tracking employee movement

within corporate area

2.1 Designing a device

When designing an electrical device, follow a set of rules and ways should be

followed [5]. It begins with the device definition which means defining basic function of the

device, its parameters and operation. Then there is design including component selection,

theoretical design on block level and its verification (calculations and computer simulation),

circuit level design, printed circuit board, mechanical parts and overall electrical and

mechanical design.

The next steps include manufacturing PCBs and mechanical parts, soldering, first

power-up, software design and programming (if needed), testing and completion. Once the

device prototype is functional and corresponding with client’s requests, the process moves to

creating device documentation and release design for mass production. In this report we will

go through all of these steps with an exception to the last one.

10

2.2 Displays

There are two basic types of displays – active and passive. As for active displays, the

visual information being presented is provided by generation of light while passive displays

provide us with information presented by modulation of light. Various types of displays are

based on various physical effects.

LED displays, as they consist of a number of LEDs, are based on the

electroluminescence effect. That means that if a forward voltage is applied on the diode

generating forward current, electrons and holes entering the area of the p-n junction on

different energy levels will recombine and release a photon. This photon has energy

proportional to the energy difference and it varies with material used. One of the parameters

of an LED is its color which is defined by the energy of the photon. Nowadays, it is possible

to manufacture LEDs of almost any color in the visible part of electromagnetic spectrum and

beyond (particularly in the infrared spectrum which is used in optical communications). When

put together into a matrix, LEDs can prove as a nice, simple and highly performing display

that is easy to drive.

Information on such a display can be presented and updated in series piece by piece,

not all at once. Well known example of this behavior is a CRT monitor. This technology

utilizes a human eye persistence of vision which is the phenomenon of the eye by which an

afterimage is thought to persist for approximately one twenty-fifth of a second on the retina

[6]. CRTs may sometimes be seen to flicker, often in a brightly lit room, and at close viewing

distances. This effect is due to the greater likelihood that part of the screen will occupy the

viewer's peripheral vision, where sensitivity to flickering is greater. Generally, a refresh rate

of 85 Hz or above (as found in most modern monitors) is sufficient to minimize flicker at

close viewing distances, and all recent computer monitors are capable of at least that rate.

2.2.1 LED matrix display

The display used in this project is an LED matrix display consisting of 8 rows and 32

columns resulting in a total of 256 LEDs. There are several aspects to driving a matrix

display. If the persistence of vision is utilized it is possible to turn on one row or one column

at a time which for example gives us the possibility to adjust the brightness of the display in

software by adjusting the frequency of the switching.

11

The easiest way to drive a matrix display is to drive both columns and rows directly

from the microcontroller. This approach requires significant amount of wires to interconnect

the microcontroller with the display but it is the easiest one to design software for.

Another approach is to use some kind of multiplex, either for driving columns or rows

or both of them. This way, the amount of interconnections is smaller but the complexity of the

software is higher. To drive the matrix display, four 8-channel multiplexers (16-or-more-

channel multiplexers have too many outputs that cancel out the use of multiplexer to simplify

the circuit) for the columns can be used. If the microcontroller can access the information on

how to create desired image on the display, then the information passed into these

multiplexers would have to be encoded which increases the complexity of the software. A

whole workaround would have to be created to work this way.

Another way to drive a matrix display is by using serial-to-parallel shift registers. If

four 8-bit registers connected in series, a 32-bit information and a clock signal has to be

supplier that will move this information trough the registers. This way, the 32 columns can be

driven quite easily.

There is also a technique called Charlieplexing [7] (proposed by Charlie Allen in

1955) which pulls the number of interconnections of a direct driving to absolute minimum

(see figure 3). Driving a higher number of LEDs requires complementary drive and a tri-state

logic I/Os. The idea is that if LED1 wants to be turned on, Pin 1 needs to be set to H, Pin 2 to

L and Pin 3 to Z (high impedance). To light up another LED, statuses of at least two of these

pins need to be changed. This becomes even more complicated if larger amount of LEDs in

place thus becoming a useless principle.

Figure 3: Charlieplexing 6 LEDs

12

2.3 Microcontroller unit (MCU)

An MCU is a small computer on a single integrated circuit containing a processor

core, memory and programmable input/output peripherals. Program memory in some form is

often included on the chip, as well as a typically small amount of RAM. In this project, we

will work with an 8-bit MCU by Microchip. For its operation, MCU requires a clock signal

that can be brought from outer circuitry or from an internal oscillator.

Each MCU has its own instruction set that can be found in the device’s datasheet. An

instruction is a built-in functionality of an MCU and by combining instructions, programs are

created. It is quite difficult to design large and complex programs in this kind of code so

another way has been invented. The program can be created in a higher level programming

language (such as C) and then compiled into the lower form by using a suitable compiler

(more on this topic in section 1.7 Development tools).

2.3.1 Program

Usually, there are two phases when running a microcontroller – a setup phase and a

continuous executive phase. In the setup phase, MCU is setup by the program to correctly

interface with the surrounding circuitry and its peripherals are brought to required state. In the

on going executive phase, program is usually “stuck” in a never ending loop. In this loop, the

program is doing what it has been designed to do (driving a display, managing buttons,

communicating with other devices, etc.).

There are asynchronous events that happen rarely or occasionally (such as

communication inquiry from another device or in some cases a press of a button). These

events may not be caught up in the program main loop. Instead, MCUs are designed in a way

that if such an event occurs, the execution of the main loop is halted and the event is brought

to attention. This is called an interrupt. Every MCU family handles interrupts a little bit

differently but the main idea is as follows. When an interrupt occurs, the current state of

execution is saved and begins execution of an interrupt handler. Interrupt handler is a routine

(also called Interrupt Service Routine or ISR) that takes care of whatever aspect caused the

interrupt to happen. When this routine finishes, the program loads the state of execution and

continues. From the logic of it, it is quite clear, that ISR can not execute time-consuming

pieces of code. A good way to execute a longer piece of code is to setup a flag in the ISR and

pick this flag up in the main loop after the ISR is over and the main loop continues.

13

2.3.2 Peripherals

There are several key peripherals implemented in every MCU. These may include

timers, communication interfaces (USB, UART, SPI, I2C, Ethernet), analog-to-digital

converters, pulse width modulators, real-time clock, analog comparators and others.

Timers are quite important peripherals. There are 8-bit and16-bit timers available in

Microchip 8-bit microcontrollers. Timer is a register that holds a value which is incremented

on raising edge of the system clock signal (that is why they are also called counters). Some

timers have a prescaler that scales down the timer’s input clock. A prescaler is basically

another counter that is connected between the system clock and the timer and it generates

output impulse when overflowed.

To communicate with other devices such as a PC, there are several communication

interfaces implemented. One way to create a physical communication layer between a PC and

an MCU is to use UART which is a hardware implementation of RS-232 standard (or so-

called Serial port on a PC). Since Serial port is no longer a common interface on a PC, it is

possible to use an RS-232 to USB converter, such as FT232. But this involves implementing

another IC into the circuit which is not cheap. Microchip implements USB interface directly

into some of their MCUs so advantage is taken of this feature.

SPI stands for Serial Peripheral Interface and it is a synchronous serial data link

standard named by Motorola that operates in full duplex mode [8, 9]. Devices communicate in

master/slave mode where the master device initiates the data transfer. Multiple slave devices

are allowed with individual slave select (chip select) lines. SPI can be used in conjunction

with SPI enabled memories or other serial devices.

2.4 Memory

To store user data in an electronic device, a memory chip has to be implemented. Most

of the available MCUs have a built-in internal memory but this memory is not of a big

capacity. In our device, the request stands at storing at least 200 strings of at least 50

characters. The actual size of these data is dependent on encoding but it can assumed that one

character will take at least 1 byte of memory resulting in a total of 10 000 bytes. MCU

internal memories are not this big. Thus an external memory has to be provided.

There are several types of memory for storing user data in an MCU based device. The

most common one is an EEPROM (Electronically Erasable Read Only Memory) which is a

14

type of memory that allows its entire contents to be electrically erased and then rewritten

electrically, so that it needs not to be removed from the device. It is a non-volatile memory,

which means that it can hold data when power is not connected. That is a desirable behavior.

Microchip manufactures an SPI enabled EEPROM which is the one that will be used.

2.5 Universal Serial Bus

USB stands for Universal Serial Bus and it is probably the most common serial bus in

the world of personal computers. It was designed and it is promoted and supported by USB

Implementers Forum which consists of some of the world leading companies (Apple,

Microsoft, Intel, etc.) [10]. Current highest version is 3.0 but it is not too spread yet since the

specification was released on November 17 2008 and the first USB 3.0 certified consumer

products hit the market in January 2010. Table 2 shows USB version and their specifications.

Table 2: Main versions of USB and some of their specifications (for full specification visit http://usb.org)

USB 1.0/1.1 • Version 1.0 released in January 1996
• data rates of 1.5 Mbps (Low-bandwidth) and 12 Mbps (Full-bandwidth)
• version 1.1 released in September 1998

o fixed top problems in 1.0
o the earliest version to be widely adopted

• “Low-speed” since the release of 2.0

USB 2.0 • released in April 2000
• “High-speed” bandwidth of 480 Mbps
• Backward compatible with 1.1
• Several connectors

o Plug A, plug B
o Mini-A, Mini-B (October 2000)
o Micro-USB (April 2007)

USB 3.0 • Released in November 2008
• “Super-speed” bandwidth of 5.0 Gbps
• Different connectors but compatible (older plug can be put into 3.0

receptacle)

2.5.1 USB 2.0 Overview

USB is designed to establish communication between a host (usually PC, root hub)

and a device or devices (peripherals). The role of root system software is to provide a uniform

view of IO system for all applications software. It hides hardware implementation details so

that application software is more portable. The USB IO subsystem manages the dynamic

attach and detach of peripherals. This phase, called enumeration, involves communicating

15

with the peripheral to discover the identity of a device driver that it should load, if not already

loaded. The device holds this information in so-called descriptors. A unique address is

assigned to each peripheral during enumeration to be used for run-time data transfers. During

run-time the host PC initiates transactions to specific peripherals, and each peripheral accepts

its transactions and responds accordingly. Additionally the host PC software incorporates the

peripheral into the system power management scheme and can manage overall system power

without user interaction [11].

Besides the obvious role of providing additional connectivity for USB peripherals, a

hub provides managed power to attached peripherals. It recognizes dynamic attachment of a

peripheral and provides at least 0.5 W of power per peripheral during initialization. Under

control of the host PC software, the hub may provide more device power, up to a maximum of

2.5 W, for peripheral operation. A newly attached hub will be assigned its unique address, and

hubs may be cascaded up to seven levels deep (including the root hub). During run-time a hub

operates as a bi-directional repeater and will repeat USB signals as required on upstream

(towards the host) and downstream (towards the device) cables. The hub also monitors these

signals and handles transactions addressed to itself. All other transactions are repeated to

attached devices. A 2.0 hub supports both 2.0 and 1.1 peripherals: 480 Mbps (high-speed), 12

Mbps (full-speed) and 1.5 Mbps (low-speed). [11]

All USB peripherals are slaves that obey a defined protocol. They must react to

request transactions sent from the host PC. For example, the peripheral responds to control

transactions that requests detailed information about the device and its configuration. The

peripheral sends and receives data to/from the host using a standard USB data format. This

standardized data movement to/from the PC host and interpretation by the peripheral gives

USB its enormous flexibility with little PC host software changes. [11]

2.5.2 Communication

USB device communication is based on pipes (logical channels). A pipe is a

connection from the host controller to a logical entity, found on a device, and named an

endpoint. Because pipes correspond 1-to-1 to endpoints, the terms are sometimes used

interchangeably. A USB device can have up to 32 endpoints: 16 into the host controller and

16 out of the host controller. The USB standard reserves one endpoint of each type, leaving a

theoretical maximum of 30 for user use [11].

16

Endpoints are grouped into interfaces and each interface is associated with a single

device function. An exception to this is endpoint zero, which is used for device configuration

and which is not associated with any interface.

The USB architecture comprehends four basic types of data transfer [11]:

• Control Transfer: Used to configure a device at attach time and can be used for other

device-specific purposes, including control of other pipes on the device.

• Bulk Data Transfer: Generated or consumed in relatively large quantities and has wide

dynamic latitude in transmission constraints.

• Interrupt Data Transfer: Used for timely but reliable delivery of data, for example,

characters or coordinates with human-perceptible echo or feedback response

characteristics.

• Isochronous Data Transfer: Occupies a prenegotiated amount of USB bandwidth with

a prenegotiated delivery latency. (Also called streaming real time transfers.)

A pipe supports only one of the types of transfers described above for any given

device configuration.

2.5.3 USB device classes

Most USB devices have much in common with other devices that perform similar

functions. All mice send information about mouse movements and button clicks. All drives

transfer files. All printers receive data to print and send status information back to the host.

When a group of devices or interfaces share many attributes or provide or request similar

services, it makes sense to define the attributes and services in a class specification. The

specification can serve as a guide for developers who design and program devices in the class

and for programmers who write device drivers for host systems that communicate with the

devices. Operating systems can provide drivers for common classes, eliminating the need for

device vendors to provide drivers for devices in those classes [12].

2.5.4 WinUSB

WinUSB is a Windows generic driver for devices that do not fit into any defined USB

class. The driver was introduced with Windows Vista and is also usable on Windows XP

systems but not usable on earlier Windows editions [13]. It supports control, bulk, and

17

interrupt transfers. Its advantage is no need of knowledge how to write drivers on developer’s

part which significantly speeds up development.

Microchip has designed its C18 microcontrollers to work with the WinUSB driver as

well as “Microchip USB stack” which is a ready-to-use pack of code files in C programming

language.

2.6 Character set

ASCII is a character encoding scheme and it is the base for text communication. It is a

7-bit encoding resulting in 128 characters that include 33 non-printing control characters, 94

printable characters and a space [14], [15], [16]. Localized character sets are based on ASCII

and they add another 128 characters to it evolving into 8-bit encoding.

Table 3: ISO 8859-2 character set in hexadecimal designation

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x NOT IN USE

2x SP * ! " # $ % & ' () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~
8x

9x NOT IN USE

Ax NBSP* Ą ˘ Ł ¤ Ľ Ś § ¨ Š Ş Ť Ź SHY* Ž Ż
Bx ° ą ˛ ł ´ ľ ś ˇ ¸ š ş ť ź ˝ ž ż
Cx Ŕ Á Â Ă Ä Ĺ Ć Ç Č É Ę Ë Ě Í Î Ď
Dx Đ Ń Ň Ó Ô Ő Ö × Ř Ů Ú Ű Ü Ý Ţ ß
Ex ŕ á â ă ä ĺ ć ç č é ę ë ě í î ď
Fx đ ń ň ó ô ő ö ÷ ř ů ú ű ü ý ţ ˙

* SP – space, NBSP – non-breaking space, SHY – soft hyphen

To be able to process Czech diacritics a system has to use one of the encodings that

support Czech characters. There are several of these and none of them is the official one. The

chosen encoding has to be taken into consideration both in the device and in the PC

application. There are vast discussions on the Internet as to what encoding should be used and

why. The Internet Assigned Numbers Authority (entity that oversees various resource

18

allocations) prefers ISO 8859-2 encoding as an encoding for Eastern-European languages [15]

so this is the one that will be used. As a result, each character will be encoded in one byte.

The space in table 3 between 0x81 and 0x9F is often used for various special

characters that often appear in real life such as Greek letters, currency symbols, basic math

characters, etc.

Figure 4: Standard ASCII character set [17]

Figure 5: Standard ISO 8859-2 character set [17]

The display size allows us to use standard character resolution of 5 × 7 dots per one

character (5 dots wide and 7 dots high). Figure 4 shows standard ASCII character set and

19

figure 5 shows expansion to standard ISO 8859-2. The eighth row of the display can be used

to improve the visual features of the font when displaying capital characters with diacritics.

Porting the entire font to fit 8 rows for standard ASCII characters will result in undesirable

character deformation.

2.7 Development tools

To program the microcontroller, the Microchip MPLAB ICD2 programmer/debugger

will be used in conjunction with Microchip MPLAB IDE v8.43 (current version at the time of

the beginning of this project) development environment. The program will be designed in C

programming language and Microchip’s MPLAB® C Compiler for PIC18 MCUs will be used

to compile it. Figure 6 shows how to connect application board with the ICD2 programmer.

To design the circuit and printed circuit board, CadSoft Eagle 4.16 will be used. The

university owns a license but it is also available as freeware for non-profit applications. The

freeware version is called “Light Edition” and it only supports two signal layers and usable

board area is limited to 100 × 80 mm which should be satisfying for the needs of this project.

Figure 6: Connecting target application board to MPLAB ICD2 programmer/debugger [18]

20

To design a Windows program, Microsoft Visual Studio 2008 will be used which is

available on the MSDNAA portal. The program will be designed as a .NET Winform

application. .NET is a framework designed and supported by Microsoft for developing

powerful Windows applications. The only aspect that could be thought of as a disadvantage is

the need of .NET framework on user computer. But since .NET is included by default in

Windows Vista and 7 operating systems, it is part of Windows XP service packs and it is

widely used by various third party Windows applications, it is safe to build an application on

it.

Nowadays, the selection of electronic devices is quite simplified by easy-to-use

selection tools on the websites of device distributors [19], [20]. They can provide a very good

top-level search results. The actual selection is, of course, based on a closer look at the

device’s properties.

21

3 Designing the device

3.1 Device definition

The device will be an electronic name tag thus having proportions as a regular paper

name tag, meaning its size should be roughly 10 cm wide and 5 cm high. Its operation will be

as such: a user will connect the device to a computer with Windows operating system via

USB and uploads certain amount of data into the device by means of a piece of software that

will be designed as well. The data will be consequently available to the user to display on the

device.

There will be four buttons to operate the device placed in two pairs on each side of the

device. The device will be powered by two button cell batteries. Since the weight of the

batteries is quite unbalanced to the weight of the rest of the hardware, it needs to be kept in

mind when designing the PCB. The front side of the PCB is to be without components other

than display and buttons so that an advertisement of an event sponsor can be put here.

The device will be able to display selected text in various lengths of at least fifty

characters and be able to store at least two hundred of these text strings reflecting usage as a

nametag on events where the entire database of event participants will be uploaded to the

device at once and each participant will select their name later on.

3.2 Component selection

The device will be an assembly of two boards – a board with LED matrix display and

a main board with the rest of the circuitry. The LED matrix requires two sides of PCB to be

used and if incorporated into the main board, there will not be enough room for other

components or the size of the main board would have to be expanded which is not desirable.

This way, the size of the main board is determined only by the circuitry itself. The LED board

will be simply placed on top of the main board with an insulation layer in between and

soldered on the edges.

The heart if the device will be a PIC microcontroller which will control the display

and buttons and will communicate with a PC via USB. The device will be able to draw power

from the USB when connected; otherwise it will be powered by two coin cell batteries. Figure

7 shows component schema of the device.

22

Figure 7: Component scheme of the device

3.3 Circuit design

For complete circuit design see appendix A.

3.3.1 Power block

Since the device is supposed to be portable, the only way to power the device is by

batteries. There will be two coin cell batteries is parallel to provide longer working period.

CR2032 is a standard lithium coin cell battery rated at 3.0 V with capacity ranging from up to

350 mAh. When the device is connected to PC via USB, it is possible to draw power from

USB. Figure 8 shows how to prevent the device from drawing power from batteries when

connected to USB.

Transistor Q9 is a P-channel MOSFET with ultra low on-resistance and high source

current (IRLML6401) and IC2 is LDO regulator (MCP1825S). When USB is disconnected,

regulator output node is on the same potential as GND and Q9 is switched on. Ultra low on-

resistance means that the drain-to-source resistance is very low in this state (RDS(on) = 0.05 Ω)

thus creating virtually none voltage dropdown to VDD. Continuous source current of the

MOSFET is 1.3 A. When the device is connected, regulator output node is at VLDO = 3.3 V

and D2 forward voltage is VF = 0.3 V, resulting in 3.0 V at VDD. The regulator output is

connected with the MOSFET gate and since potential of this node is higher than the one of

23

MOSFET source, the transistor will switch off thus preventing from drawing power from the

batteries.

Figure 8: Power supply block

3.3.2 Display columns

The type of LED used on the matrix display is KP-1608 SRC which is a super bright

red LED. Figure 9 shows relative luminous intensity of this LED. Experiments have shown

that brightness of these LEDs is sufficient at very low forward currents, specifically values

around 2 - 4 mA.

For driving the display, it has been decided to use the approach utilizing shift registers,

specifically 74HC595, logic symbol in figure 10. This device is an 8-bit serial-in, parallel-out

shift register with output latches capable of operation at supply voltage as low as 2 V and of

sourcing or sinking current up to 35 mA on the parallel outputs. When the information is

shifted in on the DS (serial data input) pin, an impulse on ST_CP (storage register clock

24

input) has to be sent to write the information into the parallel output latches. Then, when

OE (output enable) is brought low, the information is available on the Q0 – Q7 parallel

outputs. Q7’ is a serial output and it is connected to the DS pin of the next register.

Figure 9: KP-1908 SRC super bright red LED: relative luminous intensity (IR) vs. forward current (IF),

relative value at IF = 20 mA [24]

Figure 10: Logic symbol of 74HC595 shift register [25]

By connecting four of these registers in series, we get a 32-bit parallel output which is

a perfect fit for 32 columns of our display. The idea is to shift 32-bit information into the

registers, then move this information into parallel output latch. This will present logical 1 and

25

will be connected to the anodes of the LEDs. Each row of the display will be separately

controlled and connected to ground when the information in the latch registers is ready. That

way, the column information has to be shifted out eight times to present information on the

entire display and every time, appropriate row needs to be switched on. If the rows are

switched frequently enough, image on the LED matrix will appear to be displayed (see

chapter 1.2 Display).

To set the forward current of the LEDs, there has to be a resistor connected in series.

To calculate the value of the resistor, the forward voltage (VF) and the forward current (IF) of

the LED need to be known as well as the supply voltage, which is determined by supply

voltage of the shift registers which is determined by the supply voltage of the system which is

VDD = 3 V. The forward current and the related luminous intensity apply when continuous

current is provided. Since each row will be swithed separately, the actual work period of each

row is one eighth of the display working period. Thus, the forward current has to be adjusted:

mAmAII FF 24388 1 =⋅=⋅= (1)

But this value is only theoretical; the actual one depends on the charge of the batteries

and on the actual implementation of the LED. Then the resistor needed in series has a value of

Ω≈
−

=
−

= 48
024,0

85,13

F

FDD

I

VV
R (2)

Resistors of this value do not exist in common resistor sets; the closest value is 47 Ω.

3.3.3 Memory and buttons

As discussed in chapter 1.4 Memory, an external memory needs to be provided to

store user data. The memory capacity is defined by the amount of data it needs to hold. When

using the ISO 8859-2 encoding, one character is represented by one byte. The device is

supposed to hold at least 200 text strings of at least 50 characters each resulting in a total of

10 000 bytes. 25AA256 is a 256 kb (32 kB) SPI enabled EEPROM which suits our needs.

The memory electronically consists of 64-byte pages. When writing to the memory, it

is possible to write one byte or one page at a time. Page boundaries start at addresses that are

integer multiple of 64. When writing a page, it is possible to start on any address but when the

write cycle hits the end of the page, it will automatically continue writing from the beginning

of the page. It is useful that the page size is if 64 B. This can be uses that to our advantage so

26

that every user data entry starts on a new page. Since the memory size is 32 kB, each byte is

addressed by a 16b address. The 64-byte page system provides an ideal way of storing 512

text strings of 64 characters each.

Figure 11: Two ways of connecting a button with microcontroller: a) standard, b) internal pull-up on pin

Four buttons are provided to operate the device. There are two ways of connecting

buttons with an MCU (see figure 11). The standard one requires additional resistor providing

logical 1 to input pin when switch is off. In the other one, the pull-up is built it the MCU

itself.

3.3.4 Microcontroller

To select the appropriate MCU, we will have a look at Microchip’s website [21]. The

requirements are:

• Application voltage 2.5 – 3 V

• 28 general I/Os (8 for display rows, 5 for 74HC595, 4 for EEPROM, 4 for buttons, 4

for USB, 3 for programming) resulting into 44-pin package

• USB interface

• SPI interface

27

The search results offer 5 microcontrollers which differ in the size of program

memory, ranging from 16 kB to 128 kB, and other insignificant features. Based on previous

experience, the PIC18F46J50 with 64 kB of program memory is chosen. It is the flag ship of

the 18F46J50 microcontroller family.

3.3.5 Display rows

When looking at the electrical characteristics of the MCU, it can be seen that

maximum current sunk/sourced by PORTB and PORTC is 25 mA per pin and only 4 mA for

pins of PORTA, PORTD and PORTE which means that it can not be connected to display

rows directly to the MCU. The correct way to do this is to put transistor in between to work as

electronic switch. Setting up the transistor’s operation point is as follows.

The maximum current that can flow through the collector is current pooled from all of

the LEDs in one row:

mAmAII FC 768243232 =⋅=⋅= . (3)

This value is, again, theoretical. All 32 LEDs in one row would have to be switched on

which never happens during normal operation since characters will be separated by a one-

column space. Then the current flowing through base is

E

C

B
h

I
I

21

= [A], (4)

where h21E is DC current gain (also called hFE or β) and it is to be found in the

transistor datasheet as one of its parameters. Then the value of the base resistor:

E

C

BEDD

B

BEDD

RB

RB

B

h

I

VV

I

VV

I

V
R

21

−
=

−
== [Ω], (5)

VRB – voltage across the resistor,

IRB – current flowing through the resistor,

VBE – transistor base-to-emitter voltage dropdown, typically VBE = 0.65 V.

28

Transistor BC817-40 has a high collector current and high DC current gain

(hFE = 300), the calculated value of the resistor is:

Ω≈
−

= 918

300

768,0
65,03

B
R (6)

The value of the resistor is going to be RB = 1 kΩ.

3.3.6 Universal Serial Bus

Typical USB cable consists of 4 wires – VBUS, D+, D- and GND. The VBUS lead

provides power to the connected devices, D+ and D- are data lines and GND provides

common ground reference.

The 18F46J50 USB peripheral requires the following pins to be connected for the

peripheral to work. D+ and D- connected with corresponding bus lines, the VSS pins

connected to USB bus GND line and VUSB pin connected to 3.0 – 3.6 V (ideally 3.3 V)

voltage reference and locally bypassed to common ground with a capacitor of at least 100 nF

capacity. If the device is dual powered (e.g. by the USB bus and by batteries), there has to be

a sense pin determining USB attached state of the device. For this reason, a pair of resistors is

provided on the VUSB line as a voltage divider.

3.3.7 Serial Peripheral Interface

The SPI interface of the microcontroller is used in two ways – for providing

information to the shift registers and for communication with the external EEPROM.

Connection with the shift registers requires 5 lines: serial data out, serial clock, a line for

transferring the information into the output latches (storage register clock), master reset and

output enable. For the SPI interface to work, serial data out and serial clock lines have to be

connected to corresponding I/O pins, the other lines can be connected to any other I/O.

When connecting the EEPROM with the MCU, at least 4 lines are required. The actual

number of lines is dependent on how the memory is used and whether one or more physical

memory chips are used. The SPI bus can operate with a single master device and with one or

more slave devices. A chip select line is required for each slave device and only one slave

device can be active at a time. The other lines are serial data out, serial data in and clock

signal. From the master’s point of view, serial out is connected to serial in on the memory

chip and vice versa. Other I/O pins on the memory chip include write protect, hold and power

29

supply pins. Write protect pin represents one of several ways of preventing accidental writes

into the memory. Hold pin allows master to pause communication to the memory chip. Both

pins can be connected to VDD permanently if neither of these functionalities is desirable.

3.4 Printed circuit board

When designing the printed circuit board, it needs to be kept in mind that the weight of

the batteries is considerable with respect to the other parts of the PCB. It also needs to be kept

in mind that the front side of the device is to be without any components besides the display

and the buttons. The top and bottom layer of the PCB can be found in appendices B and C,

respectively.

For the purposes of this project, the main board should be as light as possible, so the

thickness of the base material should be as low as possible but, on the other hand, it needs to

be able to withstand some mechanical strain when connecting and disconnecting USB cable

or changing batteries. The way to decide the thickness would be to manufacture several PCBs

with different thickness, test them in working environment and then decide.

The PCB for this project will be manufactured by a domestic PCB producer

PragoBoard s.r.o. This company offers a cheep way for manufacturing prototype PCBs called

“Pool service”. There are two aspects where the prototype PCB will differ from the design

and one of them is the thickness of the main board. Since PCB manufacturing is preceded by

a lot of support work, it would be very expensive to do all of it for just one PCB so there are

several standards set up for the Pool service which include the thickness of the manufactured

PCB to be 1.5 mm.

The second aspect is the programming connector which is designed to fit the ICD2

receptacle. If the device is released for mass production, the programming will be done by

pads taken out to the very edge of the main board and a suitable programming dock. The

overall design of the PCB is shown in appendices C and D and photographs of the board in

appendix E. The dimensions of the PCB are 103.5 × 55.2 mm. For purposes of this project,

the display board is mounted on the main board via SIP sockets.

30

4 Software for microcontroller

As discussed earlier, Microchip MPLAB IDE in conjunction with Microchip MPLAB

ICD2 is used to program the microcontroller. The code itself will be written in C

programming language and compiled by MPLAB® C Compiler for PIC18 MCU (MCC18).

4.1 Microcontroller configuration

The software design starts with setting up the MCU to fit its surrounding circuitry.

This can be done by setting up the configuration word (also called configuration bits or fuses).

Fuses are control registers that can only be set during programming. When using the MCC18

compiler, fuses are introduced by the #pragma directive and keyword “config”.

Because of very unique requirements of the USB module for stable clock source, the

clock source block of the 18F46J50 is more complicated than with USB not-enabled devices.

USB module requires clock input of either 48 MHz (for full-speed device) or 6 MHz (for low-

speed device). The device will be designed to comply with full-speed specification. The

PIC18F46J50 clock diagram is shown in figure 12. It is not necessary to use a 48 MHz

external oscillator though. The MCU is equipped with a 96 MHz PLL and a postscaler with

48 MHz output. The PLL requires a 4MHz input and it is equipped with a 1 – 12 prescaler so

that it is possible to use external oscillators of various frequencies. Internal oscillator can not

be used for USB module because it is not stable enough so an external oscillator of fOSC = 20

MHz is provided.

There are three ways to get MCU core (also called CPU) clock. Either the 48 MHz for

USB module can be taken and divided further or internal or secondary external oscillator can

be used. It is not desirable to use another external oscillator and internal oscillator only

generates frequencies up to 8 MHz which means the USB clock will be used.

To set up the oscillator block, PLLDIV (controlling the PLL prescaler) and OSC

(controlling oscillator mode selection) need to be set accordingly:

#pragma config PLLDIV = 5

#pragma config OSC = HSPLL

OSC register controls oscillator source for the PLL block as well as for the CPU. The

next step is setting up the clock source division for the CPU:

#pragma config CPUDIV = OSC3_PLL3

31

Figure 12: PIC18F46J50 clock diagram [23]

CPUDIV sets CPDIV and OSCON registers. This means that system primary

oscillator frequency (external oscillator of 20 MHz) is divided by 5 to get a 4MHz input clock

for PLL generating 96 MHz which is subsequently divided by 2 to get 48 MHz clock for USB

module. This value is also taken to the CPU prescaler and it is divided by 3 resulting in

16 MHz CPU clock.

4.2 Program overview

Several global variables need to be defined during initialization of the system to hold

various runtime values. If the value of a variable is going to be changed within the interrupt

routine, it is necessary to prefix its definition with “volatile” modifier. This tells the compiler

32

not to optimize usage of this variable. Compilers are made to “assume” that a value of a

variable can not change on its own, which is exactly what happens during ISR from the main

program point of view.

Table 4: List of some of the global variables used in program referred to in the text:

Variable Size, description

unsigned char word_on_disp[64] 8 b, holds string currently being displayed

unsigned long dispBuffer[8]
32 b, holds data retrieved from charSet for
currently used string

unsigned long buff
32 b, holds data retrieved from dispBuffer for
currently selected row

unsigned char moveNowOneBitToLeft
8 b, indicates it is time to move displayed
string one bit to left (set up by timer)

When defining larger amount of variables, the compilation may result in an error

saying that it is not possible to fit all variables into the selected memory block. MCU memory

is split into several blocks called banks or databanks. When not explicitly defined, compilers

use the first bank and when they run out of space, an error is issued. To fix this, linker file

specified in build options needs to be edited. All available databanks are listed with defined

start and end addresses and a name. Part of linker file for PIC18F46J50:

DATABANK NAME=gpr0 START=0x60 END=0xFF

DATABANK NAME=gpr1 START=0x100 END=0x1FF

DATABANK NAME=gpr2 START=0x200 END=0x2FF

DATABANK NAME=gpr3 START=0x300 END=0x3FF

DATABANK NAME=gpr4 START=0x400 END=0x4FF

DATABANK NAME=gpr5 START=0x500 END=0x5FF

DATABANK NAME=gpr6 START=0x600 END=0x6FF

DATABANK NAME=gpr7 START=0x700 END=0x7FF

DATABANK NAME=gpr8 START=0x800 END=0x8FF

DATABANK NAME=gpr9 START=0x900 END=0x9FF

DATABANK NAME=gpr10 START=0xA00 END=0xAFF

DATABANK NAME=gpr11 START=0xB00 END=0xBFF

DATABANK NAME=gpr12 START=0xC00 END=0xCFF

SECTION NAME=USB_VARS RAM=gpr12

SECTION NAME=CHARSET_DATA RAM=gpr11

SECTION NAME=VARS RAM=gpr10

SECTION NAME=CONVERSION RAM=gpr9

33

When defining a large variable, for example the character set, it is necessary to

allocate this variable in a separate databank. To tell the compiler where to put the variable,

a section in the linker file needs to be created and #pragma udata [section name] directive

used in code to apply the allocation.

The main idea of how the correct data for display are retrieved is as follows. The

character set (as described in chapter 1.6) is going to be saved in two-dimensional array:

unsigned char charSet[224][8]

The idea is to keep 8 5-bit words reflecting 8 rows and 5 pixel width of each character.

Since there are no 5-bit variable types, an 8-bit one (unsigned char) needs to be used. The first

index of the variable is designation of a character while the second index is designation of

selected row. The number 224 comes from the number of characters encoded by ISO 8859-2

from which the first 32 unused characters are subtracted. The content of this variable has to

comply with the ISO 8859-2 table of characters.

When accessing a value from this array, only the character desired and the row

information are needed.

charSet[(unsigned char)'A' - 32]

This will return 8 bytes of data and if printed out in a suitable way, the following is

obtained:

0 0 0 0 0 0 0 0 byte 1

0 0 0 0 0 1 0 0 byte 2

0 0 0 0 1 0 1 0 byte 3

0 0 0 1 0 0 0 1 byte 4

0 0 0 1 0 0 0 1 byte 5

0 0 0 1 1 1 1 1 byte 6

0 0 0 1 0 0 0 1 byte 7

0 0 0 1 0 0 0 1 byte 8

This way, any character in the character set can be easily accessed as long as all parts

of the system dealing with encoding remain compliant. User data in the ISO 8859-2 encoding

will be send to the device and stored in the EEPROM. When a text string is required to be

displayed a variable word_on_disp will be filled with corresponding data.

For the user to operate the device, four buttons of different functions are provided. To

make the operation easy, the buttons have the following functionalities: Enter, Escape, Move

34

next, Move previous. From the user’s point of view, the device can be in four different states

or menu levels. A push of a button causes setting a change menu level flag and sets the new

state. The states and the operation of the device from user’s point of view are described in

table 5.

Table 5: List of device states

State Description

0 Welcome state – “Welcome” on display.
If no user data present, Escape button causes to display “No data”.
If user data present, Enter or Escape button causes to switch to state 1.

1 Selection state – a letter of English alphabet is displayed.
Enter button causes to switch to state 2.
Next and Previous buttons cause change of letter.

2 Search state – search for desired character string based on current letter.
Next and Previous buttons cause change of string.
Escape button causes to switch to state 1.
Enter button causes to switch to state 3.

3 Display state – displaying selected character string indefinitely
Escape button causes to switch to state 1.

Even though user data can contain other than English alphabet characters, the selection

state only supports these. It would be very long if support for all of the characters of

ISO 8859-2 encoding was made. A conversion table between these sets is provided for the

search. When ‘A’ is selected in selection state, search state will provide all of user data strings

beginning with ‘A’, ‘Á’, ‘Ą’, ‘Â’, ‘Ă’, ‘Ä’ and likewise for other characters. To represent

non-letter characters, symbol ‘#’ has been implemented.

When entering state 2 and no user data is compliant with selected character, “No data”

is displayed. It is possible to go to selection state by pressing the Escape button.

In the program main loop, displaying characters on the display needs to be processed

as well as managing buttons and USB requests. Figure 13 shows the program workflow setup

phase and figure 14 shows the loop phase.

Several internal variables are set up when the device powers up for the very first time.

That is checked by reading the third byte in the EEPROM. The setup of internal variables

include writing the first power-up byte and “Welcome” and “No data” strings into the

EEPROM, setting currently selected flag to zero and setting no data flag.

35

There are also asynchronous events processed by the interrupt routine. These include

USB interrupts and timer interrupts. Timer 0 is used for displaying selected string on the

display (see chapter 3.4).

Figure 13: Program workflow diagram – setup phase

36

Figure 14: Program workflow diagram – loop phase

37

4.3 Memory overview

 For the device to work independently on current power state, various states of the

device and variables are going to be stored in the EEPROM. Table 6 shows organization of

the first page of EEPROM.

Table 6: First page of EEPROM overview

Variable description Physical address Name in the program

High byte of address of last user-selected
string

0x00 lastUsedAddH

Low byte of address of last user-selected
string

0x01 lastUsedAddL

High byte of address of currently user-
selected string

0x02 currentlyUsedAddH

Low byte of address of currently user-selected
string

0x03 currentlyUsedAddL

Byte signaling the very first device power-up 0x04 firstPowerUpAdd

0x01 if user has selected a string to display or
0x00 if user has not selected one

0x05 currentSelectedAdd

Since the EEPROM capacity is 32 kB, all bytes are addressed by a 16-bit address. To

store this address, it has to be written one byte at a time. Communication with the EEPROM

is determined by its instruction set (table 7). There is a STATUS register reflecting the status

of the memory array. All communication is on MSB-first basis.

Table 7: 25AA256 instruction set [26]

Instruction name Instruction format Description

READ 0000 0011
Read data from memory array beginning at
selected address

WRITE 0000 0010
Write data to memory array beginning at
selected address

WRDI 0000 0100
Reset the write enable latch (disable write
operations)

WREN 0000 0110
Set the write enable latch (enable write
operations)

RDSR 0000 0101 Read STATUS register

WRSR 0000 0001 Write STATUS register

38

On the MCU side of the communication procedure, Master Serial Synchronous Port is

configured as an SPI master interface which consists of a serial receive/transmit buffer

register SSP1BUF and a shift register SSP1SR which is not directly accessible. When a byte

is written to SSP1BUF, it is automatically written to SSP1SR as well and clocked out. At the

time of shifting out, another byte is clocked into the SSP1SR and rewritten to SSP1BUF when

shifting in is over. The state of SSP1BUF is indicated by BF (buffer full) bit of SSP1STAT

register. Before any other writing into SSP1BUF, the register has to be read.

First four pages of the memory will be allocated for internal usage, resulting in 508

pages available for user text strings.

4.3.1 Memory write procedure

As it has been said before, it is possible to write one byte or one page (64 bytes) of

data at a time. The write procedure is as follows:

1. Pull chip select low

2. Issue a WREN instruction

3. Pull chip select high

4. Pull chip select low

5. Issue WRITE instruction

6. Issue a 16-bit address

7. Issue data byte

8. Pull chip select high

At point 4, it is possible to continue issuing up to 64 bytes of data. For the data to be

actually written to the array, it is necessary to bring chip select high after the last byte has

been clocked in. It also takes some time (maximum of 5 ms, [26]) to complete the internal

write cycle after the chip select pin has been brought high. During this period, it is not

possible to access the data in the memory array but it is possible to read the STATUS register.

The WIP (Write-In-Progress, STATUS<0>) bit indicates the EEPROM is busy with write

operation. When set to logical 1, a write is in progress. It is a read-only bit.

It has been observer that if an interrupt occurs when communicating with the

EEPROM, an error occurs. Thus, prior to any attempt for communicating with the memory,

all interrupts will be disabled. Following these rules, the program write procedure for writing

64 bytes of data into the EEPROM is as follows:

39

1. Disable GIE (Global Interrupt Enable)

2. Pull chip select low

3. Read dummy from SSP1BUF (just to make sure it is empty)

4. Write WREN instruction into SSP1BUF

5. Wait till BF is set (indicating that the byte has clocked sent)

6. Read dummy byte from SSP1BUF

7. Pull chip select high

8. Pull chip select low

9. Write WRITE instruction to SSP1BUF

10. Wait till BF is set

11. Read dummy byte

12. Write address high byte to SSP1BUF

13. Wait till BF is set

14. Read dummy byte

15. Write address low byte to SSP1BUF

16. Wait till BF is set

17. Read dummy byte

18. Write data byte to SSP1BUF

19. Wait till BF is set

20. Read dummy byte

21. Repeat 18, 19, 20 sixty three times.

22. Pull chip select high

23. Read STATUS register

24. Wait till WIP is 0 by reading the STATUS register over and over again

25. Enable GIE

When writing only one byte into the memory field, skip item 21.

Reading the status register procedure:

1. Read dummy byte from SSP1BUF

2. Write RDSR instruction to SSP1BUF

3. Wait till BF is set

4. Read dummy byte

40

5. Send dummy byte

6. Wait till BF is set

7. Read from SSP1BUF

Since the STATUS register is read when a write procedure is in progress, it is not

necessary to disable/enable GIE.

4.3.2 Memory read procedure

To read 64 bytes from the EEPROM memory field a 64-byte buffer (pageOfData) is

needed. The idea is to send a READ instruction, the address and then keep sending dummy

data to clock in the data from the memory. The procedure for retrieving 64 B of data from SPI

EEPROM is as follows:

1. Disable GIE

2. Pull chip select low

3. Read dummy from SSP1BUF (just to make sure it is empty)

4. Write READ instruction to SSP1BUF

5. Wait till BF is set

6. Read dummy byte

7. Write address high byte to SSP1BUF

8. Wait till BF is set

9. Read dummy byte

10. Write address low byte to SSP1BUF

11. Wait till BF is set

12. Read dummy byte

13. Write dummy byte to SSP1BUF

14. Wait till BF is set

15. Read byte from SSP1BUF and assign it to pageOfData

16. Increment pageOfData index

17. Write dummy byte

18. Wait till BF is set

19. Repeat 15, 16, 17, 18 sixty three times

20. Pull chip select high

21. Enable GIE

41

When reading only one byte from the memory field, skip item 19.

4.4 Display

There are two ways of displaying text – static and non-static (or moving). Displaying

static text is only used in the selection state of the device when only one character of English

alphabet is displayed. A variable called showStatic has been implemented to hold

information about whether or not to present static text. This variable is set to 1 when entering

selection stage; otherwise it is set to 0.

When only static text is shown, variable dispBuffer holds the same value trough the

entire time before the displayed text is changed. When moving text is shown, it is necessary to

update this variable periodically so that it holds correct data. For the display to present ideal

visual information, the period of switching rows and moving the text has to be precise and in

sync. Thus, it can not be handled in the main loop but it has to be handled by a timer. Timer 0

is a 16-bit timer/counter to which a prescaler can be assigned. When the timer overflows the

interrupt flag is set and two events handled. One of them is refreshing the display (switching

the rows), the other one relates to moving the text (changing the value in dispBuffer) if

allowed by showStatic. When this is triggered, a flag called moveNowOneBitToLeft is set to

1 and it is caught up later in the main loop.

The text movement is quite a long procedure thus it can not be handled in ISR. Several

variables are used: one indicating the position of the text on display, another indicating the

end of the text, and another one indicating character index of the text. When

moveNowOneBitToLeft is set to 1, the movement procedure is run in the main loop and works

as follows. The existing information in dispBuffer is shifted to left by one bit and another

bit of information is added into its place for each row. This bit is masked out from the

corresponding byte in charSet using a nested index of text on display and current character.

The SPI interface is used to clock out information into the shift registers. Prior to

switching on a new row, the current one has to be switched off so that no unwanted effects on

the display occur. That is done by pulling OE pin of the registers high. Then the row is

changed and correct 32-bit information is retrieved from dispBuffer. Then the information is

clocked out 8 bits at a time using similar procedure to writing into EEPROM. Then an

impulse has to be sent on the ST_CP line so that the information is moved to the output

latches. The last step is switching the row on which is done by pulling OE low.

42

4.5 Universal Serial Bus

Setting up the USB module is very complicated so Microchip provides so-called “USB

stack” which is a ready-to-use pack of code files in C for quick application development.

When implemented, several adjustments are needed:

HardwareProfile.h – USB bus sense configuration and system clock frequency

usb_descriptors.c – Product string descriptor and maximum power consumption

Otherwise, the pack is ready to be used. One endpoint and one buffer handler for each

direction is set up with 64-byte buffers (INPacket and OUTPacket). The buffers can be only

accessed when the corresponding USB handler is not working with them. More information

on buffer ownership can be found in [23]. The names of the buffers comply with the direction

of the data transfer from the point of view of the USB host. If the host sends a packet of data

to the endpoint OUT buffer, the USB peripheral hardware will automatically receive it and

store the data. Additionally, the endpoint handler will indicate that the endpoint is no longer

busy and the data can be accessed.

The communication between the host PC and the device is directed by the first byte in

the transfer. The list of commands and the corresponding actions are listed in table 8. In the

PC program, several actions are possible (see chapter 4) and various commands are sent to the

device. The commands are standard ASCII control characters.

Table 8: List of commands and corresponding action taken by the MCU

Command Description and/or action

0x02 Start of text (STX) – the following bytes are user data till End of text (0x03)
0x05 Enquiry (ENQ) – send firmware version to host
0x07 Bell (BEL) – respond with ACK (0x06)
0x11 Device control 1 (DC1) – memory reset
0x12 Device control 2 (DC2) – send all user data to host
0x13 Device control 3 (DC3) – send number of records in user memory to host
0x14 Device control 4 (DC4) – send available memory to host

When STX is received the following bytes are stored into another buffer and written to

EEPROM. “Sending” information back to the host is done by writing into INPacket and

assigning the handler to state of write which results in taking ownership of the endpoint buffer

and writing into it the content of INPacket. The quotes are in place because the device can

43

not send anything to the host. The information is only presented in the USB module I/O

buffer for the host to read which will happen the next time the endpoint is polled by the host.

In the main loop, there is a check (USB_SENSE) whether the device is attached or not

to the USB bus and appropriate action is taken. The action is handled by the USB stack.

The buffer size defines the amount of data that is possible to send to and from the

device at once. Since there has to be a control character at the very beginning of the packet

and a termination character indicating the end of user defined text string, it is possible to send

maximum of 62 bytes of user data at a time thus defining the maximum length of the user text

string.

44

5 Windows application

A .NET Winform application has been designed to manage the device from Windows

based PC. The main purpose of this application is to load data into the device, clear its

memory or load the data from the device into the PC. When connected to PC, the device is

recognized as a WinUSB device and appropriate driver is installed. Then, the application can

be run. It comes with LibUsbDotNet library [22] which can access the device. In the operating

system and all of its applications, the device is always shown as a “Microchip WinUSB

device”. USB devices are not directly accessible from the application environment; work with

them is done via their drivers. The library provides support for writing and reading from the

driver.

Figure 15: Supporting Windows application

When the application is started, a search for connected devices has to be issued. It is

possible for several devices to be connected to the host PC but only one device can be

communicated to at a time. The list of accessible devices is shown and it is necessary to select

45

one before proceeding. When a device is selected, the application will try to open the device –

i.e. establish one IN and one OUT endpoint. All important events are logged in the text box

designated “Log”, some information is presented in the application status bar.

The application is capable of opening and reading Microsoft Office Excel files

(version 2003 and 2007 as these are the most common ones) and text files. Reading an Excel

file is done via OLE-DB Windows API and it is necessary that an appropriate version of MS

Office or MS Office expansion pack is installed on the user computer otherwise the API is not

available. Reading text files is not underlined with any conditions.

When the list is not empty, it is possible to send it to the device or save it as a text file.

Sending the data to the device or downloading them from the device is indicated by the

progress bar. When sending is finished, it is possible to disconnect the device and use it. Items

of the list can be added via opening files or by adding them directly by hand. Local context

menu on the list provides delete operations on the list and matching alphabetical order of the

items. Under the main menu Help option, an HTML help file is available.

Sending the list items to or downloading them from the device is done one by one.

Each text string is prefixed with STX byte and suffixed with ETX byte. It is possible for the

items in the list to be of 62 characters in length. This is determined by the size of the buffer

which is 64 bytes but the prefix and the suffix need to be taken into consideration. A longer

text strings will be automatically shortened and the user will be notified via the log.

46

6 User guide

When the device is turned on for the very first time, there is no user data in memory

and the device is showing “Welcome!” on the display. The control buttons are: Escape (top

left), Enter (bottom left), Next (bottom right), Previous (top left). If the Escape button is

pressed at this point, ‘No data” will be shown on the display.

Connect the device to a Windows based computer and run the InfoCard Loader

application. It does not matter whether you first connect the device or run the application. In

the application, the “Find devices” button has to be hit and then the required device has to be

selected in the list below. If no devices are found, a warning message is shown in the

application status bar. By selecting the device in the list, the application connects to the device

and it is possible to start using it. If an attempt is made to communicate with the device

without it being selected in the list, an error will be shown.

The “Open file” button allows user to open a file in supported format. Supported file

formats are Microsoft Office Excel 2003 and 2007 (*.xls, *.xlsx), text files (*.txt). When

opened, the content of the file is loaded into the list on the right. It is possible to add items to

the list manually by double clicking on the row marked * or by using the “Add text” button.

Content of the item can be up to 62 characters long. When trying to add text longer than 62

characters, the application will automatically downsize the text and issues a warning in the

log. It is possible to upload 508 items into the device.

When the application is connected to the device, it is possible to:

• Upload the content of the list into the device

• Download the content of user memory from the device (if any)

• Get system information from the device

• Delete user memory in the device

Uploading, downloading and file opening progress are indicated by the progress bar.

A log is provided to keep track of the operation. Application help is available under

the main menu Help option or by pressing F1.

47

When user data is uploaded to the device, the device can be disconnected from the

computer. At this point, it is still showing the welcome screen. By pressing the Escape button,

the device enters its menu and letter ‘A’ is displayed. At this point, it is possible to use the

Next and Previous buttons to display other letters. If the Enter button is pressed, a search is

done for user data starting with the selected letter. Only letters with no diacritics are available

but the search results return all corresponding characters. If no user data is found, “No data”

appears on the screen. To return to the alphabet menu, press Escape.

When a letter is selected, it is possible to browse the corresponding user records by

Next and Previous buttons. By pressing Enter when chosen text is being displayed, the

selection is confirmed and it is no longer possible to browse the data. This state of the device

is considered to be the working state in which the device stays most of the time. To return to

the alphabet menu, press Escape.

48

7 Price summary

The price of the device is summed up in table 9.

Table 9: Device cost breakdown (17/05/2011)

Component Price [CZK]

Display (FEEC, BUT) 450

SMD and THT components ([19], bulk buy) 323

Main board (PragoBoard, s.r.o, 10 boards) 236

Batteries 25 × 2

Total 1059

To this price, the cost of soldering, testing and software developing should be added.

For purposes of this project, this is omitted. Usually, it is not possible to buy components by

one piece but to buy them in bulk. The price has been adjusted to fit the number of

components actually used but bought in bulk. The price of the PCB can differ based on the

number of boards ordered. This value has been calculated on a base of ordering 10 boards

with solder mask, HAL and screen printing.

49

8 Conclusion

The device has been designed according to assignment. From the user’s point of view,

the device is a battery powered electronic information card that consists of and LED display

capable of showing various user defined text strings and buttons for easy operation.

Resolution of the display is 32 × 8. The main application of this device is usage as a nametag.

For this reason, the main board of the device is equipped with two holes and the device can

hold up to 508 character strings (names) each of 62 characters long in its internal memory.

The data are loaded via computer application.

The device is a high-speed WinUSB device and when connected to the computer, it

requires the WinUSB driver which is included in Windows XP SP2 and higher versions of

Windows operating systems. An application is provided to communicate with the device

when connected. The application is designed to load data into the device as well as to retrieve

them from the device.

When user data is present in the device’s memory, it is possible to browse them using

a simple menu and the buttons. The data is stored in an SPI enabled EEPROM. Information

on the display is presented by using four 8-bit shift registers with output latches. The USB

module is powered by an external oscillator on the hardware side and Microchip USB stack

on the software side. The device is capable of drawing power either from two coin cell

batteries or, when connected, from USB. The heart of the device is MCU PIC18F46J50.

The price of the prototype is calculated to 1059 CZK when ordering 10 boards and

ordering components by bulk. The device has been tested and when powered by two coin cell

batteries Energizer CR2032 (240 mAh, [30]), it will work continuously for 4 hours.

50

9 References

[1] Deluxe flashing scrolling LED Name [online]. 2007 [cit. 2011-05-15]. Available:

http://www.kustomxpress.com/Deluxe-LED-Name-Badge-p/bdg-pro-rd-r.htm

[2] Led name card [online]. 2009 [cit. 2011-05-15]. Available:
http://www.tradett.com/products/u26520p158406/led-name-card-led-name-badge.html

[3] Hitachi's worker tracking tags [online]. 2007 [cit. 2011-05-15]. Available:
http://www.engadget.com/2007/06/26/hitachis-worker-tracking-tags/

[4] Hitachi's employee-tracking AirLocation II Tag-w WiFi-enabled RFID tags [online].
2006 [cit. 2011-05-15]. Available: http://www.m-
indya.com/shownews.php?newsid=2081

[5] Návrh elektronických přístrojů [online]. 2009 [cit. 2011-05-15]. Available:
http://www.umel.feec.vutbr.cz/mnen/Files/kap_5.pdf

[6] Persistence of vision [online]. 2011 [cit. 2011-05-15]. Available:
http://en.wikipedia.org/wiki/Persistence_of_vision

[7] Charlieplexing LEDs- The theory [online]. 2011 [cit. 2011-05-15]. Available:
http://www.instructables.com/id/Charlieplexing-LEDs--The-theory/

[8] SPI - Overview and Use of the PICmicro Serial Peripheral Interface [online]. 2002
[cit. 2011-05-15]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf

[9] Introduction to Serial Peripheral Interface [online]. 2002 [cit. 2011-05-15]. Available:
http://www.eetimes.com/discussion/beginner-s-corner/4023908/Introduction-to-Serial-
Peripheral-Interface

[10] USB.org - Documents [online]. 2011 [cit. 2011-05-15]. Available:
http://www.usb.org/developers/docs/

[11] A Technical Introduction to USB 2.0 [online]. 2011 [cit. 2011-05-15]. Available:
www.usb.org/developers/whitepapers/usb_20g.pdf

[12] AXELSON, Jan. USB Complete: Everything You Need to Develop Custom USB

Peripherals. Madison WI, USA: Lakeview Research, 2005. 572 p.

[13] WinUSB (Windows Driver Kit) [online]. 2011 [cit. 2011-05-15]. Available:
http://msdn.microsoft.com/en-us/library/ff540196.aspx

[14] ISO 8859-2 Character Set [online]. 1996 [cit. 2011-05-15]. Available:
http://nl.ijs.si/gnusl/cee/charset.html

[15] Proč právě ISO-8859-2? [online]. 1997 [cit. 2011-05-15]. Available:
http://www.cestina.cz/whyISO.html

[16] ISO/IEC 8859-2 [online]. 2011 [cit. 2011-05-15]. Available:
http://en.wikipedia.org/wiki/ISO/IEC_8859-2

51

[17] PDK-USB3-XXXXXX VF POS Pole Display Kit: Installation and operating

instructions [online]. 2002 [cit. 2011-05-15]. Available:
www.ieeinc.com/specs/PDK_USB3_INOPML_REVA.pdf

[18] Using MPLAB ICD2 [online]. 2005 [cit. 2011-05-15]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/51265g.pdf

[19] TME Electronic components [online]. 2011 [cit. 2011-05-15]. Available:
http://www.tme.eu/cz/

[20] Farnell [online]. 2011 [cit. 2011-05-15]. Available: http://cz.farnell.com/

[21] Product Selector Tool [online]. 2011 [cit. 2011-05-15]. Available:
http://www.microchip.com/productselector/MCUProductSelector.html

[22] LibUsbDotNet C# USB Library [online]. 2011 [cit. 2011-05-15]. Available:
http://sourceforge.net/projects/libusbdotnet/

[23] PIC18F46J50 Family Data Sheet [online]. 2005 [cit. 2011-05-15]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/39931b.pdf

[24] KPT-1608 Datasheet [online]. 2011 [cit. 2011-05-16]. Available:
http://www.datasheetcatalog.org/datasheets2/61/612074_1.pdf

[25] 74HC595 8-bit serial-in, serial or parallel-out shift register with output latches
[online]. 2003 [cit. 2011-05-16]. Available:
http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf

[26] Microchip 25AA256 256K SPI™ Bus Serial EEPROM [online]. 2005 [cit. 2011-05-
17]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/21822D.pdf

[27] HRBÁČEK, Jiří. Moderní učebnice programování PIC : 2. díl. Praha : Technická
literatura BEN, 2007. 144 p. ISBN 978-80-7300-137-7

[28] WILMSHURST, Tim. Designing Embedded Systems with PIC Microcontrollers:

Second Edition: Principles and Applications. Oxford, UK: Elsevier Ltd., 2010. 662 p.
ISBN 978-1-85617-750-4

[29] IBRAHIM, Dogan. Advanced PIC microcontroller projects in C: from USB to

ZIGBEE with the PIC18F Series. Oxford, UK: Elsevier Ltd., 2008. 545 p. ISBN 978-
0-7506-8611-2

[30] Energizer CR2032 [online]. 2011 [cit. 2011-05-17]. Available:
http://data.energizer.com/PDFs/cr2032.pdf

52

10 List of acronyms

ASCII – American Standard Code for Information Interchange, character encoding scheme

based on English alphabet

C – Programming language C

EEPROM – Electronically Erasable Read Only Memory

ETX – End of text, ASCII control byte (0x03)

FEEC, BUT – Faculty of electrical engineering and communication, Brno University of

Technology

GIE – Global Interrupt Enable

GND – ground node

ICSP – In-circuit serial programming

IDE – Integrated Development Environment

ISR – Interrupt service routine

LDO – Low drop-out regulator

LED – Light emitting diode

MCU – Microcontroller unit

MCC18 – MPLAB® C Compiler for PIC18 MCU

MSDNAA – Microsoft Developer Network Academic Alliance

PCB – Printed circuit board

SPI – Serial Peripheral Interface

STX – Start of text, ASCII control character (0x02)

USB – Universal Serial Bus

53

11 Appendices

Appendix A – Full electric schema

Appendix B – List of components

Appendix C – Printed circuit board

Appendix D – Component assembly

Appendix E – Photographs

D S

Appendix A: Full electric schema

100u

GND

GND

GND

GND

GND

GND

GND
GND

74HC595D

74HC595D

74HC595D

74HC595D

25AA256

DISP256/0603

BC817-40

BC817-40

BC817-40

BC817-40

BC817-40

BC817-40

BC817-40

BC817-40

V
D

D

V
D

D

V
D

D

V
D

D

PB1725 PB1725 PB1725 PB1725

100n

10n

1
0

k

1
0

k

1
0

k

1
0

k

C
R

2
0

3
2

S

C
R

2
0

3
2

S

100n

100n100n

IR
L

M
L

6
4

0
1

PIC18F46J50/45J504PQ

1
5

p
F

1
5

p
F

GND

GND

MCP1825S

B
K

2
1

2
5

H
S

4
7

0
-T

10u 100u

GND
GND

1Meg

2
0

M
H

z

4
7

0
n

F

GND

1
0

k

V
D

D

1u

GND

100n

10u

GND

V
D

D

1
0

0
k

V
D

D

GND

GND

68k

STPS2L40U

C10

QB
1

QC
2

QD
3

QE
4

QF
5

QG
6

QH
7

SCL
10

SCK
11

RCK
12

G
13

SER
14

QA
15

QH*
9

8
1
6

IC3P

G
N

D
V

C
C

QB
1

QC
2

QD
3

QE
4

QF
5

QG
6

QH
7

SCL
10

SCK
11

RCK
12

G
13

SER
14

QA
15

QH*
9

8
1
6

IC4P

G
N

D
V

C
C

QB
1

QC
2

QD
3

QE
4

QF
5

QG
6

QH
7

SCL
10

SCK
11

RCK
12

G
13

SER
14

QA
15

QH*
9

8
1
6

IC5P

G
N

D
V

C
C

QB
1

QC
2

QD
3

QE
4

QF
5

QG
6

QH
7

SCL
10

SCK
11

RCK
12

G
13

SER
14

QA
15

QH*
9

8
1
6

IC6P

G
N

D
V

C
C

8
4

CS
1

SO
2

HOLD
7

SCK
6

SI
5

WP
3 VCC

GND

IC7

K7
K7

K1
K1

K8
K8

K5
K5

K2
K2

K6
K6

K3
K3

K4
K4

LED_DISP_8X32

A
1

A
1

K
8
2

K
8
2

K
8
3

K
8
3

K
8
4

K
8
4

K
8
5

K
8
5

K
8
6

K
8
6

K
8
7

K
8
7

K
8
8

K
8
8

K
8
9

K
8
9

K
8
1
0

K
8
1
0

K
8
11

K
8
11

K
8
1
2

K
8
1
2

K
8
1
3

K
8
1
3

K
8
1
4

K
8
1
4

K
8
1
5

K
8
1
5

K
8
1
6

K
8
1
6

K
8
1
7

K
8
1
7

K
8
1
8

K
8
1
8

K
8
1
9

K
8
1
9

K
8
2
0

K
8
2
0

K
8
2
1

K
8
2
1

K
8
2
2

K
8
2
2

K
8
2
3

K
8
2
3

K
8
2
4

K
8
2
4

K
8
2
5

K
8
2
5

K
8
2
6

K
8
2
6

K
8
2
7

K
8
2
7

K
8
2
8

K
8
2
8

K
8
2
9

K
8
2
9

K
8
3
0

K
8
3
0

K
8
3
1

K
8
3
1

K1*
K1*

K2*
K2*

K3*
K3*

K4*
K4*

K5*
K5*

K6*
K6*

K7*
K7*

K8*
K8*K

8
1

K
8
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
7

A
7

A
6

A
6

A
8

A
8

A
9

A
9

A
11

A
11

A
1
0

A
1
0

A
1
2

A
1
2

A
1
3

A
1
3

A
1
4

A
1
4

A
1
5

A
1
5

A
1
6

A
1
6

A
1
7

A
1
7

A
1
8

A
1
8

A
1
9

A
1
9

A
2
0

A
2
0

A
2
1

A
2
1

A
2
2

A
2
2

A
2
3

A
2
3

A
2
4

A
2
4

A
2
5

A
2
5

A
2
6

A
2
6

A
2
7

A
2
7

A
2
8

A
2
8

A
2
9

A
2
9

A
3
0

A
3
0

A
3
1

A
3
1

A
3
2

A
3
2

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

1
2
3
4
5

3 1
24

BTN1

3 1
24

BTN2

3 1
24

BTN3

3 1
24

BTN4

R21
R22
R23
R24
R25
R26
R27
R28

R29
R30
R31
R32
R33
R34
R35
R36

R37
R38
R39
R40
R41
R42
R43
R44

R13
R14
R15
R16
R17
R18
R19
R20

R8

R1

R2

R3

R4

R5

R6

R7

C3

C11

R
4

7

R
9

R
1

0

R
11

+
-

U
$

1

+
-

U
$

2

C1

C2C5

J
1

1

Q
9

MCLR
18

OSC1/CLKI/RA7
30

AN0/C1INA/ULPWU/PMA6/RP0/RA0
19

AN1/C2INA/PMA7/RP1/RA1
20

AN2/VREF-/CVREF-/C2INB/RA2
21

AN3/VREF+/C1INB/RA3
22

AN10/PMBE/RTCC/RP4/RB1
9

AN8/CTEDG1/PMA3/VMO/REFO/RP5/RB2
10

AN9/CTEDG2/PMA2/VPO/RP6/RB3
11

AN4/SS1/HLVDIN/RCV/RP2/RA5
24

PMA1/KBI0/SCK1/SCL1/RP7/RB4
14

PMA0/KBI1/SDI1/SDA1/RP8/RB5
15

KBI2/PGC/RP9/RB6
16

KBI3/PGD/RP10/RB7
17

T1OSO/T1CKI/RP11/RC0
32

T1OSI/UOE/RP12/RC1
35

AN11/CTPLS/RP13/RC2
36

VUSB
37

PMD0/SCL2/RD0
38

PMD1/SDA2/RD1
39

PMD2/RP19/RD2
40

PMD3/RP20/RD3
41

PMD4/RP21/RD4
2

PMD5/RP22/RD5
3

PMD6/RP23/RD6
4

PMD7/RP24/RD7
5

AN5/PMRD/RE0
25

AN6/PMWR/RE1
26

AN7/PMCS/RE2
27

VDD
7

28

VSS
6

29

IC1

D-/VM/RC4
42

D+/VP/RC5
43

PMA5/TX1/CK1/RP17/RC6
44

PMA4/RX1/DT1/SDO1/RP18/RC7
1

OSC2/CLKO/RA6
31

AN12/INT0/RP3/RB0
8

VDDCORE/VCAP
23

VDD

VSS

C
4

C
6

VIN
1

VOUT
3

G
N

D
2

G
N

D
2

4

IC2

L
1

C7 C8

R12

X
2

C9

R
4

5

C12

C13

C14

R
4

6
P

$
1

P
1

P
$
2

P
2

P
$
3

P
3

R48

D2

RW[1..8]

COL1

COL1

COL8

COL9

COL16

COL17

COL24

COL25

COL32

COL32

ICSP_MCLR

ICSP_PGC
ICSP_PGD

MASTER_RESET

MASTER_RESET

OUTPUT_ENABLE

OUTPUT_ENABLE

ROW1

ROW1

ROW8

ROW8

RW1

RW1

RW8

RW8

SDI

SERIAL_DATA_OUT

SHIFT_REG_CLK

SHIFT_REG_CLK

STORAGE_REG_CLK

STORAGE_REG_CLK

SW1

SW4

VBAT

USBDP
USBDM

C
H

IP
_

S
E

L

3V3

3V3

USB_SENSE

+

A
rr

a
y

E
E

P
R

O
M

+ +

+

MCLR
VDD
GND

PGC
PGD

Appendix B – List of components

Part Value Device Package

BTN1 – BTN4 PB1725 PB1725

C1 – C3, C5, C13 100 nF SMD 1206

C4, C6 15 pF SMD 1206

C7 10 µF EIA 3528-21

C8, C10 100 µF EIA 3528-21

C9 470 nF SMD 1206

C11 10 nF SMD 1206

C12 1 µF SMD 1206

C14 10 µF EIA 3216-18

D2 STPS2L40U SMB

IC1 PIC18F46J50 MQFP44

IC2 MCP1825S SOT223

IC3 – IC6 74HC595D SO16

IC7 25AA256 SO08

J1 MTA06-100 10X06MTA

L1 BK2125HS470-T SMD 0805

LED_DISP_8X32 DISP256/0603

Q1 – Q8 BC817-40 SOT23

Q9 IRLML6401 MICRO3

R1 – R8 1 kΩ SMD 1206

R9 – R11 10 kΩ SMD 1206

R12 1 MΩ SMD 1206

R13 – R44 47 Ω SMD 1206

R45, R47 10 kΩ SMD 1206

R46 100 kΩ SMD 1206

R48 68 kΩ SMD 1206

SW1 ESP2010 ESP2010

U$1, U$2 CR2032S CR2032S

X1 MINI-USB-32005-201 32005-201

X2 Q 20.000MHZ SMD

Appendix C – Printed circuit board

Figure C1: Top conductive layer (dimensions are 103.5 × 55.2 mm)

Figure C2: Bottom conductive layer

Appendix D – Component assembly

Figure D1: Top component assembly (dimensions are 103.5 × 55.2 mm)

Figure D2: Bottom component assembly

Appendix E – Photographs

Figure E1: Top side of the device (dimensions are 103.5 × 55.2 mm)

Figure E2: Bottom side of the device

