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RANDOM SUBSPACE LEARNING (RASSEL) WITH DATA

DRIVEN WEIGHTING SCHEMES

MOHAMED ELSHRIF and ERNEST FOKOUÉ

Abstract. We present a novel adaptation of the random subspace learning approach

to regression analysis and classification of high dimension low sample size data, in
which the use of the individual strength of each explanatory variable is harnessed to

achieve a consistent selection of a predictively optimal collection of base learners. In

the context of random subspace learning, random forest (RF) occupies a prominent
place as can be seen by the vast number of extensions of the random forest idea and

the multiplicity of machine learning applications of random forest. The adaptation

of random subspace learning presented in this paper differs from random forest in
the following ways: (a) instead of using trees as RF does, we use multiple linear

regression (MLR) as our regression base learner and the generalized linear model

(GLM) as our classification base learner and (b) rather than selecting the subset of
variables uniformly as RF does, we present the new concept of sampling variables

based on a multinomial distribution with weights (success ’probabilities’) driven

through p independent one-way analysis of variance (ANOVA) tests on the predic-
tor variables. The proposed framework achieves two substantial benefits, namely,

(1) the avoidance of the extra computational burden brought by the permutations
needed by RF to de-correlate the predictor variables, and (2) the substantial reduc-

tion in the average test error gained with the base learners used.

1. Introduction

In machine learning, in order to improve the accuracy of a regression, or classifi-
cation function, scholars tend to combine multiple estimators because it has been
proven both theoretically and empirically [19, 20] that an appropriate combina-
tion of good base learners leads to a reduction in prediction error. This tech-
nique is known as ensemble learning (aggregation). In spite of the underlying
algorithm used, the ensemble learning technique most of the time (on average)
outperforms the single learning technique, especially for prediction purposes [21].
There are many approaches of performing ensemble learning. Among these, there
are two popular ensemble learning techniques, bagging [3] and boosting [7]. Many
variants of these two techniques have been studied previously such as random
forest [4] and AdaBoost [8] and applied in a prediction. Our proposed method
belongs to the subclass of ensemble learning methods known as random sub-
space learning. Given a dataset D = {zi = (x>i , yi)

>, i = 1, · · · , n}, where
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xi = (xi1, · · · , xip)> ∈ X ⊂ Rp and yi ∈ Y are realizations of two random vari-

ables X and Y respectively, we seek to use the data D to build estimators f̂ of the
underlying function f for predicting the response Y given the vector X of explana-
tory variables. In keeping with the standard in statistical learning theory, we will
measure the predictive performance of any given function f using the theoretical
risk functional given by

R(f) = E[`(Y, f(X))] =

∫
X×Y

`(x, y)dP (x, y), (1.1)

with the ideal scenario corresponding to the universally best function defined by

f̂∗ = arg inf
f
{R(f)} = arg inf

f
{E[`(Y, f(X))]} . (1.2)

For classification tasks, the default theoretical loss function is the zero-one loss
`(Y, f(X)) = 1{Y 6=f(X)}, for which the theoretical universal best defined in (1.2)
is the Bayes classifier given by f∗(x) = arg maxy∈Y {Pr[Y = y|x]}. For regression
tasks, the squared loss `(Y, f(X)) = (Y − f(X))2 is by far the most commonly
used, mainly because of the wide variety of statistical, mathematical and com-
putational benefits it offers. For regression under the squared loss, the universal
best defined in (1.2) is also known theoretically to be the conditional expectation
of Y given X, specifically given by f∗(x) = E[Y |X = x]. Unfortunately, the
aforementioned expressions of the best estimators cannot be realized in practice
because the distribution function P (x, y) of (X,Y ) defined on X ×Y is unknown.
To circumvent this learning challenge, one has to do essentially two foundational
things, namely: (a) choose a certain function class F (approximation) from which

to search for the estimator f̂ of the true but unknown underlying f , (b) specify
the empirical version of (1.1) based on the given sample D , an use that empirical
risk as the practical objective function. However, in this paper, we do not directly
construct our estimating classification functions from the empirical risk. Instead,
we build the estimators using other optimality criteria, and then compare their
predictive performances using the average test error AVTE(·), namely

AVTE(f̂) =
1

R

R∑
r=1

{
1

m

m∑
t=1

`(y
(r)
it
, f̂r(x

(r)
it

))

}
,

where f̂r(·) is the r-th realization of the estimator f̂(·) built using the training

portion of the split of D into training set and test set, and
(
x

(r)
it
,y

(r)
it

)
is the t-th

observation from the test set at the r-th random replication of the split of D . In
this paper, we consider both multiclass classification tasks with response space
Y = {1, 2, · · · , G} and regression tasks with Y = R, and we focus on learning
machines from a function class F whose members are ensemble learners.

Bootstrap Aggregating also known as bagging [3], boosting [9], random forests
[4], and bagging with subspaces [18] are all predictive learning methods based on
the ensemble learning principle for which the ensemble is built from the provided
dataset D and the weights are typically taken to be equal.

In this paper, we focus on learning tasks involving high dimension low sample
size (HDLSS) data, and we further zero-in on those datasets for which the number
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of explanatory variables p is substantially larger than the sample size n. As our
main contribution in this paper, we introduce, develop, and apply a new adapta-
tion of the theme of random subspace learning [14] using the traditional multiple
linear regression (MLR) model as our base learner in regression and the generalized
linear model (GLM) as a base learner in classification. Some applications by na-
ture posses few instances (small n) with large number of features (p≫ n) such as
fMRI [16] and DNA microarrays [2] datasets. It is hard for a traditional algorithm
to build a regression model, or to classify the dataset when it possesses a very small
instances to features ratio. The prediction problem becomes even more difficult
when this huge number of features are highly correlated, or irrelevant for the task
of building such a model, as we will show later in this paper. Therefore, we har-
ness the power of our proposed adaptive subspace learning technique to guide the
choice/selection of good candidate features from the dataset, and therefore select
the best base learners, and ultimately the ensemble yielding the lowest possible
prediction error. In most typical random subspace learning algorithms, the fea-
tures are selected according to an equally likely scheme. The question then arises
as to whether one can devise a better scheme to choose the candidate features for
efficiently with some predictive benefits. On the other hand, it is interesting to as-
sess the accuracy of our proposed algorithm under different levels of the correlation
of the features. The answer to this question constitutes one of the central aspect
of our proposed method, in the sense we explore a variety of weighting schemes for
choosing the features, most of them (the schemes) based on statistical measures of
relationship between the response variable and each explanatory variable. As the
computational section will reveal, the weighting schemes proposed here lead to
an improvement in predictive performance of our method over random forest on
most tested datasets because our framework leverages the accuracy of the learning
algorithm through selecting many good models (since the weighting scheme allows
good variables to be selected more often which leads to near optimal base learners).

2. Related work

Traditionally, in a prediction problem, a single model is built based on the training
set and the prediction is decided based solely on this single fitted model. How-
ever, in bagging, bootstrap samples are taken from the dataset, then, for each
instance, the model is fitted. Finally, the prediction is made based on the average
of all bagged models. Mathematically, the prediction accuracy for the constructed
model using bagging outperforms the traditional model and in the worst case it has
the same performance. However, it must be said that it depends on the stability
of the modeling procedure. It turns out that bagging reduces the variance without
affecting the bias, thereby leading to an overall reduction in prediction error, and
hence its great appeal. Any set of predictive models can be used as an ensemble
in the sense defined earlier. There are many ensemble learning approaches. These
approaches could be categorized into four classes: (1) algorithms that use hetero-
geneous predictive models such as stacking [22]. (2) algorithms that manipulate
the instances of the datasets such as bagging [3], boosting [9], random forests [4],
and bagging with subspaces [18]. (3) algorithms that maniplulate the features
of the datasets such as random forests [4], random subspaces [14], and bagging
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with subspaces [18]. (4) algorithms that manipulate the learning algorithm such
as random forests [4], neural networks ensemble [13], and extra-trees ensemble
[10]. Since our proposed algorithm manipulates both the instances and features
of the datasets, we will focus on the algorithms in the second and third categories
[3, 4, 14,18].

Bagging [3], or bootstrap aggregating is an ensemble learning method that gen-
erates multiple predictive models. These models are based on performing boot-
strap replicates of the learning (training) dataset and utilizing from each replicate
to build a separate predictive model. The bootstrap sample is attained through
randomly (uniformly) sampling with replacement from instances of the training
dataset. The decision is made based on averaging the predictor classifiers in re-
gression task and taking the majority vote in classification task. Bagging tend to
decrease the variance and keeps the bias as in the case of a single classifier. The
bagging accuracy increases when the applied learner is unstable, which means that
for any small fluctuation on the training dataset causes large impact on the test
dataset such as trees [3].

Random forests [4], is an ensemble learning method that averages the predic-
tion results from multiple independent predictor (tree) models. It also performs
bootstrap replicates, like bagging [3], to construct different predictors. For each
node of the tree, randomly selecting subset of the attributes. It is considered to
improve over bagging through de-correlating the trees. Choose the best attribute
from the selected subset. As [5] mentions that when building a random tree, there
are three issues that should be decided in advance; (1) the leafs splitting method,
(2) the type of predictor, and (3) the randomness method.

Random subspace learning [14], is an ensemble learning method that constructs
base models based on different features. It chooses a subset of features and then
learns the base model depending only on these features. The random subspaces
reaches the highest accuracy when the number of features is large as well as the
number of instances. In addition, it performs good when there are redundant
features on the dataset.

Bagging subspaces [18], is an ensemble learning method that combines both the
bagging [3] and random subspaces [14] learning methods. It generates a bootstrap
replicates of the training dataset, in the same way as bagging. Then, it randomly
chooses a subset from the features, in the same manner as random subspaces. It
outperforms the bagging and random subspaces. Also, it is found to yield the same
performance as random forests in case of using decision tree as a base learner.

In the simulation part of this paper, we aim to answer the following research
questions: (1) Is the performance of the adaptive random subspace learning (RSSL)
better than the performance of single classifiers? (2) What is the performance of
the adaptive RSSL compared to the most widely used classifier ensembles? (3) Is
there a theoretical explanation as to why adaptive RSSL works well for most of
the simulated and real-life datasets? (4) How does adaptive RSSL perform on dif-
ferent parameter settings and with various percentages of the instance-to-feature
ratio (IFR)? (5) How does the correlation between features affects the prediction
performance of the adaptive RSSL algorithm?
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3. Problem formulation

Thanks to its tremendous success in achieving accurate predictions on a wide vari-
ety of high dimensional datasets, the random forest algorithm has been the subject
of many recent studies, with many authors adapting the main idea or modifying
various aspects of how the base learners are constructed to further achieve greater
predictive performances. [11] for instance presents a recent application of random
forest in genomics with some modification on the original methodological used for
building the random forest ensemble. [6] used random forest for both gene selec-
tion and gene classification in DNA Microarray data, benefitting from the variable
importance measure that is offered as a byproduct of random forest. In recent
years, many studies have explored extensions and improvement of the original
random forest idea, some in a spirit similar to our present work like [23] who select
the features for the subspace using weights inspired by the relationship between
a given variable and the response. In the context of high dimensional response
(output) space, [15] is yet another interesting adaptation of random forest aimed
at attaining every greater predictive performances. [1] and [17] have also recently
proposed very interesting extension on the RF theme that seeks to further lower
the prediction error. Coming from a perspective similar to ours, even though their
base learners are still trees whereas we allow any type of base learner, [1] enriches
the RF ensemble by way of a random subspace selection that gives less weight to
weak features, i.e. features with weaker relationship with the response.

As stated earlier, our proposed method belongs to the category of random
subspace learning where each base learner is constructed using a bootstrap sample
and a subset of the original p features. The main difference here is that we use
base learners that are typically considered not to lead to any improvement when
aggregated. [4] and [3] for instance clearly states that linear discriminant analyzers
for instance cannot benefit from being bagged.

Some authors before use, like [23], in their recent work stratified sampling
for feature subspace selection in random forests for high dimensional data, have
weighted the trees comprising the random subspace ensembles. However, the
manner in which they implement data-driven weights in their stratified sampling
scheme is markedly different from our method. First and foremost, our proposed
approach is straightforward, intuitively appealing, easy to implement and compu-
tational very efficient compared to the other approaches. One key aspect of our
method lies in the fact that we select features using data-driven weighting schemes
that are functions of the individual strength of the relationship between each fea-
ture and the response (target). In fact, we conjecture that the way we construct
the subspace indirectly de-correlates the base learners and thereby contributes to
the substantial reduction in prediction error. Each base learner is driven by the

subset {j(l)
1 , · · · , j(l)

d } ⊂ {1, 2, · · · , p} of d variables of predictors that are randomly

selected according to a multinomial distribution to build it, and the subsample D (l)

drawn with replacement from D . Our proposed algorithm 1 code-named RASSEL
(Random Adaptive Subspace Ensemble Learner), in the spirit of random forest
and all other random subspace learning methods, consists of building an ensemble
of L base learners herein denoted GRASSEL = {ĝ(1), · · · , ĝ(l), · · · , ĝ(L)}, and forming
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Algorithm 1 Building an ensemble of L base learners with using RASSEL

Given D = {zi = (x>i , yi)
>, i = 1, · · · , n}, with x>i = (xi1, · · · , xip) and yi ∈ Y

Choose a base learner g(·)
Choose an estimation/learning method
Construct the weighting scheme π = (π1, · · · , πp) from the data
for l = 1 to L do

Draw with replacement D(l) = {z(l)
1 , · · · , z(l)

n } from D

Draw without replacement from {1, · · · , p} a subset V(l) = {j(l)1 , · · · , j(l)q } of q variables according

to a multinomial distribution with success probabilities (weighting scheme) π = (π1, · · · , πp).

Form the indicator vector γ(l) = (γ
(l)
j , · · · , γ(l)

p ) with

γ
(l)
j =

{
1 if j ∈ {j(l)1 , · · · , j(l)q }
0 otherwise.

(3.1)

Drop from D(l) all j /∈ V(l) and form D(l)(V(l)) = D(l)(γ(l))

Build the lth base learner ĝ(·,γ(l)) = ĝ(l) based on D(l)(V(l))
end for
Form the RASSEL ensemble GRASSEL

GRASSEL = {ĝ(1)
, · · · , ĝ(l)

, · · · , ĝ(L)}

The ensemble prediction function is given by

f̂
(L)

(·) =
1

L

L∑
l=1

ĝ
(l)

(·)

the ensemble prediction function as

f̂ (L)(·) =
1

L

L∑
l=1

ĝ(l)(·). (3.2)

Using the above ensemble GRASSEL =
{

ĝ(l)(·), l = 1, · · · , L
}

, we perform classifi-

cation by predicting the class membership of x∗ ∈X using the ensemble predicting
estimator

f̂ (L)(x∗) = arg max
y∈Y

{
L∑

l=1

(
1{y=ĝ(l)(x∗)}

)}
.

For regression tasks, given x∗ ∈X , we predict its corresponding response using

f̂ (L)(x∗) =
1

L

L∑
l=1

ĝ(l)(x∗).

After formulating the objective functions of our proposed framework, the next
step is to choose the weighting scheme and extract the dimension of the RASSEL
algorithm.

4. Data-driven weighting scheme for subspace construction

One of the most typical and most obvious ingredients in the above proposed al-
gorithm is the dimension d of the subspace. This is crucial, because its value has
a strong bearing on an important aspect of the ensemble, namely the correlation
among the base learners. [4] recommends using d = d√pe in classification and
d = dp/3e in regression, which both are reasonable in the n ≫ p setting. In
the n≪ p context, we find the following to be reasonable: (a) for classification
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Algorithm 2 Extracting Important variables for regression

Set d ≪ p, the number of variables to be drawn
for j = 1, · · · , p do

Compute rj = r(xj , y) = correlation(xj , y)
end for
Create the vector π = (π1, π2, · · · , πp)> where

πj = r
2
j/

p∑
j′=1

r
2
j′

so that 0 < πj < 1 and
∑p

j=1 πj = 1.

for k = 1, · · · , d do

Draw without replacement from a multinomial with probabilities π = (π1, π2, · · · , πp)>,
specifically
jk ∼ Multinomial(π1, π2, · · · , πp)

end for
Use the variables with drawn indices {j1, j2, · · · , jq} ⊂ {1, 2, · · · , p} as the basis of your
subspace.

d = min
(
dn/5e, d√pe

)
; (b) for regression d = min (dn/5e, dp/3e). See also the

work of [12]. It turns out that the ensemble prediction function of (3.2) has vari-

ance V
(
f̂ (L)(·)

)
= σ2ψ + (1−ψ)

L σ2, where L is the number of base learners, and

for l 6= l ′ with l , l ′ = 1, 2, · · · , L, ψ = correlation
(

ĝ(l)(·), ĝ(l′)(·)
)

represents the

correlation between two base learners, and for l = 1, · · · , L, σ2 = var
(
ĝ(l)(·)

)
.

It turns out that by using our weighting scheme that favors individually strong
variables, we end up reducing the correlation between base learners substantially,
which we conjecture helps achieve the competitive predictive performances we
noticed.

This is crucial step because it helps in selecting the best base learners. The
first and arguably most naturally way to weight variables in a regression analysis
context is their individual coefficient of determination. Given x1j , x2j , · · · , xnj and
y1, y2, · · · , yn, the so-called Pearson sample correlation coefficient is given by

rj = r(xj , y) =
1

n− 1

n∑
l=1

(
xlj − x̄j

sxj

)(
y` − ȳ

sy

)
.

For the univariate regression Yi = β0 + β1xij + εi, it is known that r2
j = R2

j ,
the coefficient of determination, measures the percentage of variation in Y that
is explained (captured) by Xj through the regression line. Therefore, given p
variables X1, X2, · · · , Xp in a linear regression setting/context, the variable Xj

with the largest r2
j should be preferred over the others if we had to choose exactly

one variable. If instead we have to choose more than one variable out of the p
available, it makes sense to assign higher weights according to the individual r2

j of
each Xj so as to give more important variables a greater chance of being chosen.
r2
j = R2

j is a good measure of individual importance (at least prior importance)
of Xj and can be used in random subspace learning as explained in algorithm 2.
Instead of using R2

j , one could consider using the corresponding F statistic Fj =
(n−2)r2j

1−r2j
.
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Algorithm 3 Extracting Important variables for classification

Set d ≪ p, the number of variables to be drawn
for j = 1, · · · , p do

Compute the ANOVA F-statistic
end for

Fj =
Between groups mean squared by xj

Within groups mean squared by xj

Create the vector π = (π1, π2, · · · , πp)> where

πj = Fj/

p∑
j′=1

Fj′

for k = 1, · · · , q do

Draw without replacement from a multinomial with probabilities π = (π1, π2, · · · , πp)>,
specifically
jk ∼ Multinomial(π1, π2, · · · , πp)

end for
Use the variables with drawn indices {j1, j2, · · · , jq} ⊂ {1, 2, · · · , p} as the basis of your
subspace.

For classification tasks under the assumption that Xj ∼ N(µjy, σ
2
j ), with factor

levels y ∈ {1, 2, · · · , G}, algorithm 3 explains in detail how to extract the important
features.

5. Adaptive RASSEL for MLR and GLM

Base Learners for Regression: Linear Model

Given {(xi, yi), i = 1, · · · , n}, where x>i = (xi1, · · · , xip) and yi ∈ R. Assume the
multiple linear regression (MLR) model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi. (5.1)

If Equation (5.1) is applied to the whole training set, and using

β> = (β0, β1, β2, · · · , βp), Y > = (Y1, Y2, · · · , Yn) and ε> = (ε1, ε2, · · · , εn),

we can write

Y = Xβ + ε,

where X ∈ Rn×(p+1) is the design matrix defined by

X =



1 x11 x12 · · · x1j · · · x1p

1 x21 x22 · · · x2j · · · x2p

...
...

... · · ·
. . . · · ·

...
1 xi1 xi2 · · · xij · · · xip
...

...
... · · ·

. . . · · ·
...

1 xn1 xn2 · · · xnj · · · xnp


.

It is a basic result in regression analysis theory that the ordinary least squares

(OLS) estimator β̂ of β is the minimizer of SSE(β), namely

β̂(OLS) = arg min
β∈Rp+1

{SSE(β)} = arg min
β∈Rp+1

{
(Y −Xβ)>(Y −Xβ)

}
,
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which turns out to be the ubiquitous

β̂(OLS) = β̂ = (X>X)−1X>Y .

Given a new point x∗ = (x∗1, · · · , x∗p)> for which an predicted response value is

desired, form x̃∗> = (1, x∗1, x
∗
2, · · · , x∗p), then simply compute

Ŷ ∗mlr = ĝmlr(x
∗) =

p∑
j=0

β̂jx
∗
j = β̂>x̃∗. (5.2)

Note that if n≪ p, then the prediction in (5.2) cannot be computed, because
of the singularity of X>X.

Base Learners for Classification: Logistic Regression

Given xi = (xi1, · · · , xip)> ∈ X ⊆ Rp, Yi ∈ {0, 1}, and dataset

D =
{

(x1, Y1), · · · , (xn, Yn)
}

Logistic Regression assumes that the response variable Yi is related to the explana-
tory vector xi through the model,

log

[
πi

1− πi

]
= η(xi;β) = x̃>i β

where x̃i = (1, xi1, xi2, · · · , xip)>, β = (β0, β1, · · · , βp)>,

η(xi;β) = x̃>i β = β0 + β1xi1 + β2xi2 + · · ·+ βpxip

and

πi = Pr[Yi = 1|xi,β] =
eη(xi;β)

1 + eη(xi;β)
=

1

1 + e−η(xi;β)
= π(xi;β).

Base Learners for Classification: Logistic Regression Majority rule

Given a new vector x,

Yglm = gglm(x) =

{
1 if Pr[Y = 1|x,β] = h(x̃>β) > 1

2 ,
0 if otherwise.

In other words, assign x to the class with the highest probability. The correspond-
ing decision boundary is the set{

x ∈ X : h(x̃>β)− 1

2
= 0
}
.

Adaptive threshold: In some applications, the experimenter/researcher/data sci-
entist may choose to use a threshold other than 1/2. If τ 6= 1/2 is such a cutoff,
then the decision boundary simply becomes{

x ∈ X : h(x̃>β)− τ = 0
}
.
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Base Learners for Classification: Logistic Regression

Let `(β) = logL(y;β) denote the log-likelihood for the logistic regression model,
then

`(β) =

n∑
i=1

yix̃
>
i β −

n∑
i=1

log[1 + exp(x̃>i β)].

The maximum likelihood estimator of of β is

β̂ = arg max
β∈Rp

{
`(β)

}
.

The estimator of the logistic regression base learner is then

Ŷ ∗glm = ĝglm(x
∗) = arg max

j∈Y

{
Pr[Y = j|x∗, β̂]

}
.

Multiclass Logistic Regression

Let Y = {1, 2, · · · , G} be the set of class labels. Let βj = (βj0, βj1, · · · , βjp)>
represent the vector of regression coefficients in group j ∈ 1, 2, · · · , G− 1 Set
ηG(x) = 0 and for j = 1, 2, · · · , G− 1, define

ηj(x) = βj0 + βj1x1 + · · ·+ βjpxp = x̃>βj .

Define

Pr[Y = j|x] =
eηj(x)

1 +

G−1∑
l=1

eηl (x)

and

Pr[Y = G|x] =
1

1 +

G−1∑
l=1

eηl (x)

.

We can then write

log

[
Pr[Y = j|x]

Pr[Y = 0|x]

]
= ηj(x) = βj0 + βj1x1 + · · ·+ βjpxp = x̃>βj .

6. Theoretical justification

We now consider an ensemble of L base learners, f̂ (l) for l = 1, 2, · · · , L, where

f̂ (l) = β̂0+x>β̂. Each f̂ (l)(·) is built on a bootstrap sample from D = {(xi,yi), i =
1, ..., n}

Ŷ∗ =
1

L
(f̂ (1)(x∗) + f̂ (2)(x∗) + · · ·+ f̂ (L)(x∗)).

Proof. For each bootstrap sample l , the corresponding multiple linear regression
(MLR) base learner g(l)(·) predicts the response for a given x as

ĝ(l)(x) = x>β̂(l),

where
β̂(l) = ((X(l))>X(l))−1(X(l))>Y (l).
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Figure 1. Prior Feature Importance: A representative simulation results for regression analysis

on synthetic dataset of scenario with number of instances n=25, number of features p=500,

correlation coefficient ρ=0.5, number of learners=450, and number of replications=100..

If the design orthonormal, then the base learner prediction reduces to

β̂(l) = (X(l))>Y (l).

Here X ∈ Rn×p and Y ∈ Rn×1, (X(l))>Y (l) ∈ Rp×1 is an p × 1 vector, and we
must have

((X(l))>Y (l))> = ((X
(l)
1 )>Y (l), (X

(l)
2 )>Y (l), · · · , (X(l)

p )>Y (l))

whereX
(l)
j is the jth column of the design matrixX(l), the lth bootstrap replicate

of X. Therefore, under the orthonormal design, we must have

ĝ(l)(x) = x>β̂(l) = x>(X(l))>Y (l)

= x>((X
(l)
1 )>Y (l), (X

(l)
2 )>Y (l), · · · , (X(l)

p )>Y (l))

=

p∑
j=1

xj(X
(l)
j )>Y (l).

Now, γ(l) = (γ
(l)
1 , γ

(l)
2 , · · · , γ(l)

p ) as in (3.1) is the lth bootstrap indicator vector.
Since the prediction with a base learner only involves those variables that are
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Figure 2. Prior Feature Importance: A representative simulation results for classification anal-

ysis on real dataset of Lymphoma disease..

active in the current bootstrapped subspace, we have

xj(X
(l)
j )>Y (l) =

{
xj(X

(l)
j )>Y (l) if γ

(l)
j = 1

0 if γ
(l)
j = 0 .

Now, the prediction of the response for x∗ is therefore given by

f̂
(L)
RASSEL(x

∗) =
1

L

L∑
l=1

ĝ(l)(x∗) =
1

L

L∑
l=1

p∑
j=1

x∗j (X
(l)
j )>Y (l)

=

p∑
j=1

x∗j

{
1

L

L∑
l=1

γ
(l)
j (X

(l)
j )>Y (l)

}

=

p∑
j=1

x∗j β̂
(L)
j

where

β̂
(L)
j =

1

L

L∑
l=1

γ
(l)
j (X

(l)
j )>Y (l).

�
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Figure 3. A representative results of synthetic dataset of scenario with number of instances

n=50, number of features p=1000, correlation coefficient ρ=0.05, number of learners=450, and

number of replications=100. We used the correlation weighting scheme for regression analysis
on logarithmic scale. The abbreviations used in this figure are as follows: multiple linear re-

gression (MLR), uniform multiple linear regression (U-MLR), adaptive-multiple linear regression

(A-MLR).

7. Computational demonstrations

We used a collection of simulated and real-world datasets for our experiments.
We report the mean square error (MSE) for each individual algorithm and task
purposes, i.e., regression, or classification. We designed our artificial datasets to fit
six scenarios based on the factors, which are the dimensionality of the data (number
of features), the number of sample size (number of instances), and the correlation
of the data. For the purposes of consistency and completeness, we choose the real
datasets that carries different characteristics in terms of the number of instances
and the number of features along with variety of applications.

7.1. Simulated example

The dataset in this example is simulated data with different scenarios on the level
of correlation among the variables, and the ratio n and p. In this particular
example, the true function is

f(x) = 1 + 2x3 − 2x7 + 3x9

with x ∼ MVN(19,Σρ) and ε ∼ N(0, 22). Specifically, we simulate data by defining
ρ ∈ [0, 1), then we generate our predictor variables using a multivariate normal
distribution. Throughout this paper, the multivariate Gaussian density will be
denoted by φp(x;µ,Σ)

φp(x;µ,Σ) =
1√

(2π)p|Σ|
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
.
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Figure 4. A representative results of Diabetes interaction real dataset with correlation weighting

scheme for regression analysis on original scale. The abbreviations used in this figure are as

follows: multiple linear regression (MLR), uniform multiple linear regression (U-MLR), adaptive-
multiple linear regression (A-MLR).

Furthermore, in order to study the effect of the correlation pattern, we simulate
the data using a covariance matrix Σ parameterized by τ and ρ and defined by τΣ
where Σ = (σij) with σij = ρ|i−j|.

Σ = Σ(τ, ρ) = τ



1 ρ · · · ρp−2 ρp−1

ρ 1 ρ · · · ρp−2

...
. . .

. . .
. . .

...

ρp−2 . . . ρ 1 ρ
ρp−1 ρp−2 · · · ρ 1

 .

For simplicity however, we use the first Σ with τ = 1 throughout this paper.
For the remaining parameters, we use ρ ∈ {0.05, 0.5} and p ∈ {25, 50, 250, 1000},
with n ∈ {25, 50, 250, 1000}. In addition, to check the robustness of our developed
framework through measuring the average test error, we systematically change the
correlation coefficient over its whole range, which is [0,1), with large p and small
n. Therefore, we designed our artificial datasets to fit six scenarios based on the
following factors: (a) the dimensionality of the data (number of features), (b) the
sample size (number of instances), and (c) the correlation of the data. See Tables
1–4.

7.2. Real-life datasets

We choose real life DNA Microarray Gene Expression datasets (See Table 5) be-
cause it carry different characteristics in terms of the number of instances and
features and IFR ratio. In addition, these real datasets carry hidden correlation
between features, which makes the prediction problem very difficult.
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GLM Uniform GLM Adaptive GLM Random Forest

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
is

cl
as

si
fic

at
io

n 
R

at
e

Figure 5. A representative results on synthetic dataset of scenario with number of instances

n=200, number of features p=25, correlation coefficient ρ=0.05, number of learners=450, and
number of replications=100. We used F-statistics weighting scheme for classification analysis..
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Figure 6. A representative results of the Diabetes in Pima Indian Women real dataset with
F-statistics weighting scheme for classification analysis..

7.3. Quantitative analysis

Figs. 1 and 2 show the prior feature importance for both regression and classifi-
cation purposes on synthetic and real datasets. As you can see from these figures
that extracting important features is an important step for RASSEL algorithm.
For regression analysis, the assessment of the performance of our developed frame-
work was done through measuring the average mean square error (MSE) and as
shown in Figs. 3 and 4 that the AMLR posses the smallest predictive MSE. For
classification analysis, the evaluation of the performance of our developed frame-
work through quantifying the average misclassification rate (MCR) and as shown
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Table 1. Regression Analysis: Mean Square Error (MSE) for different machine learning algo-

rithms on various scenarios of synthetic datasets..

Weighting n p ρ MLR Uniform MLR Adaptive MLR RF Better?

Correlation

200 25 0.05 5.69±0.89 14.50±2.63 4.60±0.706 9.81±1.86 AMLR
200 25 0.5 4.78±0.81 11.67±2.55 4.77±0.94 8.46±1.97 AMLR
25 200 0.05 974.37±5.e3 18.35±6.92 8.10±3.86 18.56±7.24 AMLR
25 200 0.5 5.e3±5.e4 18.83±8.72 8.27±5.24 18.18±8.65 AMLR
50 1000 0.05 2.e4±1.e5 28.36±11.51 12.38±5.91 27.92±11.78 AMLR

1000 50 0.05 4.66±0.34 16.62±1.37 4.33±0.33 6.73±0.62 AMLR

F-statistics

200 25 0.05 5.04±0.79 14.42±2.67 4.48±0.74 8.75±1.76 AMLR
200 25 0.5 4.49±0.76 12.06±2.04 5.51±1.09 8.33±1.59 MLR
25 200 0.05 3.e4±2.e5 17.77±9.15 5.81±4.10 15.81±8.55 AMLR
25 200 0.5 1.e4±1.e5 23.09±16.06 12.53±10.27 24.11±16.31 AMLR
50 1000 0.05 4.e5±3.e6 16.65±5.38 7.65±2.83 15.54±5.31 AMLR

1000 50 0.05 4.19±0.33 15.97±1.15 3.90±0.30 6.24±0.55 AMLR

Table 2. Regression Analysis: Mean Square Error (MSE) for different machine learning algo-
rithms on real datasets..

Data Set Weighting MLR Uniform MLR Adaptive MLR RF Better?

BodyFat
correlation 17.41±2.69 23.59±3.71 19.25±3.06 19.72±3.18 MLR
F-statistics 17.06±2.50 23.07±3.46 17.46±2.65 19.51±2.99 MLR

Attitude
correlation 74.12±32.06 80.35±34.40 58.49±20.21 88.72±35.97 AMLR
F-statistics 75.19±36.63 74.71±33.17 51.84±15.19 82.21±35.58 AMLR

Cement
correlation 10.76±7.25 NA 19.92±15.98 75.91±56.05 MLR
F-statistics 11.07±8.55 NA 24.27±18.27 62.20±46.53 MLR

Diabetes 1
correlation 2998.13±322.37 3522.30±311.81 3165.74±300.86 3203.94±311.94 MLR
F-statistics 2988.32±341.20 3533.45±375.38 3133.60±324.75 3214.11±318.6931 MLR

Diabetes 2
correlation 3916.98±782.35 4244.00±390.29 3016.54±285.89 3266.50±324.82 AMLR
F-statistics 3889.00±679.55 4306.76±419.66 3076.77±338.08 3326.28±382.37 AMLR

Longley
correlation 0.21±0.13 0.62±0.36 0.49±0.29 1.54±0.92 MLR
F-statistics 0.22±0.13 0.66±0.42 0.49±0.29 1.63±1.04 MLR

Table 3. Classification Analysis: MisClassification Rate (MCR) for different machine learning
algorithms on various scenarios of simulated datasets..

Weighting n p ρ GLM Uniform GLM Adaptive GLM RF Better?

F-statistics

200 25 0.05 0.070±0.033 0.486±0.172 0.071±0.032 0.101±0.053 AGLM
200 25 0.5 0.140±0.045 0.498±0.221 0.138±0.043 0.136±0.058 RF
50 200 0.05 0.102±0.093 0.673±0.123 0.100±0.092 0.320±0.103 AGLM
50 200 0.5 0.058±0.141 0.346±0.346 0.049±0.121 0.178±0.188 AGLM
50 1000 0.05 0.033±0.064 0.522±0.158 0.034±0.062 0.409±0.114 AGLM

1000 50 0.05 0.130±0.019 0.643±0.028 0.130±0.019 0.167±0.024 AGLM

in Figs. 5 and 6 that the AGLM outperforms RF and has the same MCR with
both GLM and UGLM.

8. Discussion

Based on simulation results (Tables 1–4), which performed on both synthetic and
real datasets, that choosing which weighting scheme used is crucial and can affect
the accuracy of the RASSEL algorithm. The ideal example has been shown in
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Table 4. Classification Analysis: MisClassification Rate (MCR) for different machine learning

algorithms on real datasets..

Data Set W. S. GLM Uni. GLM Adap. GLM RF Better?
Diabetes in Pima F-stat 0.274±0.071 0.249±0.051 0.255±0.051 0.269±0.050 AGLM
Prostate Cancer F-stat 0.425±0.113 0.355±0.093 0.332±0.094 0.343±0.098 AGLM
Golub Leukemia F-stat 0.427±0.116 0.023±0.103 0.021±0.011 0.023±0.013 AGLM
Diabetes F-stat 0.034±0.031 0.068±0.039 0.038±0.034 0.031±0.029 RF
Lymphoma F-stat 0.248±0.065 0.057±0.034 0.046±0.029 0.082±0.046 AGLM
Lung Cancer F-stat 0.113±0.051 0.038±0.023 0.037±0.024 0.051±0.030 AGLM
Colon Cancer F-stat 0.296±0.124 0.168±0.095 0.124±0.074 0.199±0.106 AGLM

Table 5. Summary of the regression and classification real datasets..

Data set # instan. # features IFR ratio

regression

Bodyfat 252 14 1,800.00%

attitude 30 7 428.50%

Cement 13 5 260.00%

Diabetes 1 442 11 4,018.00%

Diabetes 2 442 65 680.00%

Longley 16 7 228.50%

classification

Diabetes in Pima 200 8 2,500.00%

Prostate cancer 79 501 15.80%

Golub Leukemia 72 3572 2.00%

Diabetes 145 4 3,625.00%

Lymphoma 180 662 27.20%

Lung Cancer 197 1,000 19.70%

Colon Cancer 62 2,000 3.10%

Table 1 where the using F-statistics instead of correlation coefficient as a weighting
scheme degrades the AMLR performance and makes the MLR achieves less MSE.
Also, as revealed from our simulations on generated synthetic datasets that when
the number of selected features is higher than 15–20, our proposed framework
yields ensemble classifiers, which are highly stable and very accurate. The idea
behind it is when the number of voters is large enough, the random process of
attribute selection yields sufficient number of different classifiers, which ensure
high accuracy and stability for ensemble learning procedure. Moreover, as the
number of features increase, the performance of the RASSEL algorithm stays
strong. As an example, the accuracy of our developed framework is ∼1.8 larger
than the random forest for Lymphoma dataset, that has 662 features, and it
outperform RF for the Leukemia dataset, which possess over 3,500 features. The
same pattern was noticed by [1]. Regarding testing the RASSEL algorithm on
correlated datasets, we perform simulations on synthetic datasets with changing
the correlation coefficient (ρ) between [0,1). As depicted in Fig. 7 that AMLR
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Figure 7. A representative results that exhibits the relationship between mean square error
(MSE) and correlation coefficient (ρ) for different algorithms on synthetic dataset with correlation

weighting scheme for regression analysis when p�n..
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Figure 8. A representative results that exhibits the relationship between mean square error
(MSE) and correlation coefficient (ρ) for different algorithms on synthetic dataset with F-

statistics weighting scheme for classification analysis when n�p..

posses the lowest MSE constantly and both UMLR and RF have the same MSE.
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Also, Fig. 8 shows that the AGLM outperforms both UGLM and RF and has
almost zero MSE when ρ <0.5.

In the case of correlated variables, we use the correlation matrix to dynamically
modify the πj ’s in a manner similar to stickbreaking use in nonparametric Dirichlet
process construction. This extension of our work is addressed in a subsequent
paper in preparation.

Even though our developed adaptive RASSEL algorithm outperforms many
classifier ensembles on almost all the computations explored in this paper, it has
limitations. For instance, our method can not deal with dataset that has cate-
gorical features. Instead it necessities to encode these features numerically. In
addition, our algorithm fails to select the optimal feature subsets, when the num-
ber of features are very small.

9. Conclusion and future work

We performed a data-driven quantitative analysis of the developed adaptive RAS-
SEL algorithm for an ensemble prediction problem. We present a rigorous theoreti-
cal justification of our propose algorithm as well as empirically through performing
simulations on synthetic and real datasets. The key important issues for the de-
veloped algorithm resides on four fundamental factors: (a) Generalization: any
base learner can be adapted easily. (b) Flexibility: a straightforward data-driven
weighting scheme can be used in any supervised learning scheme. (c) Speed: re-
duced computational complexity, which is necessary in other ensemble learning
algorithms, such as the permutation step need in RF. (d) Accuracy: RASSEL
achieves less MSE compared with the most known ensemble learning algorithm,
i.e. RF.

For now, we choose fixed number of attribute subset. However, the algorithm
should evaluated based on the performance to determine the appropriate number
for single classifiers used in the ensemble learning. Therefore, we plan on imple-
menting an extension of our framework whereby the dimension of the subspace
may be adaptively updated. Also, given the availability of computing power, we
plan to use other techniques such as cross validation to determine the optimal
number of base learners to include in the ensemble learning. Finally, the adaptive
RASSEL algorithm is tested on a relatively small datasets. So, our next step will
be applying the developed algorithm on a big datasets.
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