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AUTHOR

BRNO 2014
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Abstrakt
Problémy jako je jemnozrnná kategorizace či výpočty s využitím lidských zdrojů se v
posledních letech v komunitě stávají stále populárnějšími, což dosvědčuje i značné množství
publikací na tato témata. Zatímco většina těchto prací využívá “klasických” obrazových
příznaků extrahovaných počítačem, tato se zaměřuje především na percepční vlastnosti,
které nemohou být snadno zachyceny počítači a vyžadují zapojení lidí do procesu sběru
dat. Práce zkoumá možnosti levného a efektivního získávání percepčních podobností od
uživatelů rovněž ve vztahu ke škálovatelnosti. Dále vyhodnocuje několik relevantních ex-
perimentů a představuje metody zlepšující efektivitu sběru dat. Jsou zde také shrnuty
a porovnány metody učení multidimenzionálního indexování a prohledávání tohoto pros-
toru. Získané výsledky jsou následně užity v komplexním experimentu vyhodnoceném na
datasetu obrázků jídel. Procedura začíná získáváním podobností od uživatelů, pokračuje
vytvořením multidimenzionálního prostoru jídel a končí prohledáváním tohoto prostoru.

Abstract
Some problems like fine-grained categorization or human-based computation has become
popular in recent years in the community, which has been proven by a large number of
published works concerning these topics. Whereas most of these works uses a “classical”
visual features extracted by machine, this one in partricular focuses on perceptual properties
which cannot be easily sampled by machine and which involves humans into this data
retrieval process. There are examined ways, how to obtain perceptual similarities from
humans cheaply and effectively also in terms of scalability. There are performed various
experiments and purposed several methods to improve this efficiency. The work also reviews
and compares existing methods of embedding learning and navigating through its space.
The acquired observations are subsequently used in a complex experiment evaluated with
a food image dataset, covering the whole procedure from similarity retrieval from humans,
over data embedding learning up to searching in such multi-dimensional space.
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Chapter 1

Introduction

Human beings have five traditional senses giving them an opportunity to distinguish things,
which the machines cannot. Although the machines are nowadays able to process audiovi-
sual information at a decent level, they do not cope with properties as a taste or a smell.
But if they did, it would open the door to a number of new approaches how the machines
could be helpful and useful for humans.
As an example we may consider food. People are able to distinguish between different

types of food nearly perfectly on the basis of their taste, and they group meals which
taste similar together somewhere inside the brain. If such human is familiar with tastes of
multiple types of food, this grouping process creates a virtual distribution of different types
of food in the human’s brain.
On the opposite side, there are machines, which are nowadays able to process the visual

information of the meal, but they do not obtain any information about the taste without
human assistance. However, if they are somehow given this information, they could model
the distribution of different types of food in a similar way as the human brain does. This
step of the information exchange is not trivial and it requires some investigation in methods,
how to do this exchange effectively, which is the subject of this work.
In this thesis I examine ways how to compare objects on the basis of their perceptual

similarity in order to obtain the structural information among them. This structural infor-
mation is subsequently transformed to a generally multi-dimensional space, in which more
similar objects should be placed close to each other whereas the less similar ones far apart.
Such space then serves as a guideline for the searching algorithm, which also involves hu-
mans to the searching process. Since the cooperation with humans is in this system widely
used, the particular focus is placed to efficiency and low-cost solution of the interaction
with them.
The aim of the research, developed software, and conclusions described in this thesis

was to extend the Visipedia project, which is introduced in Chapter 2. In Chapter 3 there
is introduced crowdsourcing, benefits of its usage, its types, and on-line services, which
were also used for some experiments. Chapter 4 is dedicated to algorithms for embedding
learning and methods of navigating through the space of embedding. In Chapter 5 there
are defined some fundamental terms used in this work and there are presented approaches
of getting objects similarities from users. Experiments on a toy dataset of US and Canadian
cities, dataset of country flags, and a food image dataset respectively are described in the
chapters 6, 7, and 8. The summary of achieved results and possible directions of a future
work are presented in Chapter 9.
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Chapter 2

About the Visipedia Project

The idea of the project Visipedia dates back to the year 2009, when Pietro Perona presented
his thoughts in the paper Vision of a Visipedia [16]. As Wikipedia is based on text articles
with connections to another related articles, the aim of Visipedia is to be an analogy focused
towards the images. Although the word Visipedia stands for “Visual Encyclopedia”, it is
not literally an encyclopedia but rather a layer on the top of Wikipedia (or generally any
other knowledge database).
This chapter presents reasons which led to this project. It briefly introduces the Visi-

pedia project reviews it’s architecture and points out some remarkable and unique features
of this system.

2.1 Motivation

Imagine this example: You see a mushroom during a stroll and the questions like “Can I eat
it?”, “Should I pick it up?”, come into your mind. If you are not familiar with mushrooms,
you will not recognize the species of the mushroom you see and therefore you do not know if
you can eat it. If you started to browse the web pages about mushrooms on your cell phone
in order to find the particular species, it could take a long time. On the other hand, if there
was such a system as Visipedia, you could grab a picture of the mushroom, upload it to
the Visipedia system as a query, and hopefully you would be redirected to the Wikipedia
page of the mushroom species you are looking at.
This is just a simple example, but using just image information is not always easy or

possible for several reasons: The state of the art of computer vision and machine learning
does not allow to reliably classify objects on a picture and also there may be another features
that cannot be extracted directly from an image. Either can be hidden or not capable to
be captured by camera (e.g. volume information, smell, hardness, etc.). Although there
are some methods how to improve the amount of captured information (supplying video
sequence instead of a single picture, using stereo cameras, structured light, or using other
detectors), for some tasks the system still requires cooperation with humans.

2.2 Visipedia Concept and Design

Such a project as Visipedia that would simplify searching, indexing and linking the parts
of images cannot be done by individual or a small team. It rather involves a cooperation of

1Image taken from [16].
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VISIPEDIA

Images, segments
annotations, links,
GUIs, diagnostics

Users

AnnotatorsImage databases Vision
scientists

Experts

Automata

Figure 2.1: The Visipedia system connects together users sending queries to the system,
pages like Wikipedia as a source of information, available image databases for training
data, human domain experts providing knowledge, crowd workers for annotation tasks and
computer vision and machine learning systems. 1

many experts from different fields. That is the reason why Visipedia has been designed to
be open to public. Anyone will be able to participate in this project by creating software
augmenting the functionality, uploading and annotating images, etc. in order to improve
the level of automation as much as possible and hence save a human labor.
As previously mentioned, it is not yet possible to build automata that would carry out

all this job, therefore the concept of the system proposes interaction with 5 groups of people:
The users benefiting it while looking for a useful information using queries, domain experts
willing to share results of their research and providing basic knowledge, non-expert editors
helping with data cleaning, crowd workers used for annotation and other mass work and
automation experts providing computer vision and machine learning support. The concept
of Visipedia system is summarized in Figure 2.1. The approach that combines automation
and human labor is called “humans-in-the-loop”.
To make such idea working, it is necessary to process each input image and gather as

much information as possible from it. Since the system works also with humans providing
needful information which can be again used by automata, the image processing has to be
performed iteratively. Then the default Visipedia pipeline consists of the following steps:

1. Image upload,

2. automatic image processing – saliency detection, meaningful feature measurement,
and decomposition to sub-tasks,

3. distribution of sub-tasks to appropriate system parts (automatas or human resources),

4. collection of the results from sub-tasks and its processing

5. go to #2.

Besides human resources and automata parts the system is designed to be connected
with Wikipedia and other similar knowledge databases, that can be used as a source of
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information and also for example Wikipedia pages can be associated with corresponding
images or its parts. This would allow Visipedia users to access the information they are
looking for quickly and directly from their supplied image.

2.3 Relation to the Thesis

As I pointed out, Visipedia is the image oriented project. It performs a wide range of
different tasks with images like segmentation, classification, annotation, etc.
Taking into account classification part, Visipedia does not aim only to classification or

clustering into groups, but there is also an effort to support fine-grained categorization,
where the objects are not just a part of a particular group, but rather they are placed into
a multi-dimensional space according to their similarity.
“Classification” of non-taxonomically related objects is a continuous function, that as-

signs coordinates of multidimensional space to the input objects, is called embedding. Po-
sition of objects in embedding is determined by their similarity: more similar objects are
located closer together in the embedding. In the case of this thesis a special focus is placed
on perceptual similarities.
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Chapter 3

Crowdsourcing

Crowdsourcing is a technique how to distribute some work to a large amount of generally
anonymous workers in order to obtain and merge their contributions. This practice has
been used especially in on-line community. The word “crowdsourcing” arose in 2005 as a
combination of words “crowd” and “outsourcing”. The main idea is to divide a complex task
into several subtasks that often repetitive and time-consuming. The individuals working
on such tasks as volunteers or part-time workers are usually rewarded for their work and
hence this cooperation is mutually beneficial.

Definition. An integrating definition of crowdsourcing was developed by Enrique Estellés-
Arolas and Fernando González Ladrón-de-Guevara [7]:

“Crowdsourcing is a type of participative on-line activity in which an individual,
an institution, a non-profit organization, or company proposes to a group of
individuals of varying knowledge, heterogeneity, and number, via a flexible open
call, the voluntary undertaking of a task. The undertaking of the task, of
variable complexity and modularity, and in which the crowd should participate
bringing their work, money, knowledge and/or experience, always entails mutual
benefit. The user will receive the satisfaction of a given type of need, be it
economic, social recognition, self-esteem, or the development of individual skills,
while the crowdsourcer will obtain and utilize to their advantage that what the
user has brought to the venture, whose form will depend on the type of activity
undertaken”.

This chapter summarizes benefits and various use cases of crowdsourcing. There are
also presented existing applications in this field, which were used for some experiments
in this work. This chapter also summarizes ways and benefits of crowdsourcing usage in
machine vision.

3.1 Crowdsourcing Types

Crowdsourcing has already been developing for several years and there has emerged various
direction of its exploitation. Some of the most important and expanded are presented in
the following list:

• Crowdfunding is the collection of finance to support projects or realize ideas. Con-
tributors are people who usually provides a small amount of money voluntarily or in
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exchange for some benefits from such project The goal for requesters is to reach a
target amount [3].

• Crowdvoting is a type, where the “crowd” is asked about a judgment or an opinion on
some topic. This method is usually used to organize or rank some content as photos,
articles, etc.

• Language-related data collection has been used for collecting translations for dictio-
naries or to refine translations in services as Google Translator.

• “Wisdom of the crowd” is a process where multiple individuals are asked for an
opinion rather then a single expert. The collection of answers is very often followed
by their aggregation and processing to a final result. It is advantageous in many cases,
because the answers of the crowd are usually as good as (and often even better than)
the answer of the best individual from the group [26].

• Makrowork is a type of crowdsourcing where the workers are called to do some more
complex work, which can require special skills. It can be for example some indepen-
dent part of a large project or some specialized task.

• Microwork is a type where a requester divide the complex problem into a large number
of simple, repetitive tasks, that also unskilled workers are able to work on them. It
usually takes a couple of seconds or minutes to solve the task and hence these tasks
are low payed.

• Implicit crowdsourcing can be represented by a software that serves primarily to a
different purpose (at least from the crowd’s point of view), but on the background it
collects information about users’ actions and profits from it. Some computer games
or ReCAPTCHA [19, 20, 21] are examples of such software.

3.2 Reward

The important part of the crowdsourcing is to motivate workers to work on the crowdsourced
tasks. Crowdsourcing services can be divided on the basis of the type how the workers are
rewarded. There are some approaches which have been put into operation and which are
interesting for a certain group of people.

Entertainment. The typical example of this category are computer games, which collects
some useful data depending on users’ actions while enjoying the game. The first example
of this design was ESP game [19] originally aimed to image labeling. Games of this type
are generally called games with a purpose (GWAP) [20].

Altruism and citizen science. Both of those cases are very similar, especially from
crowdsourcing point of view. People participating in these tasks are self-motivated for
whatever reason to work on (sometimes challenging) tasks in order to “help a good thing”.
In particular, citizen science is a scientific research conducted by amateur, enthusiast scien-
tists. The interesting fields for amateurs are for example ornithology, astronomy or modern
technology [22].
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Financial reward. A complementary approach to the voluntary ones is a financial moti-
vation of workers. Since workers are in this case paid for their contributions, it is necessary
to watch over the quality of their work, otherwise the answer gathering process becomes
expensive and ineffective. However, several ways how to assure quality are discussed in
Section 3.5.

3.3 On-line Tools and Services

Since the main domain of crowdsourcing is on-line community, there are several web-based
services with different level of generality and different specialization offering a crowdsourcing
solutions. Furthermore, this work is focused on perceptual objects similarities, so some
experiments described in this work are based on humans’ responses. They fit to category
microwork and therefore they take advantage of crowdsourcing.
Amazon Mechanical Turk (MTurk) is a well-known platform for task crowdsourcing

with hundreds of thousands workers on demand, which also provides an API for faster
deployment and management. Rights therefore all crowdsourced tasks in this works were
deployed on MTurk. Since the financial reward is only way how to reward workers on
MTurk, a part of the thesis aims to explore effective ways of answer retrieval from workers.
Another software used in this work is a SaaS (software as a service) application called
Visipedia: Crowdwork, which cooperates with MTurk, and which provides an interface for
simple tasks creation and management. Both of these applications are described more in
detail in the following sections.

3.3.1 Amazon Mechanical Turk

Amazon Mechanical Turk (MTurk)1 is a marketplace for crowdsourcing tasks, that allows
individuals or businesses to outsource tasks, that computers are unable to do, to human
workers. Although MTurk falls according to its main specialization to category mikrowork,
its API makes it a very universal platform, that allows developers to use it flexibly according
to their requirements.
MTurk is also one of the biggest on-line marketplace. Indeed, hundreds of thousands

HITs are available on MTurk at any time and there were registered more than 500 000
workers from over 190 countries in January 2011. Using some monitoring and quality
assurance techniques is can be also consider as a source of inexpensive and fair-quality
data from the crowd [15, 5]. MTurk recognizes two groups of participants: Requesters and
workers. A default unit of work (a task deployed to MTurk) is called Human Intelligence
Task (HIT).
Requesters are individuals or businesses who create and deploy HITs to the market-

place in order to let workers the solve them. Requesters also specify the wage, which a
worker receive when she complete the HIT, and Amazon collects 10% commission on top
of the specified reward. Requesters can also specify the number of assignments for each
HIT (number of redundant HITs displayed to different workers), which allows synthesis of
opinions and which is also useful for quality assurance. Another possibility how to assure
high quality of responses is to apply qualification criteria. Only workers who are qualified
for certain HITs, may start to work on them. MTurk offers a couple of pre-prepared qual-
ification criteria like country of residence, minimal number of completed HITs, percentage

1https://www.mturk.com/
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Figure 3.1: Screenshot of MTurk workers interface, where they can browse, preview, and
accept HITs.

of accepted HITs etc., but it is also possible to create a custom qualification criteria. There
are two possibilities for requesters how to deploy their tasks on MTurk: Using MTurk
wizard or using MTurk API. In the first case a requester can simply create a HIT using
MTurk website and supplying HTML code of the interface presented to workers. This way
is probably in most cases easier then using API, but it is not so flexible, because all HITs
have to be created manually, whereas using API allows system developers to deploy tasks
to MTurk automatically. There are several, either official or unofficial SDKs for different
programming languages as PHP, Python, Ruby, Perl etc. [2]
Workers are able to browse the HITs and work on them in case they meet the qualifi-

cation requirements. When they decide to accept a HIT, a HIT assignment is allocated for
them for a specific time period, within which they have to submit the HIT. If they decide
not to complete the HIT they can return it and it is offered to other workers. For any
HIT which they complete and which is accepted by the requester, they obtain the specified
reward. A screenshot of MTurk workers interface is in Figure 3.1.
MTurk offers two modes of their system: Production and Sandbox mode. Production

mode is the one where workers complete tasks and get paid for their work, whereas Sandbox
mode is a testing environment – a copy of the production system, where no charges are
applied. It serves developers to test there their software using MTurk API, and requesters
and workers to familiarize with the interface.

3.3.2 Visipedia: Crowdwork

Collecting contributions from crowd workers is not as fast as it could could be. It often
entails setting up server-side database and software, creating user interface, assuring workers
competency, etc. All these time-consuming subtasks are usually carried out over and over

10



(a) Requester environment

(b) Worker environment

Figure 3.2: Screenshots from Visipedia: Crowdwork application showing environments for
requesters and for workers.

again when it is necessary to crowdsource any new type of task, although the majority of
such subtasks is each time almost identical. This was an inspiration to create application
Visipedia: Crowdwork [14], that makes all these steps easier. The advantage of being
incorporated into Visipedia system is that it uses unified Visipedia account management
and the image resource service.
This crowdsourcing task manager is designed as Software as a Service (SaaS) running

on top of Amazon Web Services and it allows requesters to set up their tasks and deploy
them to crowdsourcing services as MTurk in “a few clicks”. The idea of this manager was
to make as universal and reusable as possible the whole process of task setup and to allow
users to extend the functionality by implementing their interface.
The manager is divided into two separate parts: Requester environment and Worker

environment. The requester environment consists of setting form where she can select
and adjust a template (a layout which will be displayed to workers) specify task goals as
number of answers or a time period, create catch trials and deploy the tasks to MTurk. The
requester environment also shows statistics about workers activity and supports browsing
and exporting the contributions. The worker environment displays the selected template to
workers and allows them to solve the task. It also handles navigation between screens and
implements extra functions such timers or onboarding tutorials. Screenshots from these
two environments are displayed in Figure 3.2.

3.4 Cost Estimation

When deploying some task to a crowdsourcing service with financial reward, it is always
necessary to determine the reward for a work unit (HIT) and estimate total costs. According
to several forums2 3 4, the optimal reward, when workers consider HITs as “worth turking
for”, is between $4-6 per hour.
Another interesting fact discovered authors of [13] when they figured out then higher

reward increases quantity but has minimal impact to quality of work. In other words the

2http://www.reddit.com/r/HITsWorthTurkingFor/
3http://turkernation.com/showthread.php?8027-Must-read-for-turkers!

-Guideline-for-requester-pay
4http://www.mturkgrind.com/forums/8-Hits-Worth-Turking-For
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time necessary to solve certain number of HITs decreases with higher reward but the quality
of work remains nearly constant.

3.5 Quality Assurance

Since the workers working on crowdsourced tasks are generally anonymous and such task
is not assigned to some particular worker, where the requester would know her capabilities,
and as well there are also potentially bad workers still around trying just to earn some
money regardless of the quality of their work, it is necessary to assure, or at least evaluate
the relevance of workers’ contributions. Although this section is mainly focused on sev-
eral approaches how the quality of answers can be evaluated or measured, there are also
mentioned ways of preliminary workers selection.

Qualifications. Some crowdsourcing services (e.g. MTurk) offer system of qualifications
to filter out ineligible workers before they start to work on tasks. Workers can be classified
on the basis of country residence, number of submitted tasks, its approval rate, etc. Such
qualification systems are often specific for particular crowdsourcing marketplaces, however,
it is very advantageous to use them.

Redundant answers. Instead of assigning a particular task to just one workers, it is
assigned to multiple workers and then their answers are somehow synthesized. Depending
on the particular use case it can be taken the average from the answers, the highest-voted
answer or the answer selected by a reviewer. The drawback of this method is the costs
growth in direct proportion to the number of redundant tasks.

Repetitions. Repetitions are appropriate especially in tasks composed of a larger number
of small subtasks of the same type. The principle of repetitions is to present to a worker
multiple times some of these subtask and subsequently compare her answers. Although
such subtasks do not have to look exactly the same, it is essential to ask the worker for
the same thing multiple times. Basically, it is a measurement of intra-class variation of
redundant answers.

Catch trials. Catch trials, also known as Gold standard, are intentionally created sub-
tasks, where the answer is indisputable and defined a priori. Once a worker submits her
answers for a catch trial, the quality of her answer can be determined by comparison with
the predefined one. As well as repetitions, catch trials are also beneficial primarily in tasks
consisting of a several subtasks.

3.6 Crowdsourcing in Machine Vision

Many tasks and solutions in machine learning and computer vision involve training and
testing on large annotated datasets of various type. Basically, these tasks fall into two
groups according to the employment of workers. The tasks from the first group are com-
pleted by workers “off-line”, whereas in the case of the second one (“on-line”), the human
workers are involved directly in the system.
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Annotation tasks. In many cases the annotation tasks of datasets does not require do-
main experts but rather a large number of workers who might be also unskilled in the field.
As examples of such tasks can be mentioned image segmentation, written text transcription,
labeling, etc. The usage of crowdsourcing is in these cases very convenient, advantageous,
and sometimes almost only way how to gather sufficient amount of annotations for a reason-
able price. ImageNet [6], which is a database of more than 11 million images hierarchically
organized, and CUB-200 [24] of 6000 birds of 200 species are examples of datasets, where the
crowdworkers were used to annotate images by segmentation, bounding boxes and binary
attribute annotation.

Systems with humans-in-the-loop. A different approach, how the crowdworkers can
be useful, is to involve them directly in the pipeline of a computer vision system [22].
Workers can be employed for different stages of the pipeline, for example during model
learning, classification, detection, feature extraction etc. Then the system is continuously
processing their contributions on a basis of which it adapts its future behavior. This type
of system architecture is a fundamental pillar of whole Visipedia project.
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Chapter 4

Data Embedding

Data embedding is a traditional problem in many fields including mathematics, machine
learning, data mining, etc. In the field of machine learning, it falls into theManifold learning
category, which represents a group of unsupervised or semi-supervised methods aiming to
reduce the dimensionality of the data preserving the important features. In particular, it
is an approach to non-linear dimensionality reduction. Dimensionality reduction is often
required in terms of machine learning, either for intuitive data visualization or for reduction
of memory and computational requirements [11].
In the first part of this chapter there is defined the term embedding and there are re-

viewed existing algorithms for data embedding construction. These methods are compared
among themselves as well as in the terms of perceptually similar data modeling. In the
second part of the chapter there is reviewed an existing method, which allows navigation
and searching in the space of embedding.
Although data embedding comes from the effort of dimensionality reduction with min-

imization of error, the dimensionality reduction is not always necessary. In other words,
data embedding is generally a projection of input objects into d-dimensional space. Tradi-
tional approaches used in machine learning such as linear discriminant analysis (LDA) or
principal component analysis (PCA) are special types of data embedding.

Definition. Given a set of inputs Z = {z1, . . . , zn} and the number of dimensions d,
embedding is the map Z → R

d. Specifically, we define embedding as a matrix

E =











x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d
...

...
. . .

...
xn,1 xn,2 · · · xn,d











, (4.1)

such that ith row in the matrix E corresponds to the vector of coordinates of input zi in
the embedding.

4.1 Techniques to Learn Data Embedding

Lot of research has been done and a several algorithms has been proposed in the field of
data embedding. There are two main approaches which these algorithms follow:

14



• Top-down approach is based on a distance (dissimilarity) matrix of input objects
regardless of their dimensionality. Methods based on this approach try to place objects
into multidimensional Euclidean space with respect to the constraints arising from
the distance matrix. It does mean that those methods try to (relatively) preserve
distances by minimizing the total error.

• Bottom-up approach uses information of local neighborhood of input objects and
consolidates it in order to derive the global structure. There are often used local
coordinates, distances, or weighted linear combination of surrounding points as a
source of local information.

There are presented algorithms using either of these approaches.

4.1.1 Multi Dimensional Scaling (MDS)

Also known as Euclidean embedding, is a classical metric embedding method which has
been used as a technique for analysis of data similarity or dissimilarity on a set of objects.
It is a process of visualization of the given distance matrix. MDS algorithm places each
object from the set into d-dimensional space, where the number of dimensions d is specified
a priori [4].
Input of this method is a distance matrix∆ of set of objects Z = {z1, . . . , zn}, on which

a distance function is defined as δi,j := distance between objects zi and zj .

∆ =











δ1,1 δ1,2 · · · δ1,n
δ2,1 δ2,2 · · · δ2,n
...

...
. . .

...
δn,1 δn,2 · · · δn,n











(4.2)

is subject to δi,i = 0, δi,j = δj,i.
The goal of the algorithm, given a matrix ∆ and a number of dimension d, is to find n

vectors
x1, . . . ,xn ∈ R

d, such that ∀i, j ∈ 1, . . . , n : ‖xi − xj‖2 ≈ δi,j . (4.3)

One possible and also quite common way how to determine these vectors, is to formulate
it as an optimization problem. For example

min
x1,...,xn

∑

i<j

(‖xi − xj‖2 − δi,j)
2. (4.4)

This algorithm does not allow neither infinite nor missing distances δi,j , which makes this
method not appropriate in applications, where the distance magnitudes are not available,
unreliable or too difficult to measure.

4.1.2 Non-Metric MDS (NMDS)

This non-metric modification of MDS tries to break away from distance magnitudes and it
uses only a provided set of order relations [1]. Such formulation leads to the problem also
called Shepard-Kruskal Scaling. Given a distance matrix ∆ and a number of dimension d,
find vectors

x1, . . . ,xn ∈ R
d, such that ∀i, j, k, l : ‖xi − xj‖2 < ‖xk − xl‖2 ⇐⇒ δi,j < δk,l. (4.5)
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The algorithm that solves Shepard-Kruskal Scaling problem is based on minimization
of the stress-1 functional

σ1(E) = min
θ

∑

i,j(‖xi − xj‖2 − θ(δi,j))
2

∑

i,j ‖xi − xj‖2
, (4.6)

where θ(·) is an arbitrary monotonic function. The minimization is performed with respect
to the embedding E.
Although this method might seem to be more useful for a data with unknown distance

magnitude, there are some issues which make it barely usable: The method requires all order
comparisons, which can be sometimes really difficult if not impossible to provide. Although
the NMDS concerns just about ordinal information, it still needs a distance matrix ∆ on
its input. The process of perceptual properties retrieval cannot meet these requirements
easily, therefore also this method is not very suitable.

4.1.3 Generalized Non-Metric MDS (GNMDS)

This algorithm was developed to get rid off completely the dependency on the distance
matrix and it uses just the paired comparisons instead [1]. That was formulated to the
problem called Paired Comparisons, which is derived from the Shepard-Kruskal Scaling
problem.
Given a set of quadruples S, find E = x1, . . . ,xn|xi ∈ R

d such that

(i, j, k, l) ∈ S ⇐⇒ ‖xi − xj‖2 ≤ ‖xk − xl‖2. (4.7)

Algorithm review. The algorithm solving the previously mentioned problem has been
proposed and described in [1]. This is just its brief review. Let S to be a set of quadruples
(i, j, k, l). The algorithm aims to find an embedding E = x1, . . . ,xn such that

‖xi − xj‖2 ≤ ‖xk − xl‖2, ∀(i, j, k, l) ∈ S (4.8)

The algorithm finds a Gram matrix K = E
T
E and tries to minimize its rank by trace-

norm minimizing. The advantage of this method is that it accepts inconsistencies in the set
of input paired comparisons. In order to allow inequality violations, it introduces a slack
variable ξi,j,k,l for each inequality constrain and the objective of algorithms solving this
problem is to minimize the total amount of slack. In order to accommodate the algorithm
to users demanding low-dimensional embedding, there has been added the regularizer λ has
which trades-off the embedding complexity with the total slack. The above results to the
program

min
K, ξi,j,k,l

∑

(i,j,k,l)∈S
ξi,j,k,l + λTrace(K) (4.9)

subject to kk,k − 2kk,l + kl,l − ki,i + 2ki,j − kj,j ≥ 1− ξi,j,k,l,
∑

ab
ka,b = 0,K � 0.

4.1.4 Crowd Kernel Learning (CKL)

The motivation to introduce CKL system was an effort to make available data embedding
and learning algorithm deployment on a specific domain without assistance of machine
learning researcher. Given a set of triplets, the CKL algorithm learns a similarity matrix
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over all n2 pairs [17]. It introduces probabilities that are inversely proportional to the
quality of triplet modeling [18]:

pi,j,l =
ki,i + kj,j − 2ki,j + µ

(ki,i + kj,j − 2ki,j) + (ki,i + kl,l − 2ki,l) + 2µ
, (4.10)

where µ servers as a regularizer preventing numerical problems. The kernel is learned by
empirical log-loss minimization:

min
K

∑

(i,j,l)∈T
log(pi,j,l) subject to ∀i : ki,i = 1,K � 0. (4.11)

The gradient descent method is used for CKL learning and the resulting embedding is
obtain by singular value decomposition of kernel K.
Besides the algorithm for embedding construction, this system also introduces a method

of adaptive triplet selection, which uses a history of user’s answers on presented triplets
and selects the most informative triplet, that maximizes information gain to be presented
to the user. Since this process become computationally expensive for a larger datasets,
the approximation consists of the selection of the best candidate from a randomly sampled
subset.

4.1.5 Stochastic Triplet Embedding (STE)

Stochastic Triplet Embedding is another method for embedding construction, which is more
local than previous ones. More specifically, it gives nearly constant rewards to triplets that
are satisfied with a large margin and nearly constant penalties to large triplet violations [18].
The methods defines probabilities

pi,j,l =
exp(−‖xi − xj‖

2
2)

exp(−‖xi − xj‖22) + exp(−‖xi − xl‖22)
(4.12)

which measure the probability that the triplet (i, j, l) is satisfied. Given a set of training
triplets T, the program aims to maximize log-probabilities over all supplied triplets:

max
E

∑

∀(i,j,l)∈T
log pi,j,l. (4.13)

Such program is a convex optimization problem and can be solved by gradient descent
or by singular value decomposition using trace-norm regularizer to minimize the rank of
the kernel matrix.

t-Distributed STE (t-STE). This modification of classical STE has been proposed due
to a too rapid decline of gradient, that makes hard to fix errors made in the beginning of the
optimization process. This led authors of [18] to propose another, heavy-tailed Student-t
kernel with α degrees of freedom. Then the triplet probability is defined as

pi,j,l =

(

1 +
‖xi−xj‖22

α

)−α+1

2

(

1 +
‖xi−xj‖22

α

)−α+1

2
+
(

1 +
‖xi−xl‖22

α

)−α+1

2

. (4.14)
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Figure 4.1: Partial gradients induced by a triplet constraint for methods GNMDS, CKL,
STE a t-STE. Given the triplet (i, j, l) of input points zi, zj , zl, on every image the short
edge distance ‖zi− zj‖ is on axis x and the long edge distance ‖zi− zl‖ on axis y. The top-
left region indicates a constraint satisfaction ‖zi − zj‖ ≪ ‖zi − zl‖, the bottom-right region
indicates a strong constraint violation ‖zi − zj‖ ≫ ‖zi − zl‖. The bottom-left to top-right
diagonal indicates the equality between short edge and long edge ‖zi− zj‖ ≈ ‖zi− zl‖. The
top row shows the rate (the redder the higher) of pulling zl apart from zi and the bottom
row shows the rate (the bluer the higher) of pushing zj towards zi.

1

Using such heavy-tailed function as Student-t kernel is more advantageous than “stan-
dard” kernels. Given a triplet (i, j, l), t-STE decreases distances between xi and xj and
analogically increases distances between xi and xl even if the constraint is already satisfied.
The result of such a behavior is that it collapses points unless there is a triplet keeping them
apart. Similarly it separates points unless there is a triplet keeping this points together.

4.1.6 Comparison of Previously Reviewed Methods

In previous section there were reviewed common algorithms used to build data embeddings.
Each method has different properties, advantages, and disadvantages, and is suitable for
different input data. This section is focused on comparison of those methods according
to different criteria. At the end of this section, there are selected methods, which are
potentially useful to work with perceptually similar data.
There can be observed two groups of methods according to data required on their inputs.

First group is formed by methods MDS and NMDS that requires a complete matrix ∆ of
pairwise distances between objects from the input set. (Although NMDS uses just the
ordinal information.) The second group consists of GNMDS, CKL, (t-)STE requiring on
the input a set of paired distance comparisons. In particular, all these methods accept on
its input a set of triplets T .
If we consider that the input data are perceptually similar objects, where the exact dis-

tances between object cannot be neither measured nor exactly determined, we can exclude
the first group (MDS and NMDS) from future considerations.
The next comparison shows how the particular methods move the points inside embed-

ding when a triplet is presented. If we look to Figure 4.1, we can see that different methods

1Image taken from [18].
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(a) GNMDS (b) CKL

(c) STE (d) t-STE

Figure 4.2: Comparison of embeddings created by different methods.

put similar objects together or pull apart in different ways. If we look in detail to each
method, we can observe this behavior:

GNMDS. This method moves the points just when the triplet constraint is violated and
ignores cases when the triplet constraint is already satisfied. The gradient is linear along
the axes in lower right triangle, which is why the method does not care much about the
number of short or long edges between two particular points and it just tries to enforce
triplet constraints. This leads to a quite uniform distribution of points in the embedding.

CKL. CKL method suffers a similar problem as GNMDS, however, the gradient decrease
is not so rapid. Also the gradient is large only when a triplet is strongly violated. This
means that CKL is concerned with correcting only strongly violated triplets.

STE. In contrast to CKL, STE gradient converges to zero for both strong constraint
violations and strong constraint satisfaction. This implies that it does not tend to correct
strong violations and thus it is resistant to triplets contradicting the consensus. On the
other hand, the gradient decreases too rapidly, which makes hard for the method to correct
errors made in the beginning of the optimization.
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t-STE. Unlike the previous methods, t-STE gradient looks different and it has several
good properties. The gradient is large even for already satisfied triplets, so given an already
satisfied triplet, it tends to collapse points on the short edge and to separate points on the
long edge. Another quality of t-STE is that the gradient is around zero in the region, where
triplet constraint is strongly violated. That handles a noise in data because it does not try
to satisfy such triplets that contradict consensus.

4.2 Navigating Through the Space of Embedding

Imagine a situation when a user is considering some particular category of objects and
her task is to find an image in a dataset that matches this category. Such type of tasks
falls into group Query-by-Example. Suppose that there is a sufficiently large set of images
that contains, among others, a relatively small subset of images that match user’s target
category. The user is continuously presented a screen with few images and she is supposed
to select one of those images until some of the presented images matches the target category.
The Statistical Framework for Image Category Search from a Mental Picture aims to

optimize selection of the images presented to a user until she is given an image from her
target category. This searching process should be, hopefully, done in a few rounds [9]. The
core of the framework is a statistical model for relevance feedback. The session starts with
a random screen of images and in each iteration the user is supposed to select the image
from her target category when such image is displayed or the image that is closest to the
category in case that no image from the category is displayed.

4.2.1 Statistical Framework

Formally let Z = {z1, . . . , zn} be a dataset of objects and S ⊂ Z a target category. Let
also Dt be a set of m images displayed in round t. It is supposed that if D ∩ S 6= ∅ the
user identifies zk ∈ S and the algorithm terminates. Otherwise it is supposed that the
user selects image that is according to her metric “the closest” to S. There is a binary
variable yk associated with every image zk ∈ Z, such that yk = 1 when zk ∈ S and yk = 0
when zk /∈ S. The framework maintains a response model for each i and updates posterior
distribution on yk after each feedback iteration. Let Bt denote the user responses for the
first t rounds. Then pt(k) = P (yk = 1|Bt) is a parameter that represents distribution of yk.
Since the images in the first round are taken randomly, then p0(i) = 0.5. There are three
principal components in the statistical model.

Update model. Let XDt be a user’s response to a set of displayed images Dt. Update
model computes pt+1(k) given pt(k) and XDt .

pt+1(k) = P (yk = 1|Bt+1)

= P (XD = i|yk = 1, Dt+1 = D)pt(k)/Ct+1

= p+(i|k,D)pt(k)/Ct+1,

(4.15)

where the normalizer Ct+1 = p+(i|k,D)pt(k) + p−(i|k,D)(1− pt(k)).

Answer model. Let D = Dt be the displayed set of images at iteration t. If D ∩ S 6= ∅,
the algorithm terminates, otherwise suppose images k ∈ S and i ∈ D such that i is the
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Figure 4.3: Shape of φ+ and φ+ functions userd in answer model.
2

closest image to k according to user’s point of view. For some metric δ there is defined a
positive and a negative model:

p+(i|k,D) =
φ+(δ(i, k))

∑

j∈D φ+(δ(j, k))
, (4.16)

p−(i|k,D) =
φ−(δ(i, k))

∑

j∈D φ−(δ(j, k))
. (4.17)

The design of functions φ+ and φ− is based on the fact, that perceptual similarity of
two objects is inversely proportional to their distance in metric δ and therefore φ+ is
monotonically decreasing and φ− monotonically increasing function. Figure 4.3 shows the
proposed functions as they are used in the framework.
The positive and negative functions introduce parameters θ1, which serves as a thresh-

old, from which the probability remains constant, and θ2 which controls the coherence
between normalized metric system δ and user’s decisions.

Display model. Display model chooses which images to display for every round t. The
algorithm computing distance model assumes, that the user selects randomly one image i
from her tatget set S and uses this image i as a reference for all her responses. Since S
is random subset of Z and i is randomly chosen from S, the reference image is a random
variable R. Then, given a search history and a new answer XDt+1

, the derived formula to
compute next display set is

Dt+1 = argmin
D⊂Z

H(R|Bt, XD), (4.18)

where H(·) is the entropy.
This optimization problem requires looping over all

(

n
m

)

combinations and can become
intractable for larger sets of input objects and therefore not practically useful. In order
to solve above equation there is formed a Voronoi partition based on D and the metric
δ, which has cells of equal mass under the normalized pt(k) distribution over Ω. The
algorithm uses sequential method to construct display set D that approximates the cell
centers from Voronoi partition. The whole procedure is described in [8].

2Image taken from [9].
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Figure 4.4: An example of Voronoi partition of a set of images with 8 cells. The sizes of
disks representing images are proportional to their mass. Each image in some cell is closer
to the center of the cell (blue disc) than to any other center. The centers are images in the
optimal D. 2

4.2.2 Parameter Determination

The positive and negative answer model depend on parametric functions φ+ and φ− and
hence it is necessary to adjust parameters θ1 and θ2 for both models, which minimize the
difference between metric system and how the similarity is perceived by humans. Especially
θ1 and θ2 for the positive answer model have a strong impact on the performance of the
method. The meaning of these parameters is clearly explained in Figure 4.3.
Determination of θ+1 (positive model) is based on statistical hypothesis test [9] in these

steps:

1. Fix θ ∈ 0.05, 0.1, . . . , 1 to possible positive values of θ+1 .

2. Choose randomly a target class S and its member k ∈ S.

3. Select two images i, j /∈ S such that δ(i, k) ≈ θ and δ(j, k) ∈ [θ, 1] is chosen uniformly.

4. Present the summary of the target class S and the images i and j to the user asking
her to select, which of the two images is closer to the target class S in her opinion.

5. Ask multiple users and repeat the previous steps for each user multiple times always
with different S, k, i, j.

Considering two hypotheses

• H0: The i and j images are equally close to the target image in user’s opinion,

• H1: The user has a preference for image i to be closer than j to the target image,
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the aim of this θ1 adjustment method is to select the highest value of θ, where the null
hypothesis is rejected at the 0.05 significance level. Let n be the total number of users’
choices for a θ value and N(θ) the number of times when the users selected i as the closer
image, then the significance level p is approximated as

p(θ) ≈ 1− Φ

(

N(θ)− n
2√

n
2

)

, (4.19)

where Φ(·) is the standard normal cumulative distribution function. Then the parameter θ1
is chosen as the highest number θ, where the matching p is closest to the 0.05 significance
level.
The estimation of θ2 parameter assumes that given k ∈ S and a display set D, a user

chooses i| δ(i, k) ≈ 0 from D in case when all the other m−1 images j ∈ D, j 6= i : δ(j, k) ≥
θ+1 . Also P (XD 6= i|Yk = 1) = 1− p+(i|k,D), then

θ+2
∼=

1

m− 1

1− p+(i|k,D)

p+(i|k,D)
. (4.20)

The procedure to collect data from users in order to estimate θ+2 follows the algorithm is
taken from [9]:

1. Randomly choose a target class S from the ground truth and an image k ∈ S.

2. Construct a display D for which there is an image i /∈ S with δ(i, k) ≈ 0 and the
other m− 1 images are at least θ+1 units away from k in the metric of the system.

3. Display D and a summary of S and ask the user to select the image that in his opinion
is closest to S.

4. Record user’s decision: XD = i or XD 6= i.

5. Repeat these steps p times for each user.

The authors of [9] also tried to estimate parameters for the negative answer model in
the same fashion as for the positive model, but the results were very similar when they
used uniform negative model with parameters θ−1 = 0, θ−2 = 1. They also tried another
extensions as “No preference” option or allowing users to view target class S at any time,
but none of these attempts improved searching performance.

23



Chapter 5

Ways of Getting Similarities

The first part of this chapter serves as an overview of terms used in the thesis. In the second
part there are proposed methods which improve efficiency of similarity retrieval process.
Some of the proposed methods refers to experiments presented in later chapters.

5.1 Term Definition

To prevent misunderstanding, there is presented a brief definition of each term.

Taxonomically related objects. It is a group of objects where it is suitable to perform
classification or fine-grained categorization into a fixed number of groups, because there
have statically defined relations among subgroups. A particular example of such group is
bird taxon. If we look into any ornithology book, we will very likely find there a taxonomy
chart for birds. The hierarchy was specified by ornithology experts and it is static. Given a
concrete bird, it is clear where to classify it. Such objects are called taxonomically related.
The existence of taxonomic structure is suspended by a finite number of object classes.

Non-taxonomically related objects. Non-taxonomically related objects cannot be
classified into a fixed groups, even though there might be defined some hierarchy or re-
lations among them. As a representative of such group can be mentioned food.

Classification. Also known as categorization. It is the process of object understanding.
The process itself refers to assignment of classes to input objects. Objects that fall to
the same class are somehow similar. Objects, that can be classified have low inter-class
distances and high intra-class distances. Animals can be consider as a representatives of
such group, because there are methods in computer vision how to distinguish different
species of animals.

Fine-grained categorization. It is similar to a classification, but the given objects are
very similar among them. Inter-class and intra-class distances are in this case very similar,
so it is often hard to determine the correct class for a presented object without some external
assistance. Bird taxon can be mentioned as a representative which is subject to fine-grained
categorization.
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Figure 5.1: Scheme of a humans-in-the-loop system. 1

Perceptual similarity. Perceptual similarity of some objects is based on its properties
that humans are able to perceive with their senses. The traditional human senses are sight,
hearing, taste, smell, and touch. There is no way how to precisely measure these properties.

Physical similarity. In contrast to perceptual ones, physical properties can be precisely
measured using an appropriate measurement tool. On the basis of this measure, there can
be also determined physical similarity.

System with humans-in-the-loop. System with humans-in-the-loop consists of the
software part, and the human workers. Its usage is beneficial in cases, where a tight
cooperation with human is necessary. Such system works iteratively: It presents a query
to users and waits for her answer. Once the answer is submitted by them, the system
updates its internal state and presents another query if needed. A scheme of such system
is displayed in Figure 5.1.

Input objects. Let Z = {z1, . . . , zn} be the set of all input objects and∆ be the following
matrix of paired distances δ(i, j) of objects zi and zj :

∆ =











δ1,1 δ1,2 · · · δ1,n
δ2,1 δ2,2 · · · δ2,n
...

...
. . .

...
δn,1 δn,2 · · · δn,n











, (5.1)

where δ(·) is a general metric function. In most cases in this thesis, there is used as a metric
function l2-norm, also known as Euclidean distance.

Paired comparison. Paired (or pairwise) comparison may refer to a process of selecting
one item from a pair of objects based on comparison with respect to some quantitative
property.
In our case the term will be used for a process of comparing and sorting given two pairs

of objects based on mutual similarity of objects in each pair, such that the objects in the
first pair are “closer” with respect to some property, than objects from the second pair [1].

1Image taken from [23]
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Formally, given input set of objects Z = {z1, . . . , zn} and some metric function δ, paired
comparison π can be defined as

π = (i, j, k, l)| δ(zi, zj) ≤ δ(zk, zl). (5.2)

Triplets and the triplet universe. Triplet is a special case of paired comparison. For a
paired comparison quadruple (i, j, k, l), there can be created a triplet placing i = k. Then,
there is formed a tuple of 3 objects, where the first two objects are “closer” than the first
and the third one [18]. Given input objects Z and metric function δ a triplet τ can be
formally defined as

τ = (i, j, l)| δ(zi, zj) ≤ δ(zi, zl). (5.3)

Inside triplet (i, j, l), the pair (i, j) will be referred to as a short edge and the pair (i, l) as
a long edge.
Considering the definition of triplet and given set of inputs Z and its dissimilarity

(distance) matrix ∆, let TΩ be a set of all existing triplets for the input set Z such that
do not violate triplet consensus with respect to the matrix ∆. The total number of such
triplets can be expressed as

‖TΩ‖ = ‖Z‖ ·

(

‖Z‖ − 1

2

)

. (5.4)

5.2 Triplet Retrieval Efficiency

The first question that probably emerges in relation to triplet retrieval from human workers
is something like: “How many triplets are necessary to create a good-quality embedding?”.
It is apparent that, especially for a larger dataset, is impossible to ask workers about their
judgment for the whole triplet universe (omitting the need of redundant triplets for quality
assurance). Considering Equation 5.4 for the size of triplet universe, it is obvious that its
asymptotic complexity is O(n3) and hence the number of triplets grows cubically. For real
datasets containing thousands or more objects would be intractable to gather all triplets in
this way.
This implies a need of some method to reduce the total number of triplets necessary

for a good-quality embedding construction. In the following sections, there are proposed a
concepts of templates and screens, as well as a way how to use them in order to increase the
amount of triplets produced from workers’ answers. Furthermore, there is a discussion about
a required amount of triplets and the overview of algorithms usable for triplet selection.

5.3 Templates and Screens

The object similarity retrieval process from humans comprise a need to design an appropri-
ate user interface. Using the implicit crowdsourcing for similarity retrieval would involve
incorporation of the algorithm gathering similarities into some game or application, which
would include a tight cooperation with designers of such games or applications.
Also in explicit tasks, where the workers are directly asked to solve some queries in

order to gather similarities, there is still a need to present them the queries in a convenient
way, such that the efficiency of similarity retrieval is maximal. The different types of these
interfaces are referred to as templates in this work. Their usage will be demonstrated and
compared using appropriate data – images. There will be presented two types of templates:
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Triangle and Grid with a probe. The particular purpose of templates is to present input
objects to workers in order to collect triplets from their answers.

Multiple-screen tasks. Most of similarity retrieval tasks are repetitive and in many
cases it is suitable (for quality assurance) to present to a worker multiple easy subtasks
wrapped in a larger task. The term screen is in this work used to define a single template
with a task presented to a worker. HITs are usually composed of multiple screens which
are also referred to as set of screens or set.

5.3.1 Triangle

The triangle template consists of three images placed in vertices of an equilateral triangle.
Such template can be defined it as follow: Given a set of input objects Z, let

T△ = {zi, zj , zk} (5.5)

be a triangle template where items zi, zj , zk are items from the input set Z selected to the
triangle. See Figure 5.2 for an example of the triangle template.
The task for workers is to select the edge, which connects the most similar pair of images

in triangle. Given the triangle template T and a dissimilarity function δ, the worker’s
solution of the task S is defined as

Ssel(T ) = (i, j)| δ(zi, zj) < δ(zi, zk) ∧ δ(zi, zj) < δ(zj , zk). (5.6)

In case of the triangle template, two triplets can be generated from each answer ob-
tained from a worker. Suppose the template Ttriangle = {zi, zj , zk} and the worker’s answer
Ssel(T ) = (i, j), the set of triplets T∂ generated from this particular answer is

T∂ = {(i, j, k), (j, i, k)}. (5.7)

5.3.2 Grid with a probe

Grid with a probe is the second type of template presented in this work. It contains a probe
– one image, which serves as a reference and a matrix (grid) of images. Formally, given a
set of input objects Z, let

Tgp = (p,G,m) (5.8)

be a grid with a probe template, where G ⊂ Z, ‖G‖ = m, m ≥ 2 is a subset of input set
selected to the grid and p ∈ Z, p /∈ G is the probe. For an example of this type of template
see Figure 5.2. There are two following types of tasks defined for the grid with a probe
template.

Selection task. In the selection task, the worker is asked to select s images from the grid,
that are most similar (or dissimilar) to the probe. Given the template T = (p,G,m), where
G = {zc1 , zc2 , . . . , zcm} and a dissimilarity function δ, the selection task can be defined as

Ssel(T, s) = C, (5.9)

where C = {c1, c2, . . . , cs}, ∀i ∈ C, ∀zj ∈ (G \ C) : δ(p, zi) < δ(p, zj). Given a template
T , its selection Ssel(T, s) = C, and the set R = {cs+1, cs+2, . . . , cm}, the triplets generated
from the selection are defined as a Cartesian product

T∂ = p× S ×R (5.10)
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(a) Triangle (b) Grid with a probe

Figure 5.2: Examples of templates.

in case of positive answers (most similar objects) or in case of the negative ones

T∂ = p×R× S. (5.11)

The amount of triplets generated per selection is ‖T∂‖ = s(m− s).

Ordering task. This type of task prompts worker to order images in the grid from most
similar to the less one with respect to the probe image. Given a template T = (p,G,m), let
(G,<δ) be a total order on G, such that ∀zi, zj ∈ G : zi < zj ⇐⇒ δ(p, zi) < δ(p, zj). Then
(G,<δ) = zo1 < zo2 < · · · < zom and we denote (OG, <δ) = o1 < o2 < · · · < om the order
(G,<δ) where the items from the grid are represented by their indices. Then the ordering
task on template T is defined as

Sord(T ) = (OG, <δ). (5.12)

Given the template T and the ordering result Sord(T ) = o1 < o2 < · · · < om, the triplets
from this particular answer are generated according to the following algorithm:

T∂ = (p, oi, oj)| ∀i ∈ {1, 2, . . . ,m− 1}, ∀j ∈ {i+ 1, i+ 2, . . . ,m}. (5.13)

The number of triplets generated per ordering answer is ‖T∂‖ = m(m−1)
2 .

5.4 Template-specific Triplets

It is obvious from previous sections how to generate triplets from one worker’s answer. If we
are given multiple answers from templates with different images or even different templates,
the resultant set of triplets T is

T =
⋃

∂

T∂ . (5.14)

In the following text we denote T sel
△ a triangle template with a selection task performed

on it and similarly T sel
gp (m, s) the template Tgp(p,G,m) with the selection task Ssel(Tgp, s)

and T ord
gp (m) the template Tgp(p,G,m) with the ordering task.

If we take into account the template T sel
gp (2, 1) and we try to generate triplets according

to the algorithm mentioned in Section 5.3.2, we will obtain just one triplet. This corresponds
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(a) Percentage of screens needed to get the same amount of triplets from dif-
ferent templates.

Template T sel
gp (2, 1) T sel

gp (4, 1) T sel
gp (4, 2) T sel

gp (8, 1) T sel
gp (8, 2)

Reduction factor 1 3 4 7 12

T sel
gp (8, 4) T sel

gp (12, 1) T sel
gp (12, 3) T sel

gp (12, 6) T sel
gp (16, 1) T sel

gp (16, 4)

16 11 27 36 15 48

T sel
gp (16, 8) T ord

gp (4) T ord
gp (8) T ord

gp (12) T ord
gp (16) T sel

△
64 6 28 66 120 2

(b) Reduction factor of screens for different templates with constant number of triplets.

Figure 5.3: Comparison of different templates with respect to the quantity of triplets.

to the classical triplet definition (see Section 5.1). This template will be used as a reference
in future experiments. Since we already defined the triplet and the template which can
generate it, what is the motivation to use different templates?

Quantity of Triplets. Lets compute the number of triplet produced from some particular
templates and tasks. If we assign 100% to the number of screens needed to achieve some
certain amount of triplets using the default template T sel

gp (2, 1) generating just one triplet,
we can compute the percentage of needed screens to reach the same amount of triplets for
some other templates. The results are summarized in Figure 5.3.
Comparing the number of triplets produced from different templates, we can see that

using some of them, we can significantly reduce the number of screens and hence the costs to
achieve the same number of triplets. The highest number of triplets is produced by template
T ord
gp (16), where the screen reduction factor w.r.t basic template T sel

gp (2, 1) is 120:1.
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However, is the highest quantity of triplets produced from a template the only priority
that should be taken into account? There are also another important questions like: “Do
the triplets produced by different templates have the same quality?”, or “What is the limit
size of the grid that are workers able to answer efficiently without significant error?”.

Quality of triplets. The quantity of produced triplets is undoubtedly important, how-
ever, we have to consider also the quality of triplets produced by different templates. This
statement is supported by the experiment described in Section 6.4.
In this experiment there were computed embedding errors for different templates and

different embedding functions with fixed number of triplets. The best lowest error can
be observed in embedding created from triplets using T sel

gp (2, 1) template. There is also
observed some correlation between number of triplets produced by a certain template and
their embedding error (especially using t-STE or GNMDS embedding function). If the
workers answering the tasks was paid per generated triplet, it would be best to use the
default template T sel

gp (2, 1) to get their answers. The comparison of these errors is is Figure
6.1a.
Fortunately, the workers are not paid per triplet, but rather per screen. More specifically

they want to be paid for time they spend working on a task, but the reward is specified per
task. So if we repeat the same experiment and instead of constant number of triplets we use
constant number of screens, the results are dramatically different as one can see in Figure
6.1b. Since each default template T sel

gp (2, 1) produces only one triplet, the total embedding
error remains quite high. On the other hand using some templates that produces more
triples, the resulting error is fairly low. However, the embedding error is not inversely
related to the number of produced triplets per template.

5.5 Necessary Amount of Triplets

Once we figured out how to gather triplets from workers in an effective way, it is also
important to know, how many triplets are necessary to build an embedding that would not
suffer a significant error. As mentioned, it would be really expensive especially for a larger
datasets to let workers to answer all triplets, even using some templates, which substantially
reduces the costs. Therefore, the next task aims to determine, how many triplets or rather
how many percent of all triplets do we really need and if the percentage remains still the
same also for a different number of objects.
Assume that the necessary percentage for a good quality embedding is 1% for 100

objects, which means 4 851 triplets. If this 1% of triplet universe is required to build the
same-quality embedding also for 1 000, 10 000 or 100 000 objects, then the task of getting
such number of triplets will become extremely expensive and hence intractable already
for a quite small number of objects. The number of required triplets and the costs are
summarized in Table 5.1a.
Fortunately, according to the experiment described in Section 6.6, the required percent-

age is not the same and although the size of triplet universe grows cubically, the amount
of necessary triplets seems to grow much slower, perhaps even linearly. If the growth is
really linear, then the expenses are reduced by cube root. The situation in such case is
summarized in Table 5.1b.
These results were obtained for synthetically generated triplets based on a ground truth

distance matrix. The situation could be different in case of real data, because workers do not
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Objects All triplets 1% of triplets Cost

100 485 100 4 851 $1.5

1 000 498 501 000 4 985 010 $1 558

10 000 499 850 010 000 4 998 500 100 $1 562 031

100 000 499 985 000 100 000 4 999 850 001 000 $1 562 453 125

(a) Cost estimation in case of 1% of all triplets is required.

Objects All triplets Necessary triplets Cost

100 485 100 4 851 $1.5

1 000 498 501 000 48 510 $15

10 000 499 850 010 000 485 100 $152

100 000 499 985 000 100 000 4 851 000 $1 516

(b) Cost estimation in case of a linear growth of necessary triplets.

Table 5.1: Cost comparison (using T sel
gp (12, 4) paying workers $4/hour) in case when the

percentage of all triplets required for the same-quality embedding is constant (and thus the
amount of such triplets grows cubically) in terms of different number of objects, and in
case when the amount of necessary triplets grows linearly (in practice the number might
be multiplied by a constant).

answer always according to the ground truth and in some cases (e.g. perceptual similarity),
it is also difficult or even impossible to find the ground truth function. Therefore, in practice
it is better to collect rather larger amount of triplets in order to preserve the quality of the
embedding.

5.6 Algorithms for Triplet Selection

Although we have already found the effective way, how to obtain triplets from the workers,
and how to reduce the amount of required triplets, there are still some remaining possi-
bilities, how to make this process even more effective. One of them is usage a different
algorithm that chooses which triplets are displayed to workers. The triplets were so far
chosen randomly, however, there is very likely a better algorithm, that could use a history
of workers’ responses.
Some research related to effective triplet selection has been done in [10, 17]. The idea of

both these methods is to select the most informative triplets and display them to workers
first, however these algorithms do not use bulk triplet collection and collect triplets one per
a screen. Active MDS [10] considers all triplets as a partial ranking with respect to each
point of the embedding and it places geometrical constraints to define the space where the
points may lie. The adaptive selection algorithm presented in [17] models information gain
for each triplet as a probability distribution over all points in the embedding.
Using bulk triplet collection approach instead of one-by-one gives room for exploring

new methods. Although this investigation is not a part of this thesis, it can be a direction
for a potential future work.
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Chapter 6

Experiments on a Toy Dataset

The aim of experiments presented in this chapter is to determine an optimal setup for sim-
ilarity retrieval process, that would lead to inexpensive data embedding without significant
error. There are performed experiments to determine the necessary amount of triplets and
to compare quality of the embeddings constructed by different methods, the efficiency of
different templates used for triplets harvesting, and the embedding quality using different
percentage of corrupted triplets (such that violate consensus).

USCA312 dataset. For the following experiments, there was chosen a datasetUSCA312 1

of 312 cities in the US and Canada. The dataset contains names of the cities, their longitude
and latitude, xy coordinates and paired distances. However, for the needs of experiments,
there were used just the names of cities and the paired distances. There are several reasons
why this dataset was chosen: there is no need to gather human responses for this dataset,
because it contains the explicit ground truth (paired distances) based on which the triplets
can be generated automatically. This dataset is large enough to show, how the mental
matching algorithm works in practice, and also the whole embedding can be displayed in
2D without additional error.

To collect answers there was used instead of real workers a computer program, which,
given set of cities, automatically provides answers based on comparison of paired distances.
Such algorithm will be referred to as artificial worker in terms of experiments with the toy
dataset.

6.1 Triplet Universe Generation

Considering the classical triplet definition the total number potentially non-violated triplets
for this dataset is:

312 ·

(

311

2

)

= 15 039 960 (6.1)

To avoid possibly duplicated triplets all 15 039 960 triplets were sequentially generated using
nested for loops. At first, there were generated IDs of participating cities in each triplets
in this form: (i, {j, k}). Then each triplet was created as a tuple (i, j, k)|δ(i, j) < δ(i, k). In
the end all triplets were randomly shuffled using Linux command shuf.

1http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
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6.2 Templates and Artificial Worker

Some triplets generated in the following experiments come from specific templates. Using
the definition of templates and screens from Section 5.3 there was created a program called
Artificial Worker, which generates answers from the presented screens.
In the following experiments there were used 16 different grid with a probe templates

with selection and ordering tasks (whereas the triangle template T sel
△ was omitted):

T sel
gp (2, 1), T

sel
gp (4, 1), T

sel
gp (4, 2), T

sel
gp (8, 1), T

sel
gp (8, 2), T

sel
gp (8, 4), T

sel
gp (12, 1), T

sel
gp (12, 3),

T sel
gp (12, 6), T

sel
gp (16, 1), T

sel
gp (16, 4), T

sel
gp (16, 8), T

ord
gp (4), T ord

gp (8), T ord
gp (12), T ord

gp (16).

Simulation Pipeline. In the selection task in this particular dataset the artificial worker
is asked to select from the grid s closest cities with respect to the probe city. In ordering
task, the artificial worker is supposed to sort the cities in the grid from the closest to the
furthermost one with respect to the probe city.
The program that simulates this worker answering consist several parts:

1. Grid composer picks random objects from the input set Z and generates the virtual
grid with a probe template. It also assures that there is no duplicated object in the
template.

2. Artificial Worker is given a virtual template and simulates human answers on it. The
images in the grid are ordered according to ground truth of paired distances. Once
the grid is ordered, the program returns indices of the first s items in the case of
selection task or returns indices of all ordered items in the grid in case of ordering
task.

3. Triplet generator is also given a virtual template and the artificial worker’s answer.
It produces triplets from the answers depending on performed task (selection or or-
dering) using the algorithms defined in Section 5.3.2. All generated triplets are stored
in a text file.

4. Embedding computation: There are performed three methods for embedding con-
struction: GNMDS, CKL, and t-STE. Each method is performed 10 times for each
triplet configuration, because all these methods are stochastic and produce different
outputs every time.

5. Error measurement: Embedding error is computed for every produced embedding
and the mean error over the 10 iterations is saved. The error functions are defined in
Section 6.3.

For each part except embedding computation was used programming language Python
with NumPy library. In case of embedding computation algorithms there were used their
implementations in Matlab [18].

6.3 Error Measurement

In order to measure the quality of the embedding, there is a need to have some error
function. Since the ground truth is known to us, we can compare the embedding with real
paired distances. There are presented two error functions for embedding quality evaluation.
The comparison of both methods can be seen in Figure 6.2.
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Embedding vs. Triplet Universe. This type of quality evaluation is based on com-
parison of real paired distances for all existing triplets that can be generated for the set of
input cities with the matching distances in the embedding. Every single distance violation
is accumulated to the total error counter and then normalized by number of comparisons.
Since all used embedding algorithms are non-metric, it is more appropriate to compare just
embedding distances with all triplets, instead of a proportional comparison of real distances
directly with distances in the embedding.
Formally, given the set of inputs Z, its universe of triplets TΩ with respect to the

paired distances ∆Z , embedding E, and it’s paired distance matrix ∆E the error ǫΩ can
be expressed as follow:

ǫΩ =

∑

(i,j,l)∈TΩ:δE(i,j)>δE(i,l) 1

‖TΩ‖
(6.2)

One could argue that the more precise way how to measure embedding would be to
compute the ratio between the short edge and the long edge of each triplet. This approach
would be probably useful in metric methods like MDS, but although all examined methods
form metric space for embedding, they are based on non-metric comparisons and thus
measuring the magnitudes of error would be misleading.
Since this method compares distance ratios in embedding created just by a subset of

triplet universe with ratios of real distances using the whole triplet universe, this error
function indicates the generalization ability of the embedding algorithm and the capability
of building whole embedding when just a part of comparisons (triplets) is provided.

Embedding vs. Supplied Triplets. The second possible way how to evaluate embed-
ding quality is to count just the number of inconsistencies between triplets supplied to the
embedding function and distances in created embedding. This method does not evaluate
the ability of generalization, but more like the effort to satisfy provided triplets in the cre-
ated embedding. The formal definition is very similar to the previous one, just instead of
triplet universe is given just its subset T ⊂ TΩ which was used for embedding creation.

ǫ =

∑

(i,j,l)∈T :δE(i,j)>δE(i,l) 1

‖T ‖
(6.3)

6.4 Experiment 1: Quality of Triplets

The goal of this experiment is to measure the quality of triplets produced by different
templates. The assumption is that the highest-quality embedding can be created from the
classical triplet definition using the template T sel

gp (2, 1). This experiment should give the
answer on the question how significant is the difference in quality of triplets produced by
different templates and which template gives the lowest error for its embedding when a
constant number of screens (and thus in some cases very different number of triplets) is
used for each template.

Experiment Setup. In the first part of the experiment the number of triplets was fixed
to 0.1% of all possible triplets, which is in this case 15 040 and for each template there was
computed a necessary number of screens in order to reach the specified number of triplets.
The resulting number of necessary screens are displayed in Table 6.1a. In the second part,
there was fixed a constant number of screens to 1 000 (in terms of the size of dataset and
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Template T sel
gp (2, 1) T sel

gp (4, 1) T sel
gp (4, 2) T sel

gp (8, 1) T sel
gp (8, 2)

Screens 15040 5014 3760 2149 1254

T sel
gp (8, 4) T sel

gp (12, 1) T sel
gp (12, 3) T sel

gp (12, 6) T sel
gp (16, 1) T sel

gp (16, 4)

940 1368 558 418 1003 314

T sel
gp (16, 8) T ord

gp (4) T ord
gp (8) T ord

gp (12) T ord
gp (16)

235 2506 538 228 126

(a) A necessary amount of screens for different templates to produce 15 040 triplets.

Template T sel
gp (2, 1) T sel

gp (4, 1) T sel
gp (4, 2) T sel

gp (8, 1) T sel
gp (8, 2)

Triplets 1 000 3 000 4 000 7 000 12 000

T sel
gp (8, 4) T sel

gp (12, 1) T sel
gp (12, 3) T sel

gp (12, 6) T sel
gp (16, 1) T sel

gp (16, 4)

16 000 11 000 27 000 36 000 15 000 48 000

T sel
gp (16, 8) T ord

gp (4) T ord
gp (8) T ord

gp (12) T ord
gp (16)

64 000 6 000 28 000 66 000 120 000

(b) The amount of triplets generated from 1 000 screens using different templates.

Table 6.1: A necessary amounts of screens to achieve the same amount of triplets and a
number of triplets produced from a constant amount of screens for different templates.

the fact that some templates can produce up to 120 triplets per template). The resulting
numbers of triplets produced by different templates are displayed in Table 6.1b.
These numbers of screens along with the matching template were subsequently used as

a input of the simulation pipeline, and there were computed embeddings and their mean
errors for each part of this experiment separately. The results of the experiment can be
seen in Figure 6.1.

Discussion. From the results of the first part of the experiment is obvious, that the lowest
error rate and thus the highest-quality triplets are produced by template T sel

gp (2, 1) which
confirms the assumption (at least in the case of t-STE and GNMDS methods). Another
interesting fact is, that for sorting tasks the error is highest among the templates with the
same grid size when the task is to select just one item from the grid. Especially GNMDS
and CKL methods suffer in such cases by significantly higher error. The triplets produced
in this way have much more different long edges than short edges. In other words using the
definition of the set of triplets T∂ = p× S ×R produced by a selection task on a grid with
a probe template Tgp = (p,G,m), then the set S contains just one item and m − 1 items
are in the set R, so each produced triplet by this single template triplet has the same short
edge.
In case of constant number of screens, the results are diametrically different. The

fact that some templates produce incomparably higher amount of triplets than the basic
template T sel

gp (2, 1) surpasses its poorer quality and gives a noticeably lower embedding
error. Also the higher error of GNMDS and CKL for the templates that generates much
smaller number of short edges than long edges in the case of fixed number of screens is even
amplified. The another observation is that while the GNMDS error was in the first case
mostly lower than t-STE error, in the second case the situation is reversed. Especially in
the cases of ordering tasks is the difference notable.
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(a) Constant number of triplets.
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(b) Constant number of screens.

Figure 6.1: Comparison of embedding errors for a constant number of (a) triplets,
(b) screens, using different templates.
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% 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
# 752 1 504 2 256 3 008 3 760 4 512 5 264 6 016 6 768 7 520

% 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
# 8 272 9 024 9 776 10 528 11 280 12 032 12 784 13 536 14 288 15 040

% 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
# 30 080 45 120 60 160 75 200 90 240 105 280 120 320 135 360 150 400

Table 6.2: Percentages and their corresponding numbers of objects used in the experiment.
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(a) Embedding vs. Triplet Universe
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(b) Embedding vs. Supplied Triplets

Figure 6.2: Comparison of two embedding error functions from 6.3 w.r.t the percentage of
triplets from TΩ provided to the embedding function.

6.5 Experiment 2: Embedding Error

The first part of this experiment aims to show the error of embedding constructed by dif-
ferent algorithms for a different number of triplets. It also shows the difference between the
previously defined error functions (see Section 6.3). In the second part, there is examined
the influence of corrupted triplets to the embedding error.

Experiment setup. The triplets were generated using the triplet template Tsel(2, 1).
For the selection of triplets there was used the shuffled list of triplet universe (see Section
6.1) and the triplets were selected from the beginning of the list. Table 6.2 shows the used
percentages of triplets from the universe and the corresponding number of triplets.
There were performed all three embedding functions on each set of triplets and the

mean embedding error was computed for both error functions both mentioned in Section
6.3. The resulting embedding errors for both function are presented in Figure 6.2. In the
second part, the number of triplets was fixed to 1% from all possible triplets selecting first
15 040 ones from the shuffled list of all generated triplets. Then there were inverted last two
items in triplet at 0%, 5%, 10%, 15%, . . . 100% of used triplets (triplet (i, j, l) was inverted
to (i, l, j)). Subsequently, there were created 10 embeddings for each method (GNMDS,
CKL, t-STE) and each percentage of corrupted triplets and the mean embedding errors
were computed. The results are displayed in Figure 6.3.
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Figure 6.3: Embedding error with respect to percentage of corrupted triplets using 1% of
total amount of triplets.

Discussion. In the case of the first error function (Embedding vs. Triplet Universe)
which determines the overall embedding error is the error, it is evident from the results
that the error is rapidly decreasing until about 0.1% of the total number of triplets in case
of t-STE and GNMDS, and about 0.2% in case of CKL embedding function. From these
threshold values the total error declines very slowly or remains nearly constant.
The second error function (Embedding vs. Supplied Triplets) returns low error for a

very little number of supplied triplets and then the error increases and fluctuates until it
reaches the similar threshold amount of triplets as in case of the first error function (0.1% for
t-STE and GNMDS and 0.2% for CKL). From the threshold value the error remains almost
constant. Unlike the first error function, which gives us the information about ability of
embedding functions to generalize the embedding, this one shows the effort of embedding
functions to satisfy given triplets.

6.6 Experiment 3: Necessary Amount of Triplets

From the previous experiment is apparent that the more triplets are used to build embedding
the lower error is obtained. But what is the necessary amount of triplets needed to construct
an embedding with the same error rate for different number of object? In other words,
having 50 objects and the error of their embedding is e.g. 10% for some percentage of
triplets from the universe, is the same percentage of triplets needed also for 100 or 200
objects? This experiment tries to answer these questions.

Experiment setup. As a measure of the embedding error there was used the error
function, that compares distances in embedding with triplet universe (see Section 6.3). In
the experiment, 6 different subsets of the cities were randomly chosen from the dataset.
The sizes of subsets were determined to 62, 112, 162, 212, 262, and 312. There were also
used a subset of 1 000 objects taken from a dataset of Californian post offices, that is useful
for estimation of the number of necessary triplets at a food image dataset (see Section 8).
Nevertheless, the fact that these 1000 objects come from a different dataset has no impact
on reliability of the results, because triplets are generated on the basis of a ground truth,
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(b) Zoomed detail.

Figure 6.4: Embedding error w.r.t percentage of used triplets for different number of objects.

which is in both cases available. With the following fixed percentages of triplet universe to
0.01%, 0.02%, . . . , 0.09%, 0.1%, 0.2%, . . . , 0.9%, 1.0% and for all subsets of objects (except
1 000 objects subset) there was 10 times built an embedding using t-STE method, computed
the embedding error, and saved the mean value over these 10 iterations. For the set of 1 000
object there were used just 2 iterations and a percentage range of triplets from the universe
from 0.002% to 0.1% because of computational complexity. Notice that there are performed
multiple iterations because the embedding function is stochastic and returns every time a
different embedding.
In practice, for each subset of cities a list of triplet universe was generated and shuffled

according to the procedure described in 6.1. Then all used percentage of all triplets was the
list of triplet universe sliced from the beginning up to the corresponding number of triplets.

Results and discussion. The embedding errors for each number of objects with respect
to the used percentage of triplets from the universe are displayed in figure 6.4. The error
function was created for each amount of objects by linear interpolation of resulting errors.
If the percentage of all triplets required to build the same quality embedding was the

same for every number of objects, all the resulting error functions would collapse into only
one. The fact that they did not collapsed into one error function implies that the percentage
of triplets vary for distinct number of objects, however, from this figure is not really evident
how much they vary.
Nevertheless, fixing the embedding error to some level, there can be displayed the de-

pendency of percentage of all triplets or rather the concrete number of triplets with respect
to the amount of objects (see Figure 6.5). Note that all percentages from triplet universe
are just estimated from the resulting embedding errors. There is no way how to enforce
exact embedding error since the embedding function is stochastic and the results from all
iterations vary. Them the number of triplets was computed from the estimated percentage
of the triplet universe size.
From Figure 6.5b is evident, that even though the amount of all triplets grows cubically,

the necessary amount of triplets that preserves embedding quality seems to grow much
slower, maybe even linearly. To figuring out the real complexity of the necessary amount
of triplets would need a further research and it is not the subject of this thesis, however, it

39



0 50 100 150 200 250 300 350
Number of objects

0.0

0.2

0.4

0.6

0.8
%

 o
f t

rip
le

ts
10% error
9% error
8% error

(a) Percentage of triplets.

0 50 100 150 200 250 300 350
Number of objects

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f t
rip

le
ts

10% error
9% error
8% error

(b) Number of triplets.

Figure 6.5: Estimation of percentage and number of triplets needed to construct the same
quality embeddings for different numbers of objects.

might be a challenging task for the future work.

6.7 Experiment 4: Navigation Through the Embedding

The last experiment on the US and Canada cities dataset concerns navigating through the
space of embedding and finding a target object in the embedding. It is a demonstration
of mental matching algorithm defined in Section 4.2 on this dataset. Although the main
purpose of the algorithm is to find a target image in a set of images, it works with any data
embedding.

Experiment setup. In case of this toy dataset, there are always displayed all cities in the
embedding as points, the target city is marked as a blue point and it is randomly selected
in the beginning of each searching session. This searching method requires to specify at
least two parameters, which were determined to θ+1 = 0.8 and θ+2 = 0.001. Since these
parameters were estimated empirically for the embedding using its distance histogram,
they are suboptimal. The searching session has been initialized 5 times. One example of
the searching session is displayed in Figure 6.6.

Results. In each step of the searching process the cities chosen to the display set are
colored green and the chosen city from display set is color cyan. The gradient color denotes
the probability of each image to be selected into the display set: the lighter color the higher
probability. The average number of steps necessary to hit the target object was 6 over the
5 iterations. There is no important conclusion from this experiment, which was added to
this work just as a visual demonstration of the mental matching algorithm.
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20 15 10 5 0 5 1010

5

0

5

10

15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) step 4

20 15 10 5 0 5 1010

5

0

5

10

15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) step 5 - target hit

Figure 6.6: The example of a searching session using the mental matching algorithm. The
blue point represents the target city, green points cities selected to display set and the cyan
one the city from display set that is closest to the target one. Gradient color determines
the probability of eligibility to display set.
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Chapter 7

Perceptual Similarity Evaluation
on a Country Flags Dataset

The importance of this experiment is to demonstrate inconsistency and high divergence of
responses when the workers are asked to numerically evaluate similarity of two objects. On
the other hand, if they are asked to compare pairs of objects, their answers are much more
consistent. The following experiments were performed on a country flags image dataset.

Country flags dataset. The country flags dataset contains 196 images of countries rec-
ognized by member states of United Nations, United Nations observer states, and Taiwan
(according to Wikipedia1). The flags were in the following experiment used as objects that
are perceptually similar and the ground truth similarity is not known.

For purposes of this experiment the problem formulation was taken from [18]. Assume
we are given a set of inputs {z1, . . . , zn} ⊂ Z. There is a ground truth dissimilarity function
δ(zi, zj), which evaluates the dissimilarity of two items zi and zj . This function δ(·) is not
known to us.

Hypothesis. In order to get the dissimilarity function δ we could ask users “how similar
is object zi to zj” on Likert scale [12]. If multiple user are asked with the same question
using the same objects zi and zj , their answers will be inconsistent and biased. The cause
of this problem may arise from different respondents’ experience and their different internal
scales. Imagine two images with food. One with a seafood and another with a grilled
chicken breast. If we showed these two images to a person who had never tried seafood
and ask her how similar those foods on the images taste from 0 (completely differently) to
10 (identically), the score could be quite high, because she might think that both are meat
(the origin is animal) and therefore it should taste similar. On the other hand, if we asked
the same question somebody experienced by a seafood and grilled chicken breast, we would
probably get much lower score than in the first case.

7.1 Experiment Setup

The aim of this experiment was to confirm the previously mentioned hypothesis. There
were randomly sampled 10 triplets of flags from the dataset, which were subsequently used

1http://en.wikipedia.org/wiki/List_of_sovereign_states
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(a) Numerical evaluation interface. (b) Triplet interface.

Figure 7.1: The screen shots of the numerical evaluation of similarity and the triplet inter-
face displayed to the workers in order to obtain their answers.

in the following two parts of the experiment.
In the first part, 10 randomly chosen pairs were taken from the triplets and presented

to 10 workers that were asked to evaluate the similarity of each pair of flags. The same 10
pairs were shown to each worker, just the order of pairs was chosen randomly and workers
were not allowed to return to previous pairs they had already answered. The aim of this
random order was to demonstrate, that the results may be also affected by the order of
pairs. Furthermore, each worker was allowed to answer just one set of these ten pairs. The
workers were on each screen asked to evaluate the similarity of the displayed flags on a
scale from 0 (completely different) to 10 (absolutely similar). A screenshot from the user
interface presented to the workers is in Figure 7.1a.
In the second part of the experiment there were used all 10 sampled triplets. Each

triplet was randomly divided to a probe image and a grid (remaining 2 images), and there
were also 10 workers asked to select the most similar flag from the grid to the probe flag
using the selection task on the default triplet template T sel

gp (2, 1). To all 10 workers were
presented the same screens, just the order of screens was shuffled, and as well as in the first
part, each worker was allowed to complete just one set of the 10 screens. User interface
used in this part is shown in Figure 7.1b.
Both parts of the experiment were deployed to Amazon MTurk in order to receive

answers from workers. The workers were in both cases paid $0.05 per HIT (set of screens),
and there were applied the following restrictions to assure the reliability of answers. To
work on this task, there were allowed just workers, who are US residents, had already had
at least 1 000 HITs approved, and at least 95% of their submitted HITs had been approved.

7.2 Results

For the first part of the experiment there are plotted histograms of workers’ answers sep-
arately for each screen. The results are displayed in Figure 7.2a. On the horizontal axis
of each histogram there are numerical evaluations of similarity (from 0 to 10) and on the
vertical axis the quantity of answers. Each histogram has also attached flags, which the
workers were comparing. It is apparent from the histograms that the numerical evaluation
of similarity is in some cases very outstretched and uniform (screens #1, #2, #4, and #5),
however in a case of an ideal workers’ answers, there would be just one value presented.
Another obvious fact is that most of answers are pessimistic (the distribution of answers is
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shifted to the lower values).
The resulting histograms of the worker’s answers for the second part of the experiment

are displayed in figure 7.2b. The flag images displayed on the top of each histogram are the
probe images of triplets presented to the workers, the images at the bottom are the another
two images from triplets that could be selected as “more similar” to the probe. On the “y”
is again displayed the quantity of answers. In the half of triplets presented to the workers
are their answers uniform and there are just two triplets, where the answers are balanced
and hence is not possible to decide, which of the flags is more similar to the probe.

Discussion. As we assumed in the hypothesis, if the users are asked to evaluate some
perceptual similarity of two objects numerically, their answers will vary noticeably. This
statement is supported by the results of the first part of this experiment, where 10 workers
on MTurk were asked to evaluate the similarity of two given flag images. The answers were
in the majority of flags pairs distributed over more then half of the scale range. In most
cases the distribution of answers also does not correspond to the normal distribution.
The second part of the hypothesis assumed that usage of triplets instead of numerical

evaluation should improve the consistency and reliability of answers. This assumption was
confirmed in the second part of the experiment, where the workers were presented triplets
with flag images and asked to select the most similar flag to the probe flag. Their answers
were in 80% of triplets very clear and in the remaining 20% there were balanced and thus
it is not possible to deduce a “correct” answer in those cases.
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(a) Results of numerical evaluation of flags similarities: Histogram of answers for each pair of flags
displayed to workers.

(b) Results of flag triplets: Histogram of answers for each triplet displayed to workers. Flags on the
top of sub-figures were the query images (probes) and from the flags at the bottom the user chose
the most similar one to the probe.

Figure 7.2: Obtained results from the both parts of the experiment: The results from
numerical evaluation are displayed in the top row, results for triplet comparison in the
bottom one.
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Chapter 8

Experiments on Food Images

This chapter describes application of acquired knowledge on a real dataset of food images.
There is performed a complete pipeline starting with similarity retrieval process, continuing
through triplet filtration and embedding creation and ending with evaluation of searching
performance in the space of embedding.

Food-1000 dataset. Food-1000 is an image dataset containing 1 000 randomly chosen
images from Yummly1. Along with these images, the dataset contains several meta data as
names of meals, ingredients, and tastes.

8.1 Similarity Retrieval

The images from the Food-1000 dataset were uploaded to Visipedia: Crowdwork applica-
tion (see Section 3.3.2) in order to obtain similarities among them, in particular triplet
comparisons. The target number of needed triplets is based on the results of the experi-
ment described in Section 6.6. The goal was to obtain at least 0.015% of all triplets, which
roughly corresponds to 5% of embedding error.
According to the investigation of template performance (see Section 6.4) and the re-

search done by authors in [25], one of the most effective templates for triplet generation,
which was also used in this experiment, is the template T sel

gp (12, 4). In other words, a probe
image and a grid of 12 images were presented to workers and their task was to select 4
images from the grid that are most similar to the probe image. There can be produced
32 triplets from every such answer. The goal was to obtain at least 0.015% of all triplets,
which is in this particular case

0.00015 · 1 000 ·

(

999

2

)

.
= 74 775 (8.1)

triplets, so the necessary amount of screens presented to workers is

⌈

74 775

32

⌉

= 2337. (8.2)

The screens were divided into sets of 20: 18 regular screens and 2 catch trials for quality
assurance reason. Adding catch trials arose the necessary amount of screens by 10%. Also

1http://yummly.com/
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Figure 8.1: Statistics from the workers’ answers: Mistakes in catch trials and a screen timer
histogram.

all answers are based on a perceptual property and they are produced by human workers, so
it is very likely that some inconsistencies appear in the answers and hence some redundant
screens should be added. One possibility would be to display the same screens to multiple
users and subsequently merge their answers, but this solution would increased the costs
per triplet. Since the t-STE method deals with inconsistencies quite well and from the
partial conclusion that quality of triplets can be compensated by quantity (see Section 6.4),
instead of repetitive screens there were just added more screens. So, in the end the goal
was determined to 6 000 screens (300 sets). Each set was deployed to MTurk as a separate
HIT. Eligible workers were those, who were US residents, had already had at least 1 000
HITs approved and at least 95% of their submitted HITs had been approved. The reward
for a HIT was determined to $0.2 per HIT.
There are some important statistical data from workers’ answers, that might be used for

their filtration. In Figure 8.1 there is a histogram of mistakes in catch trials and a histogram
of time needed to answer a single screen. The median time was 7.64 s. A research in [25]
subsumed a similar data collection on a different dataset, where the authors achieved the
median 8.67 s per screen using the same template T sel

gp (12, 4). This difference is probably
caused by usage of different datasets. Next statistics about the similarity retrieval task are
summarized in the following table:

Number of images 1 000
Number and type of used template 6 000 screens (300 sets) T sel

gp (12, 4)

Quality assurance 10% of screens were catch trials (totally 10 distinct)
Number of obtained triplets 192 000 (0.0385% of all triplets)

Total costs $66 ($60 rewards and $6 Amazon commission)

8.2 Embedding Construction

Once the answers were collected, the next step was to construct an embedding of the food
images. From the possible embedding algorithms that could be potentially used was chosen
t-STE, which gives best results on noisy data with some contradicting triplets.
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Figure 8.2: Error of food image embeddings with different number of dimensions. The
embedding errors was computed from supplied triplets.

At first, it was necessary to determine a number of dimensions. For each dimension
d = 2, 3, . . . , 20 there were created 10 embeddings and computed a mean embedding error
from supplied triplets (see Section 6.3) over these 10 iterations. The resulting mean errors
for all dimensions are displayed in Figure 8.2. According to results it seems reasonable
to select any dimension around 10. In fact, there are two factors affecting this choice:
computational complexity and embedding error; higher dimensionality decreases embedding
error, but increases the computational complexity. These led to choose the number of
dimensions d = 8, because the embedding error decreases very slowly for higher numbers.
The next step was to select which triplets to use for the embedding construction. There

were collected 192 000 triplets, which is 0.0385% of the triplet universe, but, obviously,
there are some triplets eligible to be filtered out, or rather the answers from which these
triplets were generated. The reasons why it is advantageous to filter out some answers are
as follow:

Duplicates. Since 10% of all screens presented to workers were catch trials and the
amount of distinct catch trials is relatively small, there is a lot of identical catch trial screens
and hence a lot of identical triplets. Using t-STE method which pushes together and pulls
apart objects even when the presented triplet is already satisfied, the food images that are
part of triplets generated from catch trials would be disproportionately close together or
far away with respect to the rest of images.

Incorrect Catch Trials. The next filtration criteria concerns these sets, in which the
worker answered catch trials incorrectly, and hence also answers on regular screens can be
very likely biased. On the other hand, filtering out all sets with any mistake would reduce
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ID Filtration criteria Filtered out objects Error

N No filtration 0 (0%) 12.3%

D Duplicated answers 18 487 (9.63%) 13.29%

C1 Incorrect catch trials any mistake in a set 50 560 (26.33%) 10.17%
C2 2+ mistakes in a set 18 560 (9.66%) 11.51%
C3 3+ mistakes in a set 7 040 (3.67%) 12.06%

T1 Timer-based filtration < 3 s 3 264 (1.7%) 12.1%
T2 < 4 s 19 520 (10.17%) 11.75%
T3 < 5 s 42 112 (21.93%) 11.23%
T4 > 10 s 61 760 (32.17%) 10.38%
T5 > 20 s 15 040 (7.83%) 12.11%
T6 > 30 s 5 408 (2.82%) 12.2%

X1 Selected combinations D, C2 35 383 (18.42%) 12.52%
X2 D, C2, T1 37 569 (19.57%) 12.36%
X3 D, C2, T1, T6 42 436 (22.1%) 12.22%
X4 D, C2, T2 48 047 (25.02%) 11.86%
X5 D, C2, T2, T6 52 914 (27.56%) 11.73%

Table 8.1: Selected filtration options and their impact to a resulting number of triplets and
the 8-dimensional embedding error.

significantly the amount of triplets (see Table 8.1), so there should be given some tolerance.

Time-based Filtering. According to the time histogram of workers’ answers (see Figure
8.1b) there are some screens which were answered quite fast or slow. The fast answers can
be explained quite simply: workers on MTurk just try to make as much money as they can,
but sometimes it can degrade the quality of answers. The slow answers can be caused by
different reasons: Workers may think a long time about the best answer or they might be
focused on something else (even though this situation should be eliminated by stopping a
timer when the worker is idle).

Although the filtration of some answers reduces the amount of triplets used for embed-
ding construction, it should increase the quality of the remaining triplets. Several filtering
criteria and their combination are summarized in Table 8.1.
In this particular dataset the ground truth function is not known, so there is no way

how to exactly measure the quality of an embedding or how to compare two embeddings
(besides the embedding error function, that measures a percentage of satisfied triplets from
with respect to all provided triplets, but is does not tell much about the ground truth
function). One way how to compare embeddings at least visually is to display nearest
neighbors to selected objects and compare their relevance. Since all embeddings contains
the same objects, the nearest neighbors of a particular object can be compared over several
different embeddings. There were chosen 10 images trying to cover a wide spectrum of
different types of food and computed 5 nearest neighbors for each of them. A comparison
of such nearest neighbors for filtration options N and X4 is displayed in Figure 8.3.
Comparing the nearest neighbors with the reference object can give us an idea about

about quality of localization in the embedding. It is apparent from the previously mentioned
figure, that lot of similar meals ale located close to each other, but also on the other hand
there are some types of meals, that are placed in the embedding quite randomly. There are
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N (no filtration) X4 filtration

Figure 8.3: Nearest neighbor meals in embeddings. The left section comes from an embed-
ding without filtration and for the right one was used filtration option X4 (see Table 8.1).
Then each line shows the 5 nearest neighbors from the embedding to the image in the green
box. The farther from the green box, the less similar image.

some reasons that might caused, that some objects are embedded better and some worse:

• The images were selected randomly to the grid during the similarity retrieval, so some
of them appeared in more screens than the others and hence there are presented in
more triplets.

• There is a wide range of numbers of similar meals to some reference one. For example,
there is a lot of salads or cakes, but just a few representatives of sushi or French fries.

The other interesting fact is, that comparing nearest neighbors of the embedding created
from filtered triplets and of the embedding from all triplets, there is no notable improve-
ment, even the embedding from all triplets could be considered as a better one, because on
some lines (1, 8) the nearest neighbors seem to be more relevant then in case of the other
embedding.
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Select a food from the right that tastes 
most similar to the foods on the left 

OR select "No preference"

(a) θ+1 determination.

Select one food from the right 
that tastes most similar 
to the foods on the left

(b) θ+2 determination.

Figure 8.4: Screenshots of the layouts used for determination of parameters θ+1 and θ+2 in
mental matching algorithm.

8.3 Searching in Embedding

Searching procedure in an embedding is based on the mental matching algorithm (see
Section 4.2). The method takes an embedding on its input along with four parameters
affecting a behavior of φ+(d) and φ−(d) functions and a parameter specifying the size
of the display set. The optimal size of display set, that is not too large for users, was
determined by authors of [9] to 8, but it can be accommodated to a particular use case or a
screen size. The parameters for negative model φ−(d) can be fixed to θ

−
1 = 0, θ−2 = 1. For

the positive model, the parameters was estimated according to the algorithm presented in
Section 4.2.2.

8.3.1 φ+ Parameters Determination

The algorithms for object selection for both parameters θ+1 and θ+2 were implemented into
Visipedia: Crowdwork application. At first, a task to collect data required to compute θ+1
was created and deployed on MTurk. Once the θ+1 parameter was computed, the second
task for θ+2 that already required θ+1 was created and deployed to MTurk.
Both previously mentioned algorithms require to pick a target class S as well as one

object k ∈ S randomly. Although the Food-1000 dataset contains some meta data like
meal name, ingredients, etc., there are no classes of these meals. Also if they were, the
aim of this thesis is not to use a deterministic number of classes, but rather a continuous
space. Therefore, the issue was how to determine a target class. Considering Figure 8.3 with
nearest neighbors, many similar meals that could be even classified to the same category are
grouped together. And since the algorithm shows workers the overview of the target class
instead of a single image, it handles also a situation, when a really different food is located
among the nearest neighbors. The target group was hence formed from a randomly picked
food image and its 8 nearest neighbors in the embedding, so the size of the target group
was 9. This size was selected because it can be ordered in a 3× 3 grid which fits the layout
pretty well. Then, the image k was randomly chosen from the target class. The layouts of
the tasks deployed to MTurk are diplayed in Figure 8.4. It is worth to mention that the
embedding space is generally unbounded, but the mental matching algorithm works with
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θ 0.1 0.15 0.2 0.25

N(θ) 76 50 27 13
p(θ) 9.96× 10−8 0.5 ≈ 1 ≈ 1

(a) No triplet filtration (100 samples).

θ 0.2 0.25 0.3 0.35 40

N(θ) 43 30 29 27 18
p(θ) 0.0004 0.5 0.6 0.78 ≈ 1

(b) X4 triplet filtration (60 samples).

Table 8.2: θ+1 parameter determination for two embeddings: with no triplet filtration and
with X4 triplet filtration. We choose θ+1 = 0.1 in case of no triplet filtration and θ+1 = 0.2
for X4 filtration.

normalized distances δ ∈ [0, 1] between objects. Therefore all distances from the embedding
are at first divided by the largest distance.
The procedure of parameter adjustment was repeated for both embeddings: with no

triplet filtration and with X4 triplet filtration. These embedding will be denoted EN and
EX4. The whole procedure consists of two steps. In the first one, there was determined
parameter θ+1 , which was subsequently used in the second step to get θ

+
2 . In Table 8.2 there

are presented results obtained from workers for the first step. For EN , there was chosen
θ+1 = 0.1 and for EX1 parameter θ

+
1 = 0.2. These parameters represent the largest values,

where the null hypothesis is rejected at 0.05 significance level (see Section 4.2.2). In the
second step, there were obtained the following results:

• For EN , the images i has been chosen in 204 cases from 400 answers, which gives
θ+2 = 0.137,

• in case of EX4, i has been chosen 221 times from 400 answers, hence θ
+
2 = 0.116.

8.3.2 Performance Evaluation

The performance of searching in the space of embedding was measured in the similar way
as authors of the used mental matching method [9]. The only difference is that they used
labeled datasets, so they determined the target class on a basis of its label. In the case of
Food-1000 dataset, the target class was determined by a cluster of to a randomly selected
item (target image) from the embedding and its 8 nearest neighbors, which gives together
9 images in target class S. There were collected and compared results for three different
user models:

• Ideal user always chooses the closest image to the target set.

• Random user acts in every step randomly.

• Real user represents a sample of human users.

Whereas the ideal and random user model, which were computed programmatically, the
real user model was calculated on MTurk workers. There was used the identical template
as in case of θ+2 parameter determination process (see Figure 8.4b). The target class was
displayed all the time and in every iteration there was shown the new display set and the
worker was asked to keep selecting the closest image from display set to the target class
until at least one food image from the target class appeared in display set or exceeded
maximum number of iterations.
The experiment was repeated 100 times for all three user models and both embeddings

(EN and EX4) and in each run, there was wrote down the necessary number of iteration
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when any image from the target set appeared in the display set. The maximum number of
iterations for each run was limited to 20. When no image from the target set was reached
within 20 iterations, the searching was marked as unsuccessful. The resulting histograms of
necessary number of steps as well as cumulative distribution functions for all user models
and both embeddings are displayed in Figure 8.5.

Discussion. Although the EN embedding looked probably better than EX4 in terms
of the nearest neighbors (see Figure 8.3), according to the results from mental matching
experiment it gives a worse performance. Besides the quality of embedding it could be
caused also by suboptimal determination of parameters for positive answer model, however,
the determination process was identical for both embeddings so this assumption might be
misleading.
Comparing the histograms of samples from ideal user, it is apparent that in case of EX4

the high values on the vertical axis are shifted towards the smaller values on horizontal
axis with respect to the EN embedding. This implies, that more searching sessions finished
earlier, which indicates a better performance. This is also apparent from the shape of
cumulative distribution function. In case of real user, the difference is not so noticeable for
early steps, but it become apparent in later steps of the searching session. There is 10%
improvement in number of tasks which finished within 20 iterations.
The searching performance achieved on the food dataset can be also compared with the

experiments presented in [9]. Even though the performance achieved on food image dataset
is not as good as in their experiments on Corel and Alinati databases, it does not indicate
failure, because in their cases, the embeddings were created using computer vision methods,
in our case they were constructed from humans’ answers which were based on perceptual
similarity.
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(a) Histogram of samples for EN .
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(b) Histogram of samples for EX4.
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(c) Cumulative distribution function for EN .
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(d) Cumulative distribution function for EX4.

EN 20% 40% 60% 80%

Ideal user 3 5 8 13
Real user 4 9 16 N/A

Random user 14 N/A N/A N/A

EX4 20% 40% 60% 80%

Ideal user 2 3 6 11
Real user 4 9 13 N/A

Random user 11 N/A N/A N/A

Figure 8.5: Performance of the mental matching algorithm achieved on Food-1000 image
dataset for ideal user, real user and random user expressed by the sample histogram, cu-
mulative distribution function, and the number of steps required to finish searching in 20,
40, 60, and 80 percent of cases. The left column refers to EN embedding, the right one to
EX4 embedding.
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Chapter 9

Conclusions

The aim of this work was to propose an efficient way of searching among perceptually
similar objects, which subsumed an investigation in perceptual similarity retrieval from
humans, choosing an appropriate method for embedding learning, and adaptation of the
used searching algorithm to the particular embedding, in order to extend the Visipedia
project. This target has been met.
In the work, there are described and divided types of relations between objects. A special

focus is put on investigation of effective ways, how to obtain objects comparison on the basis
of their perceptual properties. Since this step includes collaboration with humans, there is
presented the idea of crowdsourcing and there are proposed recommendations how to get
the most from this interaction. There are also presented concepts of triplets and paired
comparisons, together with techniques of humans’ feedback transformation into them. In
the theoretical part, there are introduced and compared methods for embedding construc-
tion and navigation in such space, which are subsequently applied on real data. There
are presented three datasets on which the experiments has been performed: A toy dataset
of cities in the US and Canada, a country flags dataset, and a food image dataset. The
resultant searching process is demonstrated on a simple application.
In the presented experiments, there were achieved several remarkable results. Although

the amount of triplets grows cubically w.r.t number of objects, it seems that the number of
triplets required to build the embedding with constant error grows much slower – maybe
even linearly. The next one measures the necessary amount of rounds while searching in
the perceptual embedding. The searching session finishes for average human user in 9 steps
for 40% and in 13 steps for 60% of all searching sessions using triplet filtration.
There are several possible directions for a future work. Since the performance of search-

ing in an embedding is strongly correlated with its quality, some research should be focused
on embedding quality improvement and its measurement. In particular it comprise an inves-
tigation in alternative ways of interaction with humans in order to obtain object similarities
as well as in methods determining which triplets are important to improve embedding qual-
ity. Adding a new object into embedding requires its rebuilding, so there is also room for
finding ways how to force en embedding to be locally-oriented and hence simplify the pro-
cess of a new object incorporation. It would be also interesting to determine a complexity of
the function expressing a growth of necessary amount of triplets with respect to a number
of objects in the embedding preserving its quality, as was sketched out in this work. There
is also a lot of work on Visipedia: Crowdwork application which functionality should be
extended and the application seamlessly connected to the whole Visipedia system.
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Appendix A

CD Content

The CD attached to this thesis contains the following file structure:

• /data – datasets, answers from workers, triplets, and embeddings,

• /demo – simple application demonstrating searching in the embedding space,

• /scripts – scripts used in the experiments,

• /thesis – PDF file of this thesis and its ▲❆❚❊❳ source code,

• /README – the CD file structure.

58


	Introduction
	About the Visipedia Project
	Motivation
	Visipedia Concept and Design
	Relation to the Thesis

	Crowdsourcing
	Crowdsourcing Types
	Reward
	On-line Tools and Services
	Cost Estimation
	Quality Assurance
	Crowdsourcing in Machine Vision

	Data Embedding
	Techniques to Learn Data Embedding
	Navigating Through the Space of Embedding

	Ways of Getting Similarities
	Term Definition
	Triplet Retrieval Efficiency
	Templates and Screens
	Template-specific Triplets
	Necessary Amount of Triplets
	Algorithms for Triplet Selection

	Experiments on a Toy Dataset
	Triplet Universe Generation
	Templates and Artificial Worker
	Error Measurement
	Experiment 1: Quality of Triplets
	Experiment 2: Embedding Error
	Experiment 3: Necessary Amount of Triplets
	Experiment 4: Navigation Through the Embedding

	Perceptual Similarity Evaluation on a Country Flags Dataset
	Experiment Setup
	Results

	Experiments on Food Images
	Similarity Retrieval
	Embedding Construction
	Searching in Embedding

	Conclusions
	CD Content

