VYSOKE UCENIi TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH
TECHNOLOGII

USTAV BIOMEDICINSKEHO INZENYRSTVI

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF BIOMEDICAL ENGINEERING

EXPLORING BRAIN NETWORK CONNECTIVITY
THROUGH HEMODYNAMIC MODELING

ZKOUMANI KONEKTIVITY MOZKOVYCH SiTi POMOCi HEMODYNAMICKEHO MODELOVANI

DIZERTACNI PRACE
DOCTORAL THESIS

AUTOR PRACE Ing. MARTIN HAVLICEK

AUTHOR

SKOLITEL Prof. Ing. JIRi JAN, CSc.

ACADEMIC ADVISOR

KONZULTANTI Prof. M.S. M.A. VINCE D. CALHOUN, Ph.D.
CONSULTANTS Prof. MUDr. MILAN BRAZDIL, Ph.D.

BRNO 2011



Abstrakt

Zobrazeni funé&ni magnetickou rezonanci (fMRI) vyuZzivajici "bloogygen-level-
dependent” efekt jako indikator lokalni aktivity jeelmi uzZit&nou technikou k
identifikaci oblasti mozku, které jsou aktivndhem percepce, kognice, akce, ale také
béhem klidového stavu. V posledni dotaké roste zajem o studium konektivity mezi
témito oblastmi, zejména v klidovém stavu.

Tato prace fedklada novy a originalnitistup k problému népmého vztahu mezi
meéifenou hemodynamickou odezvou a jgjémou, tj. neuronalnim signalem. Zngry
negimy vztah komplikuje odhad efektivni konektivity ajkzalniho ovliveni) mezi
raznymi oblastmi mozku z dat fMRI. Novost prezentodam [Fistupu spoéiva v pouziti
(zobecrné nelinearni) techniky slepé dekonvoluce, coz tgecodhad endogennich
neuronalnich signal(tj. vstupi systému) z nastenych hemodynamickych odezev (ij.
vystupa systému). To znamena, Ze metoda uim® "data-driven" hodnoceni efektivni
konektivity na neuronalni Urovni i Wipad, Ze jsou mfeny pouze zaSuEe
hemodynamické odezvyReSeni tohoto obtizného dekonvaiiho (inverzniho)
problému je dosaZzeno za pouziti techniky nelingd@rniekurzivniho Bayesovského
odhadu, ktery poskytuje spoley odhad neznamych staa parameftr modelu.

Prace je roz&lena do i hlavnich¢asti. Prvni¢ast navrhuje metodu teSeni vySe
uvedeného problému. Metoda vyuzivA odmocninové yonalinearniho kubaturniho
Kalmanova filtru a kubaturniho Rauch-Tung-Striebalo vyhlazovae, ovsem
rozStenych pro dely feSeni tzv. problému spéleého odhadu, ktery je definovan jako
simultdnni odhad stéva paramefr sekvegnim pistupem. Metoda je navrzena
piedevSim pro spoftdiskrétni systémy a dosahujeepného a stabilnih@geSeni
diskretizace modelu kombinaci nelinearniho (kubdho) filtru s metodou lokalni
linearizace. Tato inverzni metoda je navic dép# adaptivhim odhadem statistiky
Sumu ngieni a Sum procesu (tj. Suihneznamych stava parametr). Prvnicast prace
je zamétena na inverzi modelu pouze jednokiasového pibéhu; tj. na odhad
neuronalni aktivity z fMRI signélu.

Druhacast generalizuje navrhovanyigtup a aplikuje jej na viagasovych pibéha
za (elem umozani odhadu paraméitrpropojeni neuronalniho modelu interakce; tj.
odhadu efektivni konektivity. Tato metod&efstavuje inouéni stochastické pojeti
dynamického kauzalniho modelovani, coz¢imi odliSnou od #ive predstavenych
piistupi. Druha ¢ast se rov&Z zabyva metodami Bayesovského &b modelu a
navrhuje techniku pro detekci irelevantnich paratneropojeni za telem dosazeni
zlepSeného odhadu parandetr

Koneiné tieti ¢ast se wnuje owieni navrhovaného ifstupu s vyuZzitim jak
simulovanych tak empirickych fMRI dat, a je vyznajoh dikazem o velmi
uspokojivych vysledcich navrhovanéhidspupu.

Kli ¢ova slova: Efektivni konektivita, fMRI, neuronalni, hemodynigk® modelovani,
nelinearni kubaturni Kalmam filtr, vyhlazova, odhad paramatr Bayesovsky vyér
modelu, spojit-diskrétni systémy, adaptivni filtrace, vanaBayes.



Abstract

Functional magnetic resonance imaging (fMRI) utg the blood-oxygen-level-
dependent (BOLD) effect as an indicator of localvéty is a very useful technique to
identify brain regions that are active during petmn, cognition, action, and also
during rest. Currently, there is a growing interést study connectivity between
different brain regions, particularly in the resgtistate.

This thesis introduces a new and original appro&hproblem of indirect
relationship between observed hemodynamic respandeits cause represented by
neuronal signal, as this indirect relationship cboapes the estimation of effective
connectivity (causal influence) between differemib regions from fMRI data. The
novelty of this approach is in (generalized nordimeblind-deconvolution technique
that allows estimation of the endogenous neuromghats (system inputs) from
measured hemodynamic responses (system outputsy, iTlenables a fully data-driven
evaluation of effective connectivity on neuronavde even though only fMRI
hemodynamic responses are observed. The solutiathigodifficult deconvolution
(model inversion) problem is obtained through a lim@ar recursive Bayesian
estimation framework for joint estimation of hidderodel states and parameters.

This thesis is divided into three main parts. Thst fpart proposes a method to
solve the above mentioned inversion problem. Théhateuses a square-root form of a
nonlinear cubature Kalman filtering and cubatureudtaTung-Striebel smoothing
extended to a joint estimation problem defined asnaultaneous estimation of states
and parameters in a sequential manner. The methodesigned particularly for
continuous-discrete systems and obtains an accuawade stable solution to model
discretization by combining nonlinear (cubaturdjefing with local linearization.
Moreover, the inversion method is equipped with thdaptive estimation of
measurement, state, and parameter noise statibtiedirst part of the thesis is focused
only on the single time course model inversion; egtimation of neuronal signal from
fMRI signal.

The second part generalizes the proposed approachpplies it to multiple fMRI
time courses in order to enable the estimationaefpting parameters of a neuronal
interaction model; i.e. estimation of effective nentivity. This method represents a
novel stochastic treatment of dynamic causal madehlvhich makes it distinct from
any previously introduced approach. The second gk deals with methods for
Bayesian model selection and proposes a techniguedétection of irrelevant
connectivity parameters to achieve improved peréoroe of parameter estimation.

Finally, the third part provides a validation oéthroposed approach by using both
simulated and empirical fMRI data, and demonstratebust and very good
performance.

Keywords: Effective connectivity, fMRI, neuronal, hemodynanmodeling, nonlinear
cubature Kalman filter, smoother, sequential patamestimation, Bayesian model
selection, pruning, continuous-discrete systemsapik filtering, variational Bayes.
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Chapter 1

Introduction

1.1 Functional integration in the brain

Functional magnetic resonance imaging (fMRI) utilgz the blood oxygenation level
dependent (BOLD) effect as an indicator of localvéty is a very useful technique to
identify brain regions that are active during peta, cognition, action, but also
during rest. The present research interest thatirgdes in fMRI neuroimaging
community can be summarized by quoting Karl Fristo#\ great deal of brain
mapping is focused on functional segregation and tbcalization of function.
Functional localization implies that a function cd® localized in a cortical area,
whereas segregation suggests that a cortical aseapecialized with some aspects of
perceptual or motor processing, and that this spleration is anatomically segregated
within the cortex. The cortical infrastructure sppng a single function may involve
many specialized areas whose union is mediatedhdyunctional integration among
them. In this view, functional segregation is amganingful in the context of functional
integration and vice versa."Since it is generally believed that human cogaiti
functions emerge from dynamic interactions of bna@tworks [2], it iS not surprising
that in the last decade there has been an incgedsterest in identifying relationships
among brain regions in order to better understamdtional integration. This has lead
to the formulation of connectivity analysis methdbat attempt to identify associated

brain regions and their interactions.

There are two distinct concepts of investigatinguirtor network connectivity
(integration) in fMRI data. First, there is fanctional connectivitywhich refers to

correlated structures (or any other informatiorotbdc measure) in the data such that

1] K. Friston, "Functional and effective connediy: a review,"Brain Connectivityyol. 1, 2011.
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INTRODUCTION

brain areas can be grouped into interacting netsvorkis is usually accessed either by
a pair-wise correlation (or a coherence in freqyedomain) between a region of
interest (ROI) and the rest of the brain [3] or &ymultivariate approach such as
independent component analysis (ICA) [4, 5]. Secdhdre iseffective connectivity
which refers to the influence that one neural sysexerts over another, either at the
synaptic or population level [6]. In other word$feetive connectivity moves beyond
statistical dependency of functional connectivitgnto measures of directed (causal)
influence. This is accessed through models of aatesns, which try to explain
observed dependences (functional connectivity).atidition, there is a principal
difference between these two concepts regardingjilestions they are able to address.
Critically, effective connectivity enables to disjuish between a correlation and a
causation. Just because two events correlate duemean that one has caused the
other. The Latin term for such an error idoh cause pro causawhich literally
means: "Not a cause for the cause". This is impgrteecause some correlations seen in
fMRI data might be meaningless, which complicatesngéerpretation of the results and

can lead researchers to their wrong conclusions.

Evaluation of effective connectivity often requirdge definition of a structural
model, i.e. an assembly of brain regions (nodes)rgnwhich the causal influence is

assessed. In this work, the main interest restsn uge effective connectivity

Functional Connectivity Effective Connectivity

Bidirectional
Adjacency
Matrix

Correlation
BRI 053 100 | 067 Matrix

PRERESIALE 067  1.00

A B [= D

Figure 1.1 The functional and effective connectivity. The ceptual illustration of
functional connectivity (left) and effective contigity (right) with corresponding
connectivity matrix representation.
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framework, where an overview of the most commonhoe$ is provided in the

introduction to Chapter 3.

Following the above mentioned definition of effgeticonnectivity, it is desirable
to detect causal influences among different braigions at the neuronal (synaptic)
level. This desire automatically raises an impdrtguestion: Considering that the
BOLD signal offers only a very indirect measurenetironal activation, is it possible to
evaluate effective connectivity at the neuronalelefrom fMRI data? In fMRI we
measure hemodynamic responses, which reflect chamgélood flow and blood
oxygenation that follow neuronal activation. Crligiathe form of this hemodynamic
response can vary across subjects and different lvemgions [7, 8]. These facts
seriously complicate the identification of effeeivconnectivity from fMRI [9].
However, one can reasonably justify that if it @spible to remove the effect of this
hemodynamic blurring and variation, we could séithieve the aim of identifying
effective connectivity from fMRI data. By sayingghwe should note that there might
be differences also between neuronal dynamics ressigo different brain regions
having distinct cognitive functions. These diffezea can be more significant when
processing highly cognitive tasks [10]. Neverthgleshis sort of variability is
commonly ignored with respect to accuracy of madgéllowed by temporal resolution
of fMRI signal.

In general, the relationship between initial neatoactivation and our fMRI
observations rests on a complex biophysiologicaladyic process. If this process is
known and well described, it can be approximated rbgthematical modeling.
Considering this model (see Section 1.3), theresakeral ways to perform mapping
from observed data to estimated neuronal signalsinteract among each other, where
this is partly defined by the experimental designducting the acquisition of the data.
For example, in the case of an experiment with ifipdask (task data), we have prior
knowledge of the stimulation paradigm (i.e. anydkiof stimulus presented to the
subject during a scanning session), which can leel as the definition of a driving
exogenous input into the model. It is then possiblenodel the relationship between
neuronal signals and observed responses by comgjdedeterministic model [11], and
simply infer the model parameters to fit the daféis formulation is often
unsatisfactory since unexpected contributions & 'leal world", which deviate from
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the model, disturb the considered dynamic phenormsertaat the deterministic models
have a little explanatory power concerning the dyica [12]. Therefore, it is usually
preferable to consider some additive randomnedbeanodeled process, which then
represents stochastic modeling [13, 14]. This aggras more general and is expected
to have much more explanatory power than the datestic one [15]. In a related
context, there are many fMRI studies, where tha de¢ collected when the subject is at
rest (resting-state data). In this case, thereistimulation paradigm and therefore no
exogenous input that can be used for modelingelima that the neuronal signal, which
generates observed hemodynamics, has purely emuagyecharacter. Until very
recently, this fact did not allow estimation of exffive connectivity in resting-state
fMRI data, unless there was a good reason to assitehe neuronal dynamics and
measured hemodynamics are equivalent [16]. It ecifpally the form of stochastic
modeling, which enables the estimation of neurcsighals and their interactions
without any prior knowledge of exogenous input talbws evaluation of effective
connectivity even in resting-state data [15, 17-XSijtically, the inversion of such a
stochastic model leads to a blind deconvoldtigmoblem, which is described as
estimating the unknown input to a dynamic systeivergoutput data, when the model

of the system contains unknown parameters [20].

1.2 fMRI signal

The fMRI signal indirectly reflects the activity afeuronal populations in the brain
with excellent spatial resolution (millimeters dowonhundreds of micrometers at high
field strength), with a good temporal resolutioreg@nds down to hundreds of
milliseconds) and the whole spatial coverage ofoitagn. Both the spatial and temporal
resolution in fMRI are potentially higher than ineuroimaging methods using
radioactive tracers, such as positron emission tpaphy (PET). In contrast to electro-
encephalography (EEG) and magneto-encephalogrdghiy) recordings, fMRI has a

poorer temporal resolution, but it still holds psimacy in providing great spatial
information about the brain function. Although fMRY possible with few different

imaging techniques, the blood oxygenation level etelent (BOLD) contrast

2 A note on terminology is needed here: although obution is usually defined as a linear operatitie, t
term deconvolution is generally used in referemcthé inversion of nonlinear (generalized) convolut
models (i.e. restoration); we adhere to this cotivan
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i

Voxel time courses

Structural (T,) image Functional (T3) images

Figure 1.2 lllustration of MRI data. On the left side is tfigweighted anatomical image
and in the middle slice of function@}-weighted image, which evolves in time. On the
right side are then examples of time courses frorels of functional data.

mechanism is employed in the great majority of §48&, 22]. In this case, the fMRI
signal is sensitive to local oxidative metabolisnthe brain, which is necessary to fuel
local neuronal activity [23]. The final fMRI signa then a composite of complex chain
of processes that can be classified into neurgmgisiological and physical processes
[23-25].

At the neuronal level, a train of action potentiédpikes) in any single neuron
arriving at the pre-synaptic terminal buttons inesioeurotransmitter to release into the
synaptic cleft (synaptic neuronal activity). As @nsequence, excitatory and/or
inhibitory electric potentials are originated iretdendrites of post-synaptic neurons due
to the activation of ionic curreni{d,) that create an electrochemical disequilibrium in
the cellular membrane. The neurotransmitters ap&disaterminated by a re-uptake
mechanism in the astrocytes processes, while dotrethemical gradients are restored
by ATP (adenosine triphosphate) transport mechartnce, a metabolic and oxygen
demand will appear in the neighborhood of the at#ig brain area [13] (see Figure
1.3).

From the perspective of physics, the MRI signasemifrom the nuclei of tissue's
hydrogen atoms (i.e. individual protons), which gEss magnetic moment called spin.
When placed to an external magnetic fied)( spins tend to align with it, gaining a
lower energy state. The hydrogen nucleus will algeerience a torque from the applied
magnetic field which forces the magnetic momentriecess around the field direction.
The frequency of this precession is directly deteed by the strength of the applied
magnetic field. At the macroscopic level, considgriarge (though still miscroscopic)
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Spikes Capillary
X5 ()
Blood flow
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Blood volume

X4(1)

De-oxyhemoglobine

Figure 1.3 The diagram of physiological process underlying. BGignal.

ensemble of hydrogen nuclei, there will be a negmetic vector pointing in the
direction of the applied magnetic field (strond®r; then more nuclei in lower energy
state, results in stronger magnetic vector). If apply a radio frequency (RF) pulse
tuned to the precession frequency (known as Larmeguency), some of nuclei are
transferred to higher energy state, i.e. the meagnetic vector is tilted and precesses
around magnetic field vector. Here the nuclei sgirecess in phase coherence. Then
the tilted magnetic vector gradually returns to aguilibrium in a process called
relaxation, emitting electromagnetic signal thateyates current in receiver coils. It is
the MR pulse sequence (series of RF pulses) apdrameters, which determines the
magnetization preparation of the sample and thethegignal is subsequently acquired
(see Figure 1.4). In fMRI, the gradient echo plamaaging (EPI) sequence is used
because of its sensitivity tB; relaxation time (relaxation irRy-plane associated with
local inhomogenities in magnetic field), which al® measurement of BOLD signal
[21]. In particular, neurons in the brain consurhe bxygen, which is attached to
hemoglobin molecules in the blood and the flow lwiold continuously provides new
oxygen to the neurons. This leads to the conceémtratcrease of oxygenated blood in
the capillaries surrounding the active brain arBlae hemoglobin with oxygen has
slightly diamagnetic properties, while withouttitoecomes paramagnetic, which means
it distorts the applied magnetic field (by alteriting local magnetic susceptibility). This
local modulation of the magnetic fielB, makes the hydrogen nuclei excited by RF

pulse dephase faster, resulting in a shorter retaxéime constant’,. Therefore, fMRI

6
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) z b) z
) ﬁBU RF pulse ﬁBo

y Receiver coil J\f\f\fwmf Receiver coil

Figure 1.4 Generation and receiving process of MR signal. Tlagre will be a small
excess of hydrogen nuclei in the lower energy samie therefore a resultant magnetic
vector will be pointing in the direction of,B(b) Energy can be supplied to the nuclei by
applying a Radio Frequency (RF) pulse. The resulti@agnetic vector is then tilted into
the xy-plane and a current is induced in the receivel. &ile to different relaxation
processes, they-component of the magnetic vector, as well astideded current in the
receiver coil, will decay.

images will be brighter with a longék, i.e. with a high oxygen concentration (more

neuronal activation).

On the physiological level, increased neuronalvagtin brain causes changes in
the local cerebral flow (CBF), which increases munbre than the cerebral metabolic
rate of oxygen (CMR@), resulting in the decrease of local oxygen exibacfraction.
With the increase of CBF, cerebral blood volume \CBicreases as well. Because the
local blood is more oxygenated, there is less deempglobin present, the magnetic

field distorts are reduced, and the local MR signadeases slightly [23].

Finally, it is known that the BOLD signal correlatenore with afferent synaptic

activity than with neuronal spikes [26].

1.3 Hemodynamic model

In this section, the hemodynamic model describiagdformation from synaptic

neuronal activity to measured BOLD signal is ddsamti

In 1998, Buxton et al. [27] developed a mecharadliicplausible model, so-called
balloon model, of how evoked changes in blood flake transformed into BOLD
signal. A component of balloon model, namely tHatrenship between blood flow and
blood volume, was then elaborated through the sr@ahwindkessel theory [28]. This

model describes the behavior of the post-capille@yous compartment by analogy to

7
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an inflated balloon, determining a nonlinear demeng of the BOLD signal on blood
volume and deoxyhemoglobin content. The completa fof the hemodynamic model
was proposed by Friston [29], covering the coupbhgynaptic activity and blood flow
through simple linear dynamical model. The modeWtthart is summarized in Figure
1.5. Here, the neural activity(t) (represented by exogenous input) causes an imcreas
in vasodilatory signak(t) which is subject to auto-regulatory feedback. Tihosv-
inducing signal is artificially designed to subsumany neurogenic and diffusive signal
subcomponents. Blood flowf(t) responds in proportion to this signal and causes
changes in blood volume(t) and deoxyhemoglobin conten(t). The dynamics of

these four hemodynamic states are modeled byd dédterential equations:

ds(t)

7r = u® —rs(® —x(FO — 1) (1.1)
df(t) _

= s(b) 1.2
dv(t) 1

===~ (F(©) = fou (v, )) (13)
dq(t) 1 q(t)

= T OECD ~ foue ()5 (L4)

In the first equationz, and 7, are parameters that determine dynamics of this
component of the hemodynamic model. They repregentime constant for a signal
decay (or elimination) and the time constant fa #utoregulatory feedback from the
blood flow, respectively. The later equation (1sdys that volume changes reflect the
difference between the inflowf(t) to and the outflowf,,;(v,t) from venous

compartment with a time constantThis constant expresses the mean transit time; i.

&

Figure 1.5 Diagram of nonlinear hemodynamic model. This diagrdescribes a
relationship between stimulus, hemodynamic statelsBOLD signal given by equations
(1.1)-(1.4) and (1.7).
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the average time it takes to traverse the venongpaament, or for that compartment to
be replenished. The outflow is related to the bleoldime through Grubb’s exponemt

(stiffness parameter):

fout(v’ t) = U(t)l/a’ (1.5)

wherel/a =y + B. The parameterg = 2 andf > 1 represent the laminar flow and
the diminished volume reserve at high pressurgeely. The value reported from
animal studiesr = 0.38 + 0.1 seems to be very stable during steady-state stroal
[28]. The change in deoxyhemoglolig /dt reflects the delivery of deoxyhemoglobin
into the venous compartment minus that expelledf{mu times concentration), where
the relative oxygen extractioB, is a function of flow and resting oxygen extraati

fraction, E,, by the capillary bed.
1
E(f,t) = 2= (1 - (1 - E)'/7) (1.6)
0

The second term in (1.4) represents an importanlimearity: the effect of flow on the
stateq(t) is largely determined by the inflation of the lalh, resulting in the increase
of f,.:(v,t) and in the clearance of deoxyhemoglobin. Thisceftlepends upon the
concentration of deoxyhemoglobin such that theraleze attained by the outflow will
be severely attenuated when the concentratiorwiséog. during the peak response to

prior stimulus).

Finally, the output or observed BOLD signal is eeqsed as a nonlinear function of

blood volume and deoxyhemoglobin content:
ye =V [k1(1 —q) tk; ( - Z_Z) + k3(1— vt)], 1.7)

whereV, andk,, ..., k; are biophysical parameters: resting blood voluraetion and
intravascular, concentration and extravascularfoexfits, respectively, where the later
ones are MR scanner dependent. All empirical pvilues of hemodynamic model
parameters (for 1.5 Tesla scanner) are summaneddble 11. Although, a variety of
extensions (and alternatives) have been proposedbdth hemodynamic states and
BOLD equations [23, 30-33]. The original versiontloé hemodynamic model (also one

of the simplest) as described above will be comeiien this work.
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Figure 1.6 Hemodynamic response to the stimulus (Dirac ingul$he hemodynamic
states on the left sides are generated by hemodgmaodel and normalized to the zero
baseline. On the right side is the typical (thdoadt hemodynamic response (the model
output).

Notice that the model for BOLD signal (1.7) is aldg represented in discrete time
with sampling period corresponding to the repeaaet{TR), which is the time between
repeated excitation of the same slice of the bidareafter we use a notation of time
index in subscript to denote discrete time samplegiether with physiological states
x(t) = [s(t), f(t),v(t),q(®)]", which evolve in continuous time, it forms a

continuous-discrete model that has a state-spacesentation:

x(t) = f(x(t), u(t); 8)dt + /Qdw(t) (1.8)
ye = h(xq,u;0) +r, (1.9)

where functionf(.) and h(.) substitute the nonlinear models for physiologidaktes
and BOLD signal, respectively, which are parameésti by the set of parameters
0 ={r,x,x ¢, a ¢}, and the dynamics are caused by the exogenous @t
Additionally, one can also assume that the true ehahjectories are disturbed by
contribution of some random (stochastic) procggs) and r;, which have here

presumably simple additive form.

10
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Table 1.1 Hemodynamic model parameters for 1.5 T field stiieng

Description Value

Process equations:

xk  Rate of signal decay 0.65s
X Rate of flow-dependent elimination 0.38s
T Hemodynamic transit time 0.98s
a Grubb’s exponent 0.34

7 Resting oxygen extraction fraction 0.32

Observation equation:

V,  Blood volume fraction 0.04

k, Intravascular coefficient 4.39,E,TE
k,  Concentration coefficient erg@TE

ks  Extravascular coefficient 1-¢

9, Frequency offset at the outer surface 00.3 &'
the magnetized vessel
E, Fixed resting oxygen extraction fractiorD.4
€ Ratio of intra- and extravascular signal 1
1o Slope of intravascular relaxation rate 75s
TE Time to echo 0.04s

1.4 Nonlinear hemodynamic response modeling overview

In fMRI, the physiological mechanisms mediating tieéationship between neuronal
activation and vascular/metabolic systems have Istetied extensively [34-36] and
models of hemodynamic responses have been descibeathcroscopic level. The
principal representative of these models is hemanya model, which was described
above. This hemodynamic model is nonlinear in maf@7-39]. Therefore, to infer the
hidden states and parameters of the underlyingsysive require inversion methods
that can handle these nonlinearities. In Fristonakt[29], the parameters of a
hemodynamic model were estimated using a Volteeraéd expansion to characterize
the hemodynamic response. Later, Friston et al. ipt@bduced a Bayesian estimation
framework to invert (i.e., fit) the hemodynamic nebdexplicitly. This approach

accommodated prior constraints on parameters awidey the need for Volterra
kernels. Subsequently, the approach was generat@ezbver networks of coupled
regions and to include parameters controlling theuronal coupling (effective

connectivity) among brain regions [11]. The Baymsiaversion of these models is

11
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known as dynamic causal modeling (DCM) and is needuwidely to analyze effective
connectivity in fMRI and electrophysiological stadi These approaches to
hemodynamic and causal models only account for enas the level of the
measurement; where this noise includes thermalheigged random noise. However,
there is an important contribution of physiologicabise that represents stochastic
fluctuations due to metabolic and vascular respgnstich affect the hidden states of
the system; furthermore, neuronal activity can shgwonounced endogenous
fluctuations [41, 42]. Motivated by this observatioRiera et al. [13] proposed a
technique based on a fully stochastic model (neluding physiological noise) that
used the local linearization filter (LLF) [43], wdli can be considered a form of
extended Kalman filtering (EKF) [44] for continuou$ynamic systems. Besides
estimating hemodynamic states and parametersgppi®ach allows one to estimate the
system’s input, i.e. neuronal activity; by its paederization via radial basis functions
(RBFS). In Riera et al. [45], the number of RBFsswansidered fixed priori, which
means that the solution has to lie inside a rebtuldrstributed but sparse space

(otherwise, the problem is underdetermined).

The hemodynamic response and hidden states of he@widc model possess
strong nonlinear characteristics, which are presomgth respect to stimulus duration
[39, 46]. This makes one wonder whether a linetidmaapproach such as LLF can
handle such strong nonlinearities. Johnston e{4al} proposed patrticle filtering, a
sequential Monte Carlo method, that accommodates rionlinearities in the model.
This approach was shown to be both accurate angtolvhen used to estimate hidden
physiologic and hemodynamic states; and was sup&idLF. Similarly, two-pass
particle filtering, including a smoothing (backwarpass) procedure, was introduced by
Murray et al. [48]. Another attempt to infer mog@lrameters and hidden states used the
unscented Kalman filter (UKF), which is more suigabor highly nonlinear problems
[49]. Finally, Jacobson et al. [50] addressed eriee on model parameters, using a

Metropolis—Hastings algorithm for sampling theisperior distribution.

None of the methods mentioned above, except [13{h wis restricted
parameterization of the input, can perform a coteptieconvolution of fMRI signals
and estimate both hidden states and input; i.en¢leonal activation, without knowing
the input (stimulation function). Here, an impottaxception is the methodology

12
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recently introduced by Friston et al. [14] callegndmic expectation maximization
(DEM) and its generalizations: variational filtegifi51] and generalized filtering [52].
DEM represents a variational Bayesian technique 83, that is applied to models

formulated in terms of generalized coordinates ofiam.

This is the state of the art that covers the mamtrédbutions to nonlinear modeling
of hemodynamic responses in fMRI data and inversiosuch models. We purposely
excluded our own contributions to this problemcsirthis is the main content of this

thesis as listed below.

1.5 Scope and contributions of this thesis

In the introduction we have emphasized the gernmalem of estimating the effective
connectivity among different brain regions from fM&ata. This problem stems from
the fact that the BOLD signal is an indirect measaf the neuronal signal, and the
shape of hemodynamic response function varies sdifferent brain regions and also
across subjects. In order to enable the identiinadf effective connectivity from fMRI

data that is in the agreement with the true effectionnectivity at the neuronal level,
one has to solve the inverse ("deconvolution”) fEwb Moreover, we have also
highlighted the methodological enrichment in coesinly stochastic representation of
dynamic modeling as opposed to the limited detestin one. Finally, we have

mentioned the motivation to the inverse problememhwe do not have a prior

knowledge of exogenous input, as it can be apjlied to the resting-state data.

Although many attempts were already made in thisction as discussed above,
there is still considerable room for improvemengré] the main aim is to build a more
accurate but less restrictive estimation appro&eth tan be broadly applied to any
fMRI data.

The successful solution to this inverse problem, successful estimation of the

neuronal signal, requires the following:

1) An estimation framework that is able to handleribalinear characteristics of a
hemodynamic model that couples neuronal activitg@.D signal.

2) Fully stochastic modeling, since no model is corngheable to catch the real
world dynamics and that at any modeled physioldgiexel, the likely

13
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contribution of the noise has to be taken into antoMoreover, the endogenous
neuronal signal can be recovered only by consigexiatochastic modeling.

3) A robust approach to stochastic continuous-discretaleling, because the
causal chain of hemodynamic model is describedomtigcuous time and, as
required above, should also account for randomness.

4) An efficient framework for the estimation of modeghrameters in order to
achieve a good fit of the model to the data andwalfor diversity of
hemodynamic responses across the brain. Additygnilis framework should
preferably enable sequential modeling of conditiodependencies between

parameters and modeled states.

These points define the topics that are addressdiis thesis (in the first half of the
thesis in particular). When considering a suitab&imation framework that could
possibly meet all the above requirements, the prat® was to use and further develop
new methods from the field of engineering, in thogd that their introduction to the
society of computational neuroscience could rdigeiniterest. Another important factor
was to consider reasonable computational demantizeoémployed methods. A great
deal of effort has been devoted to the introducta@scription and motivation of using
these methods. Specifically, we took an advantagd aighlighted a recent
development of new nonlinear cubature Kalman fi[5]. In this context, special
attention is devoted to the joint state-paramestimation problem. Another relevant
part of the thesis describes an accurate disctietizaf continuous model based on
local linearization scheme [56] and online Bayedearning of measurement noise

statistics.

In the latter part of the thesis, we generalize theerse problem into the
multivariate case, where multiple brain regions iamlved and where the model of
causal interactions at the neuronal level is carsdl Critically, this introduces a new
concept in evaluation of effective connectivity dhgh stochastic dynamic causal
modeling. This is accompanied by a descriptionhaf $econd level inference that is
known as model selection. In particular, we discad8ayesian approaches to model
selection based on different approximations of riieginal likelihood. Consequently,
we introduce a simple algorithm for detection aklevant parameters in neuronal

interaction model based on network pruning.
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Finally, in the last part we validate the proposetthod from different

perspectives, and try to address questions, whigseptly dominate in the neuroscience

community, regarding possible application of methddr analysis of effective

connectivity.

This thesis proposes the following:

Contribution to computational neuroscience:

A novel approach to the nonlinear modeling of heymagnic signal, where the
underlying neuronal signal is estimated from theasaeed BOLD time series. This
approach performs a blind (nonlinear) deconvolytiwshere the model parameters,
physiological states and mainly the endogenoustimmio the model (neuronal

signal) are estimated from measured data.

A new approach for the evaluation of effective aectivity based on stochastic
dynamic causal modeling. This enables inversionfudf connectivity models

without knowing the driving input or having a hypesis about the connectivity
structure. This means that thepriori unknown model of neuronal interactions is

learned from the data.

Contribution to engineering methodology:

Formulation of combined use of cubature Kalmafittg and Rauch-Tung-Striebel
smoothing in system identification for joint estitioa of the hidden states, model
parameters, and endogenous model input. The cosveggis supported by an

iterative scheme that automatically maximizes tiglikelihood.

A new algorithm for estimation of continuous-digerstate-space models based on
combination of the (square-root) cubature Kalmdterfiand local linearization
scheme, which provides an accurate and stableetiis&tion of a continuous model
represented by stochastic differential equations.

A new nonlinear adaptive Kalman filter for jointtiesation problem, where the
measurement noise covariance is effectively leathezigh a variational Bayesian
approach, and parameter and state noise covarancestimated by the Robbins-

Monro stochastic approximation scheme.
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1.6 Thesis organization

Beyond the introduction chapter that proceededhiggection, the content of this thesis
is distributed into four chapter and two appendiédier each chapter a short summary

is provided.
Chapter 2: Estimation of neuronal signal from fMRI data

The second chapter follows the general overvievwhef problem provided in the
thesis introduction and provides the theoreticalkigpound for how to solve this
problem. In particular, it introduces a novel agmio for estimation of neuronal
signals from fMRI data by utilizing a nonlinear,gsential estimation framework
based on cubature Kalman filtering and smoothingal$o proposes the joint
estimation of states and parameters, which is apaared by adaptive estimation of
process noise and measurement noise covarianceesatrurther, it introduces an

estimation framework for continuous-discrete system

Chapter 3: Modeling brain network connectivity

The introduction to this chapter provides a moreteesive overview of
methodological advances for the evaluation of eéffec connectivity. This is
followed by an extension of the estimation framekwdescribed in Chapter 2 to a
multivariate case. In this sense, we describe aomalimodel of interaction, where
the coupling parameters represent the weightsfettefe connectivity we wish to
estimate. This chapter further addresses diffeagpiroaches for Bayesian model
selection and proposes improved estimation of dogpparameters based on

network pruning.

Chapter 4: Validation and application of the methal

The fourth chapter is focused on validation ofapgroaches introduced in Chapters
2 and 3. Here we demonstrate the estimation oh&éwonal signal from a single
fMRI time course and later also test the perforneamicfull model inversion, which
provides estimates of coupling parameters in nalrameraction model, using

multiple time courses of fMRI data.
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Chapter 5: Conclusions and future work

This chapter contains concluding remarks on atthaims and results. It discusses

their relevance and suggests a few directionsufiuré research.

Appendix A: Toy examples

This appendix contains toy examples that demomstiia¢ performance of the
proposed algorithm for continuous-discrete systeting, algorithm for sequential
estimation of measurement noise covariance, andlgoithm for joint estimation

of states and parameters.

Appendix B: SCKS toolkit

The last appendix gives basic information aboutdéeeloped software toolkit for

Matlab®, and provides a link where it can be dowadied.
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Chapter 2

Estimation of neuronal signal
from fMRI data

2.1 Introduction

The previous chapter provided a brief introductiorthe nonlinear modeling of BOLD
responses. We saw that the hemodynamic model Hgtimans the state-space model,
where the measured data are related to the subsktt® space variables (physiological
states) by an observation equation. In this cootistdiscrete time dynamic system,
which represents a generative model of the BOLMaigboth state and observation
equations are nonlinear and polluted by physiolgiand instrumental noise,
respectively. In general, the estimation of theestd a continuous system from noisy
discrete observations can be performed using timdinear filter theory, which is an
extension of the original framework (Kalman filtdreory) formulated to provide a
sequential and computationally efficient solutianthe linear filtering and prediction
problems [57]. Finding the optimal nonlinear systetentification method (i.e. the
estimation of the model parameters and the trajestaf unobservable states) is an

active research area.

It is the main goal of this chapter to introduceeav approach to this identification
problem. In particular, we will first provide a ghantroduction to the probabilistic
inference based on optimal recursive Bayesian isoluSince this solution is tractable
only for linear systems, we will focus on very recdevelopments in nonlinear Kalman
filtering based on efficient cubature integratiartes [55]. This numerical tool called
cubature Kalman filtering will serve as the cortemge for further extensions and
developments. Specifically, we will describe thebawre Rauch-Tung-Striebel

smoother to obtain more accurate estimates ofttte,sncluding efficient square-root
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implementation. Next, we propose the joint estioratiramework to simultaneously

infer the hidden states and model parameters. Wealso introduce a new filtering

approach for hybrid continuous-discrete systemsdas an accurate discretization
scheme of stochastic differential equations cdlbedl linearization combined with the

above mentioned cubature integration rules. Coresgty) in order to make the

algorithm easily adaptable to the real data, wé avdcuss the extension to adaptive
filtering through Bayesian estimation of the measuwgnt noise covariance [55], and
Robbins-Monro approximation of the parameter aradeshoise covariance matrices
[58].

Finally, all these extensions and developments Bellcombined into one single
algorithm, which will represent a new approach saneation of neuronal signal from
BOLD responses; i.e. the blind (nonlinear) decontroh approach where all the
hemodynamic states, the model parameters and mhi@lynput (neuronal signal) are

estimated from observed BOLD responses.

Importantly, this chapter will deal only with a gla time course modeling. The
generalization to multivariate case, including imnfeg causal relationships, is left for
the Chapter 3. From the perspective of Bayesiagremice, we can also say that this
chapter focuses only on the first level of infenduring which model parameters and
unobserved trajectories of neuronal and physioldgtates are estimated. The second

level of inference involving the model selectiordescribed in Chapter 3.

2.2 Probabilistic inference

The problem of estimating the hidden states (cgudata), parameters (influencing the
dynamics of hidden states) and any non-controlfetbgenous input to the system, in a
situation when only observations are given, reguipgobabilistic inference. If we

interpret our data through a dynamic state-spacdei(®SSM), then we are facing the

sequential (recursive) probabilistic inference peah

Assuming the first-order Markov process, a discoBtieamic state-space system is

described by a pair of equations:

Xy = f(Xpo1, Up-150) + Qg (2.1)
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y: = h(X;,u:;0) + 1, (2.2)

where the first equation represents the systertejstaodel, describing the evaluation of
the statex, as a function of time. Herq,_; is the process (state) noise that drives the
dynamic system through an arbitrary (possibly m@dr and time-varying) transition
functionf, andu, is the exogenous input to the system that is lysaabumed known
(though later in this thesia, will be considered unknown). The second equation
represents the measurement (observation) modelrewti® measurement noigg
corrupting the observation of the (hidden) stabesugh arbitrary observation function
h. Both f andh can be parameterized using a set of paramétehs a Markovian
setting, the current statg depends only on the immediate past statq through the
state-transition distributionp(x;|x;-;); i.e. conditional probability density. The
observationsy, are conditionally independent, given the state] amne generated
according to the observation likelihogdy;|x;) [59]. Therefore, the dynamic state-
space model, together with the known statisticthefnoise (and the prior distribution
of the system states), defines a probabilistic ggive model of how system evolves
over time and how we (partially or inaccuratelyyetve this hidden state.

The DSSM can be also interpreted as dynamic Bayemawork (DBN) [60] with
directed edges connecting the (hidden) states.eT@éges directly model the temporal
flow of information with the implied causality canaints. For example, the first-order
Markov process and conditional observation indepand of the DSSM, is modeled by
the specific graphical structure and relationsHiphe directed edges and nodes called
the directed acyclic graph (DAG) as depicted inuFeg2.1.

The optimal solution to the above inference problengiven by the recursive

Y B ?

_servation:;
Observed Observed P()’f|xr)
Unobserved Unobserved

hidden states z

P(Xr|x.ul)

Figure 2.1 Schematic diagrams of probabilistic inference.Gaj)en noisy observation vy,
what can we infer about system state, parameteiapot. (b) Graphical model of a
probabilistic dynamic state-space model. This regmétion is also known as a directed
acyclic graph (DAG) in the graph theory field.
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Bayesian estimation algorithm, which recursivelydages the posterior density of the
system stat@(x;|y;) as new observations arrive. Generally in Bayesiaméwork, the
posterior densityof the statep(x;|y;.;) given all the observationg,..,, embodies the
complete solution to the probabilistic inferencelgem. In other wordsp (x;|y;.;)
contains all information necessary to calculat@ptimal estimate of the state, such as

the conditional mean:

Ree = E[X¢|y1e] = f X; p(X¢|y1:e)dXe, (2.3)
R™x

and the covariance matrix, as a measure of accofabg estimat&,;:

Py =E [(Xt - ﬁt|t)(xt - ﬁt|t)T]
T (2.4)
= (Xt - ﬁt|t)(xt - ﬁt|t) p(X¢|y1.e)dXe.

R™x
In order to compute posterior density recursivelglihe) as new observations arrive,

one make use of Bayes rule and dynamic state-spadel, receiving recursive update:

(Y1l Xe)p(X¢)
p(¥1:¢)
_ P(Ye, Ya:e-11Xe)D(X)
- P(¥ely1:e-1)
_ P(Yelyre-1, X )P (V16— 11X )P (X)
- P(Yely1:e-1)P(Y1:6-1)
_ P(Yelyie-1, X )P Xe|Y1:6- 1) (V1:e- 1) (X)
- P(Yely1:e-1)P(Y1:e-1)P(Xe)
_ P(VelX)p(Xe|Y1:e-1)
B P(Yelyiie-1) .

P(Xely1t) =

(2.5)
This relation can be decomposed into the two steps:

» Time update:The old posterior distribution at time— 1, p(X;—1|¥1.t—1), IS
projected forward in time to yield predictive dibtrtion p(x;|y;.t—1). This
involves multiplication of old posteriop(x;_,|y;..—1) With transient prior
distributionp(x;|x;_,) obtained through (2.1), and integration of resgltjoint
distribution with respect tx;_; [61]. This represents so call&dhapman-

Kolmogorovequation

21



ESTIMATION OF NEURONAL SIGNAL FROM MRI DATA

Time update

State transition priors

Old G-posterior G-predictive

) G-joint G-filter
New G-posterior state-measurement likelihood

New measurement

e

Measurement update

Figure 2.2Diagram of the recursive Bayesian filter undeugsan assumption. Here 'G-'
stands for Gaussian. Based on [55].

P(X¢|y1:e-1) :f P(Xe|Xe— )P (Xe—1|Y1:6-1)dX 1 (2.6)
R™x

¢ Measurement updateThe updated posterior distributiom(x;|y;.;) is then
obtained as a multiplication of predicted postedatribution and observation
likelihood p(y;|x;), which incorporates the latest noisy measurenmtained
through (2.2)):

1
p(X¢ly1e) = C_tp(xt|Y1:t—1)P(Yt|Xt): (2.7)
where
Ct = p(¥elYre-1) = j P(YelX)p(Xe|y1:e-1)dX¢ (2.8)
RM™x

is the normalizing constant. The summation over thmee sequence of
normalizing constant§;.; is in Bayesian terminology called the evidence, or
marginal likelihood of the observations [62]. Inrawase, it will be represented

by log likelihood:
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In(p(y,,.) = Y In(C). (2.9)
i=1

Although this measure is commonly ignored during finst level of inference,

i.e. during estimation of the states or parameiesecomes very important in
the second level of inference, where one wantafey the most plausible model
(model selection) [63].

The time update and measurement update are batbdcaut at every time step
through the computation of the Bayesian model. His tvay, we obtain posterior
filtering distribution of the state; at timet given the history of the measurement up to
the time stept, p(X¢|y:.t). However, it is also possible to obtain theoothing
distributionp(x;|y;.r), where the posterior of the state is computedhattime steg
after receiving the measurements up to time gtewhereT > t. The difference
between filter and smoother is that the optimaérficomputes its estimates using only
the measurements obtained before and at the tintleeo$tept, whereas the optimal
smoother uses also the future measurements for wdorgpits estimates [64, 65], this
generally provides more refined estimates of thést Specifically, after obtaining the
filtering posterior state distribution, the smoaitlpiposterior is computed at each time
step conditionally to all measurements up to theetstepl’. The backward recursive

equation for Bayesian (fixed interval) smoothinglédined as:

* Forward-Backward smoothingGiven measurements up to tifie> t), y,.7,

and using Bayes' rule, the smoother density i®fadtas follows [66]:

P(Xt|Y1:T) =J- P(X¢|Xer1, Y1) AX e
R™x

(2.10)
=J- P(Xt+1|Y1:T)P(Xt|Xt+1’Y1:T) dX;y1-
R™x

Due to the Markovian nature of the state-spaceamaiven knowledge oy,
andx,,, the state, is uncorrelated with future measuremeyyts,.;. It means
that p(X;|X¢4+1, Vi7) = P(X¢|Xe41,V1.e), then we may express the smoothing

density as:

P(Xt|Y1:T) :f P(Xt+1|Y1:T)P(Xt|Xt+1:Y1:t) dX;iq
R™x
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P X1 |Y1r)D(Xes11Xe)
RMx P(Xer1|yie)

= p(X¢ly1:e) dXiyq- (2.11)

The above equation (2.11) says that the smoothetdhaerform two different
passes: During forward filtering pass, it computd® posterior density
p(X¢|ly1.:) and the predictive density(x;,1]y:); during the backward
smoothing pass, it recursively computes the smabottensity p(x;|y,.7-)

backward in time starting from=T.

For linear and Gaussian dynamic systems, wkeredh are linear functions and
additive noise and state prior distributions areu$s&n, the solution to the filtering
recursion is obtained by celebratédiman filter[67]. In this special case, the solution
will be optimal in the minimum-mean-square-error MEE) sense, the maximum
likelihood (ML) sense, and also in the maximanposteriori(MAP) sense (derivation
of Kalman filter from MAP perspective can be fouind[59, 68]). The solution to the
forward-backward smoothing is then obtainedR&uch-Tung-Striebel smooth@TS)

[69]; i.e. fixed interval Kalman smoother.

Unfortunately, in more realistic environment, whishnonlinear and possibly non-
Gaussian, the optimal Bayesian recursion is itdatde and an approximate solution
must be used. Numerous approximation solutionfi¢or¢cursive Bayesian estimation
problem have been proposed over the last coupldecédes, in a variety of fields.
These methods can be grouped into the following fioain categories:

* Gaussian approximate methodshese methods model the pertinent densities by
Gaussian distributions, under assumption that asistamt minimum variance
estimator (of the posterior state density) candmized through the recursive
propagation and updating of the first and secordkeromoments of the true
densities. Nonlinear filters that fall under thiategory are: a) the extended
Kalman filter (EKF), which linearizes both the nmm@ar process and
measurement dynamics with a first-order Taylor esp@n about current state
estimate; b) the local linearization filter (LLRyhich is similar to EKF, but the
approximate discrete time model is obtained froetgwise linear discretization
of nonlinear state equation; c) the unscented Kalfiieer (UKF) [70], which
chooses deterministic sample (sigma) points thagituca the mean and
covariance of a Gaussian density. When propagdtealigh the nonlinear
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function, these points capture the true mean amdr@nce up to a second-order
of the nonlinear function; d) the divided differendter (DDF) [71], which uses

Stirling’s interpolation formula. As with the UKHDDF uses a deterministic
sampling approach to propagate Gaussian statisticsugh the nonlinear

function; f) the quadrature Kalman filter (QKF) [72vhich uses the Gauss-
Hermite numerical integration rule to calculate thecursive Bayesian

estimation integrals, under a Gaussian assumpijotite cubature Kalman filter

(CKF), which is similar to UKF, but uses the spbakradial integration rule; e)

the Gaussian sum filters (GSF), which approximatéh lthe predicted and

posterior densities as a sum of Gaussian densikib®re the mean and
covariance of each Gaussian density is calculaggdguseparate and parallel
instances of EKF or UKF (or CKF).

» Direct numerical integration methodthese methods, also known as grid-based
filters (GBF) or point-mass method, approximatedp&mal Bayesian recursion
integrals with large but finite sums over a uniformdimensional grid that
covers the complete state-space in the area aksitd=or even moderately high
dimensional state-spaces, the computational contplean become untenably
large, which precludes any practical use of thdwed [73].

* Sequential Monte-Carlo (SMC) methodisese methods (called particle filters)
use a set of randomly chosen samples with assdoragghts to approximate
the density [74]. Since the basic sampling dynanfiogportance sampling)
degenerates over time, the SMC method includes-samgpling step. As the
number of samples (particles) becomes larger, tbat®Carlo characterization
of the posterior density becomes more accurate.edery the large number of
samples often makes the use of SMC methods congmady prohibitive.

» Variational Bayesian methodsariational Bayesian methods approximate the
true posterior distribution with a tractable appnoate form. A lower bound on
the marginal likelihood (evidence) of the posterisrthen maximized with

respect to the free parameters of this approximg#6].

The selection of suitable sub-optimal approximatdutgons to the recursive
Bayesian estimation problem represents a tradéetifveen global optimality on one
hand and computational tractability (and robustneasthe other hand. In our case, the
best criterion for sub-optimality is formulated &80 as best as you can, and not
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more”. Under this criterion, the natural choicetasapply the cubature Kalman filter
[55]. The CKEF is the closest known direct approxiorato the Bayesian filter, which

outperforms all other nonlinear filters in any Gsiaa setting, including particle filters

[55, 76, 77]. The CKF is numerically accurate, capture true nonlinearity even in
highly nonlinear systems, and it is easily exteelad high dimensional problems (the
number of sample points grows linearly with the ension of the state vector). Since
the CKF belongs to the group of so-called Gausassumed density filters, which are
considered as local approximation methods, we finstoduce this more general

framework and then move to the description of cuteapproach.

2.3 Gaussian assumed density filtering and smoothing

In Gaussian optimal filtering framework, the filiey (smoothing) equations follow
the assumption that filtering (smoothing) distribns are indeed Gaussian. The
Gaussian approximation of the filtering distributioas then the form:

p(X¢ly1.e) = N(xtlﬁﬂtl Pt|t)' (2.12)

where V' (x;|R¢¢, Pyic) denotes the multivariate Gaussian distributiorhwiteans,,

and covarianc®,;.
Bayesian filtering

The dynamic state-space model (2.1)-(2.2) can lve adopted to nonlinear Bayesian
filtering framework. Assuming that the process pajs_,~ N (0,Q;_;) iS zero mean
and uncorrelated with the past measurements, e tipdate step (prediction) of the
nonlinear filter can be obtained through calculatithe following integrals that

approximate the meaky;_, and error covariance matm;_,:

ﬁt|t—1 :f f(Xe—1,Uem1;0) p(Xp—1 |Ye—1)dXe g
R™x

(2.13)
= f f(X¢_1,u-1;0) X N(Xt—llﬁt—ﬂt—l; Pt—1|t—1)dxt—1
R™x
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Pye—1 = f f(Xe—1,0e_1;0) FT(Xe_1,1,-41;0)
Rt (2.14)
X N(Xt—1|§t—1|t—1' Pt—1|t—1)dxt—1 - §t|t—1ﬁat—1 + Qi1

whereQ;_; is the noise covariance matrix of process noise.

Next, during the measurement update step, the gieediestimatey,._, of the
observationy; is calculated. Again, under the assumption of zeean measurement
noiser;~ N (0,R;), which is uncorrelated with both initial statg and the process
noise q; and also uncorrelated with the past observatitms,prediction of current

observation is given by:
Vee-1 = f h(x;, us; 0) x N(Xt|2t|t—1lPt|t—1)dXt- (2.15)
R™x
The associated innovation covariance matrix has the form:

Pyytit-1 = f h(x,, u; 0) h' (x,,u,;0) x N(thﬁﬂt—l; Pt|t—1)dxt
Rtx (2.16)
- }A’t|t—1§’tT|t—1 + Ry,

whereR; is the covariance matrix of measurement noise.cfbgs covariance matrix

between the state, and the observatioy, is:

Pyytie-1 = f x¢ h" (x,,u,; 0) x N(Xt|2t|t—1lPt|t—1)dXt
Rtx (2.17)

~ AT
— Xt|t-1Yt)t-1-

Although, each of these integral formulas represelifferent basic block of Bayesian
filter, they all have one common feature, i.e. theg represented by product of
nonlinear function with corresponding Gaussian fiomc of known mean and

covariance matrix. We will return to this propentythe next Section 2.3.1.

Finally, in the last part of the measurement upddép, one has to update the

predictions from the time update to obtain filtgriestimate of mea®,, and error

covariance matri®; ., which can be written similarly as for linear Kamfilter:

ﬁt|t = ﬁt|t—1 + Kt(Yt - s\’t|t—1) (2.18)
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Pt|t = Pt|t—1 - Kthy,t|t—1K’£ (2.19)

K = Pyytie-1 ;;},t|t—1' (2.20)

where the differencéyt — ym_l) in (2.19) is called the measurement innovatiorther
residual. It reflects the discrepancy between thedipted measuremeryt ., and

actual measurement.. The innovation is weighted by the optimal Kalmgain K.

This term minimizes the filtering error covariarg, by weighting the innovation with
respect to the prediction error covariaigg_, [78, 79]. It is important to highlight the
role of the error covariance mati.. It indicates how uncertain the state estintate

is: a large values of covariance matrix indicat@reatcurate state estimate; the smaller
the covariance, the larger the information conteithe state estimate, i.e. the filter

believes the predictioR;._, more, while the actual measuremgnts trusted less.

Bayesian smoothing

The fixed-interval Gaussian assumed density smoatha be written in the form,

where we first calculate the Gaussian integrals:

Rev1)e = f f(x;,u;; 0) X N(Xt|ﬁt|t: Pt|t) dx; (2.22)
RMx

Pyt = f f(x;,u,; 0) f7(x,,u,;0) X N(thﬁﬂt; Pt|t)dxt
R™x
- ﬁt+1|tﬁg+1|t + Q¢ (2_22)

Pitv1e = j x¢ f7(X¢, ug; 0) X N(Xt|ﬁt|t’ Pt|t)dxt - ﬁt|tﬁZ+1|t- (2.23)
RMx :

Importantly, the term&,,,; andP.,; are simply predicted mean and covariance from
the Gaussian filter and the cross-covariaRgg ,;; can be computed during the filter
pass as well. Consequently, the smoothing stepwislil where the smoothing gat,

the smoother meaky;, and the error covarian®,, are computed:

A = Pt,t+1|tPt_+11|t (2.24)
ﬁfIT = ﬁtlt + At(ﬁf+1|T - ﬁt+1|t) (2.25)
PgIT = Py — At(Pt+1|t - Pf+1|T)A€- (2.26)

This is again the equivalent to the linear ver@bRTS smoother.
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2.3.1 Cubature integration rules

In this section, we describe numerical integratioles [55], which enable an efficient

and accurate approximation of multidimensional \Ww&sg integral of the form:

I(f) = fD f(x) wx)dx, (2.27)

where f(.) is an arbitrary, presumably nonlinear functidhc R™ is a region of
integration, and the known weighting functietfx) > 0 for all x € D. In the case of a
Gaussian-weighted integra#,(x) represents a Gaussian density. Besides the cage wh
the functionf(.) is linear, the solution to the above integral iffiallt to obtain.
Therefore, one uses numerical integration metholdishwallow its computation. The
main goal of these methods is to find a set of fgsox; and weightsw; that

approximates the integral by a weighted surV dfinction evaluations:

N
I(f) = Z wif (x;). (2.28)
i=1

In general, these integration methods can be beiteer on product rules or on non-
product rules. As an example of product rule we tinenGauss-Hermite quadrature
[80]. However, due to its higher computational céemjty, which increases
exponentially with the dimension of the state, thpproach is not considered in this
work. On the other hand, non-product rules inclogay Monte Carlo based methods
[81-84], which suffer from curse of dimensionaldg well. Nevertheless, there is one
representative of non-product rules, which yieldasonable accuracy, requires small
number of function evaluation and is easily extéhel#o high dimensions. This method
applies the third-degree fully-symmetric cubatunder [55] to approximaten-
dimensional Gaussian weighted integrals; i.e. nateg of the form
nonlinear function X Gaussian density. Critically, this cubature rule defines a way
how to deterministically select a set of cubatwmis, and their corresponding weights,
so that they completely capture the true mean awr@nce of the prior random
variablex~N (X, P):

2n
f FEON (%, P)dx ~ Ewif(xi), (2.29)
Rx i=1
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where the weights are simphy = % with n equals the state dimension, and

X;=X+&VP, i=1,.,2n (2.30)

o o . . T
This involves factorization of error covariance maP = +PvVP and the elementary

cubature points are:

£ = { Vne;, i=12..,n (2.31)

—ne;, i=n+1,n+2..,2n

Heree; represents thieth column vector, whoseth entry is a unit and all other entries
are zero. From this definition, it can be seert tha cubature points are distributed
uniformly on a sphere centered at the origin, dredrtnumber increases linearly with
the state dimension. Additionally, the points aneights of cubature rule are
independent of the integrarfi¢ix). It means they can be computed in advance and used

during the execution of the nonlinear filter.
Example of cubature points approximation

An illustrative example of the effect of a non-lmaransformation is shown in Figure
2.3. A bivariate normal distributiorx = [r,6]7~N([80,0.8]", diag(40,0.4)) is
transformed through a nonlinear transformation:

=[50 ] @2
which corresponds to making a change of coordinfabes radial to Cartesian. We first
draw 10000 Monte Carlo (MC) samples and propagagentthrough this nonlinear
function. As it can be seen in Figure 2.2b, theiltexy distribution (in Cartesian plane)
has a characteristic "banana-shape" and clearly doeresemble a Gaussian. The true
mean and covariance (ellipse) of this distributeme indicated by blue color. The
cubature points are drawn from the intersectiomfgadf unit circle and the axes (Figure
2.2a). When these four cubature points are propdgatrough the transformation, they
approximatelly catch the charasteric "banana-shapehe distribution and when the
mean and covariance is calculated according telj28d (2.35), indicated by red color,

they almost exactly match the true mean and cosaifrased on MC samples.
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Figure 2.3 lllustrative example of cubature rules approximatiHere the cubature points
(four for two states) are propagated through aineaf function to approximate the true
mean and covariance.

2.3.2 Statistical linear regression

After an introduction of Gaussian approximation$Btyesian optimal recursion based
on cubature integration rules (or generally basedimy sigma points approach), it is
enriching to mention its alternative interpretativom the perspective of statistical
linear regression [85]. Specifically, we will shomow the statistics computed via

cubature integration rules can be used to linearizenlinear function in MMSE sense.
Consider a nonlinear functign= h(x) evaluated inm points(X;,Y,), i.e.:

Y, =hX), i=1..,m (2.33)

where the point; are chosen in the way that they capture certatisstal properties

of x (such as the mean and covariance) through thelsdraped estimator of the form:

m
X= Z wi X (2.34)

=

[y

P=) w;(X;—0)(X;—%)". (2.35)

i=
Similarly, after propagation of sample poidfX§ through nonlinear functioh(.) we

obtain a regression pointg/;, for which we define the following posterior stits

(mean, covariance and cross-covariance):
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p”4§

wiY; (2.36)
P, = Z (Y- DY -9 (2.37)
P, = Z wi(X; =Y - (2.38)

1l
[y

L

Now, the objective is to find the linear regressioh the form (2.39), which

approximates a nonlinear functign= h(x).

y=Ax+b (2.39)

Here A and b are a matrix and a vector, respectively, which astimated by

minimizing the sum of square errors:

{A, b} = argmin Z wiEl g (2.40)

with linearization error:

& ="TY;—(AX;+b) (2.41)
representing the deviations between the functidnegaof the nonlinear and linearized
function in the sampling points. The solution ta4(® is given by [65]:

A =PLP™? (2.42)
b=y - AXx (2.43)

The linearization error has zero méas 0 and covariance:

S
<

I
2>
<

I
=
i
<

<
=
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ﬂ
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=P,, — AP — PA” + APA’

_ (2.44)
=P,, — APA.

Then the posterior statistics gf can be approximated by the following statistical

regression form:

y=AXx+b (2.45)
P,, = APA" +P.. (2.46)

Notice that the linearization error covariarReis added to the linearly propagated prior
covarianceAPA”, to form the posterior covariand®,,. This implies that the more
sever the nonlinearity is over the "uncertaintyioaf) of x, the larger the linearization
error and error covariance will be, and accordirthly normal linear approximation of
Py, and APAT will be less accurate. The correction tePmthus needs to be large to

compensate for it [59].

It is now possible to show how the cubature poppraach (or any sigma point
approach) makes the effective use of statisticakali regression, when used to
approximate the mean and covariance within the lalrfilter framework. If we
assume that the regression points are generatexl lwas the (propagated) cubature
points, and we substitute (2.36) into (2.43) arerdsult into (2.45), we obtain:

m
i=1

2n
i=1

We can see that under this assumption, the postagan calculated by statistical linear
regression is equivalent to the posterior meanutatied by using only the weighted
average of cubature points. Similarly, if we sulbg#i (2.37) into (2.44) and the result

into (2.46), we obtain cubature-point based apmpnation of posterior error covariance

P,, = APA" + Z wi(Y; =9 (Y; —y)" — APAT
2n . (2.48)
= WY - DY -9
i=1
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which is equivalent to the posterior error covacercalculated by statistical linear
regression. The same can be done for the crossi@oga resulting in the form
identical to (2.38). This form of the mean and c@wee approximations is then
utilized in the nonlinear Kalman filtering and sntlmag algorithms as we will see in
the next sections. Additionally, it is notewortlnat the linearized error covarianBgis
never explicitly calculated during the cubaturerp@pproach, but its effect is indirectly
incorporated through the way, in which the postestatistics are approximated.

2.3.3 Cubature Kalman Filter

The cubature Kalman filter [55] is a recursive, Inoear and derivative free filtering
algorithm, which computes the first two moment.(imean and covariance) of all
conditional densities by using the above descritteidl-degree cubature integration
rules. The application of cubature rules leadsrieeaen number of equally weighted
cubature points2fr point, withn being dimensionality of the state vector), whelte a
these points are distributed uniformly on an etligscentered at the origin. In contrast,
unscented Kalman filter (UKF) applies the unscertasisform, which uses an odd
number of sigma point&n + 1), also distributed on ellipsoid but with non-zeemter
point. This center sigma point often receives megeghting power than other non-
center points through additional scaling parameteit is exactly the inclusion of
parameterk, which causes lower performance of UKF comparedCKF. It is
interesting to note that the original UKF filterllbe equivalent to CKF ik = 0 [66].
Unlike extended Kalman filter, CKF effectively apgimates both the Jacobian and
Hessian accurately (in statistically average settgeugh its sigma point propagation,

without the need to perform any analytic differatian.

In order to evaluate the dynamic state-space mdestribed by (2.1)-(2.2), the
CKF includes two standard Kalman filter steps: a)irae update, after which the
predicted density (X¢|y1:¢—1) = N (R¢je-1, Prje—1) IS computed; and b) a measurement
update, after which the posterior dengitix,|y;..) = N (X, Py) is computed. The
algorithm of CKF, for a discrete system with additnoise, is summarized below. Note
that in case when the process noise and measur@mieatare not purely additive as it
is assumed here, it is desirable to augment thee stactor also with the noise

components [20, 59].
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t+2

@ Cubature points
@® Mean state
t - State trajectory

Figure 2.4 lllustration of cubature points propagation durimge update of CKF. The
cubature points in the two-dimensional state-spaegropagated between time steps. The
circles represent cubature points; the new cubgiair set at time + 1 is computed by
simply propagating the old cubature point setraéti through the process equation.

Algorithm 1. The cubature Kalman filter (CKF) - additive noise

* Initialization:
%o = E[xo] and Py = E[(x — o) (X —Xo)"] (2.49)
e Fort=1,..,T
Time update:
1. Factorize the state error covariance matrix:
Pi1je-1 = St—1)e-1St-1)¢-1 (2.50)
2. Evaluate the cubature poinis< 1, ..., m):
xi,t—1|t—1 = St—1|t—1fi + ﬁt—1|t—1 (2.51)
3. Propagate the cubature points through process nfiogel, ..., m):
Xitie-1 = f(xi,t—1|t—1'ut—1; 9) (2.52)

4. Estimate the predicted state:

m
1
Xt|t-1 = EZ Xit)e-1 (2.53)
i=1

5. Estimate the predicted error covariance matrix:

m
1
Pye1 = EZ Xitle-1 xi,71;|t—1 - Xt|t—1XZ|t—1 +Qt-1 (2.54)
i=1
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Measurement update:

6.

10.

11.

12.

13.

14.

Note that there are many types of matrix decomjoostechniques that factorize

Factorize the state error covariance matrix:

_ T
Pit-1 = Stje-1S¢e-1

Evaluate the cubature poinis< 1, ..., m):

Xitlt-1 = St|t—1fi + X¢je-1

(2.55)

(2.56)

Propagate the cubature points through measurememwidelm

i=1,..,m):
yi,t|t—1 = h(xi,t|t—1'ut; 9)

Estimate the predicted measurement:

m
Ytje-1 m it|t—-1
i=1

Estimate the innovation covariance matrix:
m
P -2 ; Veie-19¢) R
yytlt=1= Yite-1Yiee-1 — Yee-1eje-1 + Re
i=1
Estimate the cross-covariance matrix:
m
xytle=1 = T it1t-1 Jitje—1 — Xeje-1Yeje-1
i=1

Estimate the Kalman gain:
K; = ny,t|t—1 ;;},t|t—1
Estimate the updated state:
ﬁt|t = §t|t—1 + Kt(Yt - yt|t—1)

Estimate the updated error covariance matrix:
Pt|t = Pt|t—1 - Kthy,t|t—1K{

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

the covariance matri®P into a form P = SS”. For example, the Cholesky

decomposition, the eigenvector decomposition or

value

decomposition (SVD). We prefer to apply SVD, sintas the most robust

algorithm to factorize a covariance matrix espégiathen the covariance

becomes nearly singular. The SVDR{& UDUT, whereU is matrix containing
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eigenvectors and is a diagonal matrix of eigenvalues. The squact-ob the

matrix P is then given by = UVDU”.

2.3.4 Cubature Rauch-Tung-Striebel smoother

The same approximation principles that were useduimature Kalman filter can be
applied also during the backward pass of the Rdugig-Striebel (RTS) smoother,
yielding the cubature RTS smoother. The backwass gused for computing suitable
corrections to the forward filtering results to @ibtthe smoothing solutign(x;, y;.7) =

N (R¢r|R:r Piir)- Because the filtering and smoothing estimatethefast time stef
are the same, we mak@; = Xrr, Prjr = Pryr. This means the recursion can be used
for computing the smoothing estimates of all tineps by starting from the last step
t =T and proceeding backward to the initial step- 0. To accomplish this, all
estimates o&k,.r and Py.; from the forward pass have to be stored to be latesed
during the backward pass. Note that we will usealbreviation CKS to refer to the
forward run of cubature Kalman filter followed blyet backward run of the cubature
RTS smoother.

Algorithm 2. The cubature Rauch-Tung-Striebel smoother - additivise

* Initialization:

§;|T =Xpr and P7S"|T =Prr (2.64)

e Fort=T-1,..,0

1. Factorize the error covariance:
Pye = Stltsat (2.65)
2. Evaluate the cubature poinis< 1, ..., m):
Xit)e = Sejedi + Repe (2.66)
3. Propagate the cubature points through process niogel, ..., m):
Xitr1)e = f(xi,t|t; u;0) (2.67)

4. Estimate the predicted state:
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m
1
Xt41)t = EZ Xitr1)t (2.68)
=1
5. Estimate the predicted error covariance matrix:
m
1 * *T N oT
Piiqe = m Xit+1ye Xite1e — Ker1eXesre + Qe (2.69)
i=1
6. Estimate the cross-covariance matrix:
m
P =12x. X, — Ry kT
Le+1le = £, i)t Ait+1)t t|tXt|e (2.70)
=
7. Estimate the smoother gain:
G, = Pt,t+1|tPt_+11|t (2.71)
8. Estimate the smoothed state:
Rijr = Reje + Ge(Repqyr — Revaje) (2.72)
9. Estimate the smoothed error covariance:
Pir = Py — G (Pryye = PI:S+1|T)G{ (2.73)

* Note that the steps 1.-4. are not really neededef@luation of the RTS
smoother. These estimates are equivalent to thikcpions from the time update
step of the filter. Therefore, one can store trmilte of (2.52) and (2.53), and
use them during the backward run of the smoothieis means that there is no

need to propagate the states (cubature) pointsn apabugh the nonlinear

process model.

2.3.5 Square-root representation

In the Kalman filtering (and smoothing) framewotks important to preserve positive
definitiveness and symmetry of the state covarianaéix during the entire recursion
[55]. The cubature Kalman filter and smoother iwvesl several numerically sensitive
operations such as matrix square-rooting (2.50)trimanversion (2.61), and
substraction of two positive-definite matrices &,6which may violate the desired
properties of covariance matrix and cause therfilbediverge [86]. Additionally, in

each recursion cycle of cubature Kalman filter, ohéhe most costly operations is the
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calculation of the matrix square-root of the statwariance in order to form set of
cubature points. Therefore, it is natural to seablation, which would eliminate these
drawbacks. Fortunately, it is possible to desigsqaare-root version of cubature
Kalman filter and smoother, which will preserve thesitive (semi)definitiveness and
symmetry of the covariance matrix, and hence im@rdkie numerical stability

especially during the state covariance update 887, In square-root version of CKF
and CKS algorithm, the matrix square-rooting operstP = SS” are avoided and the
square-root covariance mat$xis propagated directly. This is achieved by utilizithe

following powerful techniques of linear algebra:

* QR decomposition'The QR decomposition performs triangularization for
covariance update. It factorizes the maXfx into an orthogonal matriQ and
upper triangular matriR such thatX” = QR, andXX” = RTQ"QR = R'R =
SST, where the resulting square-root (lower triangutaatrix isS = R”. We use
an abbreviatiorTria(.) to denote QR decomposition of matXxwhere only
lower triangular matrixs is returned

» Efficient least-squaresthe least-squares method is used to compute timeaka
filter and smoother gain. If we substitute the walon covariance matrix in

(2.61) by its square-root representation we gefdhewing expression:

Kt(syy,tSJT/y.t) = Py (2.74)
Sinces,,,; is square and lower triangular matrix, efficieatward substitution
algorithm can be used to compug directly without the need for a matrix
inversion [59]. We use the symbol "/" to represém¢ matrix right-divide

operator, which applies the forward substitutiogoathm (as it is a common
notation in Matlab®), see (2.87) and (2.94).

Although, the algorithms are now free of squardirmpoperations, one still needs to
calculate the square-root form of the state comagamatrix and also of the process and
measurement noise covariance matrices during fthaliation of the Kalman filter.
This can be done by using the Cholesky factorimatio preferably by the SVD

decomposition as noted in Algorithm 1. Finally, thguare-root versions of CKF and

% Note that matrice® andR have nothing in common with process and measurentse covariance
matrices for which we use the same notation.
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CKS, abbreviated as SCKF and SCKS, are summaneédgorithm 3 and Algorithm
4, respectively.

Algorithm 3. The square-root cubature Kalman filter (SCKF) -itidel noise

* Initialization:

%o = E[Xo], So = E[(Xo —%0)(Xo — %0)7], S,:=+/Q. and S,.= R, (2.75)

e Fort=1,..,T
Time update:
1. Evaluate the cubature poinis= 1, ..., m):
Xit-1)t-1 = Se—1jt-1§i + Re—1)e-1 (2.76)
2. Propagate the cubature points through process niogel, ..., m):
Xitje-1 = f(xi,t—1|t—1'ut—1; 9) (2.77)

3. Estimate the predicted state:

m
1
Xt|t-1 = EZ Xit1e-1 (2.78)
i=1

4. Estimate the predicted square-root error covariamesix:
Stje-1 = Tria([th_l, Sq,t]) (2.79)

with weighted and centered matrix:
1 * a * N
Xtje-1 = \/_ﬁ [xl,t|t—1 = Xeje—1s s X ppe—1 — Xt|t—1] (2.80)

Measurement update:

5. Evaluate the cubature poinis£ 1, ..., m):
Xitje-1 = Seje-181 + Reje—1 (2.81)

6. Propagate the cubature points through measuremerdelm( =
1,..,m):

Yitje-1 = h(xi,t|t—1'ut; 9) (2.82)

7. Estimate the predicted measurement:

m

R 1

Ytjt-1 = Ez Yite—1 (2.83)
i=1
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8. Estimate the square-root of innovation covarianegrin

Syy,t|t—1 - Tria([Yt|t—1 ST,t]) (284)

with weighted and centered matrix:
1 N N
Yeje-1 = \/_% [yl,tlt—l = Vee-1 o Ymeye-1 — Yt|t—1] (2.85)

9. Estimate the cross-covariance matrix:
Prytit-1 = Xt|t—1YtT|t—1 (2.86)
10. Estimate the Kalman gain:
K¢ = (ny,t|t—1/Sgsz,t|t—1)/Syy,t|t—1 (2.87)
11.Estimate the updated state:
ﬁt|t = ﬁt|t—1 + Kt(Yt - s\’t|t—1) (2.88)
12.Estimate the updated square-root of error covagianatrix:

Seie = Tria([Xeje-1 — Ke Yepe-r KeSpe ]) (2.89)

Algorithm 4. The square-root cubature RTS smoother - additiv&eno

Initialization:

Xpir =Xpr and Szr =Spr (2.90)

Fort=T-1,..,0

1. Compute the predicted error covariance matrix:

Sei1ye = Tria([Xe+1)e  Sqel), (2.91)

whereX;, . is the weighted centered matrix, which was storathd a

time update step of SCKF pass (2.80).

2. Estimate the predicted error covariance matrix:

1
Xeje = 7= [Xacte = Rejer s Xmete = Rere) (2.92)

Wlth x,:,tlt = Stltfl +ﬁt|t, i= 1:m, Where bOth)’Zﬂt and St|t are

posterior estimates stored during the SCKF pa88)Z2.89).
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3. Estimate the predicted error covariance matrix:
Pt,t+1|t = Xt|tX{+1|t (2.93)

4. Estimate the predicted error covariance matrix:
G, = (Pt,t+1|t/StT+1|t)/St+1|t (2.94)

5. Estimate the predicted error covariance matrix:
Rir = Repe + Gt(ﬁf+1|r — Rep1t) (2.95)

6. Estimate the predicted error covariance matrix:

Ser = Tria([Xee — Ge Xgje—1 Ge Serqir - G Sq]) (2.96)

» Derivation of the square-root cubature RTS smoothaghe same as the one
based on the unscented transform, which can belfou{89]. Alternative (but

similar) solution is described in [66].

2.4 Sequential parameter estimation

Up to this point, we have assumed the paramétexcurring in the model equations to

be known. However, it is very often the main aimm@ny analyses to determine the set
of parameters so that they describe the model bbimdest fit to the measured data.
Therefore, it will be an objective of this sectitm describe a parameter estimation

framework, which well suits to the so far introdds=quential estimation theory.

Parameter estimation, which is very often calledtay identification, involves

learning a nonlinear mapping:

Ve = (x4 0), (2.97)
where® is the set of unknown parameters, which parameteéhe (possibly nonlinear)
mapping functiorg(.), i.e. mathematical model, between the inpuand the outpug,.
Note, that in our case the functigg.) subsumes both hidden part of hemodynamic
model and observation BOLD equation. Although maibtgrative optimization
algorithms are available to perform parameter egton from data available in bathes,
where these include also the well known expectatiaximization (EM) algorithm [90,
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91], the interest of this thesis is to enable aisatjal (online) estimation of the model
parameters. In this sense, the (nonlinear) Kalnigarihg framework may be used to
estimate the parameters by considering a new spatee representation:

0, =0,,+0,4

2.98
Ve = 8(X¢;0,) + 1y, ( )

which can be regarded as a special case of gestatd estimation, where the
parameters now represent the hidden states. Blerg corresponds to a stationary
process with identity state transition matrix, eénvby process noisg_,;~N (0, 0;_);

l.e. Gaussian random walk model. The output of mmemsent equationy;, then
provides a nonlinear observation 6p Clearly, one can use the same algorithms of
nonlinear cubature Kalman filter/smoother, whichrevdiscussed in previous sections,
with the above state-space system and perform gaeanestimation in a sequential

manner.

Nonlinear Kalman filters have a long history in Bggtion to neural networks in
order to estimate coupling weights among singlerarei It is a common experiance
that Bayesian filter-based training algorithms cnge more rapidly than the gradient
descent method. They are also well-suited to handisy and nonstationary training
data. Especially, the introduction of sigma-poirdlidan filters such as UKF or CKF
led to significant improvement in obtaining robugibbally optimal estimates in
situations, where the standard EKF is very likelyget stuck in a non-optimal local
minimum [59]. Additionally, the second-order infaation encoded in the filter
estimated error covariance can often be used toepthe network weights. This is
because the convergence goes along with the shenkd the parameter error
covariance towards zero (this also forces the Kalmain towards zero); i.e. filter
becomes more confident about its predictive esémat

In the following section, we will motivate the seplial parameter estimation from

maximuma posteriori(MAP) perspective.

2.4.1 Maximum a posteriori estimate

Though the Kalman filter is mostly derived as a MMé&stimator [61, 67, 78], it has its
interpretation also from MAP perspective [68]. EsgpBy, it allows for interesting
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analysis of the recursive Bayesian algorithm, wheplied to parameter estimation.
However, it is important to mention that the MAReipretation of Kalman filter is
constrained only to the environment, where therg@i posterior random variables are
Gaussian, whereas MMSE interpretation of the optestimate is valid also for non-
Gaussian environment [59]. To develop a sequemMiAP learning procedure for
parameter estimation, we use the state-space r(th88) and Bayes rule to express the

posterior distribution of parametes conditioned on all of the observatigp, as:

P(¥:10.)p(0:|ys.c-1)
P(¥ely1:e-1) .

p(O¢ly1.e) = (2.99)

Because the denominator of (2.99) is not a funatio®,, the MAP estimate can be
obtained by maximizing the numerator with resped;t
8}'4P = arg maxg(p(y:10.)p(B¢ly1:c-1)), (2.100)
which is equivalent to choosir}} that minimizes negative logarithm of the numerator
in (2.99), i.e.:

éItWAP = argmingy (_ ln(p(Yt|et)p(et|Y1:t—1)))

= argming (—In(p(y:(6,)) — In(p(8,ly1.c-1))) (2.101)
= argming (/(8,)),

where
J(®) = —In(p(y:18,)) — In(p(B,ly1.c-1)) (2.102)

is called the posterior log-likelihood function.nSé we already mentioned that under
the MAP interpretation of Kalman filter, all deneg are assumed to be Gaussian, we
can substitute the probability densities in (2.10&2hich represent the observation

likelihood and prior density of system parametegspectively, by:

1 1. . ~ T ~ ~
p(0ly1.e-1) = exp <_ E (etlt - et|t—1) PB,t1|t—1(et|t - et|t—1)>

\/(27-[)719 |P9,t|t—1|

(2.103)

1 1 R T _4 N
p(y:8,) = mexp <—§(Yt — $eje-1) Ret(ye — Yt|t—1)>r (2.104)

which results in the following form of the postarlog-likelihood function:
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1
J(0,) = 2 (Yt - }A’t|t—1)TRzl(Yt - yt|t—1)
1 . (2.105)
+ 2 (etlt - 9t|t—1) Pa_,t1|t—1(et|t - et|t—1) +c.

Here,ﬁm_1 is the prior estimate of the parameters (i.e. tleetbe new observation is
incorporated)Py ;-1 IS its error covariance, both obtained duringtthee update step
of Kalman filter. The constant accounts for normalizing terms in the Gaussiarsitign
functions. The MAP estimate is now found by substig (2.105) into (2.101) and
solving for the minimum value &;. This involves taking the derivative of (2.105)Hwi

respect td, and solving for zero, which results (after someérimananipulation) in the

standard Kalman update equation of the parametienas:

6%24;» = §t|t—1 + Kt(Yt - yt|t—1); (2.106)

with Kalman gain:

-1
K: = PGy,t|t—1(Pyy,t|t—1 + Rt) . (2.107)

Similarly also the update for parameter error carare can be derived as:

Po e = Pgje—1 — Kt(Pyy,t|t—1 +R,)KY. (2.108)

For a complete derivation, the reader is referog®8].

Although this brief derivation assumed linear magpiunction, which is generally
not the case, it was shown in [59] that if we apprmate the nonlinear mapping
function §;\;—, = g(ﬁqt_l) by statistically linearized form (2.45), as imjli¢ applied
for example by cubature-point approach, the MARvdéobn of nonlinear Kalman filter
can be carried out (in similar manner) as well. €furse, the success of this
approximation strategy is based on the assumptiaintihe statistical linearization of the
g(.), over the probabilistic spread (uncertainty) oé tlnderlying parameter (state)
random variabled, is a good approximation; i.e. that errors aratnetly small and
normally distributed. This condition is met if tiset of sampling (cubature) points is
constructed correctly, which is automatically guéead by the third-degree cubature
integration rule that accurately captures the finsi statistical moments even in highly
nonlinear models. This implies that the CKF paranegstimation algorithm is
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equivalent to a maximum posterior likelihood estenaf the underlying parameters
under a Gaussian posterior (and noise distribuassumption.

Moreover, it is also known that the measurementatgpdstep of statistically
linearized filters such as CKF or UKF, when appliegequential parameter estimation,
is equivalent to the modified Gauss-Newton method dolving a nonlinear least-
squares problem [59, 92, 93]. Specifically, it daswn that the nonlinear least-squares
problem and the maximum posterior likelihood problas defined above optimize the
same objective (cost) function. This gives risentany interesting properties of this
sequential parameter estimator. Mainly, it say$ tha recursively updated parameter
(state) estimate of covariance matrix (as calcdlate CKF parameter estimation filter)
is equivalent to the recursively (online) calcuthteverse of the expected Fisher
information matrix (FIM) used by the Gauss-Newtquigalent optimization step [94].
In other words, the inverse of FIM at the maximukellhood estimate is equal to the
Cramer-Roe lower bound (CRLB) of the estimatedararé. Importantly, the CRLB
can be used for evaluating the performance of dirbhapnonlinear filtering methods
[95], while the FIM has a large utilization in aysis of parameter space, parameter
reduction, and model identifiability [96].

2.4.2 Joint estimation

It is very often the case that both hidden statedymamic process and model
parameters are unknown and have to be inferred themmeasured data. Moreover,
there might be even a situation, where one wanestionate also the unknown input
into the system. This special case of system ifieation can be consider as a blind
(nonlinear) deconvolution problem, which is desedlas estimating the unknown input
to a dynamic system, given output data, when thelanof the system contains
unknown parameters. As it was discussed above,nth@inear cubature Kalman
framework is a well suited approach to robust patamestimation. What we should
add now is the fact that because of so-called akhtondition of control [55], it is

possible to generate the inpytusing the state predictiaty;_,. In our case it means
that if we augment the state vector by the prooegsesenting the input, e.g. similar to
the one used for parameter estimation (2.98) wighuti noisev,~N (0,V,), we can

estimate the system input together (jointly) witle states. By saying this, we can go
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a) Joint Filter b) x |

Y

0

Figure 2.5 lllustration of joint filtering schemga) Both model states and parameters are
estimated simultaneously in the augmented formhef dtate vector. (b) Joint state-
parameter optimization space.

one step further (towards blind deconvolution sabemnd attempt to solve a dual
estimation problem, where under consideration afoalinear dynamic system, the
system states;, the parameter8; and the inpug,, are estimated simultaneously from

the observed noisy signg|.

It should be noted that by the inpyt we mean an endogenous input (or signal),
which might be different from the exogenous inptin the context of fMRI, the input
u; is presented to the subject, whereaseflects the actual neuronal response, which
might (or might not) reflect the exogenous stimullms other words, there is always
some endogenous activity present in brain evehenabsence of any external stimuli,

i.e. at rest.

A general theoretical and algorithmic framework fiwal Kalman filter based
estimation was presented in [68], [59]. This framew encompasses two main
approaches, namely joint estimation and dual estimaln the dual filtering approach,
two Kalman filters are run simultaneously (in aerdtive fashion) for a state and a
parameter estimation. At every time step, the curestimate of the parameteds is
used in the state filter as a given (known) inpud Bkewise, the current estimate of the
stateX; is used in the parameter filter. This results step-wise optimization within the
joint state-parameter space. On the other handhenjoint filtering approach, the
unknown system state and parameters are concalentiea single higher-dimensional
joint state vectorp, = [xF,z],0F]7. This results in a smoothed convergence in the
joint state-parameter space (see Figure 2.5). elTfera prevalent opinion that the

performance of joint estimation scheme is supdnodual estimation scheme [59, 68,
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97]. Therefore, the joint estimation framework lthea cubature Kalman filtering and

smoothing is considered in this work.

The state-space model for joint estimation schentlean formulated as:

Xt f(X¢-1,0¢-1,2Z¢-1) Qi-1

R = Z; | = Z;_q + | Ve-1 (2109)
0, 0:_1 0r—1

ye = h(p) +r. (2.110)

Since the joint filter concatenates the state as@rpeter variables into a single state
vector, it effectively models the cross-covariandestween the state, input and

parameters estimates:

Px,t sz,t Pxe,t
Pt = sz,t Pz,t Pz@,t . (2.111)

Poxt Poze Poy
This full covariance structure allows the jointiegttion framework not only to deal
with uncertainty about parameter and state estgnétierough the cubature-point
approach), but also to model the interaction (ciiowkl dependences) between the
states and parameters, which generally providetrbestimates [59, 68]. Note that
since the parameters are estimated simultaneousitythxe states, the convergence of

parameter estimates depends also on the lengfie dite series.

Algorithm 5. Joint estimation of states and parameters by CKF.

* Initialization:
o Create augmented state vector, error covariancexnaid process noise

covariance matrix:

fo = E[po] = [x],2§,05]" and Po = E[(ro — fio) (mo — Fio)"],

P.o 0 0 Qo 0 0
w, = [x,20,05]", Po=|0 P,y 0| and Wo=| 0 Vo 0
0 0 Py, 0 0 Ogp

e Fort=1,..,T
Time update:
1. Calculate the set of cubature points based on que\step estimates; i.e.

We—1)e—1 andP;_q)—q.
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2. Estimate the predicted joint state vecids,_, and predicted error
covariance matriP, ., after propagating cubature points through state
equation (2.109).

Measurement update:

1. Calculate the set of cubature points based on tipdgate predictions,
Weje—1 andPye_q.

2. Estimate the predicted measurement gnd, the innovation covariance
matrix P, .., after propagation cubature points through measeméem
equation (2.110).

3. Estimate the joint posterior estimates of the mggap and error
covariance matri®;;.

Log-likelihood:

4. Calculate the log-likelihood at time step

n 1 1
Ly =— 7y1n(2ﬂ) - §1n|Pyy.t|t—1| -3 (v: - f’tlt—l)TPy_y,ltlt—l(Yt ~ Veie-1) (2.112)

* Note: Although this description is provided for requare-root version of CKS,
the same step are followed also for the SCKS. &t ttase, the square-root
covariance matrices are considered. Additionallye timplementation of
cubature RTS smoother (or its square-root versienyery straightforward.
Simply the augmented (joint) state vector and @poading error covariance

matrix are employed.

2.5 Hybrid continuous-discrete state-space models

In previous sections, we have considered the sfzdee model to be described in a
discrete time, however, in many practical situagiahe process equation of state-space
model is derived from underlying physics of a coantius dynamic system, and is

expressed in the form of a set of differential emuns. But still, the measurements

are acquired by digital devices; i.e. they are lab& at discrete time pointg =

1,2,...,T). Therefore, we have a model with a continuous gsscequation and a
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discrete measurement equation. The stochasticsemaion of this state-space model,
with additive noise, can be formulated as:

dx(t) = f(x(t), t)dt + /Qdw(t) (2.113)
ye = h(xy, t) + 1y, (2.114)

wherex(t) is the state of the system at timef(.) is a known nonlinear drift function;
w(t) denotes standard Brownian motion that is indepeinodiex(t); andQ is a known
diffusion matrix. The process equation is the sesplform of Itd's stochastic
differential equation [98]. The system is obsertiesbugh the noisy measurements in

discrete time intervals (discrete times are denageslubscripts).

The recursive Bayesian solution to the above cantis-discrete model is very
similar to the one described in Section 2.2. Thiy difference appears during the time
update step of Kalman filter, where the old postedensity is propagated trough the
process equation (2.113). In this case, the prtibatensity of the state at timeobeys
the Fokker-Plank equatioFPE), also calleolmogorov's forward equatiof®9, 100]:

ap(x(t)|Y1:t) _ ap(x(t)|YI:t)
ot B ax(t)
1 0°p(x(O)|y1:e)
Tt (Q(t) 372x(0) )

which describes the evolution of probability depdietween the measurement time

of ,
F(x(0), £) — p(x(t>|y1;t)tr( (x(r) ”)

ox(t)
(2.115)

instants. The exact solution to FPE is availablédy dor linear Gaussian system
represented by the time update of Kalman-Bucyrf[lt@1]. In other cases, the FPE has
to be approximated. There are two main groups dhaus that attempt to approximate
the time step of continuous-discrete filter. Methdd the first group compute the
conditional density by explicitly solving FPE. Tleesover many numerical methods
such as finite element methods [102, 103], finitdecknce methods [104], particle
methods [105], or simulation approaches using Markchain Monte Carlo
approximation [106]. Main disadvantage of thesehmés is that their computational
complexity increases exponentially with the dimensif the state vector. On the other
hand, the second group involves methods, which cteng finite number of summary
statistics in terms of conditional moments aftescdetizing the continuous time process
equation using the Euler or higher order Runge#&uttethods [107]. Continuous-

discrete forms of nonlinear Kalman filters that eenentioned in Section 2.2 fall under
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this group [64, 108, 109]. From the concept of thgk, it is obvious that our interest
will be in the approaches that fit into the secgnalup. However, the aim will not be to
develop an approximate nonlinear filter by appraadimg continuous time filter
equations (as it is often the case), but ratharse the standard discrete time filtering
equations for an approximate discrete time modethef original continuous time
dynamical system [56]. This automatically puts higgmand on accuracy of the method

that discretizes the model represented by stochdisterential equations.

The simplest and the most common method is to ajel\Euler approximation to

the stochastic differential equation over timeriné[t,t + 6):

Xers = X¢ + 6f(x,) +/Qw, (2.116)

wherew; = (w(t + §) — w(t)) is the standard Gaussian noisg,~N (0, 6I), and is
interpreted as the time-derivative of the Brownmation. This approximate discrete
equation (2.116) can be considered as a discri ¢bunterpart of the Itd's process
equation (2.113). If we seek a good discrete tippr@aimation of the continuous
stochastic dynamical model for nonlinear and Gaussaultivariate process(t), we

need to find a discretization scheme that satisfiedollowing criteria [110]:

« The model should be consistent, i.e.:

X465 — Xt
)
» The trajectory ok, should coincide with the true trajectoryxif) at the

- f(x;) for § - 0. (2.117)

discrete time points t + 6,t + 26, ..., at least wheffi(.) is linear.
* The discrete time model should preserve the quiaktaharacteristics of the

continuous time model; i.e. zero pointsf@£) and the Jacobian are preserved.

Unfortunately, all of very common discretizatiorhemes, such as Euler (2.116) and
Runge-Kutta methods, well known in the field of rermoal analysis, do not satisfy the
second and the third condition (see [56] for thees).

For a discrete model the computationally stabletdiscretization method is given
by [111]:

X5 = exp(Jx6) Xy, (2.118)
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o &

where exp(J,6) =Zi=07]§; represents a matrix exponential pf being Jacobian

matrix of the proces$(x). This approach will be computationally stable amdodic

also for stochastic process:

Xers = exp(Jx6) X, +/Qw, (2.119)

but unfortunately it is not consistent in nonlineaodels. Nevertheless, this simple
method can be considered as a cornerstone forlled &acal linearization (LL) scheme
[56], which satisfies all the above criteria andaiso consistent when applied to

nonlinear models.

2.5.1 Local linearization scheme

This approach intuitively assumes the nonlinearction f(.) to be locally
approximately linear with respect to the proceg$). In order to derive this
discretization process, the equation (2.113) & fionsidered in a deterministic context,
I.e. only the following differential equation ismcsidered:

ax(t)
at

£(x(0)). (2.120)

We assume an appropriate approximation that theepsois linear on a small time
interval [t, t + &), where its Jacobiafy, is constant. Herg, represents the Jacobian of
f(x), which is given by:

_0f(x)

Je = — — (2.121)

From this assumption, the following relation foretlprocessx(s) on the interval

t<s<t+4§isvalid:

d’x(s)  dx(s)

= (2.122)
ds? * ds
If this is integrated on the intervll, t + 1), where0 < t < §, one obtains:
dx(t + 1) 4.0 dx(t)
— = €X T
dt AT (2.123)
= exp(J7) f(x(1)).
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By integrating this again with respecttmn [0, §), it results in the following relation

betweenx, andx;,s:

Xe+s = X + ) [exp(J6) — Tf(x,). (2.124)

This represent the local linearization equationresponding to the first order linear
approximation [56]. Additionally, it is possible w@pply the LL scheme also to the
random term of the state equation in (2.113) thatows multivariate normal

distribution with zero mean vector and covarian@rix [12]:

t+6
Quvs = f exp(:6)\/ A/ Qe exp(J6)" dt . (2.125)
t

Finally, there exists a simple algebraic expresfi@) 112] that is especially useful
for both deterministic and random part of (2.1K#)ce the form (2.124) is not reliable
in the case of ill-conditioned matr]x. In order to do that, it is necessary to first nesv

(2.113) in the following (but equivalent) form:

Xeps = X +1(x,6) + \/Ewt, (2.126)

then thd(x,, 6) is defined in the block matrix as:
[L(Xé, 5) l(Xi, 5)] = exp(C6), (2.127)

whereL(x;, §) = exp(J,6) and
_ f(x;) (My+1)X(Nx+1)
c_[g ; ]ER . (2.128)
Similarly, the covariance matrix of Gaussian preaesise is obtained through [113]:
E G]_
[O F] = exp(D$), (2.129)
with

c R(znx)x(znx) (2130)

D:l—lx JoaVar
o

resulting in a process noise covariance matrix:

Q;.s = FTG. (2.131)
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2.5.2 Square-root cubature Kalman filter with local linearization

In the previous section we have discussed the eheal background of local
linearization scheme as a method for discretizatibstochastic differential equations.
Now, we apply this scheme to the time-update stemamlinear Kalman filter.

Assuming a Gaussian approximation of the filterghgtribution, we can obtain the
predicted mean and the error covariance througlotia linearization as:

ﬁt—1+6|t—1 = J- [X¢—q +1(X—1,8)] X N(Xt—llﬁt—ﬂt—l'Pt—1|t—1)dx (2.132)
R™x

P 14511 = ([Xt—l +1(x¢-1,6)] — ﬁt—1+6|t—1) ([Xt—l +1(X¢-1,0)]
R (2.133)

- ﬁt—1+6|t—1)TN(Xt—1|§t—1|t—1: Pt—1|t—1)dx + Qi-1+6)
The next step is to numerically compute the intisgadove, which can be done using

the cubature integration rules.

In order to compute the predicted state estimateermocurately before receiving
the measurement at time stgpseveral integration steps are usually performétinv
the time intervalt — 1, t]; i.e. interval between available measurement sasnh this
sense we will partially follow the cost-reduced wggeh introduced for continuous
discrete systems [109].

Given the set of cubature points representing tbstepior at timet — 1, we
propagate these points recursively through theenioee nonlinear process model
(2.124) up toK steps forward, where the size of intermediategiatiion step is
6 = 1/K. Similarly, we update also the process noise ¢amae according to (2.125).
Subsequently, we compute the predicted state and @variance matrix by using the
set of cubature points from the last si€pand continue with the standard measurement
update of CKF. It means that the predicted mean awvariance are computed only

once per the time update step of CKF. This is sunz@@ in Algorithm 6.

Notice that LL scheme involves calculation of Jaanbmatrix. Once we combine
LL with cubature integration rules, we have to comepthis Jacobian matrix for each
cubature point. In addition, we also have to compuoatrix exponential. This represents
a serious demand on computational cost. Howeves,cibst is paid in favor of high

accuracy and stability of the filter.
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Algorithm 6. Time update step for continuous-discrete SCKF.

» Start the time update step:
1. Evaluate the cubature poinis= 1, ..., m):

Xit-1)t-1 = Se—1jt-1§i + Re—1)t-1 (2.134)

e Accumulate the state vector and the noise covaeiaver the intermediate steps
(k = 1, ..., K) within measurement intervfd — 1, t], withé = 1/K:

3. Propagate the cubature points through the procedeinf = 1, ..., m):

x;t—1+k6|t—1 = xi,t—1+(k—1)6|t—1 + l(xi,t—1+(k—1)6|t—1; 5) (2_135)

4. Based on the average Jacoljian- %Z?‘]i,x, compute the process noise

covariance matrix according to (2.129)-(2.131):

Q _ {g(Qt—1+(k—1)61 5) fork=1 ) 136
—1+k6 = .
o Qt-1+k-1)5 T g(Qt—1+(k—1)6; 5) fork>1 ( )
* If k = K continue to evaluate the prediction:
5. Estimate the predicted state:
m
A 1 *
Xt|t-1 = Ez Xit-1+k8]t-1 (2.137)
i=1

6. Estimate the predicted square-root error covariameisix:
St|t-1 = Tria([xqt—p\/ Qt—1+K6D (2.138)

with weighted and centered matrix:

1
X¢jt-1 = \/_ﬁ [xl,t—1+K5|t—1 — Xt|t—1r xm,t—1+K6|t—1 - tht—l] (2.139)

» Continue with the regular discrete time measurenupaiate step.

Although this cost-reduced formulation of CKF timpdate represents a stable
algorithm to estimate the hidden states of contisumodel, it seems to be not well
suited for the joint estimation of both states padameters. Specifically, if we use this
scheme for joint estimation, we propagate the mdstatesK times forward between
observations, while the parameters (having disametdel) are propagated only once.
This causes some instability into the performantehe joint filter, which is not
desirable. Therefore, we suggest a slightly differgtrategy. Rather than performing
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several integration steps through the process muoeteleen two observation samples,
we linearly interpolate the observation sequenoahat with each integration step we
have a new measurement available (nEw= §), hence both state and parameter
predictions are obtained at each step. This furtingproves the estimation of
parameters, because we simply have more time ptmnashieve the convergence. In
addition, this formulation is also well suited farbackward propagation through an
RTS smoother.

Finally, we compared these two formulations ofefiltime update with a recently
introduced approach that uses It6-Taylor expansiothe order 1.5 to discretize the
continuous system, and which was designed dirdotlyCKF [109]. For details see
Appendix A.3.

2.6 Adaptive estimation of noise statistics

The Kalman formulation of filtering problem assunoesnpletea priori knowledge of
the process and measurement noise statistics. & pnactical situations, these noise
statistics are unknown or not known perfectly. Wirorrect prior statistics are used
to implement sequential filtering algorithm, it rhigresult in suboptimal performance
and possibly in filter divergence. Therefore, ie thck of system statistics knowledge,
it is desirable to adaptively estimate the processe and measurement noise statistics
simultaneously with the system state. The adagtitexing methods can be classified
into four main categories: Bayesian estimation, imax likelihood estimation,
correlation methods and covariance matching methédgrief surveys on these
different approaches can be found in [100, 114-1MNéjte that there are many other
methods that perform offline estimation of noisatistics [117], including EM
approach [90, 91]. However, since we already héwe greference to perform joint
estimation of the states and parameters, it igg@db choice to adaptively estimate the
noise statistics as well. Also, some of the offlegimators assume multiple repetitions
or very long recordings of measured data [117],ciwhare not really available for our
problem.

In standard Kalman filtering framework, all noisatistics are described by the
first two statistic moments, i.e. by the mean ane tovariance, where the mean is

usually assumed to be zero. Therefore, the goadaptive filtering is to estimate the
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covariances of process noise and measurement tasénportant to mention that the

estimated noise covariance can have a significdghteince on the performance of the

algorithm. By increasing the process noise covadathe Kalman gain also increases,

thereby producing bigger changes in the state epdétmeans that more importance is

placed on the most recent measurements. Additignadl the Kalman gain increases,

the process error covariance also increases and lfikcome less immune to noise and

outliers. On the other hand, if the measuremendenobvariance increases, the actual

measurement is trusted less and vice versa [79].

In the case of parameter estimation, the amounbsaillations in the model

prediction clearly depends on the value of thegpeater) process noise covariance. As

a result, this covariance can be used as a regafimm mechanism to control the

smoothness of the prediction. A very common praciic neural networks is to

approximate the parameter noise covariance by &smpgle annealing [88, 118]:

Annealing: The process noise is injected artificially based ppocess error
covariance matrix:

0, = (5" — DPyg (2.140)

where 44 € (0,1] is called the forgetting factor [118]. This allows put
exponentially decaying weigh on past data. Typycahe choice ofiy being
slightly less than unity works well for many proivle

Another already more sophisticated approach torsee estimation of noise

covariance is the Robbins-Monro (RM) stochasticrapimation [111]:

Robbins-Monro stochastic approximatif@8]:

0; =290;-1 + (/151 - 1)Kt[Yt - g(xt; ﬁt)][Yt - g(xt; ét)]TK{ (2.141)

The method assumes that the covariance of the Kalmpdate model should be
consistent with the actual update model. Typicdlyjs also constrained to be a
diagonal matrix, which implies an independence @agdion on the parameters.
Here,Ag has the same function as in the previous case.kitown that an RM

approximation provides a very fast convergenceaaluv final MMSE [59].

57



ESTIMATION OF NEURONAL SIGNAL FROM MRI DATA

Both RM and annealing help to escape poor localmarof the error surface. We
made a choice to apply the RM approximation tordwirsive estimation of parameter
noise covarianc®; and also to approximate the process noise covariaratrix Q;,
since it proved to have better convergence prae[f9]. We should also note that we
do not expect to estimate the exact process noiriance of the dynamic model with
RM approach. The aim here is to maintain somei@éiflevel of randomness, which
supports the convergence of the algorithm, and gmsvthe filter from becoming
overconfident with the estimate (i.e. it avoids &ng). By saying this, we consider
the noise covariance of the input to be fixed. His ttase, any attempt to adaptively
estimate the input noise covariance led to the kgudovergence of the filter.
Nevertheless, as we will see in Chapter 4, themoisieed to adaptively estimate the
input noise covariance, because it can be easilyeatka priori; i.e. proportional to the

average peak to peak amplitude variation of themasions.

The most important part in adaptive filtering ia@te estimation of measurement
noise statistics. For this particular task, we abgrsa recently introduced Bayesian
approach [119] to recursive estimation of measurdnm®ise covariance, which is
suitable also to nonlinear filtering and is able take the advantage of assumed
Gaussian density filter such as CKF. In the negtise, we describe the details of this

approach.

2.6.1 Variational Bayesian estimation of measurement nogs

The Bayesian estimation of the noise statistiches nost general one and the other
approaches can often be interpreted as an apprbainta the Bayesian approach. One
way how to perform tractable approximation to poeteinference in Bayesian sense is

to apply variational Bayesian (VB) approach [1146]1

If the measurement noise covariarRe is unknown then the goal of Bayesian
filtering is to compute the joint posterior distition p(x;, R¢|y;.;) of the statex, and
of the covarianc®,;. We know already from the earlier discussion thatposterior is
given by a product of observation likelihood aneédctive distribution, which now

takes a form:

P(Xe, Re|y1e) = p(yelXe, RO)DXe, Re|Y1:0-1)- (2.142)
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In [119] they assumed that the probability disttibn of noise variance is inverse-
Gamma and so the filtering distribution at time 1, and predictive distribution at time
t can be approximated as a product of Gaussian raepéndent inverse-Gamma

distributions, respectively [116]:

P(Xe—1, Re—q|y1:e-1)

d
= N(Xt—llﬁt—llt—ll Pt—llt—l) X 1_[ iG(Ri,t—1|t—1|ai,t—1|t—1u8i,t—1|t—1)

=1
(2.143)
d

p(Xe, Relyre-1) = N(thﬁﬂt—l; Pt|t—1) X 1_[ iG(Ri,t|t—1|ai,t|t—1;ﬁi,t|t—1)' (2.144)

i=1
where the dynamic model for the measurement nos@r@ance maps an inverse-

Gamma distribution at the previous step into ineggmmma distribution at current
step.

It is further assumed that the measurement noigariemce has a form of diagonal
matrix R, = diag(Ry ¢, ..., Rq¢). The inverse-Gamma distribution is chosen bec#use
represents the conjugate prior distribution foiiarace of Gaussian distribution (another
common choice is to use inverse-Wishart distribu{ib20][[121]). These normal and
inverse-Gamma densities in (2.144) are parameteagdollows:

_1 1
N (X¢|Reje—1, Peje—1)  |Prje—1| Zexp <—§ (Repe — §t|t—1)TPt_|t1—1(§t|t - §t|t—1)> (2.145)

. e B
iG(R|ais Bir) x R™* Lexp (— ﬁ) (2.146)
where we skipped the constants not contaigiogR.

At this point, in order to make the computationpofterior (2.142) tractable, it is
possible to apply the VB approach. The VB usuallyples the mean field
approximation [75] that factorizes the posteriatabution as follows:

P(Xe, Relyre) = Qx(X)Qr(Ry), (2.147)

where Q, (x;) andQz(R;) are in our case the approximations of normal awérse-
Gamma densities, respectively. The VB approximat@an now be formed by
minimizing the Kullback-Leibler (KL) divergence beten the separable
approximations and the true posterior distribution:
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KL(Qx (x0)Qr(Ry), p(X¢, Ry IY1:t))

- f 0, (x0) Qa(RY) ln(

Qx(X)Qr(Ry) (2.148)
dx.dR;.
p(Xe, Relyi:e) ) X

By minimizing the KL divergence with respect to pability densitiesQ, (x;) and

Qr(Ry) in turn, while keeping the other one fixed, we tpet following forms:

Qx(X¢) < exp <f Inp(ye, Xe, ReY1:6-1) Qr (Rt)th) (2.149)

Qr(Ry) o exp (j Inp(ye Xe, RtlYl:t—l)Qx(xt)dxt> - (2.150)

The integrals in the exponentials of (2.149) and5Q) can be expanded as follows:
f Inp(X¢, Rely1:e-1)Qr(Re)dR,

1
= E(Yt - ?t|t-1)T(REl)R(yt - yt|t—1)

(2.151)
1, R T4 a ~
+ E (tht - xt|t—1) Pt|t—1(xt|t - tht—l) + ¢
flnp(xt, Relyie-1)Qx (Xp)dX,
d 3 8
= — Z [(E + ai,t) ln(Rl-_t) — R;t
i=1 b (2.152)

d
- % Rt (y: — }A’t|t—1)l.2>x + Cy,
i=1
The result of the first integral can be immediat&lgognized as a form of posterior log-
likelihood function (described in Section 2.4.1hieh once solved for minimum value
of x; gives the Kalman update equations for the stassu(ing cubature
approximation). The expectatiof), = [(-)Qz(R.)dR; represents the estimate of

measurement noise covariance matrix:

(Ry Mg = diag(ay e/ Buter —r Aar)e/ Baeie)- (2.153)
The update of parametervs,; and p;.. describing inverse-Gamma distribution are
derived from the result of the second integral%2)1 where the approximate solution to
expectation(-), = [(-)Q,(x;)dx; can be separately computed by Gaussian integration

methods such as cubature rules:
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1

Olt|t = (lt|t_1 + E (2.154)

1
Bt = Bee-1 + Ef (Yt - }A’t|t—1)(Yt - y’t|t—1)TN(xt|ﬁt|t: Pt|t)- (2.155)
ng

Here we used simplificatio, ,—, = diag(By -1, --» Barje-1) and a,_, represents
scalar that is the same for all measurements.118][they also suggested to update

andp, iteratively to improve the estimation performa¢e¢he algorithm.

So far, we have described only the update of paemswe, andf;. The dynamic
model, which takes a part during the predictiomp $tas to satisfy a condition that when
this model is applied to inverse-Gamma distributidn produces another inverse-

Gamma distribution. This can be simply achieved:

Atjt—1 = PAt—1|t-1 (2.156)

Btit-1 = pBi-1jt-1- (2.157)
where p € (0,1] controls the assumed dynamics of the measurenwsé,ni.e. it is
possible to model also nonstationary noise coveearnf p =1 then we assume

stationary covariance and< 1 allow for higher time-fluctuations [119]. The suram

of the resulting adaptive algorithm in the sens€KF is presented bellow.

Algorithm 7. CKF with adaptive estimation of measurement noss&agdance.

* Initialization:
o Standard initialization as for CKF.
o Initialization of inverse-Gamma distribution paraers; e.g.a, =1,
Bo =14, andp = 0.998.
e Fort=1,..,T
Time update:
1. Perform regular step of CKF time update, i.e. steps. of Algorithm 1,
to obtain predicted mean and predicted error canag.
2. Calculate parameters of predicted inverse-Gamntahkditon:
Apjt—1 = PAt_1jt-1 (2.158)
Btit-1 = pBe-1t-1- (2.159)
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Measurement update:

3. Perform steps 6.-9. and 11. of Algorithm 1. to abtaropagated

cubature point arra¥/; .-, with associated mean response prediction
¥¢1c—1, and the cross-covariance matPix, +;—1-
. SetB?lt = B¢jt-1 and . = aye-q + 1, and iterate the following steps
times(k =1,..,K):
4. Compute the measurement covariance matrix (itsodiaigelements):
R = diag(Biae/@veier - Bizit/ @aee) (2.160)
5. Estimate the innovation covariance matrix:
&
lelcy,t|t—1 = EZ Yitit-1 yiT,t|t—1 - yt|t—1?€|t—1 +Rf (2.161)
i=1

6. Estimate the Kalman gain:

-1
K¢ = Prytit-1 [lelcy,t|t—1] (2.162)

7. Estimate the updated state:
ﬁﬁt = ﬁt|t—1 + Kt(Yt - yt|t—1) (2.163)
8. Estimate the updated error covariance:
Plﬁt =Pye1 — Ktpgl/(y,ﬂt—lKT (2.164)
9. Factorize the state error covariance matrix:
P, = SK.[sK.]" (2.165)
10. Evaluate the cubature poinis< 1, ..., m):
Xigle = Stiedi + Rie (2.166)
11.Propagate the cubature points through measuremerdelm( =
1,..,m):
Yie = h(Xi 00 0) (2.167)
12.Update beta parameter of inverse-Gamma distribution
B}tc|t = Beje-1 + Dt|tD£|t (2.168)

with centered and weighted matrix:
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m
te = )t Jit)e — YeVe (2.169)
i=1

« If k=K, setBy, = Bfiy, Ree = Rfjr» Pye = Pff;, and continue with the
next time step.

* Note that similarly we can apply the VB estimatiointhe measurement noise
covariance also to the square-root version of AKRhat case, we use equations
for SCKF and the iterative update of beta parame#d remain the same. The
only difference will be in step 4., where we aduhtilly calculate a square-root

of diagonal elements & to obtainSy, [120].

2.7 Algorithm for estimation of neuronal signal

In this section, we will put together all the itertiet were described so far in this
chapter and will finally build the complete algbnt for estimation of neuronal signal
from fMRI data. In this sense, we are introducimgadgorithm that is able to solve a
triple estimation problem, i.e. we jointly estimatet only the model states (including
the endogenous input), the model parameters, kot atperparameters that represent

noise statistics.

Algorithm 8. Estimation of neuronal signal by CKS.

* [|nitialization.

* lterate the followingi(= 1, ..., I):
o Forward run of CKFt{(=1,...,T):

1. Time update of joint CKF including discretizatioh apntinuous part of
process model by LL scheme:

- Obtain predicted joint state vectfif,_, and error covariance matrix
Pt|t—1-
2. Measurement update (iteratEetimes):

- Obtain joint posterior estimate of state veqigy and error covariance

matrix P, atk-step.
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- Update the estimate of measurement noise covariam&ix R,
through VB approach at-step.
2. Estimate the state and parameter process noiseiaus@ matricesQ;
andO;, respectively, through Robbins-Monro approximascheme.

3. Calculate the log-likelihood, ; at time stefs.

o Backward run of cubature RTS smoother=(T,...,0) using the stored
posterior estimates and predictions of forward run:

1. Obtain the smoothed posterior estimatefpf andPy;
o Calculate the accumulated log-likelihod] = Y,7_; £,; and its difference
. . ac 1T tac 1T ~ 1T
with £,_;. If  (L; —L;_1) >0, setfi, = [[x§|T] 23] X1 6] ] and

P, = Prr, and proceed to the next iteratiGnt 1).

o If (£; —L;_1) < threshold or (i = I) terminate the algorithm.
* Note: Although this description is provided for rRequare-root version of CKS,
the same step are followed also for the SCKS. &t ttase, the square-root

covariance matrices are considered.

2.8 Chapter summary

In this chapter we have introduced a complete ndetlogical framework for the
inversion problem consisting of the estimation led heuronal signal from noisy fMRI
data using the forward model of the BOLD signal][Z%e concept draws on the theory
of recursive Bayesian filtering and smoothing, Vhi@allows one to perform
probabilistic inference about the hidden varialfitates and parameters) given noisy or
incomplete observations. Since the optimal recerssolution for filtering and
smoothing problem is tractable only for linear, €sian systems and the hemodynamic
model describing a coupling between the neuromgladiand observed BOLD signal is
nonlinear, we have pursued an approximate soluijonsing a Gaussian approximate

method to model the probability densities.

In particular, we have proposed an approach basethe recently introduced
cubature Kalman filtering [55] to the joint estinwat problem where the hidden states

and parameters are concatenated into a single giete vector and estimated
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simultaneously, yielding joint MAP estimates. THigrm allows us not to only
accurately treat the dual uncertainty of the patamand state estimates (by using
cubature point approach), but also to accuratelgehahe interaction (conditional
dependence) between the states and parametersitdio more accurate estimates of
hemodynamic states and mainly of neuronal signa, have employed forward-
backward smoothing, encompassing also the cubatoirgs formulation of Rauch-
Tung-Striebel smoother. The overall estimator pemnce is further enhanced by
considering a square-root formulation that enswesumerical stability during the

recursion.

Next, because the states of hemodynamic model epeegented by ordinary
differential equations, we have introduced a now&ntinuous-discrete time
representation of CKF that combines a statistidakdrization with the local
linearization approach for accurate and stablereligation of the process model.
Additionally, this new algorithm is also suitabler fioint estimation, where the states
are propagated through the continuous model andpdrameters are propagated
through the discrete model.

The estimation framework would not be complete & were restricted to the
informed model inversion, where one assumes theensiatistic to be known, which is
typically not the case. Therefore, we have prop@seddaptive estimation of state and
parameter noise covariance matrix based on Rolargo stochastic approximation
scheme, and further adopted the recently introdweechtional Bayesian approach for

estimation of measurement noise variance [11%eatibature point Kalman filter.

All these developments and extensions were combioedreate an iterative
optimization method, which maximizes the log-likelod with each iteration and
achieves a fast convergence. As a result, we hiatzned a novel advanced approach
to the estimation of the neuronal signal from tisesved BOLD signal superior to
what has been so far introduced in the field ofrascience (comparison is provided in
[20]).

This method and results have been presented at [P2), and published in [20],
where also the comparison with other recently shiced approach is provided. Besides

a general development of the methods, the Chaptentains also detailed description
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of all respective algorithms. Additional demongtmatof the method performance is
provided in Chapter 4.
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Chapter 3

Modeling brain network

connectivity

3.1 Introduction

In this chapter, we focus on modeling coupling agndifferent brain regions (nodes) in
terms of effective connectivity. In particular, wal introduce a direct generalization of
the estimation framework described in the previchapter to a multivariate case,
where the main goal will be to infer the directibmaluence among different brain
regions at the neuronal level. Before we do swwilit be useful to provide a short
overview and motivation on methods that attemptstgess effective connectivity.

In effective connectivity, the neuronal states déscthe activity of set of nodes
that comprise a graph. The aim of analysis is tentifly the directional (causal)
influence of activated links in the graph. Impottgnthese nodes are in fMRI defined
as neural populations at macroscopic level, i.eolevlbrain areas, whose activity is

summarized by a time varying state vector.

In general, there are two streams of statisticalsab modeling: one based on
Bayesian dependency graphs or graphical modelsdcsttuctural causal modeling and
the other based on causal influence over timeSftlictural causal modeling is related
to structural equation modeling (SEM) [123, 1248 arses graphical models in which
direct causal links are encoded by directed edgesvever, this approach has two
limitations. First, it is restricted to discoverimgnditional independencies in directed
acyclic graphs (DAG), i.e. it cannot deal with (kgcfeedback loops (see Figure 3.1).
This is a serious drawback because the brain waska directed cyclic graph, where

every brain region is connected reciprocally (astepolysynaptically) [15]. Second, the
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estimation is completely based on the sample caweel matrix, i.e. it ignores time
dynamics. Fortunately, the DAG restriction can lmee$sed by considering dynamics
and temporal precedence within structural causaleing. This is because the arrow of
time can be used to convert a directed acycliclgrag a cyclic graph when the nodes
are deployed over successive time points. ThissleadSEM with time-lagged data
described by autoregressive (AR) models, whichtlaeeground for Granger causality
modeling (GCM). The GCM approach is based on tealgmecedence, i.el causes

if one reduces uncertainty about the future3ajiven the past of. It is formulated in
discrete time analysis framework, where the diogatiity is usually inferred directly
from measured signals. Although GCM has becomeqopular in the neuroimaging
community during the last several years, therenigragoing discussion to determine if
the concept of temporal precedence is suitableafiplication to fMRI time series
analysis. Main concerns are that GCM does not aitdou variability in hemodynamic
response function across different brain regionslpb]; the measurement noise can
reverse the estimation of causality direction [12&)d the coupling strengths are
parameterized in terms of regression coefficiemiBich are not the true coupling
parameters of effective connectivity. Additionalllge reliability of GCM degrades with
the increase of sampling interval [127], which mportant for fMRI because the
sampling interval is quite large with respect te time scale of neuronal events. Of
course, there have been several attempts to haelahinate some of these obstacles.
For example, one can take the regression coeftient of the picture of noisy
measurement by mapping from observed data to hidtsies (represented by AR
coefficients) [128], or go even further and considegenerative model that maps the
observations to neuronal states through the henawdiyn model and then use the
estimated neuronal states for determining effectioenectivity [129]. However, the
later is suboptimal because it assumes that causdéling between neuronal states is

conditionally independent of the mapping from meadwata [130].

As a result of these recent discussions [131-1i844, now clear that discovering
effective connectivity should be based on statespaodels of controllable (causal in
the control theory sense) biophysical processessitaae hidden neuronal states and
possibly exogenous input [135]. Further, the optistatistical procedure is to invert the
complete generative model described by a set t siguations that quantify how the

observed data are affected by the presence of ldasa[130]. This possibly allows to
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accommodate the conditional dependencies betwemmpégers of the state equations,
which are mapped to the observations [15]. If wevnecall the definition of the
effective connectivity as stated in Chapter 1,that effective connectivity refers to the
influence that one neural system exerts over ano#ither at synaptic or population
level, one realizes that the procedure mentioneyels a sensible choice and, at the
moment, probably also the only choice suitableafgplication to fMRI data.

This reasoning has led to the development of dyaarausal modeling (DCM),
which employs biophysically motivated generative delothat relates the observed
BOLD data to neuronal signal [11]. Here, the caustiience is defined as a physical
influence, where changing influences causes changeéegir consequences [130], and it
is modeled by a continuous time dynamic state-spgstem. The original formulation
of DCM requires knowledge of known exogenous inpgsigned to some of the
network nodes, which drives the dynamics of theéesgs In this case, all hidden states
are treated deterministically and the random tesncdnsidered only at the level of
observation equation. The coupling and hemodyngrarameters are inferred through
variational Bayesian formulation of EM algorithm,hieh maximizes the model
evidence [11]. In this scenario, DCM is seen asypothesis-based approach to
understanding distributed neuronal architecturedetging observed brain responses.
Then, different hypotheses (model candidates) sgmted by different networks (or
graphs) are compared based on the model fit refleict evidence, via Bayesian model
selection (BMS) [136]. However, as we emphasize@lapter 1, one can do better if

the model accounts for randomness at all levelsluding hidden states, i.e. it is

Directed acyclic graph Directed cyclic graph

Figure 3.1 Difference between directed acyclic and directgdlic graph. Note that cyclic
graphs in our case allow for different strengthbafirectional connection; e.g. forward
connection (solid line) can be stronger than thekward one (dashed line). Directed
cyclic graph can be reduced to directed acyclicplgréf any of two bidirectional
connections are set (or estimated) to zero.
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formulated as a fully stochastic system. Since waeehintroduced a fully stochastic
scheme in the previous chapter for simultaneousnasbon of neuronal signal (i.e.
endogenous input) and model parameters for siimgke ¢ourse, it is reasonable to think
that the same scheme can be extended to multwasdse, which includes the modeling
of neuronal interactions among different brain oagi In other words, we do not utilize
any prior knowledge about the experimental causesbserved responses as required
by deterministic DCM and introduce a stochastic D@Mich can be completely data-
driven. This enables network discovery using bdikeoved and unobserved responses
during both activation based studies and (task-freidies of autonomous or
endogenous activity during the resting state [1B6].addition, because we jointly
estimate both model parameters and neuronal signtsnporally sequential sense, i.e.
we estimate the hidden states generating obsead while properly accommodating
endogenous inputs and model parameters, we intplagsume that the uncertainty
about the parameter estimates depends on uncgrtainhidden states (including
endogenous inputs). This is more proper assumm@npared to the deterministic
DCM, which assumes that the uncertainty about petars (after seeing data) does not

depend on uncertainty about the states [15].

The rest of this chapter is structured as follomisst, we start with a state-space
formulation of stochastic DCM where we focus on finen of the neuronal interaction
model and its properties in terms of encoding ediional influences into the
connectivity matrix. Second, we discuss differematys/to perform model selection, i.e.
how to compare different models and to infer whetene connections are likely to be
present or not. Importantly, we show how to improlve system identification during
the optimization process, by evaluating the impuréa of estimated coupling

parameters.

3.2 Stochastic dynamic causal modeling

The stochastic DCM (sDCM) represents a straightémdiextension to the deterministic
DCM (dDCM), when it has the following propertie$) if releases the need of known
exogenous input; (ii) accounts for random processidden states level; (iii) and
provides conditionally dependent estimates of thtes and parameters.
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Similarly to dDCM, sDCM is formulated as a multiplgput multiple-output
(MIMO) system that comprises inputs andl outputs with one output per region.
Unlike in dDCM, where inputs must correspond tosesmu, (i.e. designed exogenous
inputs), in sSDCM the inputs can be treated as emwlogsz,, i.e. they can be generated
by the fMRI data, which makes sDCM data-driven apph. However, it does not
mean that sDCM is limited only to this scenariopbrtantly, as we will see in the
following section, one can still define any exogesiinput as in the case of dDCM and
use the sDCM for testing different hypotheses thativated the experimental design
but with the fully stochastic treatment of the mioddso, the stochastic formulation of
DCM can be always easily converted to deterministie, by setting the process noise
variances of hidden states to zero (or to very kvadlies). In either case, DCM rests on
a choice of neuronal modé€l'(.) of interacting cortical regions, which is defined i
continuous time. This neuronal model is further jdemented with a forward
hemodynamic model (summarized 8Y(.) andh(.)), which describes how neuronal or
synaptic activity is transformed into a measurespoasey;. This complete generative
model allows to estimate the neuronal model parars®f (i.e. effective connectivity)
from observed data, where the parameters represaptings among unobserved brain
states (i.e. neuronal activity in different braiagions), but it also accounts for
parameterization of the hemodynamic respo®$e, Then, the state-space model can

have the following joint form:

Z; £"(Z-1,0¢_1,u1) a4
W= % | = [ (Reon, 001, 7)) [+ |G, (3.1)
h
0; 9?'_}11 o?ih1
ye = h(p,) +r, (3.2)

where for simplicity we skipped the notation for ltiple | regions; e.g.zZ =

[Zy, .., 7], & = [%y, ... %], 6" = [ OF, 9{‘]T etc. Further, we mark the variables
that are obtained by discretization of the contimiprocess, using a local linearization

approach, with tilde.

In summary, each of the regions is described by one neuronal statdour
hemodynamic state® = [3, f, 7, G], and by a set of hemodynamic parame@tgsee
Section 1.3 for description of the hemodynamic nhod@rucially, all regions are

coupled together (with mutual influence) throughe theuronal model, where the

71



MODELING BRAIN NETWORK CONNECTIVITY

strength of couplings is encoded by parame®sThe neuronal model represents a
bottom of the generative model, where the neurac@ities from different regions talk
to each other. It is supposed that there is nouanite or interaction between
hemodynamic states of different regions; i.e. athigher level of the generative model.
Schematic representation of this model is depictddgure 3.2.

Since the hemodynamic model is the same as dedcnibsection 1.3, we will
proceed with description of the neuronal model, awhis the core of the causal

interactions and effective connectivity in parteul

Measured BOLD signals
Estimated measurement noise covariance

Estimated hemodynamic states
Estimated hemodynamic model parameters

Approximated noise statistics

Estimated
neuronal signals

Figure 3.2 Schematic illustration of stochastic DCM. From swad BOLD signals
associated with different brain regions we performodel inversion assuming
hemodynamic model and neuronal model of interastion
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3.2.1 Neuronal interaction model

For fMRI data it is reasonable to define the modél neuronal interactions at
macroscopic level, where one can study the who&nbdynamics and interactions
between large-scale neuronal systems such as atorégions. In this sense, it is
common to consider a simple model of neuronal nesg® distributed ovdr nodes,
where under the mean field assumption (see [133]) 1Be dynamics of one node are
determined by the average activity of another. Thitke assuming that each neuron in
one node can see a sufficiently large number ofameuin another node to render the
effective influence that is the same as the aveoage all neurons in the source node.
As a result, only the slow dynamics are communatat@ong nodes, which means we
can model distributed activity with a small numloémmacroscopic variables (e.g. one
per node), whose time constants are greater thdarlying fast fluctuations that are
specific to each node. These fluctuations are ooatis and can be represented by
system noise. Therefore, the neuronal model caddseribed through simple linear

stochastic differential equation:

dz(t) = f(z(t), 0™(t))dt + /Q dw(¢)

= Az(t)dt + /Q dw(d), (3:3)
where
_ 0f(z,0")
A= B (3.4)

Is the connectivity matrix (the Jacobian), alsdezhhdjacency matrix, which represents
the first-order connectivity among nodes [139]. Blements of this connectivity matrix
are function of endogenous neuronal states ancesept the unknown parameters
which we want to estimat® = A. One can also understand these coupling parameters
of effective connectivity as a rate constants (witiits s~1) of neuronal population
responses that have exponential nature (the solaiodifferential equation (3.3) is
exponential function). In other words, a strong reetion means an influence that is
expressed quickly (or with a small time constaAtjditionally, since the parameters
0™ are estimated sequentially with the proposed mimdelrsion scheme, it means that
we are able to obtain time-varying parameters &écéize connectivity, where the
uncertainty about the parameters might change witie as well. Crucially, this

continuous model allows estimating the cyclic dieelcgraphs, i.e. it enables distinction
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between forward and backward (feedback) connectibms neuronal interaction model
iIs connected with the hemodynamic model (see Sedtid) through (1.1), where the

exogenous inputa(t) are replaced with the endogenous actix(i).

This is the simplest possible form of neuronal ndkiat one can considebut it is
suitable for fMRI responses because it is generadiygumed that fMRI signal scales
with predominant frequency of neuronal activity 91340]. It should be noted that in
the standard discrete DCM a more complex neuromalefs are usually applied. The
original neuronal model under DCM has a bilineanf¢11], which models interactions
between neuronal stageand a known input function, i.e. experimentally controlled
context variable. This enables context-dependerdutation of connection strengths,
which can be thought of as a dynamic formulatiothefso-called psycho-physiological
interactions [6]. Later, two extensions of the m@a state equation for DCM were
introduced. First, one can extend the neuronal mwadtd excitatory and inhibitory
subpopulations in each region [141], allowing for explicit description of intrinsic
(between subpopulations) connectivity within a oegiThis is effectively modeled by
two states per region, where by using positivitpstaains, the model reflects the fact
that extrinsic (inter-regional) connections of emat areas are purely excitatory. Second,
it is possible to account for nonlinear interacicamong neuronal states, where the
effective strength of connection between two regimnmodulated by activity in a third
region [142]. This nonlinear controlling allows nediehg of various neurobiological
processes, including attentional modulation, lesgnand especially neuromodulation,
I.e. mapping the modulatory influence to neurongio (state). These extended models
are of high interest. Nevertheless, in order to endde concept more general and also
understandable, we will consider only the simphedir form of neuronal model (3.3) in

this work.

3.2.2 Structured priors on coupling parameters

In the following section, we discuss the basic prtips of the adjacency matrX in

terms of the system stability and specificatiopdrs on coupling parameters.

* Note that for data simulation we need to define #xogenous input(t), where we consider the
following model dz(t)/dt = f(z(t), 0" (t),u(t)) = Az(t) + Cu(t). Matrix C is in this case
represented by simple identity matrix.
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In the absence of the input, the neuronal statet meisrn to a stable mode.
Mathematically, this means that the principal r&gkenvalue of the square connectivity
matrix A must be negative. In other words, we require thgahal elements o to be
negative, i.e. these nodes have negative self-gadland if the overall feedback of the
system is negative, then the system will tend tsthble. Further, we can factorize the

connectivity matrix into a scalar and normalized couplings;, such that the strength

of connections among regions are relative to safirections;;:

[—1 diz Ay
A-cA=o afl -1 . . (3.5)
aij aji

This factorization enforces the same self-connaatiotemporal scaling in all regions.
This assumption is supported by the fact that tieeeeminor reason to suppose that the
neuronal dynamics, intrinsic to each region, wal ery different (as opposed to the
strong evidence that hemodynamics vary betweeromsepi[11]. Also, the temporal
scaling considered here is equall2 s*, which is motivated by assumption that was
described in the previous section that the timestoris implicit in the neuronal model
parameters are much longer (e.g. 100 to 10,00ahas)the microscopic time constants
(e.g. 1 to 100 ms). This is important becausedgssts that priors on parameters in the

effective coupling matriA should allow for slow dynamics.

Above, we have defined the main structure of thgamhcy matrixA. In fully
Bayesian inversion scheme one could now simplyndeaussian priors on each of
coupling parameters in order to ensure the prapectsre [62]. For example, the priors
on diagonal elements could péa;;) = V(0,1073), where the small variance ensures
that diagonal elements will remain very close titiah— 1/2 during estimation, which
will ensure that the system stays stable. Nextptigs on off-diagonal elements can be
defined agp(a;;) = N(0,2), i # j, where the variance defines allowable range of the

coupling parameters in adjacency matrix (assunimg dynamics).

Unfortunately, our estimation scheme based on Kalfili@r is not fully Bayesian,
which means that we cannot define prior distributi'tom which the parameters are
sampled, directly. In Kalman filtering frameworkevihave to work with the transient
priors, which are mainly defined through the idization of the parameter error
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covariance matrix (and regularized through the mpetar noise covariance, which is
responsible for the smoothness/perturbations).tAs already prompting by the name
“transient”, these priors are changing with time, the variance can be seen as a change
in a parameter estimate that is allowed betweea staps. Obviously, compared to the
real prior variance, the variance of transient pnust be much smaller but still able to
effectively cover (over the time) the allowed randg® this particular case we can

initialize the parameter error covariance matrig iagonal elements) as:

po" — 1-107% for of f — diagonal elements of A
0 (3.6)

1-10™* for diagonal elements of A

The prior (initial) expectation on connectivity pareters will be thefly;; = 0 for off-
diagonal elements an€y;; = — 1/2 for diagonal ones. Since we consider different
variances for different classes of parameters (baseheir function), we will call these
priors structured. Similarly, we can define the gmaeter noise covariance by using
these structured priors, €.9.@% = P{,’n - 1073, The parameter noise covariance is then
adaptively updated through the Robbins-Monro appmaiion (2.141). In addition, by
defining the same prior variance on all off-diagoe&ements, we allow for full-
connectivity. It is then a goal of optimization sahe to estimate the correct parameter
values, where we hope that during the convergetiee,uncertainty on parameter

estimates becomes smaller, i.e. their corresporetiry (co)variances iR?" shrink.

Moreover, these prior means and variances canfbetigkély used to specify any
model in terms of its adjacency matrix, which definallowable connections or
conditional dependencies among nodes. For exanfipie, initialize the prior variance
on some connection;; to be zero (i.e. no uncertainty), we automaticddisce the
posterior estimate to take the prior mean. Undes mean prior, as in our case, a zero
entry in the adjacency matrix thus prohibits areetize connectivity between respective
nodes (regions). Conversely, if we allow finite igace on connection in the adjacency
matrix, it means that this connection can have reno-value of the posterior mean. By
specifying the structured priors on elements ofaeeljicy matrix we are ready to

perform model inversion using SCKS.

Finally, these structured priors (both real andgrant) will play an important role
in the second level of inference, which is discdasehe next section. There we will be
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comparing different model candidates, which willdefined by switching off subsets of

connections within the full model using priors.

3.3 Model Selection

Until now, we have always considered only the fiesel of inference, where we fit the
modelm; to the datay. Our model includes free paramet@rand by fitting the model
to the data we are inferring what values thosematers should probably take, given
the data. As a result of this inference we haveaiobtl the most probable posterior
parameter estimates and the uncertainties on #stgeates described by posterior error
variances. Using Bayes' rule, we define the fiesel inference (model fitting) in the
probabilistic sense as:

_ p(y|8, m;)p(8|m;)

p(Bly,m;) = POy (3.7)

In words:

Likelihood X Prior

Posterior = -
Evidence

(3.8)

The denominator on the right hand side of (3.7jasgnts normalizing constant known
as evidence or marginal likelihood. The normaliziegstanp (y|m;) is ignored during
the first level of inference. In our case, we abtposterior estimatep(0|y, m;) of
model parameters by using SCKS estimation schemerernthe estimates are optimal in

both maximum likelihood and maximuanposteriorisense.

However, in the task where one wants to identifg tonnectivity couplings
between nodes, which possibly involves many frearpaters (depending on the size of
network), we cannot be sure that the madgive have inverted is the best one. In other
words, there are many possible modelse M, where each model is defined by its
unique structure (or adjacency matrix) of allowednmections between nodes.
Therefore, after model fitting it is common (or assary) to perform the second level of
inference, represented by model comparison. Atlévisl we wish to infer which model
is the most plausible, given the data. This isrdason, why one usually considers a set
of alternative model candidates, and for each efrtiodel inversion is performed. In
this case, the posterior probability of each maslgiven by:
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p(mly) « p(y|m)p(m;), (3.9)

where the data-dependent term on the right sid€®f) is the marginal likelihood
(evidence) that appeared already in (3.7), butigiagred. Assuming that there is ao
priori belief that one model should be better than ofiveesusually assign equal priors
p(m;) for all model candidates. This means that the dsockn be uniquely ranked by

evaluating the marginal likelihood [63].

Unfortunately, the marginal likelihood is not sghiforward to compute, since this

computation involves integrating out the dependaemcenodel parameters:

p(ylmy) = j p(y18,m,) p(8]m,)de. (3.10)

Therefore, the approximation to marginal likelihdedidence) is generally considered.
Critically, this approximation should represent @amce between the model fit and
model complexity. It is not simply possible to ceedhe model that fits the data best, it
Is a known fact that more complex models can filadaetter (especially if highly

nonlinear models are assumed). This may resultvarfitting, see Figure 3.3. This

balance between model fit and complexity followsc&m's razor assertion that if two
models fit equally well, the simpler model is likeb be better description of the reality.

In this sense we can verbally express the evidasce

Evidence(m;) = Best fit likelihood (m;) X Complexity(m,), (3.11)

where the complexity term is usually known as Ocsdactor (which is always less or
equal to one), which scales with respect to the barnof parameters (if number of
parameters increases, Occam's factor decreases)s, The models with more
parameters are automatically penalized. Note thatis very simplified interpretation
of Occam's factor, which fits to our framework.general, Occam's factor can represent

much more than that (see [63]).

The following is a description of mathematical fafations and heuristics that are
suitable for application to our estimation schemerder to achieve successful model

selection and an improved system identification.
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Figure 3.3 lllustration of optimal model fit. Relationship taeen goodness of fit (blue
line) and generalizability (red line) as a functioh model complexity. They-axis
represents any measure of goodness of fit (e.glikelihood), where a larger value
represents a better fit. The goal of model seladsao choose the model that generalizes
the best across all model candidates.

3.3.1 Bayes factor
By following the Bayes' rule, models can be comgareBayesian sense as a ratio of

posterior model probabilities (i.e. posterior odalso), expressed as:

p(m;ly) _ p(ylm;) ) p(m;)
p(mjly)  p(ylm;) p(m)

(3.12)

The most right quantity in (3.12) is the prior oddsio, if there is no prior preference
for either model, the prior odds ratio will be efjt@a1. Then the posterior odds ratio

reduces to the ratio of marginal likelihood, whisttalled Bayes factor (B):

_ p(ylm;)

B, = L2
Y p(ylmy)

(3.13)

Now we know how to compare models between eachr,othwe what we do not
know yet is how to approximate the marginal likebl. Fortunately, asymptotic
approximation to the logarithm of marginal likeldw can be provided by Bayesian

information criterion (BIC):

BICl = —ZLl + ng‘i log T, (314)
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whereZ; is the log-likelihood obtained during model invers computed according to
(2.112F and—2£; is known as deviance. The second term on the sigtet of (3.14)
represents the approximation to the model complgiccam's factor), wherey ; is
the number of free parameters considered in theemahd T is the number of
observation samples; i.e. number of time points evi@ch we have accumulated our
log-likelihood £;. In [143] it is said that the difference of BICrftwo models gives a
rough approximation to minus twice the logarithntloé Bayes factor, which is easy to

use and does not require evaluation of prior distron.
21In(B;;) = —(BIC; — BIC;). (3.15)
The regular Bayes factor can be then obtained hyarsion from log-space as:
1
B;j = exp (— > (BIC; - BlC;))- (3.16)
The interpretation of Bayes factor is summarizethanfollowing Table 3.

Table 3.1 Bayes factor and posterior model probability clésaiion range.

2In(B;j) B;; p(m;ly) Evidencem; vs.m;
<2 <3 50-75% Weak
-2t0 6 31020 76-95% Positive
6to 10 20 to 150 96-99% Strong
> 10 > 150 > 99% Very strong

Bayes factors are very flexible, they allow for tijple hypotheses to be compared
simultaneously, and nested models are not requiremtder to make comparison. A
common way how to interpret Bayes factors is byveoiing them to posterior model
probabilities. For a finite set of competing modélsthe posterior model probabilities
in M are proportional to their Bayes factors with retpge a common modeh,.:

p(m;ly) = L- (3.17)
ijEM Bjc ’

® Note that no constants should be discarded inuting the log-likelihood.£; is the accumulated
likelihood over the time samples = Y.1_; £,;, whereL,; for given modeln; is computed according to
(2.112).
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In our case, we considet, to be the model with the minimum value of BIC cargd
to all other models from the model spade This assumption is correct if our model

spaceM contains all possible models; i.e. all possibtactires of adjacency matrix.

Many other criteria similar to BIC such as Akaikgormation criterion (AIC) are

just as simple to calculate:

AlIC; = =2L; + 2ng; (3.18)

Indeed, it is suggested that whenever BIC is ptesefor comparison, one should also
calculate AIC. It is well-known that BIC tends tavbr simpler models, whereas AIC
tends to favor more complex models [143, 144]. R&pyp both BIC and AIC may

therefore be a crude form of sensitivity analy#igshese two criteria select the same

model, one can be more confident about the resdi]|

Although this approach to model selection seemgpddorm well, it has two
limitations. First, the approximation to the log ngiaal likelihood based on BIC
ignores the uncertainty about the model parameesond, it is clearly limited to
relatively small size of network (or small numbércoupling parameters). In our case,
the former limitation does not seem to be a serissise, mainly because we effectively
estimate the measurement noise variance and abgatiaely approximate parameter
noise variance and hemodynamic state noise variamb&h all contribute to the
regularization of parameter estimate. This paytiglirotects our model against
overfitting. In this case, model selection critesiach as BIC can still provide a very
sensible suggestion. Conversely, the later lindtatepresents a relevant disadvantage,
since it starts to be a very common practice tockeaver a larger number of competing
models. Therefore, we are interested in model Betestrategies, which can compare a

large number of models, but do not require to ineach model variant separately.

To emphasize the motivation for this, it is impottdo describe what sizes of
model space we have in mind. For example, if westrain ourselves to search a model
space where only bidirectional connections arenadbb (which does not mean that the
couplings in both directions have the same strgngtlen we can calculate the number
of possible models with respect to the number afesoby using simple combinatorics
|A(m;)| = 2'¢-D/2 For network containing four nodes we have 64sjtbs models,

whereas for 6 nodes it is already 32,768 modelscddfse, we would like to consider
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Figure 3.4 Model space and adjacency matrices. The plot enldft side shows the
number of different models that one can assume famaion of the number of nodes
(with the constraint on the models that each cotimedas to be bidirectional). On the
right side we show all alternative models that lbarctonsidered, given four nodes.

even larger networks. From Figure 3.4, we can batthe number of models grows

really rapidly.

3.3.2 Post hoc Bayesian model selection

To address a problem of selecting the best modeingmarge number of model
candidates, in [146] they introduced a Bayesianeahedlection procedure f@ost hoc
inferences about reduced (nested) versions of lanfatlel. This method enables to
calculate the marginal likelihood for any reduceddal that is nested within a larger
(full) model as a function of the posterior densutythe full model. Critically, this
procedure requires only a single inversion of thie rhodel, where all connections are

allowed.

Consider a reduced modet; , where a subset of paramet®s 0; c 0, is
constrained to some special value, @e= 0,, which is known as a sharp hypothesis,
or "point null". In our case we consid@y = 0. In contrast, a full modeh; assumes
that®@; is free to vary; i.ef; # 0. Now, if we consider the full modet; and letd; —

0, it effectively means that the full model becoraegduced modeh;. In other words,
the reduced model is nested under the full modelddd this assumption we can
reformulate the Bayes factor (3.13) by considednty full modelmg, and dividing the
posterior density for parametes by the prior density fof;, at the point of interest;

l.e. atf; = 0:
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_prGIm) _ p(6; = Oy, mr)
p(ylmg)  p(8;=0,mp)

Bir (3.19)

This result is generally known as Savage-Dickeysdgrratio [147, 148]. From this
formulation we can immediately derive the margiilalihood of any reduced model:

(0; = 0ly, mp)p(y|mg)
p(6,=0,mp) (3.20)

p
p(ylm;) = p(y|8; = 0,mp) =

where we can see that the marginal likelihood urtberreduced model is just the
marginal likelihood of the full model times the p&sor expectation of the prior density

ratio. This when further transformed to log spacequal to:

Inp(ylm;) =Inp(0; = 0]y, mz) —Inp(8; = 0,mg) + Inp(ylmg). (3.21)

Here the last term on the right side of (3.21)his kog marginal likelihood of the full

model, which is a constant for all reduced modmts] therefore we can treat it as zero:

Inp(y|m;) = Inp(0; = 0]y, mg) — Inp(8; = 0,mp). (3.22)

This also means that the full model shares the dikeldhood with any reduced model.

At this point it is necessary to define an appraion to marginal likelihood,
which accounts for uncertainty on posterior par@mestimates. In this case, one can
approximate the log marginal likelihood by the w#dnal free-energyF; [62, 75].
Considering the result of full model inversion, aiiprovides the posterior density on
model parameters(0;|y, mz) = V(0 P¢), and also the fact that we have initialized
the model inversion by reflecting the (real) stawmet! priors on coupling parameters
p(85,mp) = N (g XEY) as described in Section 3.2.2, it is possible ¢fine the

posterior and prior densities for any reduced madel

p(8; = Oly,ms) = V(0. Pf) with P = [Yf]" (3.23)

_ 3.24
p(0;, =0,mg) = ]V“(‘qi, Zl-e) with Pie = [l'lf] 1. ( )

In particular, any reduced model can be createnh fitee full model by collapsing the
prior density over one or more parameters; i.esddting the corresponding elements of

the prior meam; and precisiodl? to zero. Then the free-energy of reduced madel
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can be expressed as a simple analytic functiohefrteans and precisiSrsf the prior
and posterior of the full model [146]:

[m?|[Ye| 1

Fi = 1|Y9||n9|__(9 FYP0, + 0 NYn; —nplfn: — 67Y/8;), (3.25)

where the reduced posterior preciskfhis the posterior precision of the full modagd
plus the difference between the reduced and fuibrpprecisions? and IZ,
respectively. Similarly, the reduced posterior meégnis a mixture of precision-

weighted means:

Y =vf+1? —nf (3.26)
0, = P/ (Y0, + !, — ;). (3.27)

The last equation is especially interesting, beeatsepresents a reconstructed (re-

weighted) vector of parameter estimates withoutrdaution of certain parameters.

Importantly, this post-hoc estimate of the freerggedbased approximation of log
marginal likelihood can now be used to compute Bages factor, comparing the

reduced modeh; with reduced modeh;, as:

Bij = exp(F; — F;). (3.28)

Although, thepost hocmodel selection based on reduced free-energy enable
compare relatively large number of models (milliprill for a large size networks
having seven and more nodes, the number of possdoginations among nodes
becomes really huge (see Figure 3.4). In this case,has to apply a greedy search
through the space of reduced free-energy. Thisilentdentifying a subset of
parameters, with the least free-energy and seaydviar all reduced models within that
subset. Redundant parameters are then removedhangrdcedure repeated until all
model parameters have been considered or no fysdrameters can be removed [146,
149].

® Precision is the inverse of variance.
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3.3.3 Network pruning

In the previous section we have shown how effeltivee can compare a large number
of different reduced models based only on a siimglersion of one full model; i.e. the
model where all possible connections between né&twordes are allowed. Although
this model selection does a great deal of worlugyrit is still the first level of inference
(model inversion) which must provide a confidentireates of coupling parameters,
given the data. However, since there are alwayssamdom correlations between time
courses (which correspond to particular nodes enrtatwork), the inversion scheme
does not set automatically the irrelevant couplpayameters to zero. Thus these
spurious couplings (with non-zero variance) spod performance of model inversion.
Therefore, we seek a procedure, which can autoatigtiofer the relevant connections

and suppress the irrelevant ones.

In principle, there are two ways how to achieves.tAihe first one supplements a
penalty term to the objective function, which caud®t the irrelevant couplings tend to
zero value. This is effectively accomplished byraduction of shrinkage priors on
coupling parameters, which are e.g. of Gaussiatrillision p(a;;) = M(0,1/4;).
Here A;; represents a regularizing constant (precisionpaated with the coupling
parametera;;. During the learning process of coupling paranset@nd regularizing
constants, if the coupling parameter in questionads relevant then the precisidn;
will be large, thus forcing the parameter to beselto zero. This approach is known as
automatic relevance determination (ARD) [63, 150he second way involves an
estimation of sensitivity of the error functionriemoval of a coupling parameter (when
set to zero), where the connections with the l|edfgct on the error function are
subsequently removed. This clearly requires a himlesthat has to be specifiadpriori.
This approach is mostly known as network pruningem probably the most popular
pruning methods are theptimal brain damagg151] and theoptimal brain surgeon
[152], which perform the pruning of irrelevant cdings off-line. However, there are
other pruning methods that can be applied alsmerl53-156]. Although the ARD
and the network pruning approaches are often né&stiwo different groups, they have
obviously a common aim and partly overlap in the okthe relevance measure. As we

have already mentioned earlier, the inverse of ¢bheariance matrix (precision),

Y® = (P?)™", is equivalent (for Gaussian random variablesh expected Fisher
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information matrix (FIM), or also corresponds ke texpected Hessian matrix, which
can be used to study system identifiability [96iitiCally, all methods mentioned above
use FIM (exact or its approximations) to constracterror function, or they include
FIM as a term into the objective function. Therefdboth of these approaches can be
considered as ARD methods, where maybe the mosirtang difference is, that the
first (Bayesian) approach uses optimization of f&gzing constant (considering priors)
to perform "soft" ARD, whereas pruning involvesesgion of some threshold, which

we can be seen as a "hard" ARD.

The estimation framework that is considered in twsrk does not allow to
optimize the priors and include them directly idalman filter. Therefore, we will
proceed with the variant of hard ARD based on ndtvwpouning. In this sense, we will

partly follow a pruning algorithms developed foliae application [153-156].

We might start with the assumption that the conoest between nodes are
distributed sparsely with lots of small or absemtilings and relatively small number
of strong couplings, which is our motivation forpéipation of network pruning. We
will also consider only off-diagonal elements oé ttonnectivity matrixA, because we
cannot attempt to prune an entire node that isceegtea with the measured time course.
Next, we do not want to remove the irrelevant comgpcompletely from the network
(so the number of parameters would change), blieraset its mean to zero and
minimize its variance. Finally, we suggest to parfopruning after each iteration of
SCKS algorithm, and calculate the relevance meabased on the time average
estimates of the expected parameter m@aasd error covariance matr®é. By saying
this, we should not start pruning immediately afte first iteration of SCKS, since at
this point we might not have reached a sufficiemvergence. For example, we can
consider a starting condition based on the charigeglikelihood (2.112), if this
change is sufficiently small (as defined below),emable the pruning procedure.

The pruning method considered in this work is basedomputation of importance
function of individual coupling parameters (or setbof them) by determining
sensitivity on their removal; i.e. by settiig = 0. Here both the importance function

and the sensitivity are derived from a scaled FIM:

E=07Y%9, (3.29)
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Before pruning After pruning

11 2 7 4 1 10 3 8 5 12 9
Sorted parameter indices

Figure 3.5 lllustration of the pruning procedure. The uppartgshows the estimate of
adjacency matrix obtained afteth iteration (e.g.i = 5) before pruning procedure was
applied (left) and after pruning (right). Here tleupling parameters scored with
importance measure that is lower thampriori selected threshold (lower plotaxis is

displayed in log scale to enable visualizationhef threshold) are set to zero (black cross).

where precisioY? is in this case a diagonal matrix (off-diagona@neénts are ignored,
I.e. effectively set to zero). The pruning procedisrthen very simple. All the steps are
summarized in Algorithm 9. Note that once we deteenthe coupling parameters that
are not important, we perform their removing byngssimilar strategy as was described
in Section 3.3.2, equations (3.26)-(3.27), wheredbrresponding elements of the prior
meanm; and precisiorll? are set to zero. This enables us to obtain a netovef
parameters that is reweighted with respect to theemainty of the remaining
(important) coupling parameters.

In general, this pruning algorithm is very fasi@& it enables us to remove at least
some of irrelevant parameters already during thiemigation process, it contributes to
the reduction of model space that we have to seaftdr the model inversion.
Critically, with each elimination of an irrelevaparameter by pruning, we improve the

identifiability of the system, and with the nexération of SCKS algorithm we thus
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make an optimization step towards the new optimsdiected reduced model. Finally,
the effect of pruning becomes especially signifiaa@hen larger networks are estimated.

Algorithm 9. Network pruning

» lterate SCKS algorithm and start pruning if the dition (L; — L;_1) <
(L, — L1)/4 is satisfied:

1. Calculate the average parameter error covariantexma

T
1
P? = 72 P? (3.30)
t=1
2. Calculate the inverse of parameter error covarianagix:
Yo = (Pe)‘l (3.31)

3. Evaluate the error function for all (off-diagonafupling parameters:
Ep =[Y°],, 6% (3.32)

4. Rearrange the list of indiceis according to ascending order ofy
values.

5. Start removing the contribution of the coupling graeters (based on
the order ofi), by successively settin@;, = 0, and evaluating the error
function:

Ei = 0]Y°%0; (3.33)

6. Once we obtained! = [EL, ..., EL]" up to the removal of the last
parameter (i.e. all parameters were removed), wkeulede the
difference:

AE' = Ep — E! (3.34)
with E® = YX__ Ep.

7. Subsequently, decide which parameters are notaeldw considering
the threshold:
AE! < SE°, (3.35)

with § = 0.003.

8. Eliminate contribution of irrelevant parametersqée on the indices

that passed the threshold) by setting their prigecigion to zero,
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né =o, @ = (Ef)_l), and update the error covariance and parameter

vector:
Po = (Y? +mf —ng)” (3.36)
0 =Po(Y{0, + IPn, — Nn;) (3.37)

* Proceed with the next iteration of SCKS algoritlamg consequently repeat the

pruning procedure.

3.4 Chapter summary

This chapter introduced a novel data-driven appgrdaacvaluate effective connectivity.
It represents a fully stochastic variant of dynagacasal modeling, where the coupling
parameters and region-specific parameters of BO&fpanse are subsumed into the
state vector and estimated jointly with the endogen neuronal signals and
hemodynamic states. This sequential estimationeifopned by using the iterative
scheme of square-root cubature RTS smoother tratereloped in Chapter 2.

In order to approximate a macroscopic model of owealr dynamics and
interactions, we have considered a linear modehenform of stochastic differential
equation (3.3). This model could be later extentiechlso accommodate nonlinear

interactions or to model excitatory and inhibitstgtes of neuronal coupling.

We have also described two different methods téopmr model selection. Since,
there is clear need to score a large number of motle post hocBayesian model
selection [146] seems to be the best choice. Ircase, we can apply this type of model
selection under the assumption that the transieatspon coupling parameters, which
are part of Kalman filter, are derived from thelrgtauctured priors (in Section 3.2.2).
However, we should note that it would be more appate and also beneficial to
consider real priors directly as a part of the roptation scheme. Optimization of
regularizing constants with respect to the prioas diave in this sense significant
influence on the performance of estimation procedwhere it effectively performs
automatic relevance determination (ARD). Neverts®lein order to finesse the

limitation of our method, we have achieved improveptimization of coupling
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parameters by applying a pruning algorithm, whid$o aallows ARD of important

couplings (though it requirespriori selection of some small threshold).

In future the future it could be interesting to gug a fully Bayesian sequential
optimization procedure, e.g. through generalizelering based on generalized
coordinates of motion [52], but still keep the appmation of the probability densities

using the cubature integration rules.

90



Chapter 4

Validation and application
of the method

4.1 Introduction

The first three chapters described the theorebeakground and introduced the new
algorithm for the estimation of neuronal signal awaluation of effective connectivity
from fMRI data. Until this point, we have not showndiscussed any results that can be
obtained by applying these algorithms. Therefdreiill be the focus of this chapter to
provide a sufficient demonstration and validatioh tke proposed method. As in
Chapters 2 and 3, we split the current chapter twto sections. The first section will
focus on a simple demonstration of neuronal sigstimation from single fMRI time
course, where we also focus on the identificatiooblem of hemodynamic model
parameters. The second section, which is of oumnmaterest, will focus on the
estimation of coupling parameters in neuronal atBon model. We demonstrate the
estimation of effective connectivity (i.e. modeV@nsion) by using the stochastic DCM.
In particular, we will try to address the main cents that are very often associated
with the methods designed for evaluation of effectconnectivity or connectivity

analysis in general.

Finally, the validation and the performance evatrawill be performed mainly by
using simulated data that have a character of eaxang activity present in resting-state

fMRI data. Additionally, we will present an appliean to empirical fMRI data.
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4.2 Single time course model inversion

In this section we take a closer look at the hemadyic model inversion by the SCKS
algorithm for a single time course. In this serisegill be very important to first discuss
the model and algorithm initialization conditionecluding some constrains that we
consider on hidden states and model parameterseTiwdl be summarized in the
following section together with the descriptiondata simulation and with the obtained
results. Moreover, in the same section we will adye consider a restriction on
hemodynamic model parameter space, which is theltre§ model identifiability
analysis provided in the Section 4.2.2.

4.2.1 Hemodynamic model inversion and estimation of neunmal signal

As a first step to test the model inversion by SCHgorithm, we have to generate a
synthetic data as a reasonable approximation tdvdl time courses. Since we want
to formulate the inversion problem as a nonlinderdbdeconvolution, where we do not
have any knowledge about the input causing the bdgnamics, which in real situation
corresponds mainly to estimation of endogenousamaliractivity from resting-state
data (but the same assumptions can be made ald® inase of task data), we will
consider simulated data having the character aingestate fMRI time courses. After
obtaining the data, we describe a general iniadilin of the SCKS algorithm and
highlight the constraints we make about the hemandya states and their parameters to
achieve the improved stability of the model invensiFinally, we perform the model
inversion by SCKS and discuss the results.

Simulations

The generation of synthetic data representing éséng-state time courses, starts with
the selection of neuronal model. In this work, wavd mentioned two models as an
approximation to neuronal signal.;.. The first one is based on simple discrete random-
walk model (2.109) that was considered in Chaptddde that this model is suitable
only for modeling and estimation of single time r=®) which is now the case.
However, because we want to use a unified framevarkoth single time course and
multiple time courses model inversion, we choosee ltee second model based on

stochastic differential equation (3.3). In thisesathe neuronal model is restricted to a
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single node witlu,;; = —1/2. The example using the first variant based ordiberete

random-walk model can be found in our publishecepsf20, 120, 122].

In particular, to generate the neuronal signgl we employed the version of
neuronal model described in footnote 4 on pagenifére the inputi,. is a smoothed
sequence of random Gaussian variables, so thaisiahvariance 0.02 and a Gaussian
autocorrelation function 6 s. This neuronal signalsed changes in the states of
hemodynamic model (1.1)-(1.4), i.e. inducing sigridbod flow, blood volume and
deoxyhemoglobin content, all integrated with tmeeistep = 100 ms. Then the fMRI
signal was generated by using BOLD observation temudl.7). The hemodynamic
model parameters were set to their usual prior s:¢see Table.1) and scaled with a
deviate sampled from a log-normal distributi@%, = @7 exp(M'(0,0.01)), where the

function of this scaling is explained below.

We also considered a small amount of additive €auasnoise with the variance
3-107* to all hidden hemodynamic states. To make theenaisntribution more
realistic, we further considered the noise sequenaede slightly correlated with the
width of Gaussian autocorrelation function equal te. At the level of the observation
signal we added a Gaussian innovations to prodwesignal to noise ratio (SNR) equal
to 2, where the SNR is defined as [142]:

OBoLD

Onoise

This says that for SNR = 2, the standard deviatbrihe added observation noise
Onoise €quals to half the standard deviation of the nfise-BOLD signaby,,p. Based
on the variance of input signal 0.02, we can expleetvariance of noise-free BOLD
signal (model output) to be about 0.1, then théamae of observation noise is chosen
to be 0.025.

Finally, the simulated BOLD signal was downsampiaith a sampling period (TR)
which equals 2 s, resulting in signal lengtiTof 256 time points.
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Model inversion

Before we approach the model inversion, we shoulentan the initialization

conditions and eventually constrains that we agplyneuronal state, hemodynamic

states, model parameters, and hyperparametersctesby:

Neuronal stateThe initial condition for neuronal state4g = 0, with the error
varianceP§ = 0.01. A very important is the prior variance of neurbstate
noise, Q) =5-107%, which is considered fixed during the estimation
procedure. This value is suitable for BOLD sigalaange approximately about
1% (as it was simulatéd[26, 157]. By changing the variance of neuronates
we can control the smoothness of neuronal sigrishate (also partially control
possible overfitting). As we will see in the congeqt paragraph, this noise
variance is assumed much larger than the noisenaai for hemodynamic
states. This effectively treats the neuronal flatiins as the predominant source
of hemodynamics and assumes that the hemodynanatuditions are largely

neuronal in origin [15].

Hemodynamic state$:or hemodynamic states we consider a transformation
the log space, which guarantees that these statedways have positive values
(the negative values of hemodynamic states woulghysically meaningless),
and ensures the numerical stability during the mpatar optimization.
Specifically, we convert the hemodynamic states agquos, i.e. x(t) =
[s(D), f(t),v(t),q(t)]", to log space by considering a change of variables
x'(t) = In(x(t)) [142]. That is, for any given hemodynamic statealde x(t)
with the state equatiodx(t)/dt = f(x(t)):

X' (1) =Inx(t)) < x(t) = exp(x'(1)), (4.2)

then by applying the chain rule we get:

dx'(t) dIn(x(t)) f(x(t)
da dt  x(0)

(4.3)

It is worth mentioning that this log-transformatidioes not affect the model

parameters, only the hemodynamic states. In cdntvelsen evaluating the

" The signal change 1 % is in our case equivaletitesignal with a peak amplitude about 1 with eesp
to the zero baseline. This amount of percent signahge is common for fMRI data.
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Figure 4.1 Log-normal probability density function. This logrmal function was created
with mean of 1 and variance 0.5. For comparisg@aassian probability density function
with identical mean and variance is shown (dasliee).l Note that in contrast to the
Gaussian, the support of log-normal density igiestl to positive numbers.

BOLD output equation, the hemodynamic states apomantiated [142]. In
other words, during each measurement update st§CES we use;_; to
computed predicted BOLD signal at timenot x;,_;. As a consequence of this
log-transformation, we initialize the state veabdrfour hemodynamic states by

Xo = [0,0,0,0]", with state error covariance mat® = 0.01-1,_. The state

noise covariance is then initialized@% = 2 - 107° - |

Model parametersfor hemodynamic model parameters we use the amabpiri
priors as summarized in Tablel. As a result of model identifiability analysis
(described in consequent section) we choose tonati only three model
parameter®”™ = [6%,6%,0¢]", representing the rate of signal decay, ( the
resting oxygen extraction fractiorp), and ratio of intra- and extravascular
signal €), respectively. Further, because these parametensot be negative,
we apply a positivity constraint by considering soaling of the prior parameter
value by a log-normal density. For instance, thealo/alue of the rate of signal
decay at timet is defined asc; = k, exp(6f), where we are estimating the
scaling parametef/. Similarly we define also the other two parametdiise
example of this constrain by using a log-normalsitgrfunction is depicted in -

Figure4.1 These scaling parameters are initializedegs= [0, 0,0]", with the
error covarinace matriR¢" = diag([5 - 1073,5-1073,1 - 107%]) and the noise

. h _ h
covariance0j =1-10"*-P¢".
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» Hyperparameters:During the model inversion we adaptively estintat noise
statistics. The hemodynamic state noise covariamaigix and parameter noise
covariance matrix are estimated through the Robkiosro stochastic
approximation scheme (2.141). Besides the initdilon of these matrices as
mentioned above, we need to choose a forgettingriacin this case we use
A, = 0.997 for states and, = 0.99 for parameters. Next, we need to initialize
parameters of inverse-Gamma distribution for edimnaof measurement noise.
Assuming rather slow dynamics of the noise, we pse0.997. The initial
variance is given by non-informative priotgy =1 and S, =1. The VB

algorithm is then iterated 5 times during each tstep.

After proper initialization, we performed model argion by SCKS according to
the Algorithm 8, where we allowed maximum of 20ratéons, and considered the
discretization of continuous model by using loaakéarization scheme with the time
step 1 s. It means we linearly interpolated theeplzion sequence by factor 2. Note

that, we specified the initializations by usingigaces, but we propagate their square-

Predicted BOLD response

- - Noisy response

— Clean response

— Predisted response

0 50 100 150 200 250
Time (TR)

Log likelihood Convergence rate
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~200 _50 '
1 2 3 4 5 6 7 8 9 10 1 12 3 45 6 7 8 9 1011

Iteration Iteration

50

Figure 4.2 Results of single fMRI time course model invers{part 1.). The upper plot
shows the predicted BOLD responses by SCKS algoriihd provides the comparison
with the noisy observed responses and the origioizeless signal. The lower plots show
the increase of log-likelihood and the decreaseanivergence rate, which indicate that
algorithm converged after 11 iteration.
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Forward estimate of hemodynamic states
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Figure 4.3 Results of single fMRI time course model inversipart 2.). The upper plot
shows the estimates of hidden hemodynamic statdsegsare provided by forward run of
SCKS algorithm. The shaded area represents the pbstérior confidence intervals. The
lower plot displays the estimated provided by thelward run (smoother). Note that in the
later case the confidence intervals are alreadyhrso@ller.
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Figure 4.4 Results of single fMRI time course model invers{part 3.). The upper plot
shows the estimates of neuronal signal providedobyard run of SCKS algorithm. In
this case there is significant difference betwdenttue signal and the estimated signal.
The estimated signal has much lower amplitudesis delayed. The lower plot shows the
estimate of neuronal signal provided by the backwan of SCKS, which well much the
true neuronal signal.

97



VALIDATION AND APPLICATION OF THE METHOD

roots (i.e. standard deviations) through the SClgSrahm.

Results

In this section we show only the results of thgylermodel inversion. More simulations
will be performed for a multivariate estimation, ialnis the main focus of this work. In
Figure 4.2 we can see a prediction of BOLD respesenpared to the noisy and to the
clean BOLD signal. Due to employed estimation ofam@ement noisy we are not
overfitting and the prediction corresponds welthe clean signal. In this case we have
reached the convergence with 11 iterations, asntlme seen from the plots of log-
likelihood and convergence rate. In Figure 4.3 wespldy the estimates of
hemodynamic states as they are delivered by forwaraf the filter and backward run
of the smoother, respectively. Clearly, by perfarghthe smoothing, the estimates are
more correct and confident (narrow confidence wr@karound the posterior means).
More importantly, when looking at the results ofimsted of neuronal signal, we can
see that only forward run is unable to recover e neuronal signal correctly.
Therefore, it is now obvious why one has to emg@®p backward run. By applying it

we receive a correct estimate with much narrowafidence intervals.

4.2.2 ldentifiability of hemodynamic model parameters

Model identifiability is a property which has to Isatisfied in order to make the
parameter inference possible. This is equivalensaying that changes in parameter
values must generate sufficiently different joinbipability distributions of the observed
variables [96]. In some cases, the model is unifigplie, but it is still possible to learn
the true values of a certain subset of the modepeters. In this case we say that the
model is partially identifiable. In other casesnay be possible to learn the location of
the true parameter up to a certain finite regiothefparameter space, in which case the

model is set identifiable.

Considering the nonlinear hemodynamic model, wewkibased on the previous
results that the parameters are only set idenk#ift58] or partially identifiable in very
artificial environment; i.e. almost noiseless data very sparse time distribution of the
responses having higher temporal resolution [20&ddition, a model identifibility also
depends on the optimization procedure that is uaad, whether a deterministic or
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Hemodynamic response with respect to parameter change
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Figure 4.5 The effect of parameter change on output hemodinegsponse. For each
parameter, the range of values considered is mghorbmprising 21 values.

stochastic representation of the model is consildre our case the situation can be
further complicated by the fact that we assumentbdel input to be unknown; i.e. that
all hemodynamic changes are generated by endogeuivity. One can then also
expect that the effect of some hemodynamic modehrpaters can be partly
compensated by the estimated neuronal signal T2@refore in our analysis, where we
have a stochastic model and the aim is to estithateeuronal signal, we want to ask a
question: which part of the parameter space is lhbsitifiable, and which set of

parameters when estimated provides the best estwhaeuronal signal.

The hemodynamic model is mainly described by adfesix parameter® =
{t,x, x, 0, a, e}, where the effect of the parameter change onegting hemodynamic
response is shown in Figure 4.5. There we canlsgesbme parameters influence the
shape of hemodynamic response in quite similar erareng. parameterg ande. To
find a subset of model parameters that provided#st model estimate, we search the
model space consisted of all possible parametebo@tion. In order to make this
space smaller, we focus only on paramefers, x, ¢, a}. The parametet, which is the
ratio of intra- and extravascular signal and witikes the place in BOLD observation

equation (1.7) is selected beforehand as an impop@ameter that should be included
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in our final set [30]. Then the complete model spae search includes 32 different
variants (see the bottom of Figure 4.6). For maaetrsion and parameter estimation
by SCKS, we use the same principle of scaling tngiecal parameter prior values
through log-normal density function as describedhi& previous section. Each model
inversion is then initialized with scaling paramsteéhaving zero mean and error
variance5 - 1073 (1-107* for £). This entire process is repeated 20 times, when t

time courses are generated according to the déscariprovided in the previous section.

After inverting all models (i.e. together 640), weed to choose a criteria that we
apply to find the most proper set of parametersesy basic but helpful criterion is an
assurance of increasing log-likelihood with eachsgguent iteration. For this condition
we considered maximum of 20 iterations during eacdidel inversion and no threshold
for convergence rate under which the estimatiocgss is stopped (except divergence).
From Figure 4.6 we can see that actually many patemmcombinations led to the
divergence during the optimization procedure (disd circles). Therefore, only those
models (parameter sets) that were able to pa0aterations were further considered
(6 of total 32). As a second criterion we chose Bépresenting model fit in general.
From this point of view, the best fit is provided imodel number 16 and 5. However,
these still might not be the right choice, becaiisee look at the third measure
represented by root-mean-square error (RMSE) betestmated and the true neuronal
signal averaged over all 20 simulations, we obs#mae model 16 and 5 actually have
the largest errors. As the last criterion we useSE\between hemodynamic response
reconstructed by the set of estimated parameter$r@amodynamic response generated
by the true parameters. These three measures maatie-off between an accuracy of
predicted responses and estimated neuronal si§made, our main goal is to estimate
the neuronal signal and later infer coupling par@medescribing the neuronal
interaction model, at the end we choose the motlefrdd filled circles), where the
parameters rate of signal decay @&nd the resting oxygen extraction fractiqr) @re

estimated.

Although, one could always perform more carefullgsia of parameter space, e.g.
by using profiles of log-likelihood [20] or based gcaled Fisher information matrix
[96], our analysis provides sufficient indicatidmat fits to our approach using SCKS
algorithm. These two parameters plaswill be used in this work to describe a

variability of hemodynamic response. The rest ahpeeters is considered fixed to their
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Figure 4.6 Results of hemodynamic model identifiability arsady At the bottom we
display the model space comprising of 32 differeminbinations of model parameters
(white color means the parameter is estimated)nRitee bottom, in the second row we
display average number of iteration after which #esestimation terminated. Here, only
parameter combinations, which always allowed tocliethe maximum number of
iterations ( = 20) are considered as suitable (white circles). Tiirel row represents the
average BIC, with 95 confidence interval. Similatlye fourth and fifth rows represent the
average RMSE errors between theoretical respondetla one reconstructed using
estimated model parameters, and the RMSE erromsebat the true and estimated
neuronal signals, respectively. The optimal parametmbination (as a trade-off between
model fit and accuracy of the neuronal signal estignis highlighted with the red circles.

empirical prior values. Finally, we should notettttee hemodynamic model becomes

more identifiable with higher temporal resolutiarddess noisy data.

4.3 Stochastic DCM

The previous section provided a demonstration ofdehanversion using SCKS
algorithm for a single fMRI time course based orichhwe have made an idea of how

to setup the optimization, mainly how to initializee transient priors on model
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parameters and noise statistics in order to obaairadequate estimate of neuronal
signal. The current section will extend this denti@tgn to multivariate case with the
aim to estimate the coupling parameters of effecttonnectivity. This effectively

means that we will pursue a validation of SCKS Hasechastic DCM.

Besides the general validation of model inversiod model selection, this section
will discuss important topics such as: an effechaisy data; effect of sampling period;
variability of hemodynamic response function amaiifferent brain regions; possible
confusion of causality by an influence of the thimissing) region; and application to

the larger networks.

Similarly as in the previous section, we will asstge performance of the proposed

algorithm through the Monte Carlo simulations.

4.3.1 Inversion of sDCM

To evaluate a standard inversion of SDCM by SCKSwilk consider generation of
resting-state data as described in [15]. We wilebpecially interested to identify how
well we can estimate the coupling parameters antib@getwork nodes and if we can
correctly select the underlying network structuire.the later case, we will test the
performance opost hocBayesian model selection after inverting the fatidel, where
all connections are allowed; i.e. using the conceptreduced free-energy as an
approximation to marginal likelihood. Additionallwe will also show how the correct
model can be selected by the second approach, wieemmarginal likelihood is
approximated by BIC.

Simulations

Let us consider a synthetic resting-state fMRI ticoarses that were generated through
the network of four nodes. The resulting four timeurses were acquired with a
sampling period 3 s (i.e. TR = 3 s) and consis®6 time points. To simulate these
data we used the following generation processt,Rine neuronal fluctuations were
generated independently for each node of the n&twgrsmoothing a sequence of
Gaussian random variables so that they had a wariaf 0.02 and a Gaussian
autocorrelation function of 6 s. Second, these tigrses were used as an independent

inputsu into the neuronal interaction model (as descrilpetthé footnote 4 on page 74),
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where the effective connectivity between the noglas assigned through the adjacency

matrix A that had for example the following form:

05 024 0 0.2
A_|034 —047 —02 o0

0 —032 —048 029 | (4.4)

025 0 033 —0.49

Here, the use of positive and negative couplingupaters between nodes produces the
anti-correlated responses commonly seen in reéihgestate data. Next, the outputs
from the neuronal model, i.e. the neuronal stadesered the hemodymamic models
involving the hemodynamic states (i.e. inducinghalgnormalized blood flow, volume,
and deoxyhemoglobin content), which were descritpedegion (node) specific set of
parameters. In particular, these parameters wer® $beir usual prior (Table.1) and
scaled with a deviate sampled from normal distidsy®”" = 0% exp(N'(0,0.01)). This
produces a small interregional variability of herypoaimic responses as depicted in -
Figure 4.15. Further, we considered an integragtep equals ta s for discretization of
neuronal and hemodynamic model equations. Finfibyy the hemodynamic states we
generated the BOLD signals corresponding to eade mo the network. These were
then downsampled to obtain the required TR3 s temporal resolution. Since we
consider our generative model as a stochasticrayste also added a small Gaussian
random fluctuations of variancg-10~* to all hemodynamic states (producing a
maximum signal change of about% in the fMRI signals), and also added Gaussian
noise with variancd.025 to our observations. This was chosen to obtainassgwith
SNR ~ 2 (clean signals had variance abOut). Additionally, all additive fluctuations
for both states and observations were considerghtlyi correlated with the width of
Gaussian autocorrelation function equals to 1.35.[ Remember that if not stated

otherwise we will consider the same generationgss@lso in the later experiments.

These simulated data were then used for modelsioreby using SCKS, where we
assumed the following initialization. The initigdizon of neuronal, hemodynamic states
and hemodynamic model parameters was basicallgaime as for a single time course,
only extended for multiple time courses. In multiage case, we had to additionally
specify structured priors and corresponding tranigeiors on coupling parameters in
the adjacency matrix. These were chosen accordintet description provided in the

Section 3.2.2, to allow for full model inversione.iwith no restriction on connections.
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Figure 4.7 Example of simulated connectivity network. (a) Fandes network with the
connectivity structure given by adjacency matrix4j4 (b) Neuronal signals generated
through this dependency network structure, whezectior of the time course corresponds
to the color of the network node. The same colaleds used to display the output BOLD
signals.

Also the hyperparameters for the estimation of mesamsent noise covariance were the

same as in the previous case.

Finally, we repeated the simulations and model rsiea@ described above 100
times, where we allowed for maximum of 16 iteratiobata were generated by
sampling the coupling parameters from a unifornrithistion a;;~(0.15,0.35) and
switching the sign of reciprocal connections ranbjofbut still making sure that the
adjacency matrix is stable). Connections were thlminated using an adjacency
matrix selected from the model space as shownguar€i3.4. Here we considered only
sparse structures of adjacency matrix having &t leae pair of connections switched
off and not less than three pairs of connectiondéched on. Self-connections were
sampled froma;;~N(—0.5,1-1073). Candidate simulations were discarded if the

simulated data exceeded 2% BOLD signal change.

Besides the MC simulations we also tested the meelektion based on BIC and

AIC. In this case, we generated data only usingngles model of adjacency matrix as
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Figure 4.8 Results of sDCM model inversion based on MonteldCaimulations. The
upper plots display the estimates of coupling patars (i.e. elements of adjacency
matrix) for all 100 full model inversions. On theftl side we show the results before
application ofpost hodBMS, and on the right side are the results obthafeer BMS. The
lower plot shows the histogram of posterior modebpbilities (corresponding to the best
model) for all 100 simulations. Here the modelsd(anrresponding coupling parameters)
with the weak evidence are displayed using whiterco

shown in (4.4). Then we considered a model spatle bvdirectional connections as
depicted in Figure 3.4, i.e. together 64 possibledets. Each of these models is
uniquely defined through the initialization of thgriors, where the prohibited

connections are set to have prior means and vasaequal to zero. Finally, each of
these models was inverted individually and score®I€ and AIC measures. Note that

in this particular case, we did not apply the pngrstep during the model inversions.

Results

The results of the MC simulations are summarizedrigure 4.10. There the
estimated coupling parameters are plotted agdmest true values for the full model
(top-left) as they were identified by SCKS andtloe reduced model as chosenpdogt
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Figure 4.9Results of sSDCM model inversion using BIC for micgdection. These results
were obtained by individual inversion of all podsibestricted models (i.€4 models for
4 nodes). The upper plots show difference betweerirgr models by BIC and AIC. In
this case they are very similar, selecting the sameel 19. The lower plots display
Bayes factors (left) based on approximation of nmeiglikelihoods using BIC, and
posterior model probability (right), which showsaththe modell9 was selected with
100 % evidence.

hoc BMS. By comparing these two results, one can dasracteristic (vertical)
shrinkage of subset of parameters that were siedilas zeros to their prior mean and
also some weight changes in "active" coupling patens, which make the parameter
more aligned around the diagonal. Note thast hocBMS always selected the true
model as it was assigned to simulated data. More@dvean be seen that the estimated
couplings are mostly placed within a square spatich corresponds to the range of
uniform distribution from which the true couplingsere generated for a data
simulation. The lower plot then shows the histogrposterior model probabilities by
which the true models were scored. One can seathatjority of models (about 93 %)
were selected with positive, strong and very strenglence, whereas few models
(about 7 %) had rather weak evidence. The coupargmeters of these less certain

models are distinguished by using white color.

Next, the results of the model selection based k&hdhd AIC, where each version

of reduced model was individually inverted by SCl& depicted in Figure 4.9. In this
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case, both BIC and AIC criteria pointed to the sanuwael, which was our simulated
true model. By using Bayes factor (where the manigiikelihood is approximated by
BIC) to compare all 64 models, we were able toetbe true model with a very strong
evidence, as it can be seen from the plot of pesterodel probability. Although this

approach to model selection was also able to ssftdgsselect the correct model, we
should again emphasize that this approach is lchotdy to small size networks (up to

4 nodes), otherwise it is unbearably computatigretpensive.

Finally, in Figure 4.9 we demonstrate a charadieriprocess of parameter
estimation by SCKS as evolved in time and acrossgetétions (only network coupling
parameters are depicted). In order to make a nuwrelete picture about this process,
we also show a time evolution for associated pat@an@gror variances, parameter noise
variances, and error variances of hidden hemodynatates (all depicted as standard
deviations, since a square-root covariance matacespropagated through the SCKS

algorithm). In these plots, it is especially im@at to point out the effect of pruning
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Figure 4.10 Visualization of the estimation process during 8D@&odel inversion. The
upper plots show the time evolution (over consetjiterations) of coupling parameter
noise standard deviations (left) and of couplingapeeters estimates (given by forward
run of SCKS) (right). The lower plots show the satiree evolution but for the
hemodynamic state noise standard deviations andhforerror standard deviation of
coupling parameters.
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Figure 4.11Demonstration of BOLD signals with different SN&¢ls. The examples
show a time window (100 time point) of simulated IEDsignals for SNR 0.5, 2 and
5, respectively.

procedure, which started with the 5th iteration,tlb@ parameter estimates and related
error variances. We do not display a time evolufmrthe measurement noise variance,
which was also estimated, but one can expect asiemar behavior as depicted in the
consequent Section 4.3.2 in Figure 4.13 (right).

4.3.2 Effect of noisy data

It is always interesting to ask a question how sbbig the optimization algorithm
against the noise in the data. Therefore, in tleigtien we try to investigate how
sensitive is the performance of the proposed dlgaorifor the estimation of effective
connectivity to different levels of observation s®i In this case, we use the same
definition of SNR as defined earlier, where we #jEadly consider a simulated data
that are contaminated with a very high, high, medathd low level of noise. Since in our
algorithm we are estimating the amount of obseovatioise using VB scheme, it is a
nice opportunity to show how this adaptive estioratmethod contributes to the final

result of estimated network couplings and the uag#y on these couplings.
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Simulations

Let us consider a simple network of four nodes hih adjacency matrix as defined in
(4.4) and the same generation process of syntdet& as described in the previous
section. The only difference is in the amount ofliide observation noise, where we
used SNR = 0.5 for a very high level of noise, SNRfor a high level of noise, SNR =
2 and 3 for middle levels of noise, and SNR = Sldev level of noise, respectively. For
better imagination, some of these noise levelssa@vn in Figure 4.11, displaying
shorter time window within generated BOLD signakext we performed 50 Monte
Carlo simulations, 10 for each noise level. Then dach of simulated data-set we
considered two scenarios of model inversion by SCKi& first one performed an
uninformed model inversion of the full model witimkinown variance of observation
noise and the second one performed an informed Imiedersion with known model
structure (only effective couplings are estimated)d with known variance of
observation noise. Obviously, for the second s¢enae did not have to employ the
pruning procedure. Consequently, for the first acienthe best model was selected by
post hocBMS. Note that data for each repetition were gateer with the same
adjacency matrix, but with different sequencesefronal signals and different random

sequences of additive noise (slightly correlatedessribed earlier).

Results

Since we used the same adjacency matrix for alllsitions it suggests to have a closer
look at the estimates of particular coupling par@mse The results are summarized in -
Figure 4.12, where we purposely skipped the residtsself-inhibitory couplings
because they did not change much from their prieams. Also, because in almost all
cases th@ost hocBMS selected the true model, we do not displayciplings that
were correctly identified as irrelevant; i.e. eqtakero. By saying this, there were two
models where during the model inversion of the futbdel by SCKS, the pruning
procedure incorrectly switched off a couple of dowup parameters (blue dots). This
means that we have a few false negative estimbtgs)o false positive estimates; i.e.
none of zero couplings were identified as an effeatonnection between nodes.

Although, the model inversion followed by the modstlection was quite
successful for all noise levels and both scenattias evident from Figure 4.12 that for
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Figure 4.12 Results of SNR experiment (part 1.). Each plotesgnts estimates for one
particular coupling parameter obtained for diffarégvels of noise, where we further
distinguish between unrestricted model inversiociuiding estimation of measurement
noise covariance (white strip) and restricted madeérsion where both correct model
structure and measurement noise covariance wenarkigoiring model inversion (grey
strip). The red line is the true value of couplipgrameter and the blue dot represents
parameter, which was incorrectly switched off dgnmodel inversion.
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Figure 4.13 Results of SNR experiment (part 2.). The plot be keft side shows the
posterior model probabilities that were assignethéoselected models for different levels
of SNR (10 simulation for each SNR level). The blimts represent models having lower
evidence, which were incorrectly selected by BM8e Plot on the right side shows an
example of estimated measurement noise standaiatidevsquare-root of variance) as it
evolved over successive iterations of SCKS algorittWe considered the average
measurement noise variance for all time coursesriagtmodel inversion.

lower SNR, mainly SNR = 0.5 and 1 the accuracyalad the certainty (shown through
the error bars) on parameter estimates degradegeviurprisingly, one has to notice
that the first uninformed scenario (gray dots oritevktrips), which was set to perform a
full model inversion, including estimation of obgation noise variance, provided a
significantly better results than the informed oB8eecifically, the estimated coupling
parameters of the first scenario are much closehéotrue values (red lines), with a
smaller variability across the MC simulations, andinly with a smaller error bars,

which means that the estimates are more confiddns fact is consistent across all
noise levels. Clearly, this demonstrates a greaptace features of the SCKS algorithm
and the ability to accurately estimate the obsewmatoise variance. On the right side of
Figure 4.13 we can see the estimation of obsenvattse variance as it evolved over
time and successive iterations. The initializatioh observation noise variance is
purposely selected as we would expect a very masg. This effectively prevents the
algorithm to become too confident in early phaseestimation procedure. Also, the
dynamic of observation noise are assumed very @@wost constant), which results in
an exponential decay of observation noise variame multiple iteration steps of

SCKS algorithm to actually reach the true value.
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On the left side of Figure 4.13 we show the postemodel probabilities for the
selected models of the first scenario as they waleulated during thpost hocmodel
selection (based on reduced free energy). We @thaéexcept for two models under a
very low SNR, which were scored with a weak evideftbese models contain a couple
of incorrectly identified parameters as also deguicin Figure 4.12), the rest of the
models were correctly selected with a strong andesy strong evidence. This
demonstrates a very good sensitivitypolst hocBMS against both false negative and

false positive estimates.

As a final remark to these simulations, in the f&HRI data one can usually expect
SNR between 1 to 3 [26, 159]. However, the fMRIdiseries for DCM is rather lower
in noise (SNR between 2 to 4) since it represergaramary signal of certain region,
obtained by using a simple averaging of multipleets within the ROI, or more often
by using the principal eigenvariate to ensure amapn weighting of contribution for
each voxel within the ROI. On this matter, one d$tiobe always very careful in
selection of ROIs for analysis with sSDCM. They sldobe smaller in size and should

include only significantly activated voxels.

4.3.3 Effect of data sampling period

Another interesting question one can ask is howhnsiche accuracy of the inversion
scheme dependent on the sampling period of the idatan time series resolution. This
is also related to the performance of local lirestion scheme that is used to discretize
the continuous model. In this section, we perfohis test by considering a range of

different sampling periods (TR) ordered from sn@iery high.

Simulations

In order to perform this test we had to simulatedaith finer temporal resolution. In
this sense we considered integration step 100 hesrdst of the simulation process was
the same as in Section 4.3.1. It means, we alssidened a small size network of four
nodes with connection structure chosen as defiagltbke and resulting BOLD signals
with SNR = 2. Once we obtained simulated data @ilttigher resolution, we considered
five different sizes of sampling periods TR =0, s, 2 s, 35, and 5 s, respectively, for

which we inverted the full model by SCKS. Additidlgawe made an adjustment that
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for TR > 1 s, the integration step applied in SCK8&s selected to match the 1 s
resolution, i.e. for TR = 2 s we appby= 1/2, etc. Finally, we repeated the entire

simulation and inversion procedure 10 times.

Results

The summary of MC simulations is depicted in Fig4ré4. We were especially
interested in the effect of sampling period ondbeuracy of estimated neuronal signal
and coupling parameters. Since in our case we khewground truth, we calculated the
root-mean-square error (RMSE) between the simulatedronal signals and our
estimates obtained by SCKS. There we can cleadyBgure 4.14, top-left) that with
lower TR we receive more precise estimates of mairsignal, even though the
difference is not that high. Similar trend can eersalso if we compare the true and
estimated coupling parameter (Figure 4.14, toptyighere, the difference is even less
significant. Although, one would like to see morgndicant improvement, the results
demonstrate a good performance and robustnesseofotal linearization scheme,
which allows an accurate estimation even with rsgimpling period (by considering

relatively large integration step 1 s).

Further, we could have a look at the posterior rhqdebability of the selected
models. However, because in all cases (includimggp AIR) the models were always
correctly selected with a very strong evidence, nather examined the effect of
sampling period on marginal likelihood approximabsdBIC (Figure 4.14, bottom). In
this plot we can see considerably increased comdeléreflected in lower value of the
BIC) about the estimates for TR = 0.5 s. This @y because in this case we
considered twice the number of time points, butsame number of iterations. If we
decrease the number of observation to match tee thther cases one can expect almost

a linear trend of the improvement.

Overall, we did not notice a very significant impeonents in the estimates of
coupling parameters by increasing the temporalluésa of the data. This fact can be
considered as good news, because it means thastingation of effective connectivity
by DCM formulated in continuous time is not sengtio the temporal resolution of the
data, which is an important advantage over thebgpd method for identification of

directionality such as GCM, where the temporal Iggmn plays the crucial role.
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Figure 4.14 Results of sampling period experiment. The upgetspdisplay the RMS
errors between the true and estimated neuronadlsigleft) and the RMS errors between
the true and estimated coupling values (right) didferent data sampling periods. The
lower plot show dependence of BIC on sampling pkrio

Nevertheless, we witnessed that the higher tempasdlution of the data (with

reasonable SNR) can always bring some improvement.

4.3.4 Effect of interregional variability of HRF

In the introduction of this work, we have emphaditieat the main motivation for the
nonlinear deconvolution approach (or generally appih based on generative model) is
to eliminate a possible confusion in identifyingreditional connectivity due to
variability of hemodynamic response across thenbragions. So far, in Section 4.2.2
we have discussed an identifiability of the hemauagit model, and concluded that
even though the hemodynamic model is not uniquigyntifiable by its complete set of
parameters, we are still able to recover the uwpihgyrl neuronal signal with a
satisfactory accuracy. In other words, the ideaifity issue does not seriously hurt the

model inversion (at least in the case of fully bstic treatment of the model).

What remains to be answered is whether we can nperéo model inversion for
multiple time courses and simultaneously identifg true effective connectivity at the
neuronal level if the shape of hemodynamic respangaificantly varies among the

114



VALIDATION AND APPLICATION OF THE METHOD

Small Medium

o0 5 10 13 20 25 30 “o 5 10 15 20 25 30
Time (s)

1

0.8
0.6

Figure 4.15Demonstration of different levels of hemodynangsponse variability.

brain regions. Therefore, in this section we téwt performance of the proposed

algorithm in these clearly difficult conditions.

Simulations

For these simulations we considered 5 nodes netwibkadjacency matrix similar to

the one described by (4.4), but with an additiomade connected to the fourth node
through bidirectional coupling. Further we used #Hame generation process as in
Section 4.3.1., but we considered four differentele of hemodynamic response
variability assigned to different nodes (region$his variability was obtained by

scaling the empirical parameter priors (Tabl® using log-normal density function

0" = 8% exp(N'(0,9)), where the varianc® was equal to O for the case of no
variability; 0.01 for a small variability; 0.1 fa medium variability; and 0.5 for a large
variability (see Figure 4.15). The resulting BOLIQrel had the temporal resolution TR
= 3 s and the SNR = 2. The simulation and modedrsion was repeated 20 times for
each level of hemodynamic response variability ¢odering the same structure of

adjacency matrix).
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Figure 4.16 Results of interregional variability experimenthel upper plots show the
effect of increasing variability of hemodynamic pease among brain regions that are
considered for model inversion, on hemodynamic mpdemeter estimates. Here we can
see that with increased variability, the variabitif estimates increases as well (note that
this parameter estimates does not provide unigligiam). The lower plots show the
dependence of posterior model probability and R¥8re between the true and estimated
neuronal signals on the level of hemodynamic respeariability.

Results

The results from all inverted models by SCKS arettptl in Figure 4.16. Since we

know that hemodynamic model parameters are nouehiqdentifiable, i.e. their effect

on the output hemodynamic signal can be interchelrigeand also partly compensated

by the neuronal signal, we cannot simply test far ¢rror between estimated and the

true hemodynamic parameters. However, we considenedlevels of hemodynamic

response shape variability, therefore we can aitleheck how this variability is

reflected in hemodynamic parameter estimates. iBhidepicted at the top of Figure

4.16. for parameters rate of signal decaydand resting oxygen extraction fractiap)

which were selected to fit the shape of hemodynawesponse (see Section 4.2.2). In
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these plots we can see that by increasing vamglnilisimulated data the variability of
the estimated parameter values increases as waN, thking a look at the results of
posterior model probabilities of selected modeln(ectivity structure) bypost hoc
BMS (at the bottom of Figure 4.16), we can see thate is almost no difference
between no, small, medium and high variability @&modynamic response among
different network nodes. In all cases, we selettedcorrect model with high posterior
model probability. Next, we calculated the aver&MSE between the estimated and
the true neuronal signals. Here we already expegiome decrease in accuracy that
comes with the high variability of hemodynamic m@sge, but the increase in the error
is negligibly small.

These results prove that the stochastic DCM base®©KS is not sensitive to
variability of hemodynamic response function acraserent brain regions. This
statement is valid even in case of longer sampfpiegod, as it was used in these
simulations (TR = 3), and one can expect an impreré by increasing the temporal

resolution and SNR of the data.

4.3.5 Third region influence

Probably the highest risk of a false positive idamation of causal relationship is
caused by spurious correlations between time ceur$éis spurious correlation
represent a mathematical relationship in which tw@nts have no direct causal
connection, but they are likely to be wrongly imést that they do, due to the
coincidence or the presence of a third unseen dvegibn). Let us imagine two simple
scenarios of causal influence as shown in Figuré.4n the first case, we have a causal
chain among three regions where region 1 has akcaikience on region 3, mediated
through region 2; i.el - 2 — 3. In the second case, we have a common source
represented by region 2, which causes dynamicggoms 1 and 3, and there is no
influence between region 1 and 3; i2Z> 1 and 2 — 3. Assuming a bidirectional
connectivity, then these two cases are always pteBem the previous simulations we
know that if all regions are included in the analyznetwork than SCKS is able to
effectively infer the correct causal relationship®wever in the case we neglect some
of essential regions such as region 2 (the commaasg), then we are facing a "missing
region” problem that might lead to causal fallatlgerefore, in this section we will try
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a) b)

Figure 4.17Two common connections involving the influencetdd third region. (a) The
influence from the region one to the region theemediated by region two. (b) The region
two is influencing both regions one and three.

to address a question: what are our chances ttifidancorrect causal influence in the
case of missing (essential) region. Additionally would like to know if there are any
properties of fMRI time courses, such as sampliagod and amount of observation

noise, which help to overcome this problem.

Simulations

We generated a network composed of 5 nodes as simoligure 4.18, where the first
node has relatively strong causal influence onsdeond and the third node, where we
also consider reciprocal connections. There isnflaénce between the second and the
third node. The third node is further connectethtfourth node, which is connected to
the fifth node, all through bidirectional conneai$o Having this particular network, we
simulated higher resolution data with integratiteps100 ms. Now, in order to test the
robustness of the algorithm in case that the comfessential) node is missing, we
considered three following scenarios. In the fgsenario we invert the complete 5
nodes network. In the second scenario we excluelditiie course associated with the
first node and invert model having only time cosr&5. In the third scenario, we
consider 3 nodes network, where we further exclilge5th time course (see Figure
4.18). These scenarios were tested for three diffdevels of observation noise (SNR =
1, 2, and 3) and for two different sampling perigd® = 1 s and 3 s). Finally, each
particular case was repeated 10 times considehegsame adjacency matrix but

different innovations.
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Figure 4.18 Demonstration of missing region problem. The fgsenario considers all
nodes for model inversion (red dashed line). Tlo@s@ scenario leaves out the first node
for model inversion (blue dashed line) and thedtsitenario leaves out also the fifth node
(green dashed line).

Results

The results from the above MC simulations are rgggom Figure 4.19, for all three
scenarios, where we scored the performance of @€SSalgorithm by comparing the
posterior model probabilities of selected modet&l By comparing the RMSE between

the true and estimated network couplings.

The results obtained during the first scenario, rehadl five nodes (time courses)
are included, do not show any new information thatwould not know already from
the previous simulations. Clearly, we were ableestimate and select model that is
equivalent to the true model, where we can seengnovement in both posterior model
probabilities and RMSE for higher SNR. Moreoverthra smaller sampling period, one

can estimate the coupling parameters slightly rpoeeisely.

The situation is already more interesting when ioglat the results of the second
scenario. In this case, by neglecting a commoncsoof influence on 2nd and 3rd
regions, we expect a presence of spurious comektbetween the 2nd and 3rd region
that might possibly hurt the performance of estiomaprocedure. And indeed, we can
see an overall decrease of posterior model prababi{approximately by 10 %), where
among selected models we have several models (i) that were incorrectly

identified (with false positive couplings). Nevestbss, a majority of the models were
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Figure 4.19 Results of missing region experiment. Each rokhm figure describes one
particular scenario regarding the missing regiarbf@m. The plots on the left side show
the effect of different sampling period (TR = 1slahs) and the effect of different amount
of noise added to data on posterior model prokglufi selected model. The same effects
are then displayed in the plots on the right dide,with respect to the average RMS error
between the estimated and the true coupling paeamet

still correctly identified. There is a very smaiffdrence between estimates obtained

with lower and higher resolution, but increasing 8NR brings an improvement.
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Finally, in the third scenario we had similar sttaa but considered only 3 nodes
network. Although in this case we scored modelshwiglatively high posterior
probabilities, the number of incorrectly selecteddels is the same as in the previous
case. It means that if we try to identify couplpayameter within a very small network,
there will be a higher danger of obtaining a veeytain (nonzero) estimates even of

connections that are spurious.

Obviously, this test represents only a very limitesight into the entire problem. It
can be more dramatic in real data situation, fangxe when multiple sources are
missing, etc. Therefore, we expect further develeqis to improve the regularization
process of parameter estimation, which could mdiecively eliminate the spurious
coupling estimates.

4.3.6 Larger networks

The problem of missing region described in the joey section could be potentially
overcome by covering a higher number of brain negian analysis of effective
connectivity, where we hope that all important oggi are included. Considering larger
networks is also interesting from the perspectivamalyzing resting-state data. In this
case one usually first applies methods such apertnt component analysis [160] to
the whole brain fMRI data, which summarizes a sfigtidistributed brain activations
into a smaller set of components (modes). The aseeomponents and their associated
time courses can be then considered as a nodeslgkad network by stochastic DCM.
Therefore in this section we want to ask a quesi®there a bright future of stochastic
DCM based on SCKS to by applied also into the langgéworks?

Simulations

Because it is not that simple to generate a largevork based on random permutations
of connections in adjacency matrix that would regula stable matrix, we considered
an adjacency matrix, which is sometimes called raldéen network. The adjacency
matrix of the tandem network has non-zero couplimgly on the first diagonal above
the main diagonal and on the first diagonal belbe main diagonal; i.e. all nodes are
connected through bidirectional couplings. Thisetyl§ network was first created for 8

nodes and later for 16 nodes. The strengths ofextioms were in both cases generated
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randomly from the uniform distribution and from thermal distribution in case of self-
connections as described earlier. The sets of fMR courses generated in a standard
manner (TR = 3 s; SNR = 2) were then used for modelrsion by SCKS.

Results

The results for the 8 nodes network are depicteédeatop of Figure 4.20. There we can

see the estimated adjacency matrix obtained rifiat the model inversion by SCKS
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Figure 4.20 Results of lager network experiment (part 1.). Tupmper row displays
connectivity matrices (for 8 nodes) obtained by slothversion using the SCKS
algorithm before (left) and after (right) applyingpdel selection based @ost hocBMS.
The green mesh represents the true connectiviigtate used for data simulation. The
lower row shows the results that one obtains bylyamp simple pair-wise correlation
between observed BOLD time courses (left) and Iplyapg Granger causality modeling
based on standard multivariate autoregressive nuddeé second order.
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algorithm, where many of irrelevant couplings weateeady switched to zero by the
pruning procedure during model inversion. After lgpm post hocBMS we already
received a result that is very close to the trugneativity structure (green mesh), where
only one connection2(— 4) was wrongly identified. Because we have network
consisting of more than six nodes, we already eygula greedy search procedure to

performpost hocBMS.

At the bottom of the same figure, we also show rémult obtained by pair-wise
correlation between BOLD signals. Correlation igyveften used as the simplest
method for evaluation of functional connectivityls@a in resting-state data). The
correlation will give us a basic picture about rdependences between time courses,
but from the perspective of effective connectivityany of these interdependences
(correlations) are spurious. Critically, just usiagcorrelation with any threshold can
never recover the real connectivity structure. We liast comparison we also show the
result obtained by Granger causality modeling (GQM$ed on simple multivariate
autoregressive model, where the order of the mfibellag) was estimated using BIC
and AIC (both suggested the model order 2). In tlaise, GCM fails to estimate the
correct connectivity structure mainly because #rmagoral resolution of BOLD signals
is too low (TR = 3). We expect that GCM could datéxeif higher resolution signals are
used and if GCM is formulated as a state-space hipaé, 128].

The result of the second network with 16 nodesegiated in Figure 4.21. There
we show already the final result as obtained gitest hocBMS. Although there are
several irrelevant couplings that were not switcbfdneither by BMS or by pruning,
their strength is smaller than any other correatntified connections. Additionally,
we have one coupling parametelr2 (— 11) that was incorrectly switched off by
pruning during the model inversion. Just for congmar we again display correlation

matrix capturing the dependences between BOLD Egna

In general, these results show that it will be pmego effectively apply stochastic
DCM also to the larger networks. However, the cotaponal demands increases
markedly. For example for 5 nodes network one titgnaof SCKS takes about 60 s,

while for 16 nodes one iteration takes already aB6uminuted

8 Evaluated on personal laptop HP Pavilon with CP2630QM at 2.0 GHz and 8GB RAM.
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Figure 4.21 Results of lager network experiment (part 2.). Tipper panel shows the
estimated connectivity matrix (16 nodes) obtaingdmmodel inversion using the SCKS
algorithm followed by thepost hocBMS. The green mash corresponds to the true
connectivity structure. The lower panel shows tsult obtained by pair-wise correlation.
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4.3.7 Analysis of empirical fMRI data

As the last test, we attempt to apply the SCKSrélyn to empirical data. Although,
we mostly emphasized on application of stochastvDto resting-state data, there is
no reason why this approach should not work algb witask data. Further, since there
is very little known about effective connectivity resting state data, we choose to
demonstrate the algorithm performance on task dhatiayinder the assumption that we
do not know the exogenous (experimental) inputpédmticular, we apply SCKS to
empirical data-set that has been used previouslgetzribe developments in causal
modeling and related analysis [11, 15, 17, 123, 162].

Performing model inversion of task data by SCKShaut considering the known
input is potentially interesting because it alloarse to quantify how much neuronal
activity can be attributed to the evoked respor(ses, the experimental design or
exogenous inputs) relative to endogenous actiib].[In what follows, we will briefly

describe the data used for our analysis and thgrtréhe results.

Table 4.1 Selected regions for sSDCM analysis.range.

L Location Number of
Name Description (mm) (3 mm®) voxels
VIS Striate and extrastriate cortex -12 -81 -6 030
AG Angular gyrus -66 -48 -21 51
STS Superior temporal sulcus -54 -30 -3 269
PPC Posterior parietal cortex -21 -57 66 168
FEF Frontal eye fields -33 -6 63 81
PFC Prefrontal cortex -57 21 30 48

Data description

Data were acquired from a healthy subject at 2 alesing a Magnetom VISION
(Siemens, Erlangen) whole body MRI system, duringvisual attention study.
Contiguous multi-slice images were obtained witlgradient echo-planar sequence
(TE=40 ms; TR=3.22 s; matrix size=64x64x32, vox&tes3x3x3mm). Four
consecutive 100 scan sessions were acquired, ceingpa sequence of ten scan blocks
of five conditions. The first was a dummy condititmallow for magnetic saturation
effects. In the second;ixation, subjects viewed a fixation point at the centreaof
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100 150

Time (TR)

Figure 4.22Selected regions for sDCM analysis and their aassttime courses.

screen. In arAttention condition, subjects viewed 250 dots moving ragi&bm the
centre at 4.7 degrees per second and were askideict changes in radial velocity. In
No attention the subjects were asked simply to view the mowdogs. In aStatic
condition, subjects viewed stationary dots. Theeordf the conditions alternated
betweenFixation and visual stimulationStatic No Attention or Attentior). In all
conditions subjects fixated the centre of the stré&®d overt response was required in
any condition and there were no actual changeldrspeed of the dots. The data were
analyzed using a conventional SPahalysis. The regions chosen for network analysis
were selected in a rathead hocfashion to ensure that the regional summaries were
defined functionally by selecting regions showinglked responses. Six representative
regions were defined as clusters of contiguous lgoxgrviving an F-test for all effects
of interest at p<0.001 (uncorrected) in the conoeral SPM analysis. These regions
were chosen to cover a distributed network (ofdbrgssociation cortex) in the right

° Software available at http://www.fil.ion.ucl.ac/sgm.

126



VALIDATION AND APPLICATION OF THE METHOD

hemisphere, from visual cortex to frontal eye feldee Table .4 for details). The
activity of each region (node) was summarized wglprincipal eigenvariate to ensure
an optimum weighting of contributions for each viowéhin the ROI (see Figure 4.22).
In this example, one can see evoked responsessualvareas (every 60 s) with a
progressive loss of stimulus-bound activity andirt bf attentional modulation and
other fluctuations in higher regions [15].

Results

Results were obtained after 24 iterations of SCK§orahm (using standard
initialization), when it reached the convergencéeon. Then the best model was
selected among 32,768 possible models ugost hocBMS with posterior model
probability about 80 %. The result before and afterdel selection are depicted in -

Figure 4.23. We can see that the final result helatively sparse structure of

sDCM before BMS sDCM after BMS

VIS
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STS STS

Node (to)
Node (to)
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VIS AG STS PPC FEF PFC VIS AG STS PPC FEF PFC
Node (from) Node (from)

Posterior model probability

08

06

04 r

02r

O A L
0 0.5 1 15 2 25 ER

Model

Figure 4.23 Results of empirical data analysis (part 1.). Tpper row shows the results
of connectivity structures obtained by model ini@rausing SCKS algorithm before (left)
and afterpost hocmodel inversion. In this case the best model vedescted with more
than 80 % evidence as depicted in the lower plot.
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Figure 4.24 Results of empirical data analysis (part 2.). ®lmation of identified
connectivity structure in anatomical space. Thercof the lines reports the source of the
strongest bidirectional connection and the widthbresents its absolute (positive or
negative) strength

connectivity matrix with four bidirectional connes switched off. The architecture of
this identified network is then shown also in amtamical space (Figure 4.24), where
the color of the arrow reports the source of tmergfest bidirectional connection and
the width represents its absolute (positive or tiegpstrength. This visualization refers
to undirected graphs, although our scheme provislgzarate estimates for both
directions of reciprocal connections. As maybe etguk there are stronger forward
connections coming from the visual cortex, whiclm ¢ considered as a bottom of
functional hierarchy, to posterior parietal cortexd prefrontal cortex. Interestingly,

there are also many backward connections thatteseger than the forward ones. For
example from frontal eye fields, which could be sidered as the top of the functional
hierarchy, to the visual cortex, prefrontal coréand to superior temporal sulcus. This is
guite sensible given the greater amount of backwarthections (neuronal pathways)
anatomically, both within the cortical hierarchydadnom cortex to subcortical structures
[15, 162]. Finally, most of identified connectiofisut not quite all) are in agreement
with a previous results obtained by analyzing effec connectivity using the same

data-set [15, 123].
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Estimated neuronal activity
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Figure 4.25 Results of empirical data analysis (part 3.). Tpper plot displays the
estimated neuronal signals, where we highlightigsgronal responds of the visual cortex.
The shaded represents the paradigm of the viswmallstion. Similarly, the lower plot
displays predicted BOLD responses.

Besides identification of effective connectivity wean be also interested in
estimated time courses of neuronal signals (bottdnFigure 4.25). Specifically,
because we know the experimental paradigm of vistiadulation (grey filled areas -
high for attention and low for no attention), wenceompare it to our estimates. In
particular, looking at the estimate of neuronahalgassociated with the visual cortex
(highlighted in blue) we can clearly see that tbévation and deactivation phase of this
region match exactly to the start and end phasthefstimulus. This confirms that
model inversion has effectively estimated neur@aaélity from observed BOLD signal
and that this estimate is veridical in relationtih® experimental manipulation. For

comparison to neuronal estimates we also show tiggnal observed BOLD signals
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and our predictions (bottom of Figure 4.25), whitrere is a delay of several seconds
(about 6 s) between the start of stimulation anidadencrease in BOLD signal.

Before closing we should again emphasize that tleleininversion was not

informed by a known stimulation function but caill stcover the evoked responses.

4.4 Chapter summary

In this chapter we attempted to validate the predosstimation framework based on
the SCKS algorithm for estimation of neuronal sigaad effective connectivity from

simulated and empirical data. The first part ofstlwhapter was focused on the
estimation of the neuronal signal from single fMRie course, where it mainly served
as a tutorial on how to initialize and perform sssful model inversion with SCKS.
We also discussed identification issues of hemodymamodel parameters, and
suggested a suitable set of parameters, which a&simcan lead to the improved
estimate of the neuronal signal. Note that in #eituve might elaborate on this problem

with more thorough analysis.

Primary method validation was then carried outther multivariate case, where we
tested the performance of SCKS accompanied pgsa hocBayesian model selection
as an approach to stochastic DCM. In this casenifi@ results can be summarized as
follows: the approach seems to be robust enougdituations of very noisy data with
relatively large sampling period. We expect an iowed accuracy of coupling estimates
by increasing data SNR and temporal resolution.tNBg method is able to account for
hemodynamic response variability across differemirbregions. In other words, our
method is not sensitive to this sort of variabilityhis feature makes our approach
superior to other approaches which do not conditergenerative model. The above
mentioned conclusions generalize also to the inwesf a single time course.

The results also suggest that it should be possmlapply the method to the
networks consisting of larger number of nodes. édigh it is still not possible to think
about the application to the whole data consisthghousands of voxels, one might
imagine its application to the brain activity sumimed by spatially distributed modes
(often around 20), such as those obtained fromnitiependent component analysis [5,
128].
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The results obtained by testing for the robustr&gainst the missing region
problem are slightly less promising. In this case ebserved a decrease in posterior
model probability estimates and an increase okfalssitive identifications. Although
generally these results are still satisfactory,future work we expect to enhance
regularization techniques for parameter estimati@t could improve the performance

in this particular case.

We have also demonstrated an application of prapakmrithm to empirical (task)
data and obtained reasonable results, althougk tkeslts are not deeply discussed, as

it is difficult to make any conclusion based onyosingle subject data-set.

The fact that the simulated data are based on #mee smodel of neuronal
interaction as later used for model inversion cancbnsidered as a limitation of our
method validation. Though there are features swushhigher integration step and
modeling of correlated noise for observations aidddn states that are included during
the data generation, but are not applied or arereghduring the model inversion, it
would be interesting to see if the approach camtaai the same performance in cases
of more realistic interaction models (including nsanission delays with respect to
spatial location [138, 163]) are used for data gaten (while still keeping the simple

neuronal interaction model for data inversion).

Although we did not provide a comparison to oth@timds, some comparison can
be found in our published paper [20] that focused single time course model
inversion. We should note that at present the@ne more approach that can achieve
the same aim [52], i.e. estimation stochastic DCiheut knowing the exogenous
input. However, this method, which definitely dessr distinction, is also very recent
and still under development. Clearly, it will bebgect of our future research to make
comparisons and learn more about its propertiegottantly, the existence of these two
competing methods suggests an interesting posgifoli cross-validation when applied
to real fMRI data.
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Chapter 5

Conclusions and future work

In order to evaluate effective connectivity amonfjedent brain regions we need to

model interactions at the neuronal level. In theecaf fMRI data this is complicated by
the fact that the measured BOLD signal is only ratirect representation of neuronal
activations. The chain of physiological proces$ed tonnect the neuronal activation to
the BOLD signal can be described by a continuouslimear hemodynamic model.

Clearly, no model is perfect, which means thas wery important to allow for random

fluctuations in unobserved (hidden) neuronal angsaogical states by assuming a
stochastic representation. Moreover, if we arerestricted to a deterministic model, we
are able to account also for (endogenous) autonsnynamics that cannot be
explained by known (exogenous) experimental inpWg. can even throw away the
prior knowledge about experimental causes of olesermesponses and make the
evaluation of effective connectivity completely aalriven. Crucially, this enables us to
assess causal influence at the neuronal level feeenthe resting-state fMRI data.

To allow evaluation of this stochastic model we sidar the brain as a learning
machine that infers information about states andpaters from the observed data.
This inference requires representation of uncestaiRrobability theory provides a
language for representing the uncertainty beliats aframework for maintaining these
beliefs in consistent manner. Utilizing probabilityeory and the general descriptive
power of dynamic state-space models, recursive $ageestimation provides a
theoretically well founded and mathematically rabiusmework to facilitate sequential
probabilistic inference in systems where reasonimgler uncertainty is essential.
However, because the hemodynamic model we emplogoidinear, the optimal
Bayesian solution to the probabilistic inferenceoljem under consideration is
intractable. Therefore, we have to consider onlggoroximate solution.

In this thesis, we have focused on an approximatatisn provided by the
Gaussian integration method based on cubatureratteg rules which was recently
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introduced to nonlinear Kalman filtering [55]. Sg@ally, we have proposed a new
approach based on cubature Kalman filtering andcRdwng-Striebel smoothing to a
joint estimation problem, where both model statesl gparameters are estimated
sequentially, which also models the interactionn(itbonal dependences) between
them. This framework was further extended to mieequirements given by the model
and the fMRI data we work with. First, we have atluced an extension of this
approach to the continuous-discrete time systenisgrevthe accurate and stable
discretization of the process model was achieved lycal-linearization scheme [56].
Second, to allow the model inversion in a situatiwhere wea priori do not know the
noise statistics of the observed BOLD signal, weehadopted an iterative variational
Bayesian approach [64] to sequential estimatiome&surement noise variance. Third,
to improve the convergence of joint state and patamestimation, we have proposed
an adaptive scheme for the estimation of the paemneand state process noise
covariance by efficient Robbins-Monro stochastipragimation scheme. Fourth, since
we deal with observed data of a limited length, fhrevard cubature Kalman filter pass
and the backward cubature RTS smoother pass, wegped into a simple iterative
scheme that maximizes the log-likelihood with edtdration and provides fast
convergence. Finally, to further improve the numedristability of the filter the entire
scheme was considered in its square-root form.

All these developments and extensions, which wergetail described in Chapter
2, had one common aim: to enable the estimatiaheieuronal signal from a noisy
BOLD signal, while considering a realistic nonlinggeneration model of the observed
signal which also includes stochastic fluctuationsntributing to the hidden
hemodynamic and neuronal states. In addition, thegsed approach to inversion of
the model has a character of (generalized nonlindard deconvolution, because the
unknown endogenous neuronal signal (input) to hgmaahic model, which contains
unknown parameters is estimated (only) from obgEB®LD signal. While sufficient
theoretical description of the methods and pamicudlgorithms was provided in
Chapter 2, the global validation was shown in ih& part of Chapter 4. Additionally,
several performance tests using toy examples amamsauized in Appendix A and
comparison to a related approach (dynamic expectamaximization) [14] can be
found in a separate publication [20].

Although a very advanced and efficient method wesppsed in Chapter 2, it
fulfils only a first part of the goal that was debed in this thesis. The second (main)
goal was to enable evaluation of effective connégtiat the level of neuronal signals
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given the observed hemodynamic responses. Cleddymethodological framework
described in Chapter 2 solves the more difficultt,pae. provides estimates of
(endogenous) neuronal activity. In Chapter 3 weehaxtended this framework to
multivariate case, where the main interest is edion of (effective) coupling
parameters that inform the neuronal interaction ehdd this case we have considered a
neuronal interaction model in a form of linear $iastic differential equations, which
define interactions as the communication of slownatgics among macroscopic
variables; i.e. brain regions (nodes). By connectinis neuronal model to region-
specific hemodynamic models that link the neuroactivation to observations, we
enabled full model inversion, which provides comhal estimates of coupling
parameters, region-specific neuronal signals, hemeiic states, and associated
hemodynamic model parameters. All that is posdigl@pplying the approach (iterated
square-root cubature RTS smoother) developed ipt€ha. Importantly, this neuronal
interaction model allows one to estimate bidira@ioconnectivity (causal influence)
between different nodes. Further, as an extensiohet estimation framework, we have
introduced an automatic detection of irrelevantplimg parameters using a network
pruning algorithm based on calculation of scaledh&i information matrix. This
addition was necessary to improve the performande estimating coupling
(connectivity) parameters, especially in cases wihenspurious correlations between
observed signals are present. A complete form isf tfodel inversion represents a
stochastic treatment of dynamic causal modeling thakes it possible to estimate
effective connectivity even in case of unknown modput; i.e. in case of resting-state
data, where the neuronal signals causing the hemamdig responses have purely
endogenous character. This is an important degaftam the original dynamic causal
modeling [11], which was limited to a discrete miodé hemodynamic states and
assumeda priori knowledge of the model input.

This novel approach represents the first levehégrence where we are especially
interested in conditional estimates of couplingapaeters and in the associated error
covariance matrix. However, it is still necessaoy gerform the second level of
inference, where we identify (select) the mostlikmodel candidate, which in the case
of effective connectivity corresponds to the mdsglyy connectivity matrix. In Chapter
3 we considered model comparison based on calocnlati Bayes factor (defined as a
ratio of marginal likelihoods of restricted modeland discussed two different
approximations to marginal likelihood through commBayesian information criteria
and through recently introduced concept of redufre@ energy [146]. We have
emphasized the convenience of the later approxamaliecause it requires only a single
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inversion of the full model, where all connectioald between nodes are allowed.
Moreover, this approach is also well suited for gla®lection in larger networks.

In Chapter 4, we demonstrated the performance @fptioposed approach, first
focusing on estimation of the neuronal signal frasingle fMRI time course. We also
addressed the principal questions one might hagardeng the performance of the
introduced method to correctly infer the couplingrameters of neuronal interaction
model. In this case we were able to show that tethad is robust even when applied to
data with lower SNR and larger sampling period.QAtds not sensitive to variability of
hemodynamic response function across differentnbragions. These are important
properties, which make the approach superior teratipproaches for the evaluation of
effective connectivity that are not based on ganharanodels and are not formulated in
continuous time. We also showed that there is @ geospective for this approach to be
applied to larger networks, where possibly all valg brain regions are included. As a
relative weakness we found that the method is qastly immune to the strong
spurious correlations caused by exclusion of relexagion (node) from the analysis.

In conclusion, we have made a significant prograssthe development of
appropriate methodology for evaluation of effectbamnectivity in fMRI data, however
it is clear that much work still lies ahead. Torgaut a few future aims:

* In this work we have considered a local approxioratf Gaussian probability
density, which might provide only locally optimastanates. We are certainly
aware that we could improve identifiability of thaversion problem by
employing global estimators. However, global appr@tion methods are not
practical in our case due to the curse of dimeradityn Nevertheless, we hope
that the utilization of local approximation based @ubature integration rules,
which also considers locally distributed samplingings brings significant
improvement. This direction obviously leaves muphce for further tests and
developments.

« We expect to investigate other approaches to ingribve regularization of
sequentially optimized parameters. We suspect shgaiificant improvement
could be obtained by including real priors on paeters (or states) into the
estimation scheme. Within a fully Bayesian framewae could use the priors
to regularize or finesse the "ill-possedness” efitiverse problem. Even though
this might not be possible with the current apphodtased on Kalman
filter/smoother, we hope to find a solution in nettg introduced generalized
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filtering [52], which can also enable sequentiatimfzation of both state and
parameter conditional densities by using the conagpgeneralized motion
(coordinates) of hidden states. However, also i tiase we expect to apply
cubature integration rules to approximate Gaugsiahability density.

There is an increasing evidence that more realisigrobiological modeling

could be improved by considering non-Markovian pssc [15, 164], which

eschews (implausible) Markovian assumptions abwaitserial independence of
random fluctuations. Solution to this problem camplbovided again by applying
the concept of generalized coordinates of motidt], [which assumes random
differential equations [165] instead of standatkastic differential equations.
However, it should be tested whether this assumptan really improve the

final estimates.

Certainly other work can be focused extending the generative models toward
further biophysical realism. Each extension means ircrease of model
complexity, which introduces other identifiabilipyoblems. Therefore it will be
very important to make a compromise between thphyisical realism and the
model identifiability, since both are necessaryatswer difficult questions
about the brain function.

We believe that the simulations carried out in tthesis are useful, but they
should be extended to cover grater realism in rur@amics [138, 163].
Nevertheless, it will be also very useful to hatendardized experimental data
from animals as a resource for model testing [180f can imagine a combined
data-set that provides intracranial recordingseafral sources, higher resolution
BOLD-fMRI, surface EEG, diffusion tensor imagingad¢tography, etc., that
would be hugely beneficial and useful for methodedepers.

As a final remark we should very briefly descrile journey that we undertook

and which led us to the results presented in tasis.

At the beginning of this project in 2008 it was nety clear which direction is the

best to go because we had almost no experiencdMiRhdata and with the analysis of

functional and effective connectivity in generahefe were two main methodological

concepts of analyzing effective connectivity intnodd to the neuroscience community:
Granger causality modeling (GCM) [166] and dynamracisal modeling (DCM) [11],
which were rapidly gaining a wide interest. Sinbe tmathematical background of

136



CONCLUSIONS AND FUTURE WORK

GCM based on multivariate autoregressive modelgignuch simpler than the one
employed by DCM, GCM seemed to be a good approadtart with. Therefore, we

chose GCM and focused on its limitation with resgecfMRI data. In particular, we

tried to improved the GCM performance by considgriime-varying estimation, first

using simple windowing technique [167, 168], antkdaintroducing a state-space
formulation based on two-pass Kalman filtering [L28lowever, there was an

increasing evidence [9, 126] that a presents of duymamic response variability

between different brain regions can seriously ceafthe identification of causal

relationship. Having the best intentions, we wevgrefurther and introduced a new
GCM approach that considers a generative nonlineamodynamic model for

estimation of neuronal signals [129], from whicle tonnectivity parameters are later
inferred. Nevertheless, we realized that at thimtpawe were already so close to the
concept of DCM that it did not have any further semo rescue a slowly (but surely)
sinking concept of GCM in the application to fMPut rather switch the conceptual
framework directly to DCM. By experiencing this $es, we ended up on the trail that
led us to the development of the nonlinear blindodeolution technique for the

estimation of neuronal signal from fMRI data andthe stochastic DCM, as they are
presented in this thesis.

The process undergone while working on this themisbe described the best by
the following quote:

"I may not have gone where | intended to go, bthinkk | have ended up where |
intended to be."

— Douglas Adams
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Appendix A

Toy examples

A.1 Performance of local linearization scheme

In this section we test the performance of contusddiscrete cubature Kalman filter
based on local linearization (LL) scheme with tiopelate described in Algorithm 6 and
compare it with the recently introduced continudiscrete cubature Kalman filter
based on It6-Taylor expansion of order 1.5 (IT-11%)9]. For this comparison, we will
repeat part of the air-traffic-control experimemisdribed in [109]. It should be noted
that in [109] the IT-1.5 approach demonstrated sapg@erformance compared to the

continuous-discrete versions of extended and unsdéfalman filters.

Radar tracker for coordinated turns

In this illustrative example we consider a typiaattraffic-control scenario, where the
objective is to track the trajectory of an aircrfat executes a maneuver at (nearly)
constant speed and turn rate in the horizontalepl&pecifically, the motion in the
horizontal plane and the motion in the verticalnglaare considered to be decoupled
from each other. In the aviation language, thiglkah motion is commonly referred to
as (nearly) coordinated turn. Hence, we may wiite ¢oordinated turn in the three-
dimensional space, subject to fairly “small” nors@deled by independent Brownian

motions as shown by:

dx(t) = f(x(t))dt + \/Qdw(t), (A.1)

where the seven-dimensional state of the airoraft[e ¢ n 1 { { w]T withe, n and{
denoting positions and, 7 and { denoting velocities in the, y and z Cartesian
coordinates, respectivelyw denotes the turn rate; the drift functiof(x) =
[€, (—wn), 1, w,€,0,0]"; the noise termw(t) = [wy(t), w,(t), ...,w,(t)]T with
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fw;(t)}, i=1,2,..,7, being all mutually independent standard Browniaations,
accounts for unpredictable modeling errors dueutbuience, wind force, etc.; and
finally the diffusion matrixQ = diag([0, 9%, 0, g%, 0, g%, q5]). For the experiment at
hand, the radar is located at the origin and eqd@p measure the rangk, azimuth

angle,d, and elevation anglej, at measurement sampling tirfieHence, we write the

,/e? +n¢ + ¢
a tan~! (&>
0; | = e, +r, (A.2)

b¢
Vet +ng

where the measurement noise,isN (0, R).

measurement equation:

The data generation followed exactly the procediescribed in [109], where other
details can be found. We considered process  diffusi matrix
Q = diag([0,0.2,0,0.2,0,0.2,7-107%]) and the variance of measurement noise
R = diag([502,0.01,0.01]). Further, the true initial state was
Xo = [1000 m,0 ms™%,2560 m, 150 ms™%,200 m,0 ms~%, 4.5°s71]T and the data
sampling interval wadt = 6 s. The independent aircraft trajectories were gerdra

using IT-1.5 withK = 1000 integration steps inside sampling interval.
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Figure A.1 Change of motion trajectory for the turn rate= 4.5°.
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Finally, we are ready to compare performance of @&Bed on IT-1.5 and CKF
based on LL. We considered 50 independent Monté @ans, each collected for time
interval of 210 s. Example of the motion trajectasyshown in Figure A.1. Both
Bayesian filters were initialized with the samdiaticondition for each run. The initial
state density was assumed to be Gaussian and ahgoiwt differencing method, which
uses the first two measurements to estimate thesstdatistics [109]. We repeated the
model inversion 7 times for different number ofeigtation stepsi = 29,21, ..., 2°);

I.e. number of time update iterations, betweendittime intervalAt = 6 s.

To compare these two filters, we used the accumeld®MSE of the position,
velocity and the turn rate. For example, we deflme accumulative RMSE in position

as:

\/%Z;Z:zl (Cef = emz+ =2 + (¢ = &)°) (A.3)

where(e!, nt, ¢*) and (é{l,ﬁ?, (}") are the true and estimated positions at tiraed in
the n-th Monte Carlo run. Similarly we consider accuntivia RMSE for velocity and

turn rate. Note that accumulative RMSEs were coetgbonly for a period of 60-210 s.

Position
60 T T
w T e N S AR R T s
=
= 40}
30 ' :
1 2 3 % > 6
log,(k)+1
Velocity
55 : !
-« e 1.5 Ito-Taylor
w 5 — Local linearization
=
(n =)
1 2 3 4 5 9
log(k)+1

Turn rate

5 6

3 4
log,(k)+1

Figure A.2 Results of air-traffic-control experiment. Accuratile RMSE for position,
velocity and turn rate with respect to the apphednber of integration stepg)(between
measurements.
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The results are displayed in Figure A.2., wherecane see that for both filters the
accuracy of estimate (mostly) increases with a lemaitegration step and gets stable
with more than 8 integration steps between measemsn Overall, the estimates
provided by CKF using local linearization for modaécretization are of the same or
better accuracy than estimates based on CKF usir@ialylor expansion of order 1.5.
However, it should be noted that local linearizatigince it requires calculation of

matrix exponential, is much slower.

A.2 Performance of joint estimation scheme

In this section we demonstrate performance oftiéergoint estimation scheme based on
forward pass of square-root cubature Kalman fiked square-root cubature RTS
smoother (square-root version of Algorithm 8). hrtgcular, we show how this scheme
is simultaneously able to estimate states and peteas Additionally, the noise
statistics are adaptively estimated as well, whedans that we are trying to solve a
triple estimation problem.

Lorenz attractor

The model of the Lorenz attractor exhibits deterstio chaos, where the path of
the hidden states diverges exponentially on a Blyttghaped strange attractor in a three
dimensional state-space. There are no inputs ia #yistem; the dynamics are
autonomous, being generated by nonlinear interast@mong the states and their
motion. The path begins by spiraling onto one wamgl then jumps to the other and

back in chaotic way:

x1d(tt) = 012, (t) — 01, (¢)
xzd(tt) = O3x1(t) — 22, (O)x3(8) — x2(t) (A.4)
0. ou0 00t

We consider the output to be the simple sum ofhale states at any time point,
Ye = X1 + X2 + x3,. The output observation is further contaminatethvadditive
Gaussian noise having zero mean and varidnd&e consider a small amount of the

state noise with variance equdls 10~°. We generated 120 time samples using this
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Figure A.3 Results of Lorenz attractor model inversion. Thatspin the first and second
rows display the results obtained by the forwarsspand the backward pass of the SCKS
algorithm, respectively. In the third row we carm ¢be predicted responses compared to
the clean and observed noisy signals.

model, with initial state  conditions x, = [0.9,0.8,30]7, parameters

0 = [18,—4,46.92]T and an integration steyt = 1/32 (using local lineariazation).

This sort of chaotic system shows sensitivity iGahconditions; which, in the case
of unknown initial conditions, is a challenge famyainversion scheme. This is even
more difficult if also the model parameters are nokn (or at least most of them).
Therefore, we want to test the performance of SGHgbrithm in these difficult
conditions. Moreover, we will go even further. BEs unknown initial conditions of
the states and unknown parameters, we also cortbeleneasurement noise variance to

be unknown. It means we have to solve a triplaregton problem.
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Model parameters
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Figure A.4 Estimated parameter of Lorenz attractor modelthi@ first row are the
estimated model parameters compared to their ey (black lines). In the second row
we show the estimate of the measurement noise asthmtkviation that converged very
close to the ground truth. Finally the third rovgmlays changes in the log-likelihood and
the convergence rate over successive iterations.

We used the initial state conditiong = [2,8,15]7 and the parameterg, =

[2,—12,44]T, where their true values were the same as abdwe.efror covariance
matrices for both states and parameters were linét asP} = P{ = I, -0.01, and
the state and parameter noise covariance matriQgss I, -2-107%, 0, =
diag([0.1,0.1,1 - 1073]), respectively. We allowed the SCKS algorithm tate until

the convergence (with the tolerance10%).

143



The algorithm converged after 50 iterations. Thib@écause we have considered a
very small threshold on convergence rate, underchvhiihe algorithm should be
automatically terminated. The results of the sesmates are depicted in Figure A.3.
There we can see that including also backward passdes more accurate estimates.
Additionally, one can see that due to iterationSGKS algorithm we get closer to the

initial state conditions of the simulated data.

The results of parameter estimates are depictdteabp of Figure A.4, where we
were able to correctly estimate the true paramedfres. In the same figure we also
show the (time-varying) estimate of measuremendenwvariance (displayed as standard
deviation), which also converged to the true vallre.this particular model, the
sequential estimation of the measurement noise@meei is crucial for successful joint
estimation of the states and parameter in casesevidogh initial parameters and initial

state conditions are significantly different froheir true values.

A.3 Performance of measurement noise estimation

In this section we demonstrate the performancegfiential estimation of measurement
noise covariance by variational Bayesian approad®][involved in cubature Kalman
filter as it was described in Algorithm 7. We empleery similar example as was used

in original paper that introduced this techniquedeneral

Range-only tracking in a non-homogeneous noise field

In this simple example we illustrate the perfornen€the adaptive filter by tracking a
moving target with sensors, which measure the mlists to the target moving in 2-
dimensional(u, v) space. The measurements are corrupted with nagmd time-

varying correlations between the sensors.

The state vector contains the position and velatfityhe targek, = [u, v, 11, v]7,
where the dynamics of the target are modeled bystiedard Wiener velocity model.

The distance measurements frensensors is given by:

yg = \/(Slll + ut)z + (Sb + Ut)z + Ti, l = 11 -, m, (A5)
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Figure A.5 Simulation scenario of the Range-Only Trackingcl@i denotes the starting
position of the target and triangles representpibstion of sensor The true trajectory of
the target is the black line and the estimate@dtayy is the red line.

Where(s{l, s,‘;) is the position of-th sensor and’ k is thei-th component of a Gaussian
distributed noise vectar, = NV (0,R;). In this experiment we consider a time varying
covariance matrix of measurement noise that isgéémandomly every 50th time step.
This is generated bR, = 6,67, where the vectos, is generated from the Gaussian
distribution having zero mean and variance equal,te; = N (0,I). The spectral
density of the process noise was selgte= 2 and the time step &6 = 0.01. The
trajectory shown in Figure A.5 was discretized t00Q time steps and then
measurements were generated according to the pnece@scribed above. Given the
measurements, the target was tracked by adaptibatume Kalman filter with
estimation of measurement noise variance usin@tanial Bayesian. The parameters
of inverse-Gamma distribution were setate= 1, f = 1, and because we expect time-
varying noise covariance the forgetting constans wat top = 0.9, to allow faster

dynamics. Finally, we considered 5 iterations of &fproach at each time step.

The obtained results for tracked target trajectmgy displayed in Figure A.5 (red
line). The results of estimated measurement nais&ar@ance, which we in this case
restricted to diagonal elements, are depicted guré A.6. We can see that the

estimated variances (green lines) nicely trackgrinevariances (black lines).
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Figure A.6 Results of the measurement noise variance estimdlinly diagonal elements

of measurement covariance matrix are displayed.
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Appendix B

SCKS toolkit

B.1 SCKS estimation toolkit for Matlab®

The SCKS algorithm introduced in this thesis isrespnted by a set of functions that
were implemented under Matlab®. This toolkit alloestimation of neuronal signal

from fMRI data and also evaluation of stochastioatyic causal modeling. The toolkit

also contains several examples, which demonstrate o use this algorithm. The

algorithm uses several functions that are partRif18° toolbox (with update 4290 or

higher) and requires installation of this freewaodétware. Although, the SCKS toolkit

was developed purposely for application to fMRIlagat can be easily applied to any
problem that is formulated as a continuous-discsgtgem. The toolkit package was
tested using Matlab 2009 and 2010.

Finally, the toolkit can be download from my perabwebpage:
https://sites.google.com/site/havlicekmartin, whalso the new updates will be later

available.

19 http://www.fil.ion.ucl.ac.uk/spm
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