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Abstrakt 

Zobrazení funkční magnetickou rezonancí (fMRI) využívající "blood-oxygen-level-
dependent" efekt jako indikátor lokální aktivity je velmi užitečnou technikou k 
identifikaci oblastí mozku, které jsou aktivní během percepce, kognice, akce, ale také 
během klidového stavu. V poslední době také roste zájem o studium konektivity mezi 
těmito oblastmi, zejména v klidovém stavu. 

Tato práce předkládá nový a originální přístup k problému nepřímého vztahu mezi 
měřenou hemodynamickou odezvou a její příčinou, tj. neuronálním signálem. Zmíněný 
nepřímý vztah komplikuje odhad efektivní konektivity (kauzálního ovlivnění) mezi 
různými oblastmi mozku z dat fMRI. Novost prezentovaného přístupu spočívá v použití 
(zobecněné nelineární) techniky slepé dekonvoluce, což dovoluje odhad endogenních 
neuronálních signálů (tj. vstupů systému) z naměřených hemodynamických odezev (tj. 
výstupů systému). To znamená, že metoda umožňuje "data-driven" hodnocení efektivní 
konektivity na neuronální úrovni i v případě, že jsou měřeny pouze zašumělé 
hemodynamické odezvy. Řešení tohoto obtížného dekonvolučního (inverzního) 
problému je dosaženo za použití techniky nelineárního rekurzivního Bayesovského 
odhadu, který poskytuje společný odhad neznámých stavů a parametrů modelu. 

Práce je rozdělena do tří hlavních částí. První část navrhuje metodu k řešení výše 
uvedeného problému. Metoda využívá odmocninové formy nelineárního kubaturního 
Kalmanova filtru a kubaturního Rauch-Tung-Striebelova vyhlazovače, ovšem 
rozšířených pro účely řešení tzv. problému společného odhadu, který je definován jako 
simultánní odhad stavů a parametrů sekvenčním přístupem. Metoda je navržena 
především pro spojitě-diskrétní systémy a dosahuje přesného a stabilního řešení 
diskretizace modelu kombinací nelineárního (kubaturního) filtru s metodou lokální 
linearizace. Tato inverzní metoda je navíc doplněna adaptivním odhadem statistiky 
šumu měření a šumů procesu (tj. šumů neznámých stavů a parametrů). První část práce 
je zaměřena na inverzi modelu pouze jednoho časového průběhu; tj. na odhad 
neuronální aktivity z fMRI signálu. 

Druhá část generalizuje navrhovaný přístup a aplikuje jej na více časových průběhů 
za účelem umožnění odhadu parametrů propojení neuronálního modelu interakce; tj. 
odhadu efektivní konektivity. Tato metoda představuje inovační stochastické pojetí 
dynamického kauzálního modelování, což ji činí odlišnou od dříve představených 
přístupů. Druhá část se rovněž zabývá metodami Bayesovského výběru modelu a 
navrhuje techniku pro detekci irelevantních parametrů propojení za účelem dosažení 
zlepšeného odhadu parametrů.  

Konečně třetí část se věnuje ověření navrhovaného přístupu s využitím jak 
simulovaných tak empirických fMRI dat, a je významných důkazem o velmi 
uspokojivých výsledcích navrhovaného přístupu. 

 
Klí čová slova: Efektivní konektivita, fMRI, neuronální, hemodynamické modelování, 
nelineární kubaturní Kalmanův filtr, vyhlazovač, odhad parametrů, Bayesovský výběr 
modelu, spojitě-diskrétní systémy, adaptivní filtrace, variační Bayes. 
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Abstract 

Functional magnetic resonance imaging (fMRI) utilizing the blood-oxygen-level-
dependent (BOLD) effect as an indicator of local activity is a very useful technique to 
identify brain regions that are active during perception, cognition, action, and also 
during rest. Currently, there is a growing interest to study connectivity between 
different brain regions, particularly in the resting-state. 

This thesis introduces a new and original approach to problem of indirect 
relationship between observed hemodynamic response and its cause represented by 
neuronal signal, as this indirect relationship complicates the estimation of effective 
connectivity (causal influence) between different brain regions from fMRI data. The 
novelty of this approach is in (generalized nonlinear) blind-deconvolution technique 
that allows estimation of the endogenous neuronal signals (system inputs) from 
measured hemodynamic responses (system outputs). Thus, it enables a fully data-driven 
evaluation of effective connectivity on neuronal level, even though only fMRI 
hemodynamic responses are observed. The solution to this difficult deconvolution 
(model inversion) problem is obtained through a nonlinear recursive Bayesian 
estimation framework for joint estimation of hidden model states and parameters.  

This thesis is divided into three main parts. The first part proposes a method to 
solve the above mentioned inversion problem. The method uses a square-root form of a 
nonlinear cubature Kalman filtering and cubature Rauch-Tung-Striebel smoothing 
extended to a joint estimation problem defined as a simultaneous estimation of states 
and parameters in a sequential manner. The method is designed particularly for 
continuous-discrete systems and obtains an accurate and stable solution to model 
discretization by combining nonlinear (cubature) filtering with local linearization. 
Moreover, the inversion method is equipped with the adaptive estimation of 
measurement, state, and parameter noise statistics. The first part of the thesis is focused 
only on the single time course model inversion; i.e. estimation of neuronal signal from 
fMRI signal. 

The second part generalizes the proposed approach and applies it to multiple fMRI 
time courses in order to enable the estimation of coupling parameters of a neuronal 
interaction model; i.e. estimation of effective connectivity. This method represents a 
novel stochastic treatment of dynamic causal modeling, which makes it distinct from 
any previously introduced approach. The second part also deals with methods for 
Bayesian model selection and proposes a technique for detection of irrelevant 
connectivity parameters to achieve improved performance of parameter estimation.  

Finally, the third part provides a validation of the proposed approach by using both 
simulated and empirical fMRI data, and demonstrates robust and very good 
performance. 
 

Keywords: Effective connectivity, fMRI, neuronal, hemodynamic modeling, nonlinear 
cubature Kalman filter, smoother, sequential parameter estimation, Bayesian model 
selection, pruning, continuous-discrete systems, adaptive filtering, variational Bayes.
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Chapter 1 

1. Introduction 

1.1 Functional integration in the brain 

Functional magnetic resonance imaging (fMRI) utilizing the blood oxygenation level 

dependent (BOLD) effect as an indicator of local activity is a very useful technique to 

identify brain regions that are active during perception, cognition, action, but also 

during rest. The present research interest that dominates in fMRI neuroimaging 

community can be summarized by quoting Karl Friston1: "A great deal of brain 

mapping is focused on functional segregation and the localization of function. 

Functional localization implies that a function can be localized in a cortical area, 

whereas segregation suggests that a cortical area is specialized with some aspects of 

perceptual or motor processing, and that this specialization is anatomically segregated 

within the cortex. The cortical infrastructure supporting a single function may involve 

many specialized areas whose union is mediated by the functional integration among 

them. In this view, functional segregation is only meaningful in the context of functional 

integration and vice versa.". Since it is generally believed that human cognitive 

functions emerge from dynamic interactions of brain networks [2], it is not surprising 

that in the last decade there has been an increasing  interest in identifying relationships 

among brain regions in order to better understand functional integration. This has lead 

to the formulation of connectivity analysis methods that attempt to identify associated 

brain regions and their interactions.  

There are two distinct concepts of investigating brain network connectivity 

(integration) in fMRI data. First, there is a functional connectivity, which refers to 

correlated structures (or any other information theoretic measure) in the data such that 

                                                 
1 [1] K. Friston, "Functional and effective connectivity: a review," Brain Connectivity, vol. 1, 2011. 
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brain areas can be grouped into interacting networks. This is usually accessed either by 

a pair-wise correlation (or a coherence in frequency domain) between a region of 

interest (ROI) and the rest of the brain [3] or by a multivariate approach such as 

independent component analysis (ICA) [4, 5]. Second, there is effective connectivity, 

which refers to the influence that one neural system exerts over another, either at the 

synaptic or population level [6]. In other words, effective connectivity moves beyond 

statistical dependency of functional connectivity,  onto measures of directed (causal) 

influence. This is accessed through models of interactions, which try to explain 

observed dependences (functional connectivity). In addition, there is a principal 

difference between these two concepts regarding the questions they are able to address. 

Critically, effective connectivity enables to distinguish between a correlation and a 

causation. Just because two events correlate does not mean that one has caused the 

other. The Latin term for such an error is: "Non cause pro causa", which literally 

means: "Not a cause for the cause". This is important, because some correlations seen in 

fMRI data might be meaningless, which complicates an interpretation of the results and 

can lead researchers to their wrong conclusions.  

Evaluation of effective connectivity often requires the definition of a structural 

model, i.e. an assembly of brain regions (nodes) among which the causal influence is 

assessed. In this work, the main interest rests upon the effective connectivity 

 

Figure 1.1 The functional and effective connectivity. The conceptual illustration of 
functional connectivity (left) and effective connectivity (right) with corresponding 
connectivity matrix representation.   
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framework, where an overview of the most common methods is provided in the 

introduction to Chapter 3.  

Following the above mentioned definition of effective connectivity, it is desirable 

to detect causal influences among different brain regions at the neuronal (synaptic) 

level. This desire automatically raises an important question: Considering that the 

BOLD signal offers only a very indirect measure of neuronal activation, is it possible to 

evaluate effective connectivity at the neuronal level from fMRI data? In fMRI we 

measure hemodynamic responses, which reflect changes in blood flow and blood 

oxygenation that follow neuronal activation. Crucially, the form of this hemodynamic 

response can vary across subjects and different brain regions [7, 8]. These facts 

seriously complicate the identification of effective connectivity from fMRI [9]. 

However, one can reasonably justify that if it is possible to remove the effect of this 

hemodynamic blurring and variation, we could still achieve the aim of identifying 

effective connectivity from fMRI data. By saying this, we should note that there might 

be differences also between neuronal dynamics assigned to different brain regions 

having distinct cognitive functions. These differences can be more significant when 

processing highly cognitive tasks [10]. Nevertheless, this sort of variability is 

commonly ignored with respect to accuracy of modeling allowed by temporal resolution 

of fMRI signal. 

In general, the relationship between initial neuronal activation and our fMRI 

observations rests on a complex biophysiological dynamic process. If this process is 

known and well described, it can be approximated by mathematical modeling. 

Considering this model (see Section 1.3), there are several ways to perform mapping 

from observed data to estimated neuronal signals that interact among each other, where 

this is partly defined by the experimental design conducting the acquisition of the data. 

For example, in the case of an experiment with specific task (task data), we have prior 

knowledge of the stimulation paradigm (i.e. any kind of stimulus presented to the 

subject during a scanning session), which can be used as the definition of a driving 

exogenous input into the model. It is then possible to model the relationship between 

neuronal signals and observed responses by considering a deterministic model [11], and 

simply infer the model parameters to fit the data. This formulation is often 

unsatisfactory since unexpected contributions in the "real world", which deviate from 
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the model, disturb the considered dynamic phenomena so that the deterministic models 

have a little explanatory power concerning the dynamics [12]. Therefore, it is usually 

preferable to consider some additive randomness to the modeled process, which then 

represents stochastic modeling [13, 14]. This approach is more general and is expected 

to have much more explanatory power than the deterministic one [15]. In a related 

context, there are many fMRI studies, where the data are collected when the subject is at 

rest (resting-state data). In this case, there is no stimulation paradigm and therefore no 

exogenous input that can be used for modeling. It means that the neuronal signal, which 

generates observed hemodynamics, has purely endogenous character. Until very 

recently, this fact did not allow estimation of effective connectivity in resting-state 

fMRI data, unless there was a good reason to assume that the neuronal dynamics and 

measured hemodynamics are equivalent [16]. It is specifically the form of stochastic 

modeling, which enables the estimation of neuronal signals and their interactions 

without any prior knowledge of exogenous input that allows evaluation of effective 

connectivity even in resting-state data [15, 17-19]. Critically, the inversion of such a 

stochastic model leads to a blind deconvolution2 problem, which is described as 

estimating the unknown input to a dynamic system, given output data, when the model 

of the system contains unknown parameters [20]. 

1.2 fMRI signal 

The fMRI signal indirectly reflects the activity of neuronal populations in the  brain 

with excellent spatial resolution (millimeters down to hundreds of micrometers at high 

field strength), with a good temporal resolution (seconds down to hundreds of 

milliseconds) and the whole spatial coverage of the brain. Both the spatial and temporal 

resolution in fMRI are potentially higher than in neuroimaging methods using 

radioactive tracers, such as positron emission tomography (PET). In contrast to electro-

encephalography (EEG) and magneto-encephalography (MEG) recordings, fMRI has a 

poorer temporal resolution, but it still holds its primacy in providing great spatial 

information about the brain function. Although fMRI is possible with few different 

imaging techniques, the blood oxygenation level dependent (BOLD) contrast 

                                                 
2 A note on terminology is needed here: although convolution is usually defined as a linear operation, the 
term deconvolution is generally used in reference to the inversion of nonlinear (generalized) convolution 
models (i.e. restoration); we adhere to this convention. 
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mechanism is employed in the great majority of cases [21, 22]. In this case, the fMRI 

signal is sensitive to local oxidative metabolism in the brain, which is necessary to fuel 

local neuronal activity [23]. The final fMRI signal is then a composite of complex chain 

of processes that can be classified into neuronal, physiological and physical processes 

[23-25].  

At the neuronal level, a train of action potentials (spikes) in any single neuron 

arriving at the pre-synaptic terminal buttons induces neurotransmitter to release into the 

synaptic cleft (synaptic neuronal activity). As a consequence, excitatory and/or 

inhibitory electric potentials are originated in the dendrites of post-synaptic neurons due 

to the activation of ionic currents (89) that create an electrochemical disequilibrium in 

the cellular membrane. The neurotransmitters are rapidly terminated by a re-uptake 

mechanism in the astrocytes processes, while the electrochemical gradients are restored 

by ATP (adenosine triphosphate) transport mechanism. Hence, a metabolic and oxygen 

demand will appear in the neighborhood of the activated brain area [13] (see Figure 

1.3).  

From the perspective of physics, the MRI signal arises from the nuclei of tissue's 

hydrogen atoms (i.e. individual protons), which possess magnetic moment called spin. 

When placed to an external magnetic field (:;), spins tend to align with it, gaining a 

lower energy state. The hydrogen nucleus will also experience a torque from the applied 

magnetic field which forces the magnetic moment to precess around the field direction. 

The frequency of this precession is directly determined by the strength of the applied 

magnetic field. At the macroscopic level, considering large (though still miscroscopic)  

 

Figure 1.2 Illustration of MRI data. On the left side is the <�-weighted anatomical image 
and in the middle slice of functional <=∗-weighted image, which evolves in time. On the 
right side are then examples of time courses from voxels of functional data.  
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ensemble of hydrogen nuclei, there will be a net magnetic vector pointing in the 

direction of the applied magnetic field (stronger :;, then more nuclei in lower energy 

state, results in stronger magnetic vector). If we apply a radio frequency (RF) pulse 

tuned to the precession frequency (known as Larmor frequency), some of nuclei are 

transferred to higher energy state, i.e. the mean magnetic vector is tilted and precesses 

around magnetic field vector. Here the nuclei spins precess in phase coherence. Then 

the tilted magnetic vector gradually returns to its equilibrium in a process called 

relaxation, emitting electromagnetic signal that generates current in receiver coils. It is 

the MR pulse sequence (series of RF pulses) and it parameters, which determines the 

magnetization preparation of the sample and the way the signal is subsequently acquired 

(see Figure 1.4). In fMRI, the gradient echo planar imaging (EPI) sequence is used 

because of its sensitivity to <=∗ relaxation time (relaxation in xy-plane associated with 

local inhomogenities in magnetic field), which allows measurement of BOLD signal 

[21]. In particular, neurons in the brain consume the oxygen, which is attached to 

hemoglobin molecules in the blood and the flow of blood continuously provides new 

oxygen to the neurons. This leads to the concentration increase of oxygenated blood in 

the capillaries surrounding the active brain area. The hemoglobin with oxygen has 

slightly diamagnetic properties, while without it it becomes paramagnetic, which means 

it distorts the applied magnetic field (by altering the local magnetic susceptibility). This 

local modulation of the magnetic field :; makes the hydrogen nuclei excited by RF 

pulse dephase faster, resulting in a shorter relaxation time constant <=∗. Therefore, fMRI 

 

Figure 1.3 The diagram of physiological process underlying BOLD signal.  
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images will be brighter with a longer <=∗, i.e. with a high oxygen concentration (more 

neuronal activation).  

On the physiological level, increased neuronal activity in brain causes changes in 

the local cerebral flow (CBF), which increases much more than the cerebral metabolic 

rate of oxygen (CMRO2), resulting in the decrease of local oxygen extraction fraction. 

With the increase of CBF, cerebral blood volume (CBV) increases as well. Because the 

local blood is more oxygenated, there is less deoxyhemoglobin present, the magnetic 

field distorts are reduced, and the local MR signal increases slightly [23].   

Finally, it is known that the BOLD signal correlates more with afferent synaptic 

activity than with neuronal spikes [26]. 

1.3 Hemodynamic model 

In this section, the hemodynamic model describing transformation from synaptic 

neuronal activity to measured BOLD signal is described.  

In 1998, Buxton et al. [27] developed a mechanistically plausible model, so-called 

balloon model, of how evoked changes in blood flow are transformed into BOLD 

signal. A component of balloon model, namely the relationship between blood flow and 

blood volume, was then elaborated through the standard Windkessel theory [28]. This 

model describes the behavior of the post-capillary venous compartment by analogy to 

 

Figure 1.4 Generation and receiving process of MR signal. (a) There will be a small 
excess of hydrogen nuclei in the lower energy state and therefore a resultant magnetic 
vector will be pointing in the direction of B0. (b) Energy can be supplied to the nuclei by 
applying a Radio Frequency (RF) pulse. The resultant magnetic vector is then tilted into 
the xy-plane and a current is induced in the receiver coil. Due to different relaxation 
processes, the xy-component of the magnetic vector, as well as the induced current in the 
receiver coil, will decay.  
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an inflated balloon, determining a nonlinear dependence of the BOLD signal on blood 

volume and deoxyhemoglobin content. The complete form of the hemodynamic model 

was proposed by Friston [29], covering the coupling of synaptic activity and blood flow 

through simple linear dynamical model. The model flowchart is summarized in Figure 

1.5. Here, the neural activity ?(') (represented by exogenous input) causes an increase 

in vasodilatory signal @(') which is subject to auto-regulatory feedback. This flow-

inducing signal is artificially designed to subsume many neurogenic and diffusive signal 

subcomponents. Blood flow A(') responds in proportion to this signal and causes 

changes in blood volume B(t) and deoxyhemoglobin content, C('). The dynamics of 

these four hemodynamic states are modeled by a set of differential equations:  

 
&@(')&' = ?(') − E@(') − F(A(') − 1) 
&A(')&' = @(') 
&B(')&' = 1H (A(') − AIJ*(B, ')) 
&C(')&' = 	1H KA(')L(A, ') − AIJ*(B(')) C(')B(')M 

(1.1) 

 (1.2) 

 (1.3) 

 (1.4) 

In the first equation, HN and HO are parameters that determine dynamics of this 

component of the hemodynamic model. They represent the time constant for a signal 

decay (or elimination) and the time constant for the autoregulatory feedback from the 

blood flow, respectively. The later equation (1.3) says that volume changes reflect the 

difference between the inflow A(') to and the outflow AIJ*(B, ') from venous 

compartment with a time constant H. This constant expresses the mean transit time; i.e. 

 

Figure 1.5 Diagram of nonlinear hemodynamic model. This diagram describes a 
relationship between stimulus, hemodynamic states and BOLD signal given by equations 
(1.1)-(1.4) and (1.7).  
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the average time it takes to traverse the venous compartment, or for that compartment to 

be replenished. The outflow is related to the blood volume through Grubb’s exponent P 

(stiffness parameter):  

 AIJ*(B, ') = B(')� Q⁄ , (1.5) 

where 1 P⁄ = S + U. The parameters S = 2 and U > 1 represent the laminar flow and 

the diminished volume reserve at high pressure, respectively. The value reported from 

animal studies P = 0.38 ± 0.1 seems to be very stable during steady-state stimulation 

[28]. The change in deoxyhemoglobin &C &'⁄  reflects the delivery of deoxyhemoglobin 

into the venous compartment minus that expelled (outflow times concentration), where 

the relative oxygen extraction,	L, is a function of flow and resting oxygen extraction 

fraction, L;, by the capillary bed. 

 L(A, ') = 1L; \1 − (1 − L;)� O(*)⁄ ]	 (1.6) 

The second term in (1.4) represents an important nonlinearity: the effect of flow on the 

state C(') is largely determined by the inflation of the balloon, resulting in the increase 

of AIJ*(B, ') and in the clearance of deoxyhemoglobin. This effect depends upon the 

concentration of deoxyhemoglobin such that the clearance attained by the outflow will 

be severely attenuated when the concentration is low (e.g. during the peak response to 

prior stimulus). 

Finally, the output or observed BOLD signal is expressed as a nonlinear function of 

blood volume and deoxyhemoglobin content: 

 ^* = _; `a�(1 − C*) + a= b1 − cdedf + ag(1 − B*)h, (1.7) 

where _; and a�, … , ag are biophysical parameters: resting blood volume fraction and 

intravascular, concentration and extravascular coefficients, respectively, where the later 

ones are MR scanner dependent. All empirical prior values of hemodynamic model 

parameters (for 1.5 Tesla scanner) are summarized in Table 1.1. Although, a variety of 

extensions (and alternatives) have been proposed for both hemodynamic states and 

BOLD equations [23, 30-33]. The original version of the hemodynamic model (also one 

of the simplest) as described above will be considered in this work. 
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Notice that the model for BOLD signal (1.7) is already represented in discrete time 

with sampling period corresponding to the repeat time (TR), which is the time between 

repeated excitation of the same slice of the brain. Hereafter we use a notation of time 

index in subscript to denote discrete time samples. Together with physiological states !(') = 1@('), A('), B('), C(')2�, which evolve in continuous time, it forms a 

continuous-discrete model that has a state-space representation: 

 !(') = )(!('), i('); 7)&' + kl&m(') #* = 4(!*, i*; 7) + n*, 
(1.8) 

 (1.9) 

where function )(. ) and 4(. ) substitute the nonlinear models for physiological states 

and BOLD signal, respectively, which are parameterized by the set of parameters  7 = oH, E, F, p, P, qr, and the dynamics are caused by the exogenous input i('). 
Additionally, one can also assume that the true model trajectories are disturbed by 

contribution of some random (stochastic) process s(') and n*, which have here 

presumably simple additive form.   

 

 

 

 

Figure 1.6 Hemodynamic response to the stimulus (Dirac impulse). The hemodynamic 
states on the left sides are generated by hemodynamic model and normalized to the zero 
baseline. On the right side is the typical (theoretical) hemodynamic response (the model 
output). 
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Table 1.1 Hemodynamic model parameters for 1.5 T field strength. 

 Description Value 

Process equations: E Rate of signal decay 0.65 s-1 F Rate of flow-dependent elimination 0.38 s-1 H Hemodynamic transit time 0.98 s P Grubb’s exponent 0.34 p Resting oxygen extraction fraction 0.32 

Observation equation: _; Blood volume fraction 0.04 a� Intravascular coefficient 4.3t;L;<L a= Concentration coefficient qu;p<L ag Extravascular coefficient 1−	q t; Frequency offset at the outer surface of 

the magnetized vessel 

40.3 s-1 

L; Fixed resting oxygen extraction fraction 0.4 q Ratio of intra- and extravascular signal 1 u; Slope of intravascular relaxation rate 25 s-1 <L Time to echo 0.04 s 

1.4 Nonlinear hemodynamic response modeling overview 

In fMRI, the physiological mechanisms mediating the relationship between neuronal 

activation and vascular/metabolic systems have been studied extensively [34-36] and 

models of hemodynamic responses have been described at macroscopic level. The 

principal representative of these models is hemodynamic model, which was described 

above. This hemodynamic model is nonlinear in nature [37-39]. Therefore, to infer the 

hidden states and parameters of the underlying system, we require inversion methods 

that can handle these nonlinearities. In Friston et al. [29], the parameters of a 

hemodynamic model were estimated using a Volterra kernel expansion to characterize 

the hemodynamic response. Later, Friston et al. [40] introduced a Bayesian estimation 

framework to invert (i.e., fit) the hemodynamic model explicitly. This approach 

accommodated prior constraints on parameters and avoided the need for Volterra 

kernels. Subsequently, the approach was generalized to cover networks of coupled 

regions and to include parameters controlling the neuronal coupling (effective 

connectivity) among brain regions [11]. The Bayesian inversion of these models is 
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known as dynamic causal modeling (DCM) and is now used widely to analyze effective 

connectivity in fMRI and electrophysiological studies. These approaches to 

hemodynamic and causal models only account for noise at the level of the 

measurement; where this noise includes thermally generated random noise. However, 

there is an important contribution of physiological noise that represents stochastic 

fluctuations due to metabolic and vascular responses, which affect the hidden states of 

the system; furthermore, neuronal activity can show pronounced endogenous 

fluctuations [41, 42]. Motivated by this observation, Riera et al. [13] proposed a 

technique based on a fully stochastic model (i.e. including physiological noise) that 

used the local linearization filter (LLF) [43], which can be considered a form of 

extended Kalman filtering (EKF) [44] for continuous dynamic systems. Besides 

estimating hemodynamic states and parameters, this approach allows one to estimate the 

system’s input, i.e. neuronal activity; by its parameterization via radial basis functions 

(RBFs). In Riera et al. [45], the number of RBFs was considered fixed a priori, which 

means that the solution has to lie inside a regularly distributed but sparse space 

(otherwise, the problem is underdetermined).  

The hemodynamic response and hidden states of hemodynamic model possess 

strong nonlinear characteristics, which are prescient with respect to stimulus duration 

[39, 46]. This makes one wonder whether a linearization approach such as LLF can 

handle such strong nonlinearities. Johnston et al. [47] proposed particle filtering, a 

sequential Monte Carlo method, that accommodates true nonlinearities in the model. 

This approach was shown to be both accurate and robust, when used to estimate hidden 

physiologic and hemodynamic states; and was superior to LLF. Similarly, two-pass 

particle filtering, including a smoothing (backwards pass) procedure, was introduced by 

Murray et al. [48]. Another attempt to infer model parameters and hidden states used the 

unscented Kalman filter (UKF), which is more suitable for highly nonlinear problems 

[49]. Finally, Jacobson et al. [50] addressed inference on model parameters, using a 

Metropolis–Hastings algorithm for sampling their posterior distribution. 

None of the methods mentioned above, except [13] with its restricted 

parameterization of the input, can perform a complete deconvolution of fMRI signals 

and estimate both hidden states and input; i.e. the neuronal activation, without knowing 

the input (stimulation function). Here, an important exception is the methodology 



INTRODUCTION 
 
 

13 
 

recently introduced by Friston et al. [14] called dynamic expectation maximization 

(DEM) and its generalizations: variational filtering [51] and generalized filtering [52]. 

DEM represents a variational Bayesian technique [53, 54], that is applied to models 

formulated in terms of generalized coordinates of motion. 

This is the state of the art that covers the main contributions to nonlinear modeling 

of hemodynamic responses in fMRI data and inversion of such models. We purposely 

excluded our own contributions to this problem, since this is the main content of this 

thesis as listed below.   

1.5 Scope and contributions of this thesis 

In the introduction we have emphasized the general problem of estimating the effective 

connectivity among different brain regions from fMRI data. This problem stems from 

the fact that the BOLD signal is an indirect measure of the neuronal signal, and the 

shape of hemodynamic response function varies across different brain regions and also 

across subjects. In order to enable the identification of effective connectivity from fMRI 

data that is in the agreement with the true effective connectivity at the neuronal level, 

one has to solve the inverse ("deconvolution") problem. Moreover, we have also 

highlighted the methodological enrichment in considering stochastic representation of 

dynamic modeling as opposed to the limited deterministic one. Finally, we have 

mentioned the motivation to the inverse problem, where we do not have a prior 

knowledge of exogenous input, as it can be applied also to the resting-state data. 

Although many attempts were already made in this direction as discussed above, 

there is still considerable room for improvement. Here, the main aim is to build a more 

accurate but less restrictive estimation approach that can be broadly applied to any 

fMRI data.   

The successful solution to this inverse problem, i.e. successful estimation of the 

neuronal signal, requires the following:   

1) An estimation framework that is able to handle the nonlinear characteristics of a 

hemodynamic model that couples neuronal activity to BOLD signal. 

2) Fully stochastic modeling, since no model is completely able to catch the real 

world dynamics and that at any modeled physiological level, the likely 
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contribution of the noise has to be taken into account. Moreover, the endogenous 

neuronal signal can be recovered only by considering a stochastic modeling. 

3) A robust approach to stochastic continuous-discrete modeling, because the 

causal chain of hemodynamic model is described in continuous time and, as 

required above, should also account for randomness.  

4) An efficient framework for the estimation of model parameters in order to 

achieve a good fit of the model to the data and allow for diversity of 

hemodynamic responses across the brain. Additionally, this framework should 

preferably enable sequential modeling of conditional dependencies between 

parameters and modeled states.  

These points define the topics that are addressed in this thesis (in the first half of the 

thesis in particular). When considering a suitable estimation framework that could 

possibly meet all the above requirements, the preference was to use and further develop 

new methods from the field of engineering, in the hope that their introduction to the 

society of computational neuroscience could raise the interest. Another important factor 

was to consider reasonable computational demands of the employed methods. A great 

deal of effort has been devoted to the introduction, description and motivation of using 

these methods. Specifically, we took an advantage and highlighted a recent 

development of new nonlinear cubature Kalman filter [55]. In this context, special 

attention is devoted to the joint state-parameter estimation problem. Another relevant 

part of the thesis describes an accurate discretization of continuous model based on 

local linearization scheme [56] and online Bayesian learning of measurement noise 

statistics. 

In the latter part of the thesis, we generalize the inverse problem into the 

multivariate case, where multiple brain regions are involved and where the model of 

causal interactions at the neuronal level is considered. Critically, this introduces a new 

concept in evaluation of effective connectivity through stochastic dynamic causal 

modeling. This is accompanied by a description of the second level inference that is 

known as model selection. In particular, we discuss a Bayesian approaches to model 

selection based on different approximations of the marginal likelihood. Consequently, 

we introduce a simple algorithm for detection of irrelevant parameters in neuronal 

interaction model based on network pruning.     
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Finally, in the last part we validate the proposed method from different 

perspectives, and try to address questions, which presently dominate in the neuroscience 

community, regarding possible application of methods for analysis of effective 

connectivity. 

This thesis proposes the following: 

Contribution to computational neuroscience: 

• A novel approach to the nonlinear modeling of hemodynamic signal, where the 

underlying neuronal signal is estimated from the measured BOLD time series. This 

approach performs a blind (nonlinear) deconvolution, where the model parameters, 

physiological states and mainly the endogenous input into the model (neuronal 

signal) are estimated from measured data.    

• A new approach for the evaluation of effective connectivity based on stochastic 

dynamic causal modeling. This enables inversion of full connectivity models 

without knowing the driving input or having a hypothesis about the connectivity 

structure. This means that the a priori unknown model of neuronal interactions is 

learned from the data.  

Contribution to engineering methodology: 

• Formulation of combined use of cubature Kalman filtering and Rauch-Tung-Striebel 

smoothing in system identification for joint estimation of the hidden states, model 

parameters, and endogenous model input. The convergence is supported by an  

iterative scheme that automatically maximizes the log-likelihood. 

• A new algorithm for estimation of continuous-discrete state-space models based on 

combination of the (square-root) cubature Kalman filter and local linearization 

scheme, which provides an accurate and stable discretization of a continuous model 

represented by stochastic differential equations.  

• A new nonlinear adaptive Kalman filter for joint estimation problem, where the 

measurement noise covariance is effectively learned through a variational Bayesian 

approach, and parameter and state noise covariance are estimated by the Robbins-

Monro stochastic approximation scheme. 
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1.6 Thesis organization 

Beyond the introduction chapter that proceeded to this section, the content of this thesis 

is distributed into four chapter and two appendices. After each chapter a short summary 

is provided. 

Chapter 2:  Estimation of neuronal signal from fMRI data 

The second chapter follows the general overview of the problem provided in the 

thesis introduction and provides the theoretical background for how to solve this 

problem. In particular, it introduces a novel approach for estimation of neuronal 

signals from fMRI data by utilizing a nonlinear, sequential estimation framework 

based on cubature Kalman filtering and smoothing. It also proposes the joint 

estimation of states and parameters, which is accompanied by adaptive estimation of 

process noise and measurement noise covariance matrices. Further, it introduces an 

estimation framework for continuous-discrete systems.  

Chapter 3:  Modeling brain network connectivity 

The introduction to this chapter provides a more extensive overview of 

methodological advances for the evaluation of effective connectivity. This is 

followed by an extension of the estimation framework described in Chapter 2 to a 

multivariate case. In this sense, we describe a neuronal model of interaction, where 

the coupling parameters represent the weights of effective connectivity we wish to 

estimate. This chapter further addresses different approaches for Bayesian model 

selection and proposes improved estimation of coupling parameters based on 

network pruning. 

Chapter 4:  Validation and application of the method 

The fourth chapter is focused on validation of the approaches introduced in Chapters 

2 and 3. Here we demonstrate the estimation of the neuronal signal from a single 

fMRI time course and later also test the performance of full model inversion, which 

provides estimates of coupling parameters in neuronal interaction model, using 

multiple time courses of fMRI data. 
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Chapter 5:  Conclusions and future work 

This chapter contains concluding remarks on attained aims and results. It discusses 

their relevance and suggests a few directions for future research. 

Appendix A: Toy examples 

This appendix contains toy examples that demonstrate the performance of the 

proposed algorithm for continuous-discrete systems, the algorithm for sequential 

estimation of measurement noise covariance, and the algorithm for joint estimation 

of states and parameters.  

Appendix B: SCKS toolkit  

The last appendix gives basic information about the developed software toolkit for 

Matlab®, and provides a link where it can be downloaded.  
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Chapter 2 

2. Estimation of neuronal signal 

from fMRI data 

2.1 Introduction 

The previous chapter provided a brief introduction to the nonlinear modeling of BOLD 

responses. We saw that the hemodynamic model naturally forms the state-space model, 

where the measured data are related to the subset of state-space variables (physiological 

states) by an observation equation. In this continuous-discrete time dynamic system, 

which represents a generative model of the BOLD signal, both state and observation 

equations are nonlinear and polluted by physiological and instrumental noise, 

respectively. In general, the estimation of the state of a continuous system from noisy 

discrete observations can be performed using the nonlinear filter theory, which is an 

extension of the original framework (Kalman filter theory) formulated to provide a 

sequential and computationally efficient solution to the linear filtering and prediction 

problems [57]. Finding the optimal nonlinear system identification method (i.e. the 

estimation of the model parameters and the trajectories of unobservable states) is an 

active research area.  

It is the main goal of this chapter to introduce a new approach to this identification 

problem. In particular, we will first provide a short introduction to the probabilistic 

inference based on optimal recursive Bayesian solution. Since this solution is tractable 

only for linear systems, we will focus on very recent developments in nonlinear Kalman 

filtering based on efficient cubature integration rules [55]. This numerical tool called 

cubature Kalman filtering will serve as the cornerstone for further extensions and 

developments. Specifically, we will describe the cubature Rauch-Tung-Striebel 

smoother to obtain more accurate estimates of the state, including efficient square-root 
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implementation. Next, we propose the joint estimation framework to simultaneously 

infer the hidden states and model parameters. We will also introduce a new filtering 

approach for hybrid continuous-discrete systems based on an accurate discretization 

scheme of stochastic differential equations called local linearization combined with the 

above mentioned cubature integration rules. Consequently, in order to make the 

algorithm easily adaptable to the real data, we will discuss the extension to adaptive 

filtering through Bayesian estimation of the measurement noise covariance [55], and 

Robbins-Monro approximation of the parameter and state noise covariance matrices 

[58].  

Finally, all these extensions and developments will be combined into one single 

algorithm, which will represent a new approach to estimation of neuronal signal from 

BOLD responses; i.e. the blind (nonlinear) deconvolution approach where all the 

hemodynamic states, the model parameters and mainly the input (neuronal signal) are 

estimated from observed BOLD responses.  

Importantly, this chapter will deal only with a single time course modeling. The 

generalization to multivariate case, including inferring causal relationships, is left for 

the Chapter 3. From the perspective of Bayesian inference, we can also say that this 

chapter focuses only on the first level of inference, during which model parameters and 

unobserved trajectories of neuronal and physiological states are estimated. The second 

level of inference involving the model selection is described in Chapter 3. 

2.2 Probabilistic inference 

The problem of estimating the hidden states (causing data), parameters (influencing the 

dynamics of hidden states) and any non-controlled endogenous input to the system, in a 

situation when only observations are given, requires probabilistic inference. If we 

interpret our data through a dynamic state-space model (DSSM), then we are facing the 

sequential (recursive) probabilistic inference problem.  

Assuming the first-order Markov process, a discrete dynamic state-space system is 

described by a pair of equations: 

 !* = )(!*��, i*��; 7) + s*�� (2.1) 
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#* = 4(!*, i*; 7) + n*, (2.2) 

where the first equation represents the system (state) model, describing the evaluation of 

the states !* as a function of time. Here, s*�� is the process (state) noise that drives the 

dynamic system through an arbitrary (possibly nonlinear and time-varying) transition 

function ), and i* is the exogenous input to the system that is usually assumed known 

(though later in this thesis i* will be considered unknown). The second equation 

represents the measurement (observation) model, where the measurement noise n* 
corrupting the observation of the (hidden) states through arbitrary observation function 4. Both ) and 4 can be parameterized using a set of parameters 7. In a Markovian 

setting, the current state !* depends only on the immediate past state !*�� through the 

state-transition distribution  (!*|!*��); i.e. conditional probability density. The 

observations #* are conditionally independent, given the state, and are generated 

according to the observation likelihood  (#*|!*) [59]. Therefore, the dynamic state-

space model, together with the known statistics of the noise (and the prior distribution 

of the system states), defines a probabilistic generative model of how system evolves 

over time and how we (partially or inaccurately) observe this hidden state.  

The DSSM can be also interpreted as dynamic Bayesian network (DBN) [60] with 

directed edges connecting the (hidden) states. These edges directly model the temporal 

flow of information with the implied causality constraints. For example, the first-order 

Markov process and conditional observation independence of the DSSM, is modeled by 

the specific graphical structure and relationship of the directed edges and nodes called 

the directed acyclic graph (DAG) as depicted in Figure 2.1.  

The optimal solution to the above inference problem is given by the recursive 

 

Figure 2.1 Schematic diagrams of probabilistic inference. (a) Given noisy observation y, 
what can we infer about system state, parameters or input. (b)  Graphical model of a 
probabilistic dynamic state-space model. This representation is also known as a directed 
acyclic graph (DAG) in the graph theory field. 
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Bayesian estimation algorithm, which recursively updates the posterior density of the 

system state  (!*|#*)	as new observations arrive. Generally in Bayesian framework, the 

posterior density 	of the states  (!*|#�:*)	given all the observations #�:*, embodies the 

complete solution to the probabilistic inference problem. In other words,  (!*|#�:*) 
contains all information necessary to calculate an optimal estimate of the state, such as 

the conditional mean: 

 !3*|* = 01!*|#�:*2 = v !*ℝ/w  (!*|#�:*)&!*, (2.3) 

and the covariance matrix, as a measure of accuracy of the estimate !3*|*: 
  

x*|* = 0 `\!* − !3*|*]\!* − !3*|*]�h 
= v \!* − !3*|*]\!* − !3*|*]� (!*|#�:*)&!*ℝ/w . (2.4) 

In order to compute posterior density recursively (online) as new observations arrive, 

one make use of Bayes rule and dynamic state-space model, receiving recursive update: 

 

 (!*|#�:*) =  (#�:*|!*) (!*) (#�:*) 	
=  (#*, #�:*��|!*) (!*) (#*|#�:*��) 	
=  (#*|#�:*��, !*) (#�:*��|!*) (!*) (#*|#�:*��) (#�:*��) 	
=  (#*|#�:*��, !*) (!*|#�:*��) (#�:*��) (!*) (#*|#�:*��) (#�:*��) (!*) 	
=  (#*|!*) (!*|#�:*��) (#*|#�:*��) . 

 

 

 

 

(2.5) 

This relation can be decomposed into the two steps: 

• Time update: The old posterior distribution at time ' − 1,  (!*��|#�:*��), is 

projected forward in time to yield predictive distribution  (!*|#�:*��). This 

involves multiplication of old posterior  (!*��|#�:*��) with transient prior 

distribution  (!*|!*��) obtained through (2.1), and integration of resulting joint 

distribution with respect to !*�� [61]. This represents so called Chapman-

Kolmogorov equation: 
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  (!*|#�:*��) = v  (!*|!*��) (!*��|#�:*��)&!*��ℝ/w . (2.6) 

• Measurement update: The updated posterior distribution  (!*|#�:*) is then 

obtained as a multiplication of predicted posterior distribution and observation 

likelihood  (#*|!*), which incorporates the latest noisy measurement (obtained 

through (2.2)):     

  (!*|#�:*) = 1y*  (!*|#�:*��) (#*|!*), (2.7) 

where 

 y* =  (#*|#�:*��) = v  (#*|!*) (!*|#�:*��)&!*ℝ/w  (2.8) 

is the normalizing constant. The summation over the time sequence of 

normalizing constants y�:* is in Bayesian terminology called the evidence, or 

marginal likelihood of the observations [62]. In our case, it will be represented 

by log likelihood: 

 

Figure 2.2 Diagram of  the recursive Bayesian filter under Gaussian assumption. Here 'G-' 
stands for Gaussian. Based on [55]. 
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Although this measure is commonly ignored during the first level of inference, 

i.e. during estimation of the states or parameters, it becomes very important in 

the second level of inference, where one wants to infer the most plausible model 

(model selection) [63].  

The time update and measurement update are both carried out at every time step 

through the computation of the Bayesian model. In this way, we obtain posterior 

filtering distribution of the state !* at time '	given the history of the measurement up to 

the time step ',  (!*|#�:*). However, it is also possible to obtain the smoothing 

distribution  (!*|#�:�), where the posterior of the state is computed at the time step ' 
after receiving the measurements up to time step <, where < > '. The difference 

between filter and smoother is that the optimal filter computes its estimates using only 

the measurements obtained before and at the time of the step ', whereas the optimal 

smoother uses also the future measurements for computing its estimates [64, 65], this 

generally provides more refined estimates of the states. Specifically, after obtaining the 

filtering posterior state distribution, the smoothing posterior is computed at each time 

step conditionally to all measurements up to the time step <. The backward recursive 

equation for Bayesian (fixed interval) smoothing is defined as: 

• Forward-Backward smoothing: Given measurements up to time	< (> '), #�:�, 

and using Bayes' rule, the smoother density is factored as follows [66]: 

 

 \!*|#1:<] = v  (!*|!*z�, #�:�)ℝ/w &!*z� 

= v  \!*z�|#1:<] (!*|!*z�, #�:�)ℝ/w &!*z�. (2.10) 

 Due to the Markovian nature of the state-space model, given knowledge of #* 
and !*z�, the state !* is uncorrelated with future measurements #*z�:�. It means 

that  (!*|!*z�, #�:�) =  (!*|!*z�, #�:*), then we may express the smoothing 

density as: 

  \!*|#1:<] = v  \!*z�|#1:<] (!*|!*z�, #�:*)ℝ/w &!*z�  

 ln\ (#1:')] =} ln(y~).'
~=1  (2.9) 
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	= 	 (!*|#�:*)v  (!*z�|#�:�) (!*z�|!*) (!*z�|#�:*)ℝ/w &!*z�. (2.11) 

The above equation (2.11) says that the smoother has to perform two different 

passes: During forward filtering pass, it computes the posterior density  (!*|#�:*) and the predictive density  (!*z�|#*); during the backward 

smoothing pass, it recursively computes the smoothed density  (!*|#�:�) 
backward in time starting from ' = <.  

For linear and Gaussian dynamic systems, where ) and 4 are linear functions and 

additive noise and state prior distributions are Gaussian, the solution to the filtering 

recursion is obtained by celebrated Kalman filter [67]. In this special case, the solution 

will be optimal in the minimum-mean-square-error (MMSE) sense, the maximum 

likelihood (ML) sense, and also in the maximum a posteriori (MAP) sense (derivation 

of Kalman filter from MAP perspective can be found in [59, 68]). The solution to the 

forward-backward smoothing is then obtained via Rauch-Tung-Striebel smoother (RTS) 

[69]; i.e. fixed interval Kalman smoother. 

Unfortunately, in more realistic environment, which is nonlinear and possibly non-

Gaussian,  the optimal Bayesian recursion is intractable and an approximate solution 

must be used. Numerous approximation solutions to the recursive Bayesian estimation 

problem have been proposed over the last couple of decades, in a variety of fields. 

These methods can be grouped into the following four main categories: 

• Gaussian approximate methods: These methods model the pertinent densities by 

Gaussian distributions, under assumption that a consistent minimum variance 

estimator (of the posterior state density) can be realized through the recursive 

propagation and updating of the first and second order moments of the true 

densities. Nonlinear filters that fall under this category are: a) the extended 

Kalman filter (EKF), which linearizes both the nonlinear process and 

measurement dynamics with a first-order Taylor expansion about current state 

estimate; b) the local linearization filter (LLF), which is similar to EKF, but the 

approximate discrete time model is obtained from piecewise linear discretization 

of nonlinear state equation; c) the unscented Kalman filter (UKF) [70], which 

chooses deterministic sample (sigma) points that capture the mean and 

covariance of a Gaussian density. When propagated through the nonlinear 
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function, these points capture the true mean and covariance up to a second-order 

of the nonlinear function; d) the divided difference filter (DDF) [71], which uses 

Stirling’s interpolation formula. As with the UKF, DDF uses a deterministic 

sampling approach to propagate Gaussian statistics through the nonlinear 

function; f) the quadrature Kalman filter (QKF) [72], which uses the Gauss-

Hermite numerical integration rule to calculate the recursive Bayesian 

estimation integrals, under a Gaussian assumption; g) the cubature Kalman filter 

(CKF), which is similar to UKF, but uses the  spherical-radial integration rule; e) 

the Gaussian sum filters (GSF), which approximate both the predicted and 

posterior densities as a sum of Gaussian densities, where the mean and 

covariance of each Gaussian density is calculated using separate and parallel 

instances of EKF or UKF (or CKF). 

• Direct numerical integration methods: these methods, also known as grid-based 

filters (GBF) or point-mass method, approximate the optimal Bayesian recursion 

integrals with large but finite sums over a uniform n-dimensional grid that 

covers the complete state-space in the area of interest. For even moderately high 

dimensional state-spaces, the computational complexity can become untenably 

large, which precludes any practical use of these filters [73]. 

• Sequential Monte-Carlo (SMC) methods: these methods (called particle filters) 

use a set of randomly chosen samples with associated weights to approximate 

the density [74]. Since the basic sampling dynamics (importance sampling) 

degenerates over time, the SMC method includes a re-sampling step. As the 

number of samples (particles) becomes larger, the Monte Carlo characterization 

of the posterior density becomes more accurate. However, the large number of 

samples often makes the use of SMC methods computationally prohibitive.  

• Variational Bayesian methods: variational Bayesian methods approximate the 

true posterior distribution with a tractable approximate form. A lower bound on 

the marginal likelihood (evidence) of the posterior is then maximized with 

respect to the free parameters of this approximation [75]. 

The selection of suitable sub-optimal approximate solutions to the recursive 

Bayesian estimation problem represents a trade-off between global optimality on one 

hand and computational tractability (and robustness) on the other hand. In our case, the 

best criterion for sub-optimality is formulated as: “Do as best as you can, and not 
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more”. Under this criterion, the natural choice is to apply the cubature Kalman filter 

[55]. The CKF is the closest known direct approximation to the Bayesian filter, which 

outperforms all other nonlinear filters in any Gaussian setting, including particle filters 

[55, 76, 77]. The CKF is numerically accurate, can capture true nonlinearity even in 

highly nonlinear systems, and it is easily extendable to high dimensional problems (the 

number of sample points grows linearly with the dimension of the state vector). Since 

the CKF belongs to the group of so-called Gaussian assumed density filters, which are 

considered as local approximation methods, we first introduce this more general 

framework and then move to the description of cubature approach. 

2.3 Gaussian assumed density filtering and smoothing 

In Gaussian optimal filtering framework, the filtering (smoothing) equations follow 

the assumption that filtering (smoothing) distributions are indeed Gaussian. The 

Gaussian approximation of the filtering distribution has then the form: 

  (!*|#�:*) ≈ �\!*|!3*|*, x*|*], (2.12) 

where �\!*|!3*|*, x*|*] denotes the multivariate Gaussian distribution with mean !3*|* 
and covariance x*|*.  
Bayesian filtering 

The dynamic state-space model (2.1)-(2.2) can be now adopted to nonlinear Bayesian 

filtering framework. Assuming that the process noise s*��~	�(0, l*��) is zero mean 

and uncorrelated with the past measurements, the time update step (prediction) of the 

nonlinear filter can be obtained through calculating the following integrals that 

approximate the mean !3*|*�� and error covariance matrix x*|*��:  

 

!3*|*�� = v )(!*��, i*��; 7)ℝ/w  (!*��|#*��)&!*��	
= v )(!*��, i*��; 7) ×�\!*��|!3*��|*��, x*��|*��]&!*��ℝ/w  

 

(2.13) 
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x*|*�� = v )(!*��, i*��; 7)ℝ/w )�(!*��, i*��; 7)
×�\!*��|!3*��|*��, x*��|*��]&!*�� − !3*|*��!3*|*��� + l*��, (2.14) 

where l*�� is the noise covariance matrix of process noise. 

Next, during the measurement update step, the predicted estimate #3*|*�� of the 

observation #* is calculated. Again, under the assumption of zero mean measurement 

noise n*~	�(0, �*), which is uncorrelated with both initial state !; and the process 

noise s* and also uncorrelated with the past observations, the prediction of current 

observation is given by:  

 #3*|*�� = v 4(!*, i*; 7) ×�\!*|!3*|*��, x*|*��]&!*ℝ/w . (2.15) 

The  associated innovation covariance matrix has then the form: 

 
x��,*|*�� = v 4(!*, i*; 7)ℝ/w 4�(!*, i*; 7) ×�\!*|!3*|*��, x*|*��]&!*

− #3*|*��#3*|*��� + �* , (2.16) 

where �* is the covariance matrix of measurement noise. The cross covariance matrix 

between the state !*	and the observation #* is: 

 
x��,*|*�� = v !*ℝ/w 4�(!*, i*; 7) ×�\!*|!3*|*��, x*|*��]&!*

− !3*|*��#3*|*��� . (2.17) 

Although, each of these integral formulas represents different basic block of Bayesian 

filter, they all have one common feature, i.e. they are represented by product of 

nonlinear function with corresponding Gaussian function of known mean and 

covariance matrix. We will return to this property in the next Section 2.3.1.  

Finally, in the last part of the measurement update step, one has to update the 

predictions from the time update to obtain filtering estimate of mean !3*|* and error 

covariance matrix x*|*, which can be written similarly as for linear Kalman filter: 

 !3*|* = !3*|*�� + �*\#* − #3*|*��] (2.18) 
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x*|* = x*|*�� − �*x��,*|*���*� 

�* = x��,*|*��x��,*|*���� , 
(2.19) 

(2.20) 

where the difference \#* − #3*|*��] in (2.19) is called the measurement innovation, or the 

residual. It reflects the discrepancy between the predicted measurement #3*|*�� and 

actual measurement #*. The innovation is weighted by the optimal Kalman gain �*. 
This term minimizes the filtering error covariance x*|* by weighting the innovation with 

respect to the prediction error covariance x*|*�� [78, 79]. It is important to highlight the 

role of the error covariance matrix x*|*. It indicates how uncertain the state estimate !3*|* 
is: a large values of covariance matrix indicate an inaccurate state estimate; the smaller 

the covariance, the larger the information content of the state estimate, i.e. the filter 

believes the prediction !3*|*�� more, while the actual measurement #* is trusted less. 

Bayesian smoothing 

The fixed-interval Gaussian assumed density smoother can be written in the form, 

where we first calculate the Gaussian integrals: 

 !3*z�|* = v )(!*, i*; 7) ×�\!*|!3*|*, x*|*]ℝ/w &!* 
x*z�|* = v )(!*, i*; 7)ℝ/w )�(!*, i*; 7) ×�\!*|!3*|*, x*|*]&!*

− !3*z�|*!3*z�|*� + l* , 
x*,*z�|* = v !*ℝ/w )�(!*, i*; 7) ×�\!*|!3*|*, x*|*]&!* − !3*|*!3*z�|*� . 

(2.21) 

 

 

(2.22) 

 (2.23) 

Importantly, the terms !3*z�|* and x*z�|* are simply predicted mean and covariance from 

the Gaussian filter and the cross-covariance x*,*z�|* can be computed during the filter 

pass as well. Consequently, the smoothing step follows, where the smoothing gain �*, 
the smoother mean !3*|�N , and the error covariance x*|�N 	are computed: 

 �* = x*,*z�|*x*z�|*��  

!3*|�N = !3*|* + �*\!3*z�|�N − !3*z�|*] x*|�N =	x*|* − �*\x*z�|* − x*z�|�N ]�*� . 
(2.24) 

 (2.25) 

 (2.26) 

This is again the equivalent to the linear version of RTS smoother. 
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2.3.1 Cubature integration rules 

In this section, we describe numerical integration rules [55], which enable an efficient 

and accurate approximation of multidimensional weighted integral of the form: 

 8()) = v)(!)� �(!)&!, (2.27) 

where )(. ) is an arbitrary, presumably nonlinear function, � ⊆ ℝ�w is a region of 

integration, and the known weighting function �(!) ≥ 0 for all ! ∈ �. In the case of a 

Gaussian-weighted integral, �(!) represents a Gaussian density. Besides the case when 

the function )(. ) is linear, the solution to the above integral is difficult to obtain. 

Therefore, one uses numerical integration methods which allow its computation. The 

main goal of these methods is to find a set of points !� and weights �� that 

approximates the integral by a weighted sum of � function evaluations:   

 8()) ≈}��)(!�)�
��� . (2.28) 

In general, these integration methods can be based either on product rules or on non-

product rules. As an example of product rule we mention Gauss-Hermite quadrature 

[80]. However, due to its higher computational complexity, which increases 

exponentially with the dimension of the state, this approach is not considered in this 

work. On the other hand, non-product rules include many Monte Carlo based methods 

[81-84], which suffer from curse of dimensionality as well. Nevertheless, there is one 

representative of non-product rules, which yields reasonable accuracy, requires small 

number of function evaluation and is easily extendable to high dimensions. This method 

applies the third-degree fully-symmetric cubature rule [55] to approximate n-

dimensional Gaussian weighted integrals; i.e. integrals of the form -�-�~-��u	A?-
'~�-	 × ��?@@~�-	&�-@~'^. Critically, this cubature rule defines a way 

how to deterministically select a set of cubature points, and their corresponding weights, 

so that they completely capture the true mean and covariance of the prior random 

variable !~�(!�, x):  
 v )(!)�(!; !�, x)&!	 ≈		ℝ/w }�~)(��),=�

���  (2.29) 
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where the weights are simply �� = �=�, with - equals the state dimension, and 

 �� = !� + ��√x,							~ = 1, … , 2-. (2.30) 

This involves factorization of error covariance matrix x = √x√x� and the elementary 

cubature points are: 

 �� = � √-��, ~ = 1, 2, … , -−√-��, ~ = - + 1, - + 2,… , 2-.� (2.31) 

Here �� represents the i-th column vector, whose i-th entry is a unit and all other entries 

are zero.  From this definition, it can be seen that the cubature points are distributed 

uniformly on a sphere centered at the origin, and their number increases linearly with 

the state dimension. Additionally, the points and weights of cubature rule are 

independent of the integrand )(!). It means they can be computed in advance and used 

during the execution of the nonlinear filter. 

Example of cubature points approximation 

An illustrative example of the effect of a non-linear transformation is shown in Figure 

2.3. A bivariate normal distribution ! = 	 1u, �2�~�\180, 0.82� , diag(40,0.4)] is 

transformed through a nonlinear transformation: 

 )(!) = `u cos �		u sin � h, (2.32) 

which corresponds to making a change of coordinates from radial to Cartesian. We first 

draw 10000 Monte Carlo (MC) samples and propagate them through this nonlinear 

function. As it can be seen in Figure 2.2b, the resulting distribution (in Cartesian plane) 

has a characteristic "banana-shape" and clearly does not resemble a Gaussian. The true 

mean and covariance (ellipse) of this distribution are indicated by blue color. The 

cubature points are drawn from the intersection points of unit circle and the axes (Figure 

2.2a). When these four cubature points are propagated through the transformation, they 

approximatelly catch the charasteric "banana-shape" of the distribution and when the 

mean and covariance is calculated according to (2.34) and (2.35), indicated by red color, 

they almost exactly match the true mean and covarince based on MC samples. 
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Figure 2.3 Illustrative example of cubature rules approximation. Here the cubature points 
(four for two states) are propagated through a nonlinear function to approximate the true 
mean and covariance.  

2.3.2 Statistical linear regression 

After an introduction of Gaussian approximations to Bayesian optimal recursion based 

on cubature integration rules (or generally based on any sigma points approach), it is 

enriching to mention its alternative interpretation from the perspective of statistical 

linear regression [85]. Specifically, we will show how the statistics computed via 

cubature integration rules can be used to linearize a nonlinear function in MMSE sense.     

Consider a nonlinear function # = 4(!) evaluated in � points (��, ��), i.e.:  

 �� = 4(��),							~ = 1,… ,�,	 (2.33) 

where the points �� are chosen in the way that they capture certain statistical properties 

of  ! (such as the mean and covariance) through the sample based estimator of the form:    

 !� = }����
 
���  

x = }��(�� − !�)(�� − !�)�. 
���  

(2.34) 

 (2.35) 

Similarly, after propagation of sample points �� through nonlinear function 4(. ) we 

obtain a regression points  ��, for which we define the following posterior statistics 

(mean, covariance and cross-covariance):  
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 #� = }����
 
���  

x�� = }��(�� − #�)(�� − #�)� 
���  

x�� = }��(�� − !�)(�� − #�)� . 
���  

(2.36) 

 (2.37) 

 (2.38) 

Now, the objective is to find the linear regression of the form (2.39), which 

approximates a nonlinear function # = 4(!). 
 # = �! + � (2.39) 

Here � and � are a matrix and a vector, respectively, which are estimated by 

minimizing the sum of square errors: 

 o�, �r = argmin}��¢��¢� 
���  (2.40) 

with linearization error: 

 ¢� = �� − (��� + �) (2.41) 

representing the deviations between the function values of the nonlinear and linearized 

function in the sampling points. The solution to (2.40) is given by [65]: 

 � = x��� x�� 
� = #� − �!�. (2.42) 

 (2.43) 

The linearization error has zero mean ¢� = 0 and covariance: 

 

x£ = }��¢� 
��� ¢�� 

= } ��1�� − (��� + �)21�� − (��� + �)2� 
���  

= } ��1�� − ��� − #� − �!�21�� − ��� − #� − �!�2� 
���  
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= x�� − 	�x − x�� + �x��	
= x�� − 	�x�� . (2.44) 

Then the posterior statistics of # can be approximated by the following statistical 

regression form: 

 
#� = �!� + �	x�� = 	�x�� + x£ . (2.45) 

(2.46) 

Notice that the linearization error covariance x£ is added to the linearly propagated prior 

covariance �x��, to form the posterior covariance x��. This implies that the more 

sever the nonlinearity is over the "uncertainty region" of !, the larger the linearization 

error and error covariance will be, and accordingly the normal linear approximation of x�� and �x�� will be less accurate. The correction term x£ thus needs to be large to 

compensate for it [59].  

It is now possible to show how the cubature point approach (or any sigma point 

approach) makes the effective use of statistical linear regression, when used to 

approximate the mean and covariance within the Kalman filter framework. If we 

assume that the regression points are generated based on the (propagated) cubature 

points, and we substitute (2.36) into (2.43) and the result into (2.45), we obtain: 

 

#3 = �!� +}��
 
��� �� −�!�	

=}��
=�
��� �� . 

 

(2.47) 

We can see that under this assumption, the posterior mean calculated by statistical linear 

regression is equivalent to the posterior mean calculated by using only the weighted 

average of cubature points. Similarly, if we substitute (2.37) into (2.44) and the result 

into (2.46), we obtain cubature-point based approximation of posterior error covariance  

 

x�� = 	�x�� +}��(�� − #�)(�� − #�)� 
��� − �x��	

= }��(�� − #�)(�� − #�)�=�
��� , (2.48) 
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which is equivalent to the posterior error covariance calculated by statistical linear 

regression. The same can be done for the cross-covariance resulting in the form 

identical to (2.38). This form of the mean and covariance approximations is then 

utilized in the nonlinear Kalman filtering and smoothing algorithms as we will see in 

the next sections. Additionally, it is noteworthy that the linearized error covariance x£ is 

never explicitly calculated during the cubature-point approach, but its effect is indirectly 

incorporated through the way, in which the posterior statistics are approximated.  

2.3.3 Cubature Kalman Filter 

The cubature Kalman filter [55] is a recursive, nonlinear and derivative free filtering 

algorithm, which computes the first two moments (i.e. mean and covariance) of all 

conditional densities by using the above described third-degree cubature integration 

rules. The application of cubature rules leads to an even number of equally weighted 

cubature points (2- point, with - being dimensionality of the state vector), where all 

these points are distributed uniformly on an ellipsoid centered at the origin. In contrast, 

unscented Kalman filter (UKF) applies the unscented transform, which uses an odd 

number of sigma points (2- + 1), also distributed on ellipsoid but with non-zero center 

point. This center sigma point often receives more weighting power than other non-

center points through additional scaling parameter E. It is exactly the inclusion of 

parameter E, which causes lower performance of UKF compared to CKF. It is 

interesting to note that the original UKF filter will be equivalent to CKF if E = 0 [66]. 

Unlike extended Kalman filter, CKF effectively approximates both the Jacobian and 

Hessian accurately (in statistically average sense) through its sigma point propagation, 

without the need to perform any analytic differentiation. 

In order to evaluate the dynamic state-space model described by (2.1)-(2.2), the 

CKF includes two standard Kalman filter steps: a) a time update, after which the 

predicted density  (!*|#�∶*��) = �(!3*|*��, x*|*��) is computed; and b) a measurement 

update, after which the posterior density  (!*|#�∶*) = �(!3*|*, x*|*) is computed. The 

algorithm of CKF, for a discrete system with additive noise, is summarized below. Note 

that in case when the process noise and measurement noise are not purely additive as it 

is assumed here, it is desirable to augment the state vector also with the noise 

components [20, 59]. 
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Algorithm 1. The cubature Kalman filter (CKF) - additive noise 

• Initialization: 

 !3; = 01!;2 and x0 = 01(!; − !3;)(!; − !3;)�2 (2.49) 

• For ' = 1,… , < 

 Time update: 

1. Factorize the state error covariance matrix: 

 x*��|*�� = ¥*��|*��¥*��|*���  (2.50) 

2. Evaluate the cubature points (~ = 1,… ,�): 

 ��,*��|*�� = ¥*��|*���� + !3*��|*�� (2.51) 

3. Propagate the cubature points through process model (~ = 1,… ,�): 

 ��,*|*��∗ = )\��,*��|*��, i*��; 7] (2.52) 

4. Estimate the predicted state: 

 !3*|*�� = 1�}��,*|*��∗ 
���  (2.53) 

5. Estimate the predicted error covariance matrix: 

 x*|*�� = 1�}��,*|*��∗ 
��� ��,*|*��∗� − !3*|*��!3*|*��� + l*�� (2.54) 

 

Figure 2.4 Illustration of cubature points propagation during time update of CKF. The 
cubature points in the two-dimensional state-space are propagated between time steps. The 
circles represent cubature points; the new cubature point set at time ' + 1	is computed by 
simply propagating the old cubature point set at time ' through the process equation.  
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 Measurement update: 

6. Factorize the state error covariance matrix: 

 x*|*�� = ¥*|*��¥*|*���  (2.55) 

7. Evaluate the cubature points (i = 1,… ,�): 

 ��,*|*�� = ¥*|*���� + !3*|*�� (2.56) 

8. Propagate the cubature points through measurement model  

(~ = 1,… ,�): 

 ��,*|*�� = 4\��,*|*��, i*; 7] (2.57) 

9. Estimate the predicted measurement: 

 #3*|*�� = 1�}��,*|*��
 
���  (2.58) 

10. Estimate the innovation covariance matrix: 

 x��,*|*�� = 1�}��,*|*��
 
��� ��,*|*��� − #3*|*��#3*|*��� + �* (2.59) 

11. Estimate the cross-covariance matrix: 

 x��,*|*�� = 1�}��,*|*��∗ 
��� ��,*|*��� − !3*|*��#3*|*���  (2.60) 

12. Estimate the Kalman gain: 

 �* = x��,*|*��x��,*|*����  (2.61) 

13. Estimate the updated state: 

 !3*|* = !3*|*�� + �*\#* − #3*|*��] (2.62) 

14. Estimate the updated error covariance matrix: 

 x*|* = x*|*�� − �*x��,*|*���*� (2.63) 

• Note that there are many types of matrix decomposition techniques that factorize 

the covariance matrix x into a form x = ¥¥�. For example, the Cholesky 

decomposition, the eigenvector decomposition or the singular value 

decomposition (SVD). We prefer to apply SVD, since it is the most robust 

algorithm to factorize a covariance matrix especially when the covariance 

becomes nearly singular. The SVD of x = ¦§¦�, where ¦ is matrix containing 
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eigenvectors and § is a diagonal matrix of eigenvalues. The square-root of the 

matrix x is then given by ¥ = ¦�√§�¦�. 

 

2.3.4 Cubature Rauch-Tung-Striebel smoother 

The same approximation principles that were used in cubature Kalman filter can be 

applied also during the backward pass of the Rauch-Tung-Striebel (RTS) smoother, 

yielding the cubature RTS smoother. The backward pass is used for computing suitable 

corrections to the forward filtering results to obtain the smoothing solution  (!*, #�:�) =�\!3*|�|!3*|�N , x*|�N ]. Because the filtering and smoothing estimates of the last time step < 

are the same, we make !3�|�N = !3�|�, x�|�N = x�|�. This means the recursion can be used 

for computing the smoothing estimates of all time steps by starting from the last step ' = < and proceeding backward to the initial step ' = 0. To accomplish this, all 

estimates of !3;:�	and x;:� from the forward pass have to be stored to be later reused 

during the backward pass. Note that we will use an abbreviation CKS to refer to the 

forward run of cubature Kalman filter followed by the backward run of the cubature 

RTS smoother. 

Algorithm 2. The cubature Rauch-Tung-Striebel smoother - additive noise 

• Initialization: 

 !3�|�N = !3�|� and x�|�N = x�|� (2.64) 

• For ' = < − 1,… ,0 

1. Factorize the error covariance: 

 x*|* = ¥*|*¥*|*�  (2.65) 

2. Evaluate the cubature points (i = 1,… ,m): 

 ��,*|* = ¥*|*�� + !3*|* (2.66) 

3. Propagate the cubature points through process model (~ = 1,… ,�): 

 ��,*z�|*∗ = )\��,*|*, i*; 7] (2.67) 

4. Estimate the predicted state: 
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 !3*z�|* = 1�}��,*z�|*∗ 
���  (2.68) 

5. Estimate the predicted error covariance matrix: 

 x*z�|* = 1�}��,*z�|*∗ 
��� ��,*z�|*∗� − !3*z�|*!3*z�|*� + l* (2.69) 

6. Estimate the cross-covariance matrix: 

 x*,*z�|* = 1�}��,*|*
 
��� ��,*z�|*∗� − !3*|*!3*|*�  (2.70) 

7. Estimate the smoother gain: 

 ¨* = x*,*z�|*x*z�|*��  (2.71) 

8. Estimate the smoothed state: 

 !3*|�N = !3*|* + ¨*\!3*z�|�N − !3*z�|*] (2.72) 

9. Estimate the smoothed error covariance: 

 x*|�N =	x*|* − ¨*\x*z�|* − x*z�|�N ]¨*� (2.73) 

• Note that the steps 1.-4. are not really needed for evaluation of the RTS 

smoother. These estimates are equivalent to the predictions from the time update 

step of the filter. Therefore, one can store the results of (2.52) and (2.53), and 

use them during the backward run of the smoother. This means that there is no 

need to propagate the states (cubature) points again through the nonlinear 

process model.  

 

2.3.5 Square-root representation 

In the Kalman filtering (and smoothing) framework it is important to preserve positive 

definitiveness and symmetry of the state covariance matrix during the entire recursion 

[55]. The cubature Kalman filter and smoother involves several numerically sensitive 

operations such as matrix square-rooting (2.50), matrix inversion (2.61), and 

substraction of two positive-definite matrices (2.63), which may violate the desired 

properties of covariance matrix and cause the filter to diverge [86]. Additionally, in 

each recursion cycle of cubature Kalman filter, one of the most costly operations is the 
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calculation of the matrix square-root of the state covariance in order to form set of 

cubature points. Therefore, it is natural to seek a solution, which would eliminate these 

drawbacks.  Fortunately, it is possible to design a square-root version of cubature 

Kalman filter and smoother, which will preserve the positive (semi)definitiveness and 

symmetry of the covariance matrix, and hence improve the numerical stability 

especially during the state covariance update [87, 88]. In square-root version of CKF 

and CKS algorithm, the matrix square-rooting operations x = ¥¥� are avoided and the 

square-root covariance matrix ¥ is propagated directly. This is achieved by utilizing the 

following powerful techniques of linear algebra:  

• QR decomposition: The QR decomposition performs triangularization for 

covariance update. It factorizes the matrix ©� into an orthogonal matrix Q and 

upper triangular matrix � such that ©� = l�, and ©©� = ��l�l� = ��� =¥¥�, where the resulting square-root (lower triangular) matrix is ¥ = ��. We use 

an abbreviation Tria(. ) to denote QR decomposition of matrix © where only 

lower triangular matrix ¥ is returned3.  

• Efficient least-squares: The least-squares method is used to compute the Kalman 

filter and smoother gain. If we substitute the innovation covariance matrix in 

(2.61) by its square-root representation we get the following expression:  

 �*\¥��,*¥��,*� ] = x��,*. (2.74) 

Since ¥��,* is square and lower triangular matrix, efficient forward substitution 

algorithm can be used to compute �* directly without the need for a matrix 

inversion [59]. We use the symbol "/" to represent the matrix right-divide 

operator, which applies the forward substitution algorithm (as it is a common 

notation in Matlab®), see (2.87) and (2.94). 

Although, the algorithms are now free of square-rooting operations, one still needs to 

calculate the square-root form of the state covariance matrix and also of the process and 

measurement noise covariance matrices during the initialization of the Kalman filter. 

This can be done by using the Cholesky factorization or preferably by the SVD 

decomposition as noted in Algorithm 1. Finally, the square-root versions of CKF and 

                                                 
3 Note that matrices Q and R have nothing in common with process and measurement noise covariance 
matrices for which we use the same notation. 
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CKS, abbreviated as SCKF and SCKS, are summarized in Algorithm 3 and Algorithm 

4,  respectively.  

Algorithm 3. The square-root cubature Kalman filter (SCKF) - additive noise 

• Initialization: 

 !3; = 01!;2, ¥0 = k01(!; − !3;)(!; − !3;)�2, ¥C,' = kl* , and ¥u,' = k�* (2.75) 

• For ' = 1,… , < 

 Time update: 

1. Evaluate the cubature points (~ = 1,… ,�): 

 ��,*��|*�� = ¥*��|*���� + !3*��|*�� (2.76) 

2. Propagate the cubature points through process model (~ = 1,… ,�): 

 ��,*|*��∗ = )\��,*��|*��, i*��; 7] (2.77) 

3. Estimate the predicted state: 

 !3*|*�� = 1�}��,*|*��∗ 
���  (2.78) 

4. Estimate the predicted square-root error covariance matrix: 

 ¥*|*�� = Tria\ª©*|*��, ¥c,*«] (2.79) 

  with weighted and centered matrix: 

 ©*|*�� = 1√� ª��,*|*��∗ − !3*|*��, … ,� ,*|*��∗ − !3*|*��« (2.80) 

 Measurement update: 

5. Evaluate the cubature points (~ = 1,… ,�): 

 ��,*|*�� = ¥*|*���� + !3*|*�� (2.81) 

6. Propagate the cubature points through measurement model (~ =1,… ,�): 

 ��,*|*�� = 4\��,*|*��, i*; 7] (2.82) 

7. Estimate the predicted measurement: 

 #3*|*�� = 1�}��,*|*��
 
���  (2.83) 
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8. Estimate the square-root of innovation covariance matrix: 

 ¥��,*|*�� = Tria(1¬*|*��	 ¥­,*2) (2.84) 

  with weighted and centered matrix: 

 ¬*|*�� = 1√� ª��,*|*�� − #3*|*��, … ,� ,*|*�� − #3*|*��« (2.85) 

9. Estimate the cross-covariance matrix: 

 x��,*|*�� = ©*|*��¬*|*���  (2.86) 

10. Estimate the Kalman gain: 

 �* = \x��,*|*��/¥��,*|*��� ]/¥��,*|*�� (2.87) 

11. Estimate the updated state: 

 !3*|* = !3*|*�� + �*\#* − #3*|*��] (2.88) 

12. Estimate the updated square-root of error covariance matrix: 

 ¥*|* = Tria(1©*|*�� −	�*	¬*|*��	 �*¥­,*	2) (2.89) 

 

 
 

Algorithm 4. The square-root cubature RTS smoother - additive noise 

• Initialization: 

 !3�|�N = !3�|� and ¥�|�N = ¥�|� (2.90) 

• For ' = < − 1,… ,0 

1. Compute the predicted error covariance matrix: 

 ¥*z�|* = Tria(1©*z�|*	 ¥c,*2), (2.91) 

where ©*z�|* is the weighted centered matrix, which was stored during a 

time update step of SCKF pass (2.80). 

2. Estimate the predicted error covariance matrix: 

 ©*|* = 1√� ª��,*|* − !3*|*, … ,� ,*|* − !3*|*«, (2.92) 

with ��,*|* = ¥*|*�� + !3*|*, ~ = 1:�, where both !3*|* and ¥*|* are 

posterior estimates stored during the SCKF pass (2.88)-(2.89). 
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3. Estimate the predicted error covariance matrix: 

 x*,*z�|* = ©*|*©*z�|*�  (2.93) 

4. Estimate the predicted error covariance matrix: 

 ¨* = \x*,*z�|*/¥*z�|*� ]/¥*z�|* (2.94) 

5. Estimate the predicted error covariance matrix: 

 !3*|�N = !3*|* + ¨*\!3*z�|�N − !3*z�|*] (2.95) 

6. Estimate the predicted error covariance matrix: 

 ¥*|� = Tria(1©*|* −	¨*	©*|*�� 	¨*	¥*z�|� 	¨*	¥c2) (2.96) 

• Derivation of the square-root cubature RTS smoother is the same as the one 

based on the unscented transform, which can be found in [89]. Alternative (but 

similar) solution is described in [66]. 

 

2.4 Sequential parameter estimation 

Up to this point, we have assumed the parameters 7 occurring in the model equations to 

be known. However, it is very often the main aim of many analyses to determine the set 

of parameters so that they describe the model being the best fit to the measured data. 

Therefore, it will be an objective of this section to describe a parameter estimation 

framework, which well suits to the so far introduced sequential estimation theory. 

Parameter estimation, which is very often called system identification, involves 

learning a nonlinear mapping: 

 #* = 5(!*; 7), (2.97) 

where 7 is the set of unknown parameters, which parameterize the (possibly nonlinear) 

mapping function 5(. ), i.e. mathematical model, between the input !* and the output #*. 
Note, that in our case the function 5(. ) subsumes both hidden part of hemodynamic 

model and observation BOLD equation. Although many iterative optimization 

algorithms are available to perform parameter estimation from data available in bathes, 

where these include also the well known expectation maximization (EM) algorithm [90, 
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91], the interest of this thesis is to enable a sequential (online) estimation of the model 

parameters. In this sense, the (nonlinear) Kalman filtering framework may be used to 

estimate the parameters by considering a new state-space representation:  

 
7* = 7*�� + ¯*�� #* = 5(!*; 7*) + n*, (2.98) 

which can be regarded as a special case of general state estimation, where the 

parameters now represent the hidden states. Here 7*�� corresponds to a stationary 

process with identity state transition matrix, driven by process noise ¯*��~�(0,°*��); 
i.e. Gaussian random walk model. The output of measurement equation, #*, then 

provides a nonlinear observation on 7*. Clearly, one can use the same algorithms of 

nonlinear cubature Kalman filter/smoother, which were discussed in previous sections, 

with the above state-space system and perform parameter estimation in a sequential 

manner.  

Nonlinear Kalman filters have a long history in application to neural networks in 

order to estimate coupling weights among single neurons. It is a common experiance 

that Bayesian filter-based training algorithms converge more rapidly than the gradient 

descent method. They are also well-suited to handle noisy and nonstationary training 

data. Especially, the introduction of sigma-point Kalman filters such as UKF or CKF 

led to significant improvement in obtaining robust globally optimal estimates in 

situations, where the standard EKF is very likely to get stuck in a non-optimal local 

minimum [59]. Additionally, the second-order information encoded in the filter 

estimated error covariance can often be used to prune the network weights. This is 

because the convergence goes along with the shrinkage of the parameter error 

covariance towards zero (this also forces the Kalman gain towards zero); i.e. filter 

becomes more confident about its predictive estimates.  

In the following section, we will motivate the sequential parameter estimation from 

maximum a posteriori (MAP) perspective.   

2.4.1 Maximum a posteriori estimate  

Though the Kalman filter is mostly derived as a MMSE estimator [61, 67, 78], it has its 

interpretation also from MAP perspective [68]. Especially, it allows for interesting 
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analysis of the recursive Bayesian algorithm, when applied to parameter estimation. 

However, it is important to mention that the MAP interpretation of Kalman filter is 

constrained only to the environment, where the prior and posterior random variables are 

Gaussian, whereas MMSE interpretation of the optimal estimate is valid also for non-

Gaussian environment [59]. To develop a sequential MAP learning procedure for 

parameter estimation, we use the state-space model (2.98) and Bayes rule to express the 

posterior distribution of parameters 7* conditioned on all of the observation #�:* as:  

  (7*|#�:*) =  (#*|7*) (7*|#�:*��) (#*|#�:*��) . (2.99) 

Because the denominator of (2.99) is not a function of 7*, the MAP estimate can be 

obtained by maximizing the numerator with respect to 7*:     
 7±*²³´ = argmaxµ\ (#*|7*) (7*|#�:*��)], (2.100) 

which is equivalent to choosing 7* that minimizes negative logarithm of the numerator 

in (2.99), i.e.:  

 

7±*²³´ = argminµ\− ln\ (#*|7*) (7*|#�:*��)]] = arg minµ\− ln\ (#*|7*)] − ln\ (7*|#�:*��)]] = arg minµ\¶(7*)], (2.101) 

where  

 ¶(7*) = − ln\ (#*|7*)] − ln\ (7*|#�:*��)] (2.102) 

is called the posterior log-likelihood function. Since we already mentioned that under 

the MAP interpretation of Kalman filter, all densities are assumed to be Gaussian, we 

can substitute the probability densities in (2.102), which represent the observation 

likelihood and prior density of system parameters, respectively, by: 

 (7'|#�:*��) = 1·(2¸)�¹ºx�,'|'−1º exp »− 12 \7¼'|' − 7¼'|'−1]�x�,'|'−1�� \7¼'|' − 7¼'|'−1]½ 
(2.103) 

 (#*|7') = 1k(2¸)�¾|�*| exp »− 12 \#* − #3*|*��]��*��\#* − #3*|*��]½, (2.104) 

which results in the following form of the posterior log-likelihood function:  
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¶(7*) = 12 \#* − #3*|*��]��*��\#* − #3*|*��]

+ 12 \7¼'|' − 7¼'|'−1]�x�,'|'−1�� \7¼'|' − 7¼'|'−1] + 
. (2.105) 

Here, 7±*|*�� is the prior estimate of the parameters (i.e. before the new observation is 

incorporated), xµ,*|*�� is its error covariance, both obtained during the time update step 

of Kalman filter. The constant 
 accounts for normalizing terms in the Gaussian density 

functions. The MAP estimate is now found by substituting (2.105) into (2.101) and 

solving for the minimum value of 7*. This involves taking the derivative of (2.105) with 

respect to 7* and solving for zero, which results (after some matrix manipulation) in the 

standard Kalman update equation of the parameter estimate:  

 7±*|*²³´ = 7±*|*�� + �*\#* − #3*|*��], (2.106) 

with Kalman gain: 

 �* = xµ�,*|*��\x��,*|*�� + �*]��. (2.107) 

Similarly also the update for parameter error covariance can be derived as:   

 xµ,*|* = xµ,*|*�� − �*\x��,*|*�� +�*]�*� . (2.108) 

For a complete derivation, the reader is referred to [68]. 

Although this brief derivation assumed linear mapping function, which is generally 

not the case, it was shown in [59] that if we approximate the nonlinear mapping 

function #3*|*�� = 5(7±*|*��) by statistically linearized form (2.45), as implicitly applied 

for example by cubature-point approach, the MAP derivation of nonlinear Kalman filter 

can be carried out (in similar manner) as well. Of course, the success of this 

approximation strategy is based on the assumption that the statistical linearization of the 5(. ), over the probabilistic spread (uncertainty) of the underlying parameter (state) 

random variable 7, is a good approximation; i.e. that errors are relatively small and 

normally distributed. This condition is met if the set of sampling (cubature) points is 

constructed correctly, which is automatically guaranteed by the third-degree cubature 

integration rule that accurately captures the first two statistical moments even in highly 

nonlinear models. This implies that the CKF parameter estimation algorithm is 
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equivalent to a maximum posterior likelihood estimate of the underlying parameters 

under a Gaussian posterior (and noise distribution) assumption.  

Moreover, it is also known that the measurement update step of statistically 

linearized filters such as CKF or UKF, when applied to sequential parameter estimation, 

is equivalent to the modified Gauss-Newton method for solving a nonlinear least-

squares problem [59, 92, 93]. Specifically, it was shown that the nonlinear least-squares 

problem and the maximum posterior likelihood problem as defined above optimize the 

same objective (cost) function. This gives rise to many interesting properties of this 

sequential parameter estimator. Mainly, it says that the recursively updated parameter 

(state) estimate of covariance matrix (as calculated by CKF parameter estimation filter) 

is equivalent to the recursively (online) calculated inverse of the expected Fisher 

information matrix (FIM) used by the Gauss-Newton equivalent optimization step [94]. 

In other words, the inverse of FIM at the maximum likelihood estimate is equal to the 

Cramer-Roe lower bound (CRLB) of the estimated variance. Importantly, the CRLB 

can be used for evaluating the performance of suboptimal nonlinear filtering methods 

[95], while the FIM has a large utilization in analysis of parameter space, parameter 

reduction, and model identifiability [96].   

2.4.2 Joint estimation 

It is very often the case that both hidden states of dynamic process and model 

parameters are unknown and have to be inferred from the measured data.  Moreover, 

there might be even a situation, where one wants to estimate also the unknown input 

into the system. This special case of system identification can be consider as a blind 

(nonlinear) deconvolution problem, which is described as estimating the unknown input 

to a dynamic system, given output data, when the model of the system contains 

unknown parameters. As it was discussed above, the nonlinear cubature Kalman 

framework is a well suited approach to robust parameter estimation. What we should 

add now is the fact that because of so-called natural condition of control [55], it is 

possible to generate the input ¿* using the state prediction !3*|*��. In our case it means 

that if we augment the state vector by the process representing the input, e.g. similar to 

the one used for parameter estimation (2.98) with input noise À*~�(0, Á*), we can 

estimate the system input together (jointly) with the states. By saying this, we can go 
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one step further (towards blind deconvolution scheme) and attempt to solve a dual 

estimation problem, where under consideration of a nonlinear dynamic system, the 

system states !*, the parameters 7* and the input ¿*, are estimated simultaneously from 

the observed noisy signal #*.  
It should be noted that by the input ¿* we mean an endogenous input (or signal), 

which might be different from the exogenous input i*. In the context of fMRI, the input i* is presented to the subject, whereas ¿* reflects the actual neuronal response, which 

might (or might not) reflect the exogenous stimulus. In other words, there is always 

some endogenous activity present in brain even in the absence of any external stimuli, 

i.e. at rest. 

A general theoretical and algorithmic framework for dual Kalman filter based 

estimation was presented in [68], [59]. This framework encompasses two main 

approaches, namely joint estimation and dual estimation. In the dual filtering approach, 

two Kalman filters are run simultaneously (in an iterative fashion) for a state and a 

parameter estimation. At every time step, the current estimate of the parameters 7* is 

used in the state filter as a given (known) input and likewise, the current estimate of the 

state !3* is used in the parameter filter. This results in a step-wise optimization within the 

joint state-parameter space. On the other hand, in the joint filtering approach, the 

unknown system state and parameters are concatenated into a single higher-dimensional 

joint state vector, Â* = 1!*� , ¿*� , 7*�2�. This results in a smoothed convergence in the 

joint state-parameter space (see Figure 2.5).  There is a prevalent opinion that the 

performance of joint estimation scheme is superior to dual estimation scheme [59, 68, 

 

Figure 2.5 Illustration of joint filtering scheme. (a) Both model states and parameters are 
estimated simultaneously in the augmented form of the state vector. (b) Joint state-
parameter optimization space.  
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97]. Therefore, the joint estimation framework based on cubature Kalman filtering and 

smoothing is considered in this work.   

The state-space model for joint estimation scheme is then formulated as: 

 Â* = Ã!*¿*7*Ä = Ã)(!*��, 7*��, ¿*��)¿*��7*�� Ä + ÃsÅ�ÆÀ*��¯*��Ä #* = 4(Â*) + n*. 
(2.109) 

 (2.110) 

Since the joint filter concatenates the state and parameter variables into a single state 

vector, it effectively models the cross-covariances between the state, input and 

parameters estimates: 

 x* = Ç x�,* x�È,* x�µ,*xÈ�,* xÈ,* xÈµ,*xµ�,* xµÈ,* xµ,* É. (2.111) 

This full covariance structure allows the joint estimation framework not only to deal 

with uncertainty about parameter and state estimates (through the cubature-point 

approach), but also to model the interaction (conditional dependences) between the 

states and parameters, which generally provides better estimates [59, 68]. Note that 

since the parameters are estimated simultaneously with the states, the convergence of 

parameter estimates depends also on the length of the time series. 

Algorithm 5. Joint estimation of states and parameters by CKF. 

• Initialization: 

o Create augmented state vector, error covariance matrix and process noise 

covariance matrix:  

 ÂÊ; = 01Â;2 = 1!;� , ¿;� , 7;�2� and x0 = 01(Â; − ÂÊ;)(Â; − ÂÊ;)�2,  

 Â0 = 1!0<, ¿0<, 70<2<, 	x; = Çx�,; 0 00 xÈ,; 00 0 xµ,;É and Ë; = Çl�,; 0 00 ÁÈ,; 00 0 °µ,;
É  

• For ' = 1,… , < 

 Time update: 

1. Calculate the set of cubature points based on previous step estimates; i.e. ÂÊ*��|*�� and x*��|*��. 
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2. Estimate the predicted joint state vector ÂÊ*|*�� and predicted error 

covariance matrix x*|*�� after propagating cubature points through state 

equation (2.109). 

Measurement update: 

1. Calculate the set of cubature points based on time update predictions, ÂÊ*|*�� and x*|*��. 

2. Estimate the predicted measurement and #3*|*�� the innovation covariance 

matrix x��,*|*�� after propagation cubature points through measurement 

equation (2.110). 

3. Estimate the joint posterior estimates of the mean ÂÊ*|* and error 

covariance matrix x*|*. 
Log-likelihood: 

4. Calculate the log-likelihood at time step	': 
ℒ* = − -^2 ln(2¸) − 12 lnºx^^,'|'−1º − 12 \#* − #3*|*��]�x^^,'|'−1�� \#* − #3*|*��] (2.112) 

• Note: Although this description is provided for non-square-root version of CKS, 

the same step are followed also for the SCKS. In that case, the square-root 

covariance matrices are considered. Additionally, the implementation of 

cubature RTS smoother (or its square-root version) is very straightforward. 

Simply the augmented (joint) state vector and corresponding error covariance 

matrix are employed.  

 

2.5 Hybrid continuous-discrete state-space models 

In previous sections, we have considered the state-space model to be described in a 

discrete time, however, in many practical situations, the process equation of state-space 

model is derived from underlying physics of a continuous dynamic system, and is 

expressed in the form of a set of differential equations. But still, the measurements #* 
are acquired by digital devices; i.e. they are available at discrete time points (' =1,2, … , <). Therefore, we have a model with a continuous process equation and a 
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discrete measurement equation. The stochastic representation of this state-space model, 

with additive noise, can be formulated as: 

 
&!(') = )(!('), ')&' + kl&m(') #* = 4(!*, ') + n*, (2.113) 

(2.114) 

where !(') is the state of the system at time '; )(. ) is a known nonlinear drift function; m(') denotes standard Brownian motion that is independent of !('); and l is a known 

diffusion matrix. The process equation is the simplest form of Itô's stochastic 

differential equation [98]. The system is observed through the noisy measurements in 

discrete time intervals (discrete times are denoted as subscripts).      

The recursive Bayesian solution to the above continuous-discrete model is very 

similar to the one described in Section 2.2. The only difference appears during the time 

update step of Kalman filter, where the old posterior density is propagated trough the 

process equation (2.113). In this case, the probability density of the state at time ' obeys 

the Fokker-Plank equation (FPE), also called Kolmogorov's forward equation [99, 100]: 

 

Í (!(')|#�:*)Í' = − Í (!(')|#�:*)Í!(') )(!('), ') −  (!(')|#�:*)tr »Í)(!('), ')Í!(') ½
+ 12 tr »l(') Í= (!(')|#�:*)Í=!(') ½, (2.115) 

which describes the evolution of probability density between the measurement time 

instants. The exact solution to FPE is available only for linear Gaussian system 

represented by the time update of Kalman-Bucy filter [101]. In other cases, the FPE has 

to be approximated. There are two main groups of methods that attempt to approximate 

the time step of continuous-discrete filter. Methods in the first group compute the 

conditional density by explicitly solving FPE. These cover many numerical methods 

such as finite element methods [102, 103], finite difference methods [104], particle 

methods [105], or simulation approaches using Markov chain Monte Carlo 

approximation [106]. Main disadvantage of these methods is that their computational 

complexity increases exponentially with the dimension of the state vector. On the other 

hand, the second group involves methods, which compute a finite number of summary 

statistics in terms of conditional moments after discretizing the continuous time process 

equation using the Euler or higher order Runge-Kutta methods [107]. Continuous-

discrete forms of nonlinear Kalman filters that were mentioned in Section 2.2 fall under 
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this group [64, 108, 109]. From the concept of this work, it is obvious that our interest 

will be in the approaches that fit into the second group. However, the aim will not be to 

develop an approximate nonlinear filter by approximating continuous time filter 

equations (as it is often the case), but rather to use the standard discrete time filtering 

equations for an approximate discrete time model of the original continuous time 

dynamical system [56]. This automatically puts high demand on accuracy of the method 

that discretizes the model represented by stochastic differential equations.   

The simplest and the most common method is to apply the Euler approximation to 

the stochastic differential equation over time interval 1', ' + Ï�):  
 !*zÐ = !* + Ï)(!*) + klm*, (2.116) 

where m* = (m(' + Ï) − m(')) is the standard Gaussian noise, m*	~�(0, Ï�), and is 

interpreted as the time-derivative of the Brownian motion. This approximate discrete 

equation (2.116) can be considered as a discrete time counterpart of the Itô's process 

equation (2.113). If we seek a good discrete time approximation of the continuous 

stochastic dynamical model for nonlinear and Gaussian multivariate process !('), we 

need to find a discretization scheme that satisfies the following criteria [110]: 

• The model should be consistent, i.e.: 

 
!*zÐ − !*Ï → )(!*) for				Ï → 0. (2.117) 

• The trajectory of !* should coincide with the true trajectory of !(') at the 

discrete time points ', ' + Ï, ' + 2Ï,…	,	 at least when )(. ) is linear. 

• The discrete time model should preserve the qualitative characteristics of the 

continuous time model; i.e. zero points of )(!) and the Jacobian are preserved. 

Unfortunately, all of very common discretization schemes, such as Euler (2.116) and 

Runge-Kutta methods, well known in the field of numerical analysis, do not satisfy the 

second and the third condition (see [56] for the review).  

For a discrete model the computationally stable time discretization method is given 

by [111]: 

 !*zÐ = exp(Ò�Ï) !*, (2.118) 
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where exp(Ò�Ï) = ∑ ÐÔ�!Ö��; Ò�� 	represents a matrix exponential of Ò� being Jacobian 

matrix of the process )(!). This approach will be computationally stable and ergodic 

also for stochastic process:  

 !*zÐ = exp(Ò�Ï) !* + klm*, (2.119) 

but unfortunately it is not consistent in nonlinear models. Nevertheless, this simple 

method can be considered as a cornerstone for so called local linearization (LL) scheme 

[56], which satisfies all the above criteria and is also consistent when applied to 

nonlinear models. 

2.5.1 Local linearization scheme 

This approach intuitively assumes the nonlinear function )(. ) to be locally 

approximately linear with respect to the process !('). In order to derive this 

discretization process, the equation (2.113) is first considered in a deterministic context, 

i.e. only the following differential equation is considered: 

 
&!(')&' = )\!(')]. (2.120) 

We assume an appropriate approximation that the process is linear on a small time 

interval 1', �' + Ï)�, where its Jacobian Ò�	is constant. Here Ò� represents the Jacobian of )(!), which is given by:  

 Ò� = �Í)(!)Í! ×!�!d (2.121) 

From this assumption, the following relation for the process !(@) on the interval ' ≤ @ < ' + Ï is valid: 

 
&=!(@)&@= = Ò� &!(@)&@ . (2.122) 

If this is integrated on the interval 1', �' + H)�, where 0 ≤ H < Ï, one obtains: 

 

&!(' + H)&' = exp(Ò�H) &!(')&' 	
= exp(Ò�H) )\!(')]. (2.123) 
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By integrating this again with respect to H on 1�0, Ï)�, it results in the following relation 

between !* and !*zÐ:  

 !*zÐ = !* + Ò���1exp(Ò�Ï) − �2)(!*). (2.124) 

This represent the local linearization equation corresponding to the first order linear 

approximation [56]. Additionally, it is possible to apply the LL scheme also to the 

random term of the state equation in (2.113) that follows multivariate normal 

distribution with zero mean vector and covariance matrix [12]: 

 l*zÐ = v exp(Ò�Ï)kl*kl*� exp(Ò�Ï)� &' .
*zÐ
*  (2.125) 

Finally, there exists a simple algebraic expression [43, 112] that is especially useful 

for both deterministic and random part of (2.116), since the form (2.124) is not reliable 

in the case of ill-conditioned matrix Ò�. In order to do that, it is necessary to first rewrite 

(2.113) in the following (but equivalent) form: 

 !*zÐ = !* + Ú(!*, Ï) + klm*, (2.126) 

then the Ú(!*, Ï) is defined in the block matrix as: 

 `Û(!*, Ï) Ú(!*, Ï)0 1 h = exp(ÜÏ), (2.127) 

where Û(!*, Ï) = exp(Ò�Ï) and 

 Ü = `Ò� )(!*)0 0 h ∈ ℝ(�wz�)×(�wz�). (2.128) 

Similarly, the covariance matrix of Gaussian process noise is obtained through [113]: 

 `Ý ¨0 Þh = exp(§Ï), (2.129) 

with 

 § = ß−Ò� kl*kl*�0 Ò�� à ∈ ℝ(=�w)×(=�w) (2.130) 

resulting in a process noise covariance matrix: 

 l*zÐ = Þ�¨. (2.131) 
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2.5.2 Square-root cubature Kalman filter with local linearization 

In the previous section we have discussed the theoretical background of local 

linearization scheme as a method for discretization of stochastic differential equations. 

Now, we apply this scheme to the time-update step of nonlinear Kalman filter. 

Assuming a Gaussian approximation of the filtering distribution, we can obtain the 

predicted mean and the error covariance through the local linearization as: 

!3*��zÐ|*�� ≈ v 1!*�� + Ú(!*��, Ï)2 × �\!*��|!3*��|*��, x*��|*��]&!ℝ/w  (2.132) 

x*��zÐ|*�� ≈ v \1!*�� + Ú(!*��, Ï)2 − !3*��zÐ|*��]ℝ/w \1!*�� + Ú(!*��, Ï)2
− !3*��zÐ|*��)��\!*��|!3*��|*��, x*��|*��]&! + l*��zÐ , (2.133) 

The next step is to numerically compute the integrals above, which can be done using 

the cubature integration rules.  

In order to compute the predicted state estimate more accurately before receiving 

the measurement at time step ', several integration steps are usually performed within 

the time interval 1' − 1, '2; i.e. interval between available measurement samples. In this 

sense we will partially follow the cost-reduced approach introduced for continuous 

discrete systems [109].  

Given the set of cubature points representing the posterior at time ' − 1, we 

propagate these points recursively through the noise-free nonlinear process model 

(2.124) up to á steps forward, where the size of intermediate integration step is Ï = 1 á⁄ . Similarly, we update also the process noise covariance according to (2.125). 

Subsequently, we compute the predicted state and error covariance matrix by using the 

set of cubature points from the last step á, and continue with the standard measurement 

update of CKF. It means that the predicted mean and covariance are computed only 

once per the time update step of CKF. This is summarized in Algorithm 6. 

Notice that LL scheme involves calculation of Jacobian matrix. Once we combine 

LL with cubature integration rules, we have to compute this Jacobian matrix for each 

cubature point. In addition, we also have to compute matrix exponential. This represents 

a serious demand on computational cost. However, this cost is paid in favor of high 

accuracy and stability of the filter.  
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Algorithm 6. Time update step for continuous-discrete SCKF. 

• Start the time update step: 

1. Evaluate the cubature points (~ = 1,… ,�): 

 ��,*��|*�� = ¥*��|*���� + !3*��|*�� (2.134) 

• Accumulate the state vector and the noise covariance over the intermediate steps 

(a = 1,… , á) within measurement interval 1' − 1, '2, with Ï = 1 á⁄ : 

3. Propagate the cubature points through the process model (~ = 1,… ,�): 

 ��,*��zâÐ|*��∗ = ��,*��z(â��)Ð|*�� + Ú\��,*��z(â��)Ð|*��, Ï] (2.135) 

4. Based on the average Jacobian Ò� = � ∑ Ò�,� � , compute the process noise 

covariance matrix according to (2.129)-(2.131): 

 l*��zâÐ = �	5\l*��z(â��)Ð , Ï] A�u	a = 1	l*��z(â��)Ð + 5\l*��z(â��)Ð , Ï] A�u	a > 1� (2.136) 

• If a = á continue to evaluate the prediction: 

5. Estimate the predicted state: 

 !3*|*�� = 1�}��,*��zãÐ|*��∗ 
���  (2.137) 

6. Estimate the predicted square-root error covariance matrix: 

 ¥*|*�� = änå�\ª©*|*��, kl*��zãÐ«] (2.138) 

  with weighted and centered matrix: 

 ©*|*�� = 1√� ª��,*��zãÐ|*��∗ − !3*|*��, … ,� ,*��zãÐ|*��∗ − !3*|*��« (2.139) 

• Continue with the regular discrete time measurement update step. 

 

Although this cost-reduced formulation of CKF time update represents a stable 

algorithm to estimate the hidden states of continuous model, it seems to be not well 

suited for the joint estimation of both states and parameters. Specifically, if we use this 

scheme for joint estimation, we propagate the hidden states á times forward between 

observations, while the parameters (having discrete model) are propagated only once. 

This causes some instability into the performance of the joint filter, which is not 

desirable. Therefore, we suggest a slightly different strategy. Rather than performing 
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several integration steps through the process model between two observation samples, 

we linearly interpolate the observation sequence, so that with each integration step we 

have a new measurement available (now á = Ï), hence both state and parameter 

predictions are obtained at each step. This further improves the estimation of 

parameters, because we simply have more time points to achieve the convergence. In 

addition, this formulation is also well suited for a backward propagation through an 

RTS smoother. 

Finally, we compared these two formulations of filter time update with a recently 

introduced approach that uses Itô-Taylor expansion of the order 1.5 to discretize the 

continuous system, and which was designed directly for CKF [109]. For details see 

Appendix A.3. 

2.6 Adaptive estimation of noise statistics 

The Kalman formulation of filtering problem assumes complete a priori knowledge of 

the process and measurement noise statistics. In most practical situations, these noise 

statistics are unknown or not known perfectly. When incorrect prior statistics are used 

to implement sequential filtering algorithm, it might result in suboptimal performance 

and possibly in filter divergence. Therefore, in the lack of system statistics knowledge, 

it is desirable to adaptively estimate the process noise and measurement noise statistics 

simultaneously with the system state. The adaptive filtering methods can be classified 

into four main categories: Bayesian estimation, maximum likelihood estimation, 

correlation methods and covariance matching methods. A brief surveys on these 

different approaches can be found in [100, 114-116]. Note that there are many other 

methods that perform offline estimation of noise statistics [117], including EM 

approach [90, 91]. However, since we already have the preference to perform joint 

estimation of the states and parameters, it is a logical choice to adaptively estimate the 

noise statistics as well. Also, some of the offline estimators assume multiple repetitions 

or very long recordings of measured data [117], which are not really available for our 

problem.  

In standard Kalman filtering framework, all noise statistics are described by the 

first two statistic moments, i.e. by the mean and the covariance, where the mean is 

usually assumed to be zero. Therefore, the goal of adaptive filtering is to estimate the 
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covariances of process noise and measurement noise. It is important to mention that the 

estimated noise covariance can have a significant influence on the performance of the 

algorithm. By increasing the process noise covariance, the Kalman gain also increases, 

thereby producing bigger changes in the state updates. It means that more importance is 

placed on the most recent measurements. Additionally, as the Kalman gain increases, 

the process error covariance also increases and filter become less immune to noise and 

outliers. On the other hand, if the measurement noise covariance increases, the actual 

measurement is trusted less and vice versa [79]. 

In the case of parameter estimation, the amount of oscillations in the model 

prediction clearly depends on the value of the (parameter) process noise covariance. As 

a result, this covariance can be used as a regularization mechanism to control the 

smoothness of the prediction. A very common practice in neural networks is to 

approximate the parameter noise covariance by using simple annealing [88, 118]:  

• Annealing: The process noise is injected artificially based on process error 

covariance matrix: 

 °* = (æµ�� − 1)x*,µ (2.140) 

where æµ ∈ �(0,1�2 is called the forgetting factor [118]. This allows to put 

exponentially decaying weigh on past data. Typically, the choice of æµ being 

slightly less than unity works well for many problem.    

Another already more sophisticated approach to recursive estimation of noise 

covariance is the Robbins-Monro (RM) stochastic approximation [111]: 

• Robbins-Monro stochastic approximation [58]:  

 °* = æµ°*�� + \æµ�� − 1]�*ª#* − 5\!*; 7±*]«ª#* − 5\!*; 7±*]«��*� (2.141) 

The method assumes that the covariance of the Kalman update model should be 

consistent with the actual update model. Typically, °* is also constrained to be a 

diagonal matrix, which implies an independence assumption on the parameters. 

Here, λè has the same function as in the previous case. It is known that an RM 

approximation provides a very fast convergence and a low final MMSE [59].  



ESTIMATION OF NEURONAL SIGNAL FROM FMRI DATA 
 

58 
 

Both RM and annealing help to escape poor local minima of the error surface. We 

made a choice to apply the RM approximation to the recursive estimation of parameter 

noise covariance °* and also to approximate the process noise covariance matrix l*, 
since it proved to have better convergence properties [59]. We should also note that we 

do not expect to estimate the exact process noise covariance of the dynamic model with 

RM approach. The aim here is to maintain some artificial level of randomness, which 

supports the convergence of the algorithm, and prevents the filter from becoming 

overconfident with the estimate (i.e. it avoids overfitting). By saying this, we consider 

the noise covariance of the input to be fixed. In this case, any attempt to adaptively 

estimate the input noise covariance led to the quick divergence of the filter. 

Nevertheless, as we will see in Chapter 4, there is no need to adaptively estimate the 

input noise covariance, because it can be easily defined a priori; i.e. proportional to the 

average peak to peak amplitude variation of the observations.  

The most important part in adaptive filtering is accurate estimation of measurement 

noise statistics. For this particular task, we consider a recently introduced Bayesian 

approach [119] to recursive estimation of measurement noise covariance, which is 

suitable also to nonlinear filtering and is able to take the advantage of assumed 

Gaussian density filter such as CKF. In the next section, we describe the details of this 

approach. 

2.6.1 Variational Bayesian estimation of measurement noise 

The Bayesian estimation of the noise statistic is the most general one and the other 

approaches can often be interpreted as an approximation to the Bayesian approach. One 

way how to perform tractable approximation to posterior inference in Bayesian sense is 

to apply variational Bayesian (VB) approach [114, 116]. 

If the measurement noise covariance �* is unknown then the goal of Bayesian 

filtering is to compute the joint posterior distribution  (!*, �*|#�:*) of the state !* and 

of the covariance �*. We know already from the earlier discussion that the posterior is 

given by a product of observation likelihood and predictive distribution, which now 

takes a form: 

  (!*, �*|#�:*) ≈  (#*|!*, �*) (!*, �*|#�:*��). (2.142) 
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In [119] they assumed that the probability distribution of noise variance is inverse-

Gamma and so the filtering distribution at time ' − 1, and predictive distribution at time ' can be approximated as a product of Gaussian and independent inverse-Gamma 

distributions, respectively [116]: 

 (!*��, �*��|#�:*��)
= �\!*��|!3*��|*��, x*��|*��] ×é~�\ê�,ë��|*��|P�,ë��|*��, U�,ë��|*��](

���  

 (2.143) 

	 (!*, �*|#�:*��) = �\!*|!3*|*��, x*|*��] ×é~�\ê�,*|*��|P�,*|*��, U�,*|*��](
��� , (2.144) 

where the dynamic model for the measurement noise covariance maps an inverse-

Gamma distribution at the previous step into inverse-Gamma distribution at current 

step.  

It is further assumed that the measurement noise covariance has a form of diagonal 

matrix �* = diag(ê�,*, … , ê(,*). The inverse-Gamma distribution is chosen because it 

represents the conjugate prior distribution for variance of Gaussian distribution (another 

common choice is to use inverse-Wishart distribution [120][[121]). These normal and 

inverse-Gamma densities in (2.144) are parameterized as follows: 

�\!*|!3*|*��, x*|*��] ∝ ºí*|*��º��=exp »−12 \!3'|' − !3'|'−1]�x'|'−1�� \!3'|' − !3'|'−1]½ 

~�\êºP�,*, U�,*] ∝ ê�Q�� exp î− Uêï, 
(2.145) 

(2.146) 

where we skipped the constants not containing ! or ê.  

At this point, in order to make the computation of posterior (2.142) tractable, it is 

possible to apply the VB approach. The VB usually applies the mean field 

approximation [75] that factorizes the posterior distribution as follows: 

  (!*, �*|#�:*) ≈ ð�(!*)ðñ(�*), (2.147) 

where ð�(!*) and ðñ(�*) are in our case the approximations of normal and inverse-

Gamma densities, respectively. The VB approximation can now be formed by 

minimizing the Kullback-Leibler (KL) divergence between the separable 

approximations and the true posterior distribution: 
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KL\ð�(!*)ðñ(�*),  (!*, �*|#�:*)]
= vð�(!*)ðñ(�*) ln »ð�(!*)ðñ(�*) (!*, �*|#�:*) ½&!*&�*. (2.148) 

By minimizing the KL divergence with respect to probability densities ð�(!*) and ðñ(�*) in turn, while keeping the other one fixed, we get the following forms:  

 ð�(!*) ∝ exp îv ln  (#*, !*, �*|#�:*��)ðñ(�*)&�*ï 
ðñ(�*) ∝ exp îv ln  (#*, !*, �*|#�:*��)ð�(!*)&!*ï . 

(2.149) 

 (2.150) 

The integrals in the exponentials of (2.149) and (2.150) can be expanded as follows: 

 

v ln (!*, �*|#�:*��)ðñ(�*)&�*
= 12 \#* − #3*|*��]�〈�*��〉ñ\#* − #3*|*��]
+ 12 \!3'|' − !3'|'−1]�x'|'−1�� \!3'|' − !3'|'−1] + 
� 

v ln  (!*, �*|#�:*��)ð�(!*)&!*
= −}ßî32 + P�,*ï ln\ê~,'] − U�,*ê~,'à

(
���

− 12}ê~,'−1 〈\#* − #3*|*��]�=〉�
(
��� + 
=, 

(2.151) 

 (2.152) 

The result of the first integral can be immediately recognized as a form of posterior log-

likelihood function (described in Section 2.4.1), which once solved for minimum value 

of !* gives the Kalman update equations for the states (assuming cubature 

approximation). The expectation 〈∙〉ñ = .(∙)ðñ(�*)&�* represents the estimate of 

measurement noise covariance matrix:  

 〈�*��〉ñ = diag\P�,*|* U�,*|*⁄ ,… , P(,*|* U(,*|*⁄ ]. (2.153) 

The update of parameters P�,*|* and U�,*|* describing inverse-Gamma distribution are 

derived from the result of the second integral (2.152), where the approximate solution to 

expectation 〈∙〉� = .(∙)ð�(!*)&!* can be separately computed by Gaussian integration 

methods such as cubature rules: 
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 P*|* = P*|*�� + 12 

÷*|* = ÷*|*�� + 12v \#* − #3*|*��]\#* − #3*|*��]��\!*|!3*|*, x*|*]�ø . 
(2.154) 

 (2.155) 

Here we used simplification ÷*|*�� = diag\U�,*|*��, … , U(,*|*��] and P*�� represents 

scalar that is the same for all measurements. In [119] they also suggested to update P*|* 
and ÷*|* iteratively to improve the estimation performance of the algorithm.  

So far, we have described only the update of parameters P* and ÷*. The dynamic 

model, which takes a part during the prediction step has to satisfy a condition that when 

this model is applied to inverse-Gamma distribution, it produces another inverse-

Gamma distribution. This can be simply achieved: 

 P*|*�� = ùP*��|*�� 

÷*|*�� = ù÷*��|*��. 
(2.156) 

 (2.157) 

where ù ∈ �(0,1�2 controls the assumed dynamics of the measurement noise, i.e. it is 

possible to model also nonstationary noise covariance. If ù = 1 then we assume 

stationary covariance and ù < 1 allow for higher time-fluctuations [119]. The summary 

of the resulting adaptive algorithm in the sense of CKF is presented bellow. 

Algorithm 7. CKF with adaptive estimation of measurement noise covariance. 

• Initialization: 

o Standard initialization as for CKF. 

o Initialization of inverse-Gamma distribution parameters; e.g. P; = 1, ÷; = �(, and ù = 0.998. 

• For ' = 1,… , < 

 Time update: 

1. Perform regular step of CKF time update, i.e. steps 1.-5. of Algorithm 1, 

to obtain predicted mean and predicted error covariance. 

2. Calculate parameters of predicted inverse-Gamma distribution:  

 P*|*�� = ùP*��|*�� 

÷*|*�� = ù÷*��|*��. 
(2.158) 

 (2.159) 

   



ESTIMATION OF NEURONAL SIGNAL FROM FMRI DATA 
 

62 
 

 Measurement update: 

3. Perform steps 6.-9. and 11. of Algorithm 1. to obtain propagated 

cubature point array ��,*|*�� with associated mean response prediction 

#3*|*��, and the cross-covariance matrix x��,*|*��. 

• Set ú*|*; = ú*|*�� and P*|* = P*|*�� + 1, and iterate the following steps á-

times (a = 1, . . , á):  
4. Compute the measurement covariance matrix (its diagonal elements): 

 �*â = diag\U�,*|*â�� P�,*|*û ,… , U(,*|*â�� P(,*|*û ] (2.160) 

5. Estimate the innovation covariance matrix: 

 x��,*|*��â = 1�}��,*|*��
 
��� ��,*|*��� − #3*|*��#3*|*��� + �*â (2.161) 

6. Estimate the Kalman gain: 

 

 �* = x��,*|*��ªx��,*|*��â «�� (2.162) 

7. Estimate the updated state: 

 !3*|*â = !3*|*�� +�*\#* − #3*|*��] (2.163) 

8. Estimate the updated error covariance: 

 x*|*â = x*|*�� −�*x��,*|*��â ���� (2.164) 

9. Factorize the state error covariance matrix: 

 x*|*â = ¥*|*â ª¥*|*â «� (2.165) 

10. Evaluate the cubature points (i = 1,… ,�): 

 ��,*|* = ¥*|*â �� + !3*|*â  (2.166) 

11. Propagate the cubature points through measurement model (~ =1,… ,�): 

 ��,*|*∗ = 4\��,*|* , i*; 7] (2.167) 

12. Update beta parameter of inverse-Gamma distribution: 

 ú*|*â = ú*|*�� + §*|*§*|*�  (2.168) 

 with centered and weighted matrix: 



ESTIMATION OF NEURONAL SIGNAL FROM FMRI DATA 
 

63 
 

 §*|* = 1�}��,*|*∗ 
��� ��,*|*∗� − #*#*� (2.169) 

• If �a = á�, set U*|* = U*|*ã , ü3*|* = ü3*|*ã ,  í*|* = í*|*ã , and continue with the 

next time step. 

• Note that similarly we can apply the VB estimation of the measurement noise 

covariance also to the square-root version of CKF. In that case, we use equations 

for SCKF and the iterative update of beta parameters will remain the same. The 

only difference will be in step 4., where we additionally calculate a square-root 

of diagonal elements of �*â to obtain ¥­,*â  [120]. 

 

2.7 Algorithm for estimation of neuronal signal 

In this section, we will put together all the items that were described so far in this 

chapter and will finally build the complete algorithm for estimation of neuronal signal 

from fMRI data. In this sense, we are introducing an algorithm that is able to solve a 

triple estimation problem, i.e. we jointly estimate not only the model states (including 

the endogenous input), the model parameters, but also hyperparameters that represent 

noise statistics. 

Algorithm 8. Estimation of neuronal signal by CKS. 

• Initialization. 

• Iterate the following (~ = 1, … , 8): 
o Forward run of CKF (' = 1,… , <): 

1.  Time update of joint CKF including discretization of continuous part of 

process model by LL scheme: 

- Obtain predicted joint state vector ÂÊ*|*�� and error covariance matrix 

x*|*��. 

2. Measurement update (iterated á-times): 

- Obtain joint posterior estimate of state vector ÂÊ*|* and error covariance 

matrix x*|* at a-step. 
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- Update the estimate of measurement noise covariance matrix �* 
through VB approach at a-step. 

2. Estimate the state and parameter process noise covariance matrices, l* 
and °*, respectively, through Robbins-Monro approximation scheme. 

3. Calculate the log-likelihood ℒ*,� at time step '. 
o Backward run of cubature RTS smoother (' = <,… ,0) using the stored 

posterior estimates and predictions of forward run: 

1.  Obtain the smoothed posterior estimates of ÂÊ*|�N  and x*|�N  

o Calculate the accumulated log-likelihood ℒ� = ∑ ℒ*,��*��  and its difference 

with ℒ���. If  (ℒ� − ℒ���) > 0, set ÂÊ; = `ª!3�|�N «� , ª¿3�|�N «� , ª∑ 7±*�*�� «�h and 

x; = x�|�, and proceed to the next iteration (~ + 1). 
• If (ℒ� − ℒ���) < 'ℎu�@ℎ��& or (~ = 8) terminate the algorithm. 

• Note: Although this description is provided for non-square-root version of CKS, 

the same step are followed also for the SCKS. In that case, the square-root 

covariance matrices are considered. 

 

2.8 Chapter summary 

In this chapter we have introduced a complete methodological framework for the 

inversion problem consisting of the estimation of the neuronal signal from noisy fMRI 

data using the forward model of the BOLD signal [29]. The concept draws on the theory 

of recursive Bayesian filtering and smoothing, which allows one to perform 

probabilistic inference about the hidden variables (states and parameters) given noisy or 

incomplete observations. Since the optimal recursive solution for filtering and 

smoothing problem is tractable only for linear, Gaussian systems and the hemodynamic 

model describing a coupling between the neuronal signal and observed BOLD signal is 

nonlinear, we have pursued an approximate solution by using a Gaussian approximate 

method to model the probability densities.  

In particular, we have proposed an approach based on the recently introduced 

cubature Kalman filtering [55] to the joint estimation problem where the hidden states 

and parameters are concatenated into a single joint state vector and estimated 
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simultaneously, yielding joint MAP estimates. This form allows us not to only 

accurately treat the dual uncertainty of the parameter and state estimates (by using 

cubature point approach), but also to accurately model the interaction (conditional 

dependence) between the states and parameters. To obtain more accurate estimates of 

hemodynamic states and mainly of neuronal signal, we have employed forward-

backward smoothing, encompassing also the cubature points formulation of Rauch-

Tung-Striebel smoother. The overall estimator performance is further enhanced by 

considering a square-root formulation that ensures a numerical stability during the 

recursion.   

Next, because the states of hemodynamic model are represented by ordinary 

differential equations, we have introduced a novel continuous-discrete time 

representation of CKF that combines a statistical linearization with the local 

linearization approach for accurate and stable discretization of the process model. 

Additionally, this new algorithm is also suitable for joint estimation, where the states 

are propagated through the continuous model and the parameters are propagated 

through the discrete model. 

The estimation framework would not be complete if we were restricted to the 

informed model inversion, where one assumes the noise statistic to be known, which is 

typically not the case. Therefore, we have proposed an adaptive estimation of state and 

parameter noise covariance matrix based on Robbins-Monro stochastic approximation 

scheme, and further adopted the recently introduced variational Bayesian approach for 

estimation of measurement noise variance [119] to the cubature point Kalman filter. 

All these developments and extensions were combined to create an iterative 

optimization method, which maximizes the log-likelihood with each iteration and 

achieves a fast convergence. As a result, we have obtained a novel advanced approach  

to the estimation of the neuronal signal from the observed BOLD signal superior to 

what has been so far introduced in the field of neuroscience (comparison is provided in 

[20]).  

This method and results have been presented at [120, 122], and published in [20], 

where also the comparison with other recently introduced approach is provided. Besides 

a general development of the methods, the Chapter 2 contains also detailed description 
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of all respective algorithms. Additional demonstration of the method performance is 

provided in Chapter 4. 
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Chapter 3 

3. Modeling brain network 

connectivity 

3.1 Introduction 

In this chapter, we focus on modeling coupling among different brain regions (nodes) in 

terms of effective connectivity. In particular, we will introduce a direct generalization of 

the estimation framework described in the previous chapter to a multivariate case, 

where the main goal will be to infer the directional influence among different brain 

regions at the neuronal level. Before we do so, it will be useful to provide a short 

overview and motivation on methods that attempt to assess effective connectivity.  

In effective connectivity, the neuronal states describe the activity of set of nodes 

that comprise a graph. The aim of analysis is to identify the directional (causal) 

influence of activated links in the graph. Importantly, these nodes are in fMRI defined 

as neural populations at macroscopic level, i.e. whole brain areas, whose activity is 

summarized by a time varying state vector. 

In general, there are two streams of statistical causal modeling: one based on 

Bayesian dependency graphs or graphical models called structural causal modeling and 

the other based on causal influence over time [1]. Structural causal modeling is related 

to structural equation modeling (SEM) [123, 124] and uses graphical models in which 

direct causal links are encoded by directed edges. However, this approach has two 

limitations. First, it is restricted to discovering conditional independencies in directed 

acyclic graphs (DAG), i.e. it cannot deal with (cyclic) feedback loops (see Figure 3.1). 

This is a serious drawback because the brain works as a directed cyclic graph, where 

every brain region is connected reciprocally (at least polysynaptically) [15]. Second, the 
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estimation is completely based on the sample covariance matrix, i.e. it ignores time 

dynamics. Fortunately, the DAG restriction can be finessed by considering dynamics 

and temporal precedence within structural causal modeling. This is because the arrow of 

time can be used to convert a directed acyclic graph into a cyclic graph when the nodes 

are deployed over successive time points. This leads to SEM with time-lagged data 

described by autoregressive (AR) models, which are the ground for Granger causality 

modeling (GCM). The GCM approach is based on temporal precedence, i.e. þ causes : 

if one reduces uncertainty about the future of : given the past of þ. It is formulated in 

discrete time analysis framework, where the directionality is usually inferred directly 

from measured signals. Although GCM has become quite popular in the neuroimaging 

community during the last several years, there is an ongoing discussion to determine if 

the concept of temporal precedence is suitable for application to fMRI time series 

analysis. Main concerns are that GCM does not account for variability in hemodynamic 

response function across different brain regions [9, 125]; the measurement noise can 

reverse the estimation of causality direction [126]; and  the coupling strengths are 

parameterized in terms of regression coefficients, which are not the true coupling 

parameters of effective connectivity. Additionally, the reliability of GCM degrades with 

the increase of sampling interval [127], which is important for fMRI because the 

sampling interval is quite large with respect to the time scale of neuronal events. Of 

course, there have been several attempts to partially eliminate some of these obstacles. 

For example, one can take the regression coefficients out of the picture of noisy 

measurement by mapping from observed data to hidden states (represented by AR 

coefficients) [128], or go even further and consider a generative model that maps the 

observations to neuronal states through the hemodynamic model and then use the 

estimated neuronal states for determining effective connectivity [129]. However, the 

later is suboptimal because it assumes that causal modeling between neuronal states is 

conditionally independent of the mapping from measured data [130]. 

As a result of these recent discussions [131-134], it is now clear that discovering 

effective connectivity should be based on state-space models of controllable (causal in 

the control theory sense) biophysical processes that have hidden neuronal states and 

possibly exogenous input [135]. Further, the optimal statistical procedure is to invert the 

complete generative model described by a set of state equations that quantify how the 

observed data are affected by the presence of causal links [130]. This possibly allows to 
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accommodate the conditional dependencies between parameters of the state equations, 

which are mapped to the observations [15]. If we now recall the definition of the 

effective connectivity as stated in Chapter 1, i.e. that effective connectivity refers to the 

influence that one neural system exerts over another, either at synaptic or population 

level, one realizes that the procedure mentioned above is a sensible choice and, at the 

moment, probably also the only choice suitable for application to fMRI data. 

This reasoning has led to the development of dynamic causal modeling (DCM), 

which employs biophysically motivated generative model that relates the observed 

BOLD data to neuronal signal [11]. Here, the causal influence is defined as a physical 

influence, where changing influences causes changes in their consequences [130], and it 

is modeled by a continuous time dynamic state-space system. The original formulation 

of DCM requires knowledge of known exogenous input, assigned to some of the 

network nodes, which drives the dynamics of the system. In this case, all hidden states 

are treated deterministically and the random term is considered only at the level of 

observation equation. The coupling and hemodynamic parameters are inferred through 

variational Bayesian formulation of EM algorithm, which maximizes the model 

evidence [11]. In this scenario, DCM is seen as a hypothesis-based approach to 

understanding distributed neuronal architectures underlying observed brain responses. 

Then, different hypotheses (model candidates) represented by different networks (or 

graphs) are compared based on the model fit reflected in evidence, via Bayesian model 

selection (BMS) [136]. However, as we emphasized in Chapter 1, one can do better if 

the model accounts for randomness at all levels, including hidden states, i.e. it is 

 

Figure 3.1 Difference between directed acyclic and directed cyclic graph. Note that cyclic 
graphs in our case allow for different strength of bidirectional connection; e.g. forward 
connection (solid line) can be stronger than the backward one (dashed line). Directed 
cyclic graph can be reduced to directed acyclic graph if any of two bidirectional 
connections are set (or estimated) to zero. 
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formulated as a fully stochastic system. Since we have introduced a fully stochastic 

scheme in the previous chapter for simultaneous estimation of neuronal signal (i.e. 

endogenous input) and model parameters for single time course, it is reasonable to think 

that the same scheme can be extended to multivariate case, which includes the modeling 

of neuronal interactions among different brain regions. In other words, we do not utilize 

any prior knowledge about the experimental causes of observed responses as required 

by deterministic DCM and introduce a stochastic DCM, which can be completely data-

driven. This enables network discovery using both observed and unobserved responses 

during both activation based studies and (task-free) studies of autonomous or 

endogenous activity during the resting state [15]. In addition, because we jointly 

estimate both model parameters and neuronal signals in temporally sequential sense, i.e. 

we estimate the hidden states generating observed data, while properly accommodating 

endogenous inputs and model parameters, we implicitly assume that the uncertainty 

about the parameter estimates depends on uncertainty of hidden states (including 

endogenous inputs). This is more proper assumption compared to the deterministic 

DCM, which assumes that the uncertainty about parameters (after seeing data) does not 

depend on uncertainty about the states [15]. 

The rest of this chapter is structured as follows: First, we start with a state-space 

formulation of stochastic DCM where we focus on the form of the neuronal interaction 

model and its properties in terms of encoding a directional influences into the 

connectivity matrix. Second, we discuss different ways to perform model selection, i.e. 

how to compare different models and to infer whether some connections are likely to be 

present or not. Importantly, we show how to improve the system identification during 

the optimization process, by evaluating the importance of estimated coupling 

parameters.  

3.2 Stochastic dynamic causal modeling 

The stochastic DCM (sDCM) represents a straightforward extension to the deterministic 

DCM (dDCM), when it has the following properties: (i) it releases the need of known 

exogenous input; (ii) accounts for random process at hidden states level; (iii) and 

provides conditionally dependent estimates of the states and parameters. 
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Similarly to dDCM, sDCM is formulated as a multiple-input multiple-output  

(MIMO) system that comprises m inputs and l outputs with one output per region. 

Unlike in dDCM, where inputs must correspond to causes, i* (i.e. designed exogenous 

inputs), in sDCM the inputs can be treated as endogenous ¿�*, i.e. they can be generated 

by the fMRI data, which makes sDCM data-driven approach. However, it does not 

mean that sDCM is limited only to this scenario. Importantly, as we will see in the 

following section, one can still define any exogenous input as in the case of dDCM and 

use the sDCM for testing different hypotheses that motivated the experimental design 

but with the fully stochastic treatment of the model. Also, the stochastic formulation of 

DCM can be always easily converted to deterministic one, by setting the process noise 

variances of hidden states to zero (or to very small values). In either case, DCM rests on 

a choice of neuronal model )�(. ) of interacting cortical regions, which is defined in 

continuous time. This neuronal model is further supplemented with a forward 

hemodynamic model (summarized by )�(. ) and 4(. )), which describes how neuronal or 

synaptic activity is transformed into a measured response #*. This complete generative 

model allows to estimate the neuronal model parameters 7*� (i.e. effective connectivity) 

from observed data, where the parameters represent couplings among unobserved brain 

states (i.e. neuronal activity in different brain regions), but it also accounts for 

parameterization of the hemodynamic response, 7*�. Then, the state-space model can 

have the following joint form: 

 Â* = Ç ¿�*!�*7*�,�É = Ç)
�(¿�*��, 7*��� , i*��))�\!�*��, 7*��� , ¿�*��]7*���,� É + Çs�*��

�s�*���¯*���,� É 
#* = 4(Â*) + n*, 

(3.1) 

 (3.2) 

where for simplicity we skipped the notation for multiple l regions; e.g. ¿� =
1	¿��, … , ¿��2�, !� = 1	!��, … , !��2�, 7� = ª	7��, … , 7��«�, etc. Further, we mark the variables 

that are obtained by discretization of the continuous process, using a local linearization 

approach, with tilde.  

In summary, each of the l regions is described by one neuronal state ¿�, four 

hemodynamic states !� = 1@̃, A�, B�, C�2, and by a set of hemodynamic parameters 7� (see 

Section 1.3 for description of the hemodynamic model). Crucially, all regions are 

coupled together (with mutual influence) through the neuronal model, where the 
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strength of couplings is encoded by parameters 7�. The neuronal model represents a 

bottom of the generative model, where the neuronal activities from different regions talk 

to each other. It is supposed that there is no influence or interaction between 

hemodynamic states of different regions; i.e. at the higher level of the generative model. 

Schematic representation of this model is depicted in Figure 3.2. 

Since the hemodynamic model is the same as described in section 1.3, we will 

proceed with description of the neuronal model, which is the core of the causal 

interactions and effective connectivity in particular. 

 

Figure 3.2 Schematic illustration of stochastic DCM. From measured BOLD signals 
associated with different brain regions we perform model inversion assuming 
hemodynamic model and neuronal model of interactions.  
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3.2.1 Neuronal interaction model 

For fMRI data it is reasonable to define the model of neuronal interactions at 

macroscopic level, where one can study the whole brain dynamics and interactions 

between large-scale neuronal systems such as cortical regions. In this sense, it is 

common to consider a simple model of neuronal responses distributed over l nodes, 

where under the mean field assumption (see [137, 138]) the dynamics of one node are 

determined by the average activity of another. This is like assuming that each neuron in 

one node can see a sufficiently large number of neurons in another node to render the 

effective influence that is the same as the average over all neurons in the source node. 

As a result, only the slow dynamics are communicated among nodes, which means we 

can model distributed activity with a small number of macroscopic variables (e.g. one 

per node), whose time constants are greater than underlying fast fluctuations that are 

specific to each node. These fluctuations are continuous and can be represented by 

system noise. Therefore, the neuronal model can be described through simple linear 

stochastic differential equation:  

 

&¿(') = )(¿('), 7�('))&' + kl�&m(') = �¿(')&' + kl�&m('), (3.3) 

where 

 � = Í)(¿, 7�)Í¿ , (3.4) 

is the connectivity matrix (the Jacobian), also called adjacency matrix, which represents 

the first-order connectivity among nodes [139]. The elements of this connectivity matrix 

are function of endogenous neuronal states and represent the unknown parameters 

which we want to estimate, 7� = �. One can also understand these coupling parameters 

of effective connectivity as a rate constants (with units @��) of neuronal population 

responses that have exponential nature (the solution of differential equation (3.3) is 

exponential function). In other words, a strong connection means an influence that is 

expressed quickly (or with a small time constant). Additionally, since the parameters 7� are estimated sequentially with the proposed model inversion scheme, it means that 

we are able to obtain time-varying parameters of effective connectivity, where the 

uncertainty about the parameters might change with time as well. Crucially, this 

continuous model allows estimating the cyclic directed graphs, i.e. it enables distinction 
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between forward and backward (feedback) connections. The neuronal interaction model 

is connected with the hemodynamic model (see Section 1.3) through (1.1), where the 

exogenous inputs i(') are replaced with the endogenous activity ¿('). 
This is the simplest possible form of neuronal model that one can consider4 but it is 

suitable for fMRI responses because it is generally assumed that fMRI signal scales 

with predominant frequency of neuronal activity [139, 140]. It should be noted that in 

the standard discrete DCM a more complex neuronal models are usually applied. The 

original neuronal model under DCM has a bilinear form [11], which models interactions 

between neuronal state ¿ and a known input function i, i.e. experimentally controlled 

context variable. This enables context-dependent modulation of connection strengths, 

which can be thought of as a dynamic formulation of the so-called psycho-physiological 

interactions [6]. Later, two extensions of the neuronal state equation for DCM were 

introduced. First, one can extend the neuronal model with excitatory and inhibitory 

subpopulations in each region [141], allowing for an explicit description of intrinsic 

(between subpopulations) connectivity within a region. This is effectively modeled by 

two states per region, where by using positivity constrains, the model reflects the fact 

that extrinsic (inter-regional) connections of cortical areas are purely excitatory. Second, 

it is possible to account for nonlinear interactions among neuronal states, where the 

effective strength of connection between two regions is modulated by activity in a third 

region [142]. This nonlinear controlling allows modeling of various neurobiological 

processes, including attentional modulation, learning, and especially neuromodulation, 

i.e. mapping the modulatory influence to neuronal origin (state). These extended models 

are of high interest. Nevertheless, in order to make the concept more general and also 

understandable, we will consider only the simple linear form of neuronal model (3.3) in 

this work.  

3.2.2 Structured priors on coupling parameters 

In the following section, we discuss the basic properties of the adjacency matrix � in 

terms of the system stability and specification of priors on coupling parameters. 

                                                 
4 Note that for data simulation we need to define the exogenous input i('), where we consider the 

following model &¿(') &'⁄ = )(¿('), 7�('), i(')) = �¿(')+Üi('). Matrix Ü is in this case 
represented by simple identity matrix. 
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In the absence of the input, the neuronal state must return to a stable mode. 

Mathematically, this means that the principal real eigenvalue of the square connectivity 

matrix � must be negative. In other words, we require the diagonal elements of � to be 

negative, i.e. these nodes have negative self-feedback, and if the overall feedback of the 

system is negative, then the system will tend to be stable. Further, we can factorize the 

connectivity matrix into a scalar σ and normalized couplings a��, such that the strength 

of connections among regions are relative to self-connections a��: 
 � → σ� = σ

	




�−1 a�= ⋯ a��a=� −1
⋮ ⋱a�� a�� ��

�
�. (3.5) 

This factorization enforces the same self-connection or temporal scaling σ in all regions. 

This assumption is supported by the fact that there is a minor reason to suppose that the 

neuronal dynamics, intrinsic to each region, will be very different (as opposed to the 

strong evidence that hemodynamics vary between regions) [11]. Also, the temporal 

scaling considered here is equal to 1 2⁄  s-1, which is motivated by assumption that was 

described in the previous section that the time constants implicit in the neuronal model 

parameters are much longer (e.g. 100 to 10,000 ms) than the microscopic time constants 

(e.g. 1 to 100 ms). This is important because it suggests that priors on parameters in the 

effective coupling matrix � should allow for slow dynamics. 

Above, we have defined the main structure of the adjacency matrix �. In fully 

Bayesian inversion scheme one could now simply define Gaussian priors on each of 

coupling parameters in order to ensure the proper structure [62]. For example, the priors 

on diagonal elements could be  (���) = �(0, 10�g), where the small variance ensures 

that diagonal elements will remain very close to initial −1 2⁄  during estimation, which 

will ensure that the system stays stable. Next, the priors on off-diagonal elements can be 

defined as  \���] = �(0,2), ~ ≠ �, where the variance defines allowable range of the 

coupling parameters in adjacency matrix (assuming slow dynamics).  

Unfortunately, our estimation scheme based on Kalman filter is not fully Bayesian, 

which means that we cannot define prior distribution, from which the parameters are 

sampled, directly. In Kalman filtering framework, we have to work with the transient 

priors, which are mainly defined through the initialization of the parameter error 
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covariance matrix (and regularized through the parameter noise covariance, which is 

responsible for the smoothness/perturbations). As it is already prompting by the name 

"transient", these priors are changing with time, i.e. the variance can be seen as a change 

in a parameter estimate that is allowed between time steps. Obviously, compared to the 

real prior variance, the variance of transient prior must be much smaller but still able to 

effectively cover (over the time) the allowed range. In this particular case we can 

initialize the parameter error covariance matrix (its diagonal elements) as: 

 x;µ/ = �1 ∙ 10�= A�u	�AA − &~���-��	�����-'@	�A		AAAA1 ∙ 10�� A�u	&~���-��	�����-'@	�A		�	 � (3.6) 

The prior (initial) expectation on connectivity parameters will be then �;,��� = 0 for off-

diagonal elements and �;,��� = −1 2⁄  for diagonal ones. Since we consider different 

variances for different classes of parameters (based on their function), we will call these 

priors structured. Similarly, we can define the parameter noise covariance by using 

these structured priors, e.g. as °;� = x;µ/ ∙ 10�g. The parameter noise covariance is then 

adaptively updated through the Robbins-Monro approximation (2.141). In addition, by 

defining the same prior variance on all off-diagonal elements, we allow for full-

connectivity. It is then a goal of optimization scheme to estimate the correct parameter 

values, where we hope that during the convergence, the uncertainty on parameter 

estimates becomes smaller, i.e. their corresponding error (co)variances in x*µ/ shrink.      

Moreover, these prior means and variances can be effectively used to specify any 

model in terms of its adjacency matrix, which defines allowable connections or 

conditional dependencies among nodes. For example, if we initialize the prior variance 

on some connection ��� to be zero (i.e. no uncertainty), we automatically force the 

posterior estimate to take the prior mean. Under zero mean prior, as in our case, a zero 

entry in the adjacency matrix thus prohibits an effective connectivity between respective 

nodes (regions). Conversely, if we allow finite variance on connection in the adjacency 

matrix, it means that this connection can have non-zero value of the posterior mean. By 

specifying the structured priors on elements of adjacency matrix we are ready to 

perform model inversion using SCKS. 

Finally, these structured priors (both real and transient) will play an important role 

in the second level of inference, which is discussed in the next section. There we will be 
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comparing different model candidates, which will be defined by switching off subsets of 

connections within the full model using priors. 

3.3 Model Selection 

Until now, we have always considered only the first level of inference, where we fit the 

model �� to the data #. Our model includes free parameters 7 and by fitting the model 

to the data we are inferring what values those parameters should probably take, given 

the data. As a result of this inference we have obtained the most probable posterior 

parameter estimates and the uncertainties on these estimates described by posterior error 

variances. Using Bayes' rule, we define the first level inference (model fitting) in the 

probabilistic sense as:  

  (7|#,��) =  (#|7,��) (7|��) (#|��) . (3.7) 

In words: 

 í�@'�u~�u = �~a��~ℎ��& × íu~�uLB~&�-
� . (3.8) 

The denominator on the right hand side of (3.7) represents normalizing constant known 

as evidence or marginal likelihood. The normalizing constant  (#|��) is ignored during 

the first level of inference. In our case, we obtain posterior estimates  (7|#,��) of 

model parameters by using SCKS estimation scheme, where the estimates are optimal in 

both maximum likelihood and maximum a posteriori sense.  

However, in the task where one wants to identify the connectivity couplings 

between nodes, which possibly involves many free parameters (depending on the size of 

network), we cannot be sure that the model �� we have inverted is the best one. In other 

words, there are many possible models �� ∈ �, where each model is defined by its 

unique structure (or adjacency matrix) of allowed connections between nodes. 

Therefore, after model fitting it is common (or necessary) to perform the second level of 

inference, represented by model comparison. At this level we wish to infer which model 

is the most plausible, given the data.  This is the reason, why one usually considers a set 

of alternative model candidates, and for each of the model inversion is performed. In 

this case, the posterior probability of each model is given by: 
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  (��|#) ∝  (#|��) (��), (3.9) 

where the data-dependent term on the right side of (3.9) is the marginal likelihood 

(evidence) that appeared already in (3.7), but was ignored. Assuming that there is no a 

priori  belief that one model should be better than others, we usually assign equal priors  (��) for all model candidates. This means that the models can be uniquely ranked by 

evaluating the marginal likelihood [63]. 

Unfortunately, the marginal likelihood is not straightforward to compute, since this 

computation involves integrating out the dependence on model parameters: 

  (#|��) = v (#|7,��)  (7|��)&7. (3.10) 

Therefore, the approximation to marginal likelihood (evidence) is generally considered. 

Critically, this approximation should represent a balance between the model fit and 

model complexity. It is not simply possible to choose the model that fits the data best, it 

is a known fact that more complex models can fit data better (especially if highly 

nonlinear models are assumed). This may result in overfitting, see Figure 3.3. This 

balance between model fit and complexity follows Occam's razor assertion that if two 

models fit equally well, the simpler model is likely to be better description of the reality. 

In this sense we can verbally express the evidence as: 

LB~&�-
�(��) = :�@'	A~'	�~a��~ℎ��&(��) × y�� ��ü~'^(��), (3.11) 

where the complexity term is usually known as Occam's factor (which is always less or 

equal to one), which scales with respect to the number of parameters (if number of 

parameters increases, Occam's factor decreases). Thus, the models with more 

parameters are automatically penalized. Note that this is very simplified interpretation 

of Occam's factor, which fits to our framework. In general, Occam's factor can represent 

much more than that (see [63]). 

The following is a description of mathematical formulations and heuristics that are 

suitable for application to our estimation scheme in order to achieve successful model 

selection and an improved system identification. 
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3.3.1 Bayes factor 

By following the Bayes' rule, models can be compared in Bayesian sense as a ratio of 

posterior model probabilities (i.e. posterior odds ratio), expressed as: 

 

 (��|#) \��|#] =  (#|��) \#|��] ∙  (��) \��] (3.12) 

The most right quantity in (3.12) is the prior odds ratio, if there is no prior preference 

for either model, the prior odds ratio will be equal to 1. Then the posterior odds ratio 

reduces to the ratio of marginal likelihood, which is called Bayes factor (B): 

 :�� =  (#|��) \#|��]. (3.13) 

Now we know how to compare models between each other, but what we do not 

know yet is how to approximate the marginal likelihood. Fortunately, asymptotic 

approximation to the logarithm of marginal likelihood can be provided by Bayesian 

information criterion (BIC): 

 :8y� = −2ℒ� + -µ,� log <, (3.14) 

 

Figure 3.3 Illustration of optimal model fit. Relationship between goodness of fit (blue 
line) and generalizability (red line) as a function of model complexity. The y-axis 
represents any measure of goodness of fit (e.g. log-likelihood), where a larger value 
represents a better fit. The goal of model selection is to choose the model that generalizes 
the best across all model candidates.  
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where ℒ� is the log-likelihood obtained during model inversion, computed according to 

(2.112)5 and −2ℒ� is known as deviance. The second term on the right side of (3.14) 

represents the approximation to the model complexity (Occam's factor), where -µ,� is 

the number of free parameters considered in the model, and < is the number of 

observation samples; i.e. number of time points over which we have accumulated our 

log-likelihood ℒ�. In [143] it is said that the difference of BIC for two models gives a 

rough approximation to minus twice the logarithm of the Bayes factor, which is easy to 

use and does not require evaluation of prior distribution. 

 2 ln\:��] = −\:8y� − :8y�]. (3.15) 

The regular Bayes factor can be then obtained by conversion from log-space as: 

 :�� = exp»−12 \:8y� − :8y�]½. (3.16) 

The interpretation of Bayes factor is summarized in the following Table 3.1. 

Table 3.1 Bayes factor and posterior model probability classification range. 

�Ú�(���) ��� �( �|#)    Evidence  � vs.  � < 2 < 3 50-75% Weak 

-2 to 6 3 to 20 76-95% Positive 

6 to 10 20 to 150 96-99% Strong ≥ 10 ≥ 150 ≥ 99% Very strong 

 

Bayes factors are very flexible, they allow for multiple hypotheses to be compared 

simultaneously, and nested models are not required in order to make comparison. A 

common way how to interpret Bayes factors is by converting them to posterior model 

probabilities. For a finite set of competing models �, the posterior model probabilities 

in � are proportional to their Bayes factors with respect to a common model �9: 

  (��|#) = :�9∑ :�9 !∈² . (3.17) 

                                                 
5 Note that no constants should be discarded in calculating the log-likelihood. ℒ� is the accumulated 
likelihood over the time samples ℒ� = ∑ ℒ*,��*�� , where ℒ*,� for given model �� is computed according to 
(2.112). 
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In our case, we consider �9 to be the model with the minimum value of BIC compared 

to all other models from the model space �. This assumption is correct if our model 

space � contains all possible models; i.e. all possible structures of adjacency matrix. 

Many other criteria similar to BIC such as Akaike information criterion (AIC) are 

just as simple to calculate: 

 þ8y� = −2ℒ� + 2-µ,� (3.18) 

Indeed, it is suggested that whenever BIC is presented for comparison, one should also 

calculate AIC. It is well-known that BIC tends to favor simpler models, whereas AIC 

tends to favor more complex models [143, 144]. Reporting both BIC and AIC may 

therefore be a crude form of sensitivity analysis: if these two criteria select the same 

model, one can be more confident about the result [145]. 

Although this approach to model selection seems to perform well, it has two 

limitations. First, the approximation to the log marginal likelihood based on BIC 

ignores the uncertainty about the model parameters. Second, it is clearly limited to 

relatively small size of network (or small number of coupling parameters). In our case, 

the former limitation does not seem to be a serious issue, mainly because we effectively 

estimate the measurement noise variance and also adaptively approximate parameter 

noise variance and hemodynamic state noise variance, which all contribute to the 

regularization of parameter estimate. This partially protects our model against 

overfitting. In this case, model selection criteria such as BIC can still provide a very 

sensible suggestion. Conversely, the later limitation represents a relevant disadvantage, 

since it starts to be a very common practice to search over a larger number of competing 

models. Therefore, we are interested in model selection strategies, which can compare a 

large number of models, but do not require to invert each model variant separately.  

To emphasize the motivation for this, it is important to describe what sizes of 

model space we have in mind. For example, if we constrain ourselves to search a model 

space where only bidirectional connections are allowed (which does not mean that the 

couplings in both directions have the same strength), then we can calculate the number 

of possible models with respect to the number of nodes by using simple combinatorics 

|�(��)| = 2�(���)/=.  For network containing four nodes we have 64 possible models, 

whereas for 6 nodes it is already 32,768 models. Of course, we would like to consider 
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even larger networks. From Figure 3.4, we can see that the number of models grows 

really rapidly.  

3.3.2 Post hoc Bayesian model selection 

To address a problem of selecting the best model among large number of model 

candidates, in [146] they introduced a Bayesian model selection procedure for post hoc 

inferences about reduced (nested) versions of a full model. This method enables to 

calculate the marginal likelihood for any reduced model that is nested within a larger 

(full) model as a function of the posterior density of the full model. Critically, this 

procedure requires only a single inversion of the full model, where all connections are 

allowed. 

Consider a reduced model �� , where a subset of parameters 7�, 7� ⊂ 7#, is 

constrained to some special value, i.e. 7� = 7;, which is known as a sharp hypothesis, 

or "point null". In our case we consider 7; = 0. In contrast, a full model �# assumes 

that 7� is free to vary; i.e. 7� ≠ 0. Now, if we consider the full model �# and let 7� →0, it effectively means that the full model becomes a reduced model ��. In other words, 

the reduced model is nested under the full model. Under this assumption we can 

reformulate the Bayes factor (3.13) by considering only full model �#, and dividing the 

posterior density for parameters 7� by the prior density for 7�, at the point of interest; 

i.e. at 7� = 0:   

 

Figure 3.4 Model space and adjacency matrices. The plot on the left side shows the 
number of different models that one can assume as a function of the number of nodes 
(with the constraint on the models that each connection has to be bidirectional). On the 
right side we show all alternative models that can be considered, given four nodes. 
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 :�# =  (#|��) (#|�#) =  (7~ = 0|#,�#) (7~ = 0,�#) . (3.19) 

This result is generally known as Savage-Dickey density ratio [147, 148]. From this 

formulation we can immediately derive the marginal likelihood of any reduced model: 

  (#|��) =  (#|7~ = 0,�#) =  (7~ = 0|#,�#) (#|�#) (7~ = 0,�#) , (3.20) 

where we can see that the marginal likelihood under the reduced model is just the 

marginal likelihood of the full model times the posterior expectation of the prior density 

ratio. This when further transformed to log space is equal to: 

 ln  (#|��) = ln  (7� = 0|#,�#) − ln  (7� = 0,�#) + ln  (#|�#). (3.21) 

Here the last term on the right side of (3.21) is the log marginal likelihood of the full 

model, which is a constant for all reduced models, and therefore we can treat it as zero:  

 ln  (#|��) ≈ ln  (7� = 0|#,�#) − ln  (7� = 0,�#). (3.22) 

This also means that the full model shares the same likelihood with any reduced model.  

At this point it is necessary to define an approximation to marginal likelihood, 

which accounts for uncertainty on posterior parameter estimates. In this case, one can 

approximate the log marginal likelihood by the variational free-energy ℱ� [62, 75]. 

Considering the result of full model inversion, which provides the posterior density on 

model parameters  (7#|#,�#) = �\7#, x#µ], and also the fact that we have initialized 

the model inversion by reflecting the (real) structured priors on coupling parameters 

 (7#, �#) = �\%# ,&#µ] as described in Section 3.2.2, it is possible to define the 

posterior and prior densities for any reduced model as:     

  (7� = 0|#,�#) = �\7�, x�µ] �~'ℎ		x�µ = ª'�µ«��  

 (7� = 0,�#) = �\%�, &�µ] �~'ℎ		x�µ = ª(�µ«��.  
(3.23) 

 (3.24) 

In particular, any reduced model can be created from the full model by collapsing the 

prior density over one or more parameters; i.e. by setting the corresponding elements of 

the prior mean %�	and precision (�µ to zero. Then the free-energy of reduced model �� 



MODELING BRAIN NETWORK CONNECTIVITY 
 

84 
 

can be expressed as a simple analytic function of the means and precisions6 of the prior 

and posterior of the full model [146]:  

 ℱ� = 12 ln º(�µºº'#µºº'�µºº(#µº − 12 \7#�'#µ7# + %��(�µ%� − %#�(#µ%# − 7��'�µ7�], (3.25) 

where the reduced posterior precision '�µ is the posterior precision of the full model '#µ 

plus the difference between the reduced and full prior precisions (�µ and (#µ, 

respectively. Similarly, the reduced posterior mean 7� is a mixture of precision-

weighted means: 

 '�µ = '#µ + (�µ − (#µ 

7� = x�µ\'#µ7# + (�µ%� − (#µ%#]. 
(3.26) 

 (3.27) 

The last equation is especially interesting, because it represents a reconstructed (re-

weighted) vector of parameter estimates without contribution of certain parameters. 

Importantly, this post-hoc estimate of the free-energy based approximation of log 

marginal likelihood can now be used to compute the Bayes factor, comparing the 

reduced model �� with reduced model ��, as: 

 :�� = exp\ℱ� − ℱ�]. (3.28) 

Although, the post hoc model selection based on reduced free-energy enables to 

compare relatively large number of models (millions), still for a large size networks 

having seven and more nodes, the number of possible combinations among nodes 

becomes really huge (see Figure 3.4). In this case, one has to apply a greedy search 

through the space of reduced free-energy. This entails identifying a subset of 

parameters, with the least free-energy and searching over all reduced models within that 

subset. Redundant parameters are then removed and the procedure repeated until all 

model parameters have been considered or no further parameters can be removed [146, 

149].   

                                                 
6 Precision is the inverse of variance. 
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3.3.3 Network pruning 

In the previous section we have shown how effectively we can compare a large number 

of different reduced models based only on a single inversion of one full model; i.e. the 

model where all possible connections between network nodes are allowed. Although 

this model selection does a great deal of work for us, it is still the first level of inference 

(model inversion) which must provide a confident estimates of coupling parameters, 

given the data. However, since there are always some random correlations between time 

courses (which correspond to particular nodes in the network), the inversion scheme 

does not set automatically the irrelevant coupling parameters to zero. Thus these 

spurious couplings (with non-zero variance) spoil the performance of model inversion. 

Therefore, we seek a procedure, which can automatically infer the relevant connections 

and suppress the irrelevant ones.   

In principle, there are two ways how to achieve this. The first one supplements a 

penalty term to the objective function, which causes that the irrelevant couplings tend to 

zero value. This is effectively accomplished by introduction of shrinkage priors on 

coupling parameters, which are e.g. of Gaussian distribution  \���] = �\0, 1 æ��⁄ ]. 
Here æ�� represents a regularizing constant (precision) associated with the coupling 

parameter ���. During the learning process of coupling parameters and regularizing 

constants, if the coupling parameter in question is not relevant then the precision æ�� 
will be large, thus forcing the parameter to be close to zero. This approach is known as 

automatic relevance determination (ARD) [63, 150]. The second way involves an 

estimation of sensitivity of the error function to removal of a coupling parameter (when 

set to zero), where the connections with the least effect on the error function are 

subsequently removed. This clearly requires a threshold that has to be specified a priori. 

This approach is mostly known as network pruning, when probably the most popular 

pruning methods are the optimal brain damage [151] and the optimal brain surgeon 

[152], which perform the pruning of irrelevant couplings off-line. However, there are 

other pruning methods that can be applied also online [153-156]. Although the ARD 

and the network pruning approaches are often cast into two different groups, they have 

obviously a common aim and partly overlap in the use of the relevance measure. As we 

have already mentioned earlier, the inverse of the covariance matrix (precision), 'µ = \xµ]��, is equivalent (for Gaussian random variables) to the expected Fisher 
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information matrix (FIM), or  also corresponds to the expected Hessian matrix, which 

can be used to study system identifiability [96]. Critically, all methods mentioned above 

use FIM (exact or its approximations) to construct an error function, or they include 

FIM as a term into the objective function. Therefore, both of these approaches can be 

considered as ARD methods, where maybe the most important difference is, that the 

first (Bayesian) approach uses optimization of regularizing constant (considering priors) 

to perform "soft" ARD, whereas pruning involves selection of some threshold, which 

we can be seen as a "hard" ARD. 

The estimation framework that is considered in this work does not allow to 

optimize the priors and include them directly into Kalman filter. Therefore, we will 

proceed with the variant of hard ARD based on network pruning. In this sense, we will 

partly follow a pruning algorithms developed for online application [153-156]. 

We might start with the assumption that the connections between nodes are 

distributed sparsely with lots of small or absent couplings and relatively small number 

of strong couplings, which is our motivation for application of network pruning. We 

will also consider only off-diagonal elements of the connectivity matrix �, because we 

cannot attempt to prune an entire node that is associated with the measured time course. 

Next, we do not want to remove the irrelevant coupling completely from the network 

(so the number of parameters would change), but rather set its mean to zero and 

minimize its variance. Finally, we suggest to perform pruning after each iteration of 

SCKS algorithm, and calculate the relevance measure based on the time average 

estimates of the expected parameter means 7 and error covariance matrix xµ. By saying 

this, we should not start pruning immediately after the first iteration of SCKS, since at 

this point we might not have reached a sufficient convergence. For example, we can 

consider a starting condition based on the change of log-likelihood (2.112), if this 

change is sufficiently small (as defined below), we enable the pruning procedure. 

The pruning method considered in this work is based on computation of importance 

function of individual coupling parameters (or subset of them) by determining 

sensitivity on their removal; i.e. by setting 7� = 0. Here both the importance function 

and the sensitivity are derived from a scaled FIM: 

 L = 7�'µ7, (3.29) 
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where precision 'µ is in this case a diagonal matrix (off-diagonal elements are ignored, 

i.e. effectively set to zero). The pruning procedure is then very simple. All the steps are 

summarized in Algorithm 9. Note that once we determine the coupling parameters that 

are not important, we perform their removing by using similar strategy as was described 

in Section 3.3.2, equations (3.26)-(3.27), where the corresponding elements of the prior 

mean %�	and precision (�µ are set to zero. This enables us to obtain a new vector of 

parameters that is reweighted with respect to the uncertainty of the remaining 

(important) coupling parameters.  

In general, this pruning algorithm is very fast. Since it enables us to remove at least 

some of irrelevant parameters already during the optimization process, it contributes to 

the reduction of model space that we have to search after the model inversion. 

Critically, with each elimination of an irrelevant parameter by pruning, we improve the 

identifiability of the system, and with the next iteration of SCKS algorithm we thus 

 

Figure 3.5 Illustration of the pruning procedure. The upper part shows the estimate of 
adjacency matrix obtained after	~-th iteration (e.g. 	~ = 5) before pruning procedure was 
applied (left) and after pruning (right). Here the coupling parameters scored with 
importance measure that is lower than a priori selected threshold (lower plot, y-axis is 
displayed in log scale to enable visualization of the threshold) are set to zero (black cross). 
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make an optimization step towards the new optimally selected reduced model. Finally, 

the effect of pruning becomes especially significant when larger networks are estimated. 

 

Algorithm 9. Network pruning 

• Iterate SCKS algorithm and start pruning if the condition (ℒ( − ℒ(��) <(ℒ= − ℒ�) 4⁄  is satisfied: 

1. Calculate the average parameter error covariance matrix:  

 xµ = 1<}x*µ�
*��  (3.30) 

2. Calculate the inverse of parameter error covariance matrix:  

 'µ = \xµ]�� (3.31) 

3. Evaluate the error function for all (off-diagonal) coupling parameters:  

 Lâ; = ª'µ«ââ7â= (3.32) 

4. Rearrange the list of indices ~ according to ascending order of  Lâ; 

values.  

5. Start removing the contribution of the coupling parameters (based on 

the order of ~), by successively setting 7� = 0, and evaluating the error 

function: 

 Lâ� = 7��'µ7� (3.33) 

6. Once we obtained Ý� = ªL�� , … , Lã� «� up to the removal of the last 

parameter (i.e. all parameters were removed), we calculate the 

difference: 

 ΔÝ� = Lâ; − Ý� (3.34) 

 with L; = ∑ Lâ;ãâ�� . 

7. Subsequently, decide which parameters are not relevant by considering 

the threshold: 

 ΔÝ� ≤ ÏL;, (3.35) 

with	Ï = 0.003. 

8. Eliminate contribution of irrelevant parameters (based on the indices ~ 
that passed the threshold) by setting their prior precision to zero, 
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(�µ = 0, ((�µ = \&�µ]��), and update the error covariance and parameter 

vector: 

 xµ = \'#µ +(�µ − (#µ]�� 

7 = xµ\'#µ7# + (�µ%� − (#µ%#] 
(3.36) 

 (3.37) 

• Proceed with the next iteration of SCKS algorithm, and consequently repeat the 

pruning procedure.   

 
 

3.4 Chapter summary  

This chapter introduced a novel data-driven approach to evaluate effective connectivity. 

It represents a fully stochastic variant of dynamic causal modeling, where the coupling 

parameters and region-specific parameters of BOLD response are subsumed into the 

state vector and estimated jointly with the endogenous neuronal signals and 

hemodynamic states. This sequential estimation is performed by using the iterative 

scheme of square-root cubature RTS smoother that was developed in Chapter 2. 

In order to approximate a macroscopic model of neuronal dynamics and 

interactions, we have considered a linear model in the form of stochastic differential 

equation (3.3). This model could be later extended to also accommodate nonlinear 

interactions or to model excitatory and inhibitory states of neuronal coupling.  

We have also described two different methods to perform model selection. Since, 

there is clear need to score a large number of models, the post hoc Bayesian model 

selection [146] seems to be the best choice. In our case, we can apply this type of model 

selection under the assumption that the transient priors on coupling parameters, which 

are part of Kalman filter, are derived from the real structured priors (in Section 3.2.2). 

However, we should note that it would be more appropriate and also beneficial to 

consider real priors directly as a part of the optimization scheme. Optimization of 

regularizing constants with respect to the priors can have in this sense significant 

influence on the performance of estimation procedure, where it effectively performs 

automatic relevance determination (ARD). Nevertheless, in order to finesse the 

limitation of our method, we have achieved improved optimization of coupling 
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parameters by applying a pruning algorithm, which also allows ARD of important 

couplings (though it requires a priori selection of some small threshold).  

In future the future it could be interesting to pursue a fully Bayesian sequential 

optimization procedure, e.g. through generalized filtering based on generalized 

coordinates of motion [52], but still keep the approximation of the probability densities 

using the cubature integration rules. 
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Chapter 4 

4. Validation and application 

of the method 

4.1 Introduction 

The first three chapters described the theoretical background and introduced the new 

algorithm for the estimation of neuronal signal and evaluation of effective connectivity 

from fMRI data. Until this point, we have not shown or discussed any results that can be 

obtained by applying these algorithms. Therefore, it will be the focus of this chapter to 

provide a sufficient demonstration and validation of the proposed method. As in 

Chapters 2 and 3, we split the current chapter into two sections. The first section will 

focus on a simple demonstration of neuronal signal estimation from single fMRI time 

course, where we also focus on the identification problem of hemodynamic model 

parameters. The second section, which is of our main interest, will focus on the 

estimation of coupling parameters in neuronal interaction model. We demonstrate the 

estimation of effective connectivity (i.e. model inversion) by using the stochastic DCM. 

In particular, we will try to address the main concerns that are very often associated 

with the methods designed for evaluation of effective connectivity or connectivity 

analysis in general. 

Finally, the validation and the performance evaluation will be performed mainly by 

using simulated data that have a character of endogenous activity present in resting-state 

fMRI data. Additionally, we will present an application to empirical fMRI data. 
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4.2 Single time course model inversion 

In this section we take a closer look at the hemodynamic model inversion by the SCKS 

algorithm for a single time course. In this sense it will be very important to first discuss 

the model and algorithm initialization conditions, including some constrains that we 

consider on hidden states and model parameters. These will be summarized in the 

following section together with the description of data simulation and with the obtained 

results. Moreover, in the same section we will already consider a restriction on 

hemodynamic model parameter space, which is the result of model identifiability 

analysis provided in the Section 4.2.2. 

4.2.1 Hemodynamic model inversion and estimation of neuronal signal 

As a first step to test the model inversion by SCKS algorithm, we have to generate a 

synthetic data as a reasonable approximation to real fMRI time courses. Since we want 

to formulate the inversion problem as a nonlinear blind deconvolution, where we do not 

have any knowledge about the input causing the hemodynamics, which in real situation 

corresponds mainly to estimation of endogenous neuronal activity from resting-state 

data (but the same assumptions can be made also in the case of task data), we will 

consider simulated data having the character of resting-state fMRI time courses. After 

obtaining the data, we describe a general initialization of the SCKS algorithm and 

highlight the constraints we make about the hemodynamic states and their parameters to 

achieve the improved stability of the model inversion. Finally, we perform the model 

inversion by SCKS and discuss the results. 

Simulations 

The generation of synthetic data representing the resting-state time courses, starts with 

the selection of neuronal model. In this work, we have mentioned two models as an 

approximation to neuronal signal ¿�:�.The first one is based on simple discrete random-

walk model (2.109) that was considered in Chapter 2. Note that this model is suitable 

only for modeling and estimation of single time course, which is now the case. 

However, because we want to use a unified framework for both single time course and 

multiple time courses model inversion, we choose here the second model based on 

stochastic differential equation (3.3). In this case, the neuronal model is restricted to a 
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single node with ��� = −1 2⁄ . The example using the first variant based on the discrete 

random-walk model can be found in our published papers [20, 120, 122].  

In particular, to generate the neuronal signal ¿�:� we employed the version of 

neuronal model described in footnote 4 on page 74, where the input i�:� is a smoothed 

sequence of random Gaussian variables, so that it has a variance 0.02 and a Gaussian 

autocorrelation function 6 s. This neuronal signal caused changes in the states of 

hemodynamic model (1.1)-(1.4), i.e. inducing signal, blood flow, blood volume and 

deoxyhemoglobin content, all integrated with the time step Ï = 100	ms. Then the fMRI 

signal was generated by using BOLD observation equation (1.7). The hemodynamic 

model parameters were set to their usual prior means (see Table 1.1) and scaled with a 

deviate sampled from a log-normal distribution, 7� = 7;� exp(�(0,0.01)), where the 

function of this scaling is explained below.  

 We also considered a small amount of additive Gaussian noise with the variance 3 ∙ 10�� to all hidden hemodynamic states. To make the noise contribution more 

realistic, we further considered the noise sequences to be slightly correlated with the 

width of Gaussian autocorrelation function equal to 1 s. At the level of the observation 

signal we added a Gaussian innovations to produce the signal to noise ratio (SNR) equal 

to 2, where the SNR is defined as [142]: 

 SNR = -./01-�I�N2 . (4.1) 

This says that for SNR = 2, the standard deviation of the added observation noise -�I�N2	equals to half the standard deviation of the noise-free BOLD signal -./01. Based 

on the variance of input signal 0.02, we can expect the variance of noise-free BOLD  

signal (model output) to be about 0.1, then the variance of observation noise is chosen 

to be 0.025. 

Finally, the simulated BOLD signal was downsampled with a sampling period (TR) 
which equals 2 s, resulting in signal length of < = 256 time points.  
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Model inversion 

Before we approach the model inversion, we should mention the initialization 

conditions and eventually constrains that we apply to neuronal state, hemodynamic 

states, model parameters, and hyperparameters, respectively:  

• Neuronal state: The initial condition for neuronal state is 4; = 0, with the error 

variance í;È = 0.01. A very important is the prior variance of neuronal state 

noise, ð;� = 5 ∙ 10�5, which is considered fixed during the estimation 

procedure. This value  is suitable for BOLD signal change approximately about 

1% (as it was simulated7) [26, 157]. By changing the variance of neuronal state 

we can control the smoothness of neuronal signal estimate (also partially control 

possible overfitting). As we will see in the consequent paragraph, this noise 

variance is assumed much larger than the noise variance for hemodynamic 

states. This effectively treats the neuronal fluctuations as the predominant source 

of hemodynamics and assumes that the hemodynamic fluctuations are largely 

neuronal in origin [15]. 

• Hemodynamic states: For hemodynamic states we consider a transformation to 

the log space, which guarantees that these states will always have positive values 

(the negative values of hemodynamic states would be physically meaningless), 

and ensures the numerical stability during the parameter optimization. 

Specifically, we convert the hemodynamic states equations, i.e. !(') =1@('), A('), B('), C(')	2�, to log space by considering a change of variables, !6(') = ln(!(')) [142]. That is, for any given hemodynamic state variable !(') 
with the state equation &!(') &'⁄ = )(!(')): 

 !6(') = ln(!(')) ⇔ !(') = exp(!6(')), (4.2) 

then by applying the chain rule we get: 

 
&!6(')&' = & ln(!('))&' = )(!('))!(') . (4.3) 

It is worth mentioning that this log-transformation does not affect the model 

parameters, only the hemodynamic states. In contrast, when evaluating the 

                                                 
7 The signal change 1 % is in our case equivalent to the signal with a peak amplitude about 1 with respect 
to the zero baseline. This amount of percent signal change is common for fMRI data. 



VALIDATION AND APPLICATION OF THE METHOD 
 

95 
 

BOLD output equation, the hemodynamic states are exponentiated [142]. In 

other words, during each measurement update step of SCKS we use !*|*�� to 

computed predicted BOLD signal at time ', not  !*|*��6 . As a consequence of this 

log-transformation, we initialize the state vector of four hemodynamic states by !; = 10, 0, 0, 02�, with state error covariance matrix x;� = 0.01 ∙ ��w. The state 

noise covariance is then initialized as l;� = 2 ∙ 10�8 ∙ ��w.  

• Model parameters: For hemodynamic model parameters we use the empirical 

priors as summarized in Table 1.1. As a result of model identifiability analysis 

(described in consequent section) we choose to estimate only three model 

parameters 7� = 1�9 , �: , �£2�, representing the rate of signal decay (E),  the 

resting oxygen extraction fraction (p), and ratio of intra- and extravascular 

signal (q), respectively. Further, because these parameters cannot be negative, 

we apply a positivity constraint by considering the scaling of the prior parameter 

value by a log-normal density. For instance, the actual value of the rate of signal 

decay at time ' is defined as E* = E; exp(�*9), where we are estimating the 

scaling parameter �*9. Similarly we define also the other two parameters. The 

example of this constrain by using a log-normal density function is depicted in -

Figure 4.1. These scaling parameters are initialized as  7;� = 10, 0, 02�, with the 

error covarinace matrix x;µ; = diag(15 ∙ 10�g, 5 ∙ 10�g, 1 ∙ 10��2) and the noise 

covariance  °;µ; = 1 ∙ 10�� ∙ x;µ;. 

 

Figure 4.1 Log-normal probability density function. This log-normal function was created 
with mean of 1 and variance 0.5. For comparison, a Gaussian probability density function 
with identical mean and variance is shown (dashed line). Note that in contrast to the 
Gaussian, the support of log-normal density is restricted to positive numbers.  
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• Hyperparameters:  During the model inversion we adaptively estimate the noise 

statistics. The hemodynamic state noise covariance matrix and parameter noise 

covariance matrix are estimated through the Robbins-Monro stochastic 

approximation scheme (2.141). Besides the initialization of these matrices as 

mentioned above, we need to choose a forgetting factors. In this case we use æ� = 0.997 for states and æµ = 0.99 for parameters. Next, we need to initialize 

parameters of inverse-Gamma distribution for estimation of measurement noise.  

Assuming rather slow dynamics of the noise, we use ù = 0.997. The initial 

variance is given by non-informative priors P; = 1 and U; = 1. The VB 

algorithm is then iterated 5 times during each time step.  

After proper initialization, we performed model inversion by SCKS according to 

the Algorithm 8, where we allowed maximum of 20 iterations, and considered the 

discretization of continuous model by using local linearization scheme with the time 

step 1 s. It means we linearly interpolated the observation sequence by factor 2. Note 

that, we specified the initializations by using variances, but we propagate their square- 

 

Figure 4.2 Results of single fMRI time course model inversion (part 1.). The upper plot 
shows the predicted BOLD responses by SCKS algorithm and provides the comparison 
with the noisy observed responses and the original noiseless signal. The lower plots show 
the increase of log-likelihood and the decrease of convergence rate, which indicate that 
algorithm converged after 11 iteration.  
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Figure 4.3 Results of single fMRI time course model inversion (part 2.). The upper plot 
shows the estimates of hidden hemodynamic states as they are provided by forward run of 
SCKS algorithm. The shaded area represents the 95 % posterior confidence intervals. The 
lower plot displays the estimated provided by the backward run (smoother). Note that in the 
later case the confidence intervals are already much smaller. 

 

Figure 4.4 Results of single fMRI time course model inversion (part 3.). The upper plot 
shows the estimates of neuronal signal provided by forward run of SCKS algorithm. In 
this case there is significant difference between the true signal and the estimated signal. 
The estimated signal has much lower amplitude is also delayed. The lower plot shows the 
estimate of neuronal signal provided by the backward run of SCKS, which well much the 
true neuronal signal. 
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roots (i.e. standard deviations) through the SCKS algorithm. 

Results 

In this section we show only the results of the single model inversion. More simulations 

will be performed for a multivariate estimation, which is the main focus of this work. In 

Figure 4.2 we can see a prediction of BOLD responses compared to the noisy and to the 

clean BOLD signal. Due to employed estimation of measurement noisy we are not 

overfitting and the prediction corresponds well to the clean signal. In this case we have 

reached the convergence with 11 iterations, as it can be seen from the plots of log-

likelihood and convergence rate. In Figure 4.3 we display the estimates of 

hemodynamic states as they are delivered by forward run of the filter and backward run 

of the smoother, respectively. Clearly, by performing the smoothing, the estimates are 

more correct and confident (narrow confidence interval around the posterior means). 

More importantly, when looking at the results of estimated of neuronal signal, we can 

see that only forward run is unable to recover the true neuronal signal correctly. 

Therefore, it is now obvious why one has to employ also backward run. By applying it 

we receive a correct estimate with much narrower confidence intervals.  

4.2.2 Identifiability of hemodynamic model parameters  

Model identifiability is a property which has to be satisfied in order to make the 

parameter inference possible. This is equivalent to saying that changes in parameter 

values must generate sufficiently different joint probability distributions of the observed 

variables [96]. In some cases, the model is unidentifiable, but it is still possible to learn 

the true values of a certain subset of the model parameters. In this case we say that the 

model is partially identifiable. In other cases it may be possible to learn the location of 

the true parameter up to a certain finite region of the parameter space, in which case the 

model is set identifiable. 

Considering the nonlinear hemodynamic model, we know based on the previous 

results that the parameters are only set identifiable [158] or partially identifiable in very 

artificial environment; i.e. almost noiseless data and very sparse time distribution of the 

responses having higher temporal resolution [20]. In addition, a model identifibility also 

depends on the optimization procedure that is used, and whether a deterministic or 
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stochastic representation of the model is considered. In our case the situation can be 

further complicated by the fact that we assume the model input to be unknown; i.e. that 

all hemodynamic changes are generated by endogenous activity. One can then also 

expect that the effect of some hemodynamic model parameters can be partly 

compensated by the estimated neuronal signal [20]. Therefore in our analysis, where we 

have a stochastic model and the aim is to estimate the neuronal signal, we want to ask a 

question: which part of the parameter space is best identifiable, and which set of 

parameters when estimated provides the best estimate of neuronal signal. 

The hemodynamic model is mainly described by a set of six parameters 7 =oH, E, F, p, P, qr, where the effect of the parameter change on the resulting hemodynamic 

response is shown in Figure 4.5. There we can see that some parameters influence the 

shape of hemodynamic response in quite similar manner; e.g. parameters P and q. To 

find a subset of model parameters that provides the best model estimate, we search the 

model space consisted of all possible parameter combination. In order to make this 

space smaller, we focus only on parameters oH, E, F, p, Pr. The parameter q, which is the 

ratio of intra- and extravascular signal and which takes the place in BOLD observation 

equation (1.7) is selected beforehand as an important parameter that should be included 

 

Figure 4.5 The effect of parameter change on output hemodynamic response.  For each 
parameter, the range of values considered is reported, comprising 21 values. 
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in our final set [30]. Then the complete model space we search includes 32 different 

variants (see the bottom of Figure 4.6). For model inversion and parameter estimation 

by SCKS, we use the same principle of scaling the empirical parameter prior values 

through log-normal density function as described in the previous section. Each model 

inversion is then initialized with scaling parameters having zero mean and error 

variance 5 ∙ 10�g (1 ∙ 10�� for q). This entire process is repeated 20 times, when the 

time courses are generated according to the description provided in the previous section.  

After inverting all models (i.e. together 640), we need to choose a criteria that we 

apply to find the most proper set of parameters. A very basic but helpful criterion is an 

assurance of increasing log-likelihood with each subsequent iteration. For this condition 

we considered maximum of 20 iterations during each model inversion and no threshold 

for convergence rate under which the estimation process is stopped (except divergence). 

From Figure 4.6 we can see that actually many parameter combinations led to the 

divergence during the optimization procedure (grey filled circles). Therefore, only those 

models (parameter sets) that were able to pass all 20 iterations were further considered 

(6 of total 32). As a second criterion we chose BIC representing model fit in general. 

From this point of view, the best fit is provided by model number 16 and 5. However, 

these still might not be the right choice, because if we look at the third measure 

represented by root-mean-square error (RMSE) between estimated and the true neuronal 

signal averaged over all 20 simulations, we observe that model 16 and 5 actually have 

the largest errors. As the last criterion we use RMSE between hemodynamic response 

reconstructed by the set of estimated parameters and hemodynamic response generated 

by the true parameters. These three measures map the trade-off between an accuracy of 

predicted responses and estimated neuronal signal. Since, our main goal is to estimate 

the neuronal signal and later infer coupling parameter describing the neuronal 

interaction model, at the end we choose the model 11 (red filled circles), where the 

parameters rate of signal decay (E) and the resting oxygen extraction fraction (p) are 

estimated. 

Although, one could always perform more careful analysis of parameter space, e.g. 

by using profiles of log-likelihood [20] or based on scaled Fisher information matrix 

[96], our analysis provides sufficient indication that fits to our approach using SCKS 

algorithm. These two parameters plus q will be used in this work to describe a 

variability of hemodynamic response. The rest of parameters is considered fixed to their 
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empirical prior values. Finally, we should note that the hemodynamic model becomes 

more identifiable with higher temporal resolution and less noisy data. 

4.3 Stochastic DCM  

The previous section provided a demonstration of model inversion using SCKS 

algorithm for a single fMRI time course based on which we have made an idea of how 

to setup the optimization, mainly how to initialize the transient priors on model 

 

Figure 4.6 Results of hemodynamic model identifiability analysis. At the bottom we 
display the model space comprising of 32 different combinations of model parameters 
(white color means the parameter is estimated). From the bottom, in the second row we 
display average number of iteration after which was the estimation terminated. Here, only 
parameter combinations, which always allowed to reach the maximum number of 
iterations (~ = 20) are considered as suitable (white circles). The third row represents the 
average BIC, with 95 confidence interval. Similarly, the fourth and fifth rows represent the 
average RMSE errors between theoretical response and the one reconstructed using 
estimated model parameters, and the RMSE errors between the true and estimated 
neuronal signals, respectively. The optimal parameter combination (as a trade-off between 
model fit and accuracy of the neuronal signal estimate) is highlighted with the red circles. 
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parameters and noise statistics in order to obtain an adequate estimate of neuronal 

signal. The current section will extend this demonstration to multivariate case with the 

aim to estimate the coupling parameters of effective connectivity. This effectively 

means that we will pursue a validation of SCKS based stochastic DCM. 

Besides the general validation of model inversion and model selection, this section 

will discuss important topics such as: an effect of noisy data; effect of sampling period; 

variability of hemodynamic response function among different brain regions; possible 

confusion of causality by an influence of the third (missing) region; and application to 

the larger networks. 

Similarly as in the previous section, we will assess the performance of the proposed 

algorithm through the Monte Carlo simulations. 

4.3.1 Inversion of sDCM 

To evaluate a standard inversion of sDCM by SCKS we will consider generation of 

resting-state data as described in [15]. We will be especially interested to identify how 

well we can estimate the coupling parameters among the network nodes and if we can 

correctly select the underlying network structure. In the later case, we will test the 

performance of post hoc Bayesian model selection after inverting the full model, where 

all connections are allowed; i.e. using the concept of reduced free-energy as an 

approximation to marginal likelihood. Additionally, we will also show how the correct 

model can be selected by the second approach, when the marginal likelihood is 

approximated by BIC. 

Simulations 

Let us consider a synthetic resting-state fMRI time courses that were generated through 

the network of four nodes. The resulting four time courses were acquired with a 

sampling period 3 s (i.e. TR = 3 s) and consist of 256 time points. To simulate these 

data we used the following generation process. First, the neuronal fluctuations were 

generated independently for each node of the network by smoothing a sequence of 

Gaussian random variables so that they had a variance of 0.02 and a Gaussian 

autocorrelation function of 6 s. Second, these time courses were used as an independent 

inputs i into the neuronal interaction model (as described in the footnote 4 on page 74), 
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where the effective connectivity between the nodes was assigned through the adjacency 

matrix � that had for example the following form:   

 � = >−0.5 0.24 0 0.20.34 −0.47 −0.2 00 −0.32 −0.48 0.290.25 0 0.33. −0.49?. (4.4) 

 
Here, the use of positive and negative coupling parameters between nodes produces the 

anti-correlated responses commonly seen in real resting-state data. Next, the outputs 

from the neuronal model, i.e. the neuronal states, entered the hemodymamic models 

involving the hemodynamic states (i.e. inducing signal, normalized blood flow, volume, 

and deoxyhemoglobin content), which were described by region (node) specific set of 

parameters. In particular, these parameters were set to their usual prior (Table 1.1) and 

scaled with a deviate sampled from normal distribution, 7� = 7;� exp(�(0,0.01)). This 

produces a small interregional variability of hemodynamic responses as depicted in -

Figure 4.15. Further, we considered an integration step equals to 1 s for discretization of 

neuronal and hemodynamic model equations. Finally, from the hemodynamic states we 

generated the BOLD signals corresponding to each node in the network. These were 

then downsampled to obtain the required TR = 3 s temporal resolution. Since we 

consider our generative model as a stochastic system, we also added a small Gaussian 

random fluctuations of variance 3 ∙ 10�� to all hemodynamic states (producing a 

maximum signal change of about 1 % in the fMRI signals), and also added Gaussian 

noise with variance 0.025 to our observations. This was chosen to obtain signals with 

SNR ~	2 (clean signals had variance about 0.1). Additionally, all additive fluctuations 

for both states and observations were considered slightly correlated with the width of 

Gaussian autocorrelation function equals to 1.5 s [15].  Remember that if not stated 

otherwise we will consider the same generation process also in the later experiments.  

These simulated data were then used for model inversion by using SCKS, where we 

assumed the following initialization. The initialization of neuronal, hemodynamic states 

and hemodynamic model parameters was basically the same as for a single time course, 

only extended for multiple time courses. In multivariate case, we had to additionally 

specify structured priors and corresponding transient priors on coupling parameters in 

the adjacency matrix. These were chosen according to the description provided in the 

Section 3.2.2, to allow for full model inversion; i.e. with no restriction on connections. 
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Also the hyperparameters for the estimation of measurement noise covariance were the 

same as in the previous case. 

Finally, we repeated the simulations and model inversion described above 100 

times, where we allowed for maximum of 16 iterations. Data were generated by 

sampling the coupling parameters from a uniform distribution ���~@(0.15,0.35) and 

switching the sign of reciprocal connections randomly (but still making sure that the 

adjacency matrix is stable). Connections were then eliminated using an adjacency 

matrix selected from the model space as shown in Figure 3.4. Here we considered only 

sparse structures of adjacency matrix having at least one pair of connections switched 

off and not less than three pairs of connections switched on. Self-connections were 

sampled from ���~�(−0.5,1 ∙ 10�g). Candidate simulations were discarded if the 

simulated data exceeded 2% BOLD signal change.  

Besides the MC simulations we also tested the model selection based on BIC and 

AIC. In this case, we generated data only using a single model of adjacency matrix as 

 

Figure 4.7 Example of simulated connectivity network. (a) Four nodes network with the 
connectivity structure given by adjacency matrix (4.4). (b) Neuronal signals generated 
through this dependency network structure, where the color of the time course corresponds 
to the color of the network node. The same color code is used to display the output BOLD 
signals. 
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shown in (4.4). Then we considered a model space with bidirectional connections as 

depicted in Figure 3.4, i.e. together 64 possible models. Each of these models is 

uniquely defined through the initialization of the priors, where the prohibited 

connections are set to have prior means and variances equal to zero. Finally, each of 

these models was inverted individually and scored by BIC and AIC measures. Note that 

in this particular case, we did not apply the pruning step during the model inversions.  

Results 

The results of the MC simulations are summarized in Figure 4.10. There the 

estimated coupling parameters are plotted against their true values for the full model 

(top-left) as they were identified by SCKS and for the reduced model as chosen by post 

 

Figure 4.8 Results of sDCM model inversion based on Monte Carlo simulations. The 
upper plots display the estimates of coupling parameters (i.e. elements of adjacency 
matrix) for all 100 full model inversions. On the left side we show the results before 
application of post hoc BMS, and on the right side are the results obtained after BMS. The 
lower plot shows the histogram of posterior model probabilities (corresponding to the best 
model) for all 100 simulations. Here the models (and corresponding coupling parameters) 
with the weak evidence are displayed using white color.  
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hoc BMS. By comparing these two results, one can see characteristic (vertical) 

shrinkage of subset of parameters that were simulated as zeros to their prior mean and 

also some weight changes in "active" coupling parameters, which make the parameter 

more aligned around the diagonal. Note that post hoc BMS always selected the true 

model as it was assigned to simulated data. Moreover, it can be seen that the estimated 

couplings are mostly placed within a square space, which corresponds to the range of 

uniform distribution from which the true couplings were generated for a data 

simulation. The lower plot then shows the histogram of posterior model probabilities by 

which the true models were scored. One can see that a majority of models (about 93 %) 

were selected with positive, strong and very strong evidence, whereas few models 

(about 7 %) had rather weak evidence. The coupling parameters of these less certain 

models are distinguished by using white color. 

Next, the results of the model selection based on BIC and AIC, where each version 

of reduced model was individually inverted by SCKS, are depicted in Figure 4.9. In this 

 

Figure 4.9 Results of sDCM model inversion using BIC for model selection. These results 
were obtained by individual inversion of all possible restricted models (i.e. 64 models for 4 nodes). The upper plots show difference between scoring models by BIC and AIC. In 
this case they are very similar, selecting the same model 19. The lower plots display 
Bayes factors (left) based on approximation of marginal likelihoods using BIC, and 
posterior model probability (right), which shows that the model 19 was selected with 100	% evidence. 
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case, both BIC and AIC criteria pointed to the same model, which was our simulated 

true model. By using Bayes factor (where the marginal likelihood is approximated by 

BIC) to compare all 64 models, we were able to score the true model with a very strong 

evidence, as it can be seen from the plot of posterior model probability. Although this 

approach to model selection was also able to successfully select the correct model, we 

should again emphasize that this approach is limited only to small size networks (up to 

4 nodes), otherwise it is unbearably computationally expensive. 

Finally, in Figure 4.9 we demonstrate a characteristic process of parameter 

estimation by SCKS as evolved in time and across 16 iterations (only network coupling 

parameters are depicted). In order to make a more complete picture about this process, 

we also show a time evolution for associated parameter error variances, parameter noise 

variances, and error variances of hidden hemodynamic states (all depicted as standard 

deviations, since a square-root covariance matrices are propagated through the SCKS 

algorithm). In these plots, it is especially important to point out the effect of pruning 

 

Figure 4.10 Visualization of the estimation process during sDCM model inversion. The 
upper plots show the time evolution (over consequent iterations) of coupling parameter 
noise standard deviations (left) and of coupling parameters estimates (given by forward 
run of SCKS) (right). The lower plots show the same time evolution but for the 
hemodynamic state noise standard deviations and for the error standard deviation of 
coupling parameters. 
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procedure, which started with the 5th iteration, on the parameter estimates and related 

error variances. We do not display a time evolution for the measurement noise variance, 

which was also estimated, but one can expect a very similar behavior as depicted in the 

consequent Section 4.3.2  in Figure 4.13 (right).  

4.3.2 Effect of noisy data 

It is always interesting to ask a question how robust is the optimization algorithm 

against the noise in the data. Therefore, in this section we try to investigate how 

sensitive is the performance of the proposed algorithm for the estimation of effective 

connectivity to different levels of observation noise. In this case, we use the same 

definition of SNR as defined earlier, where we specifically consider a simulated data 

that are contaminated with a very high, high, middle and low level of noise. Since in our 

algorithm we are estimating the amount of observation noise using VB scheme, it is a 

nice opportunity to show how this adaptive estimation method contributes to the final 

result of estimated network couplings and the uncertainty on these couplings. 

  

 

Figure 4.11 Demonstration of BOLD signals with different SNR levels. The examples 
show a time window (100 time point) of simulated BOLD signals for SNR 0.5, 2 and 
5, respectively. 
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Simulations 

Let us consider a simple network of four nodes with the adjacency matrix as defined in 

(4.4) and the same generation process of synthetic data as described in the previous 

section. The only difference is in the amount of additive observation noise, where we 

used SNR = 0.5 for a very high level of noise, SNR = 1 for a high level of noise, SNR = 

2 and 3 for middle levels of noise, and SNR = 5 for low level of noise, respectively. For 

better imagination, some of these noise levels are shown in Figure 4.11, displaying 

shorter time window within generated BOLD signal. Next we performed 50 Monte 

Carlo simulations, 10 for each noise level. Then for each of simulated data-set we 

considered two scenarios of model inversion by SCKS. The first one performed an 

uninformed model inversion of the full model with unknown variance of observation 

noise and the second one performed an informed model inversion with known model 

structure (only effective couplings are estimated) and with known variance of 

observation noise. Obviously, for the second scenario we did not have to employ the 

pruning procedure. Consequently, for the first scenario the best model was selected by 

post hoc BMS. Note that data for each repetition were generated with the same 

adjacency matrix, but with different sequences of neuronal signals and different random 

sequences of additive noise (slightly correlated as described earlier).  

Results 

Since we used the same adjacency matrix for all simulations it suggests to have a closer 

look at the estimates of particular coupling parameters.  The results are summarized in -

Figure 4.12, where we purposely skipped the results for self-inhibitory couplings 

because they did not change much from their prior means. Also, because in almost all 

cases the post hoc BMS selected the true model, we do not display the couplings that 

were correctly identified as irrelevant; i.e. equal to zero. By saying this, there were two 

models where during the model inversion of the full model by SCKS, the pruning 

procedure incorrectly switched off a couple of coupling parameters (blue dots).  This 

means that we have a few false negative estimates, but no false positive estimates; i.e. 

none of zero couplings were identified as an effective connection between nodes.  

Although, the model inversion followed by the model selection was quite 

successful for all noise levels and both scenarios, it is evident from Figure 4.12 that for  
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Figure 4.12 Results of SNR experiment (part 1.). Each plot represents estimates for one 
particular coupling parameter obtained for different levels of noise, where we further 
distinguish between unrestricted model inversion including estimation of measurement 
noise covariance (white strip) and restricted model inversion where both correct model 
structure and measurement noise covariance were known during model inversion (grey 
strip). The red line is the true value of coupling parameter and the blue dot represents 
parameter, which was incorrectly switched off during model inversion. 
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lower SNR, mainly SNR = 0.5 and 1 the accuracy and also the certainty (shown through 

the error bars) on parameter estimates degrades. Maybe surprisingly, one has to notice 

that the first uninformed scenario (gray dots on white strips), which was set to perform a 

full model inversion, including estimation of observation noise variance, provided a 

significantly better results than the informed one. Specifically, the estimated coupling 

parameters of the first scenario are much closer to the true values (red lines), with a 

smaller variability across the MC simulations, and mainly with a smaller error bars, 

which means that the estimates are more confident. This fact is consistent across all 

noise levels. Clearly, this demonstrates a great adaptive features of the SCKS algorithm 

and the ability to accurately estimate the observation noise variance. On the right side of  

Figure 4.13 we can see the estimation of observation noise variance as it evolved over 

time and successive iterations. The initialization of observation noise variance is 

purposely selected as we would expect a very noisy data. This effectively prevents the 

algorithm to become too confident in early phase of estimation procedure. Also, the 

dynamic of observation noise are assumed very slow (almost constant), which results in 

an exponential decay of observation noise variance over multiple iteration steps of 

SCKS algorithm to actually reach the true value. 

 

Figure 4.13 Results of SNR experiment (part 2.). The plot on the left side shows  the 
posterior model probabilities that were assigned to the selected models for different levels 
of SNR (10 simulation for each SNR level). The blue dots represent models having lower 
evidence, which were incorrectly selected by BMS. The plot on the right side shows an 
example of estimated measurement noise standard deviation (square-root of variance) as it 
evolved over successive iterations of SCKS algorithm. We considered the average 
measurement noise variance for all time courses entering model inversion. 
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On the left side of Figure 4.13 we show the posterior model probabilities for the 

selected models of the first scenario as they were calculated during the post hoc model 

selection (based on reduced free energy). We can see that except for two models under a 

very low SNR, which were scored with a weak evidence (these models contain a couple 

of incorrectly identified parameters as also depicted in Figure 4.12), the rest of the 

models were correctly selected with a strong and a very strong evidence. This 

demonstrates a very good sensitivity of post hoc BMS against both false negative and 

false positive estimates.   

As a final remark to these simulations, in the real fMRI data one can usually expect 

SNR between 1 to 3 [26, 159]. However, the fMRI time series for DCM is rather lower 

in noise (SNR between 2 to 4) since it represents a summary signal of certain region, 

obtained by using a simple averaging of multiple voxels within the ROI, or more often 

by using the principal eigenvariate to ensure an optimum weighting of contribution for 

each voxel within the ROI. On this matter, one should be always very careful in 

selection of ROIs for analysis with sDCM. They should be smaller in size and should 

include only significantly activated voxels.  

4.3.3 Effect of data sampling period 

Another interesting question one can ask is how much is the accuracy of the inversion 

scheme dependent on the sampling period of the data; i.e. on time series resolution. This 

is also related to the performance of local linearization scheme that is used to discretize 

the continuous model. In this section, we perform this test by considering a range of 

different sampling periods (TR) ordered from small to very high. 

Simulations 

In order to perform this test we had to simulate data with finer temporal resolution. In 

this sense we considered integration step 100 ms. The rest of the simulation process was 

the same as in Section 4.3.1. It means, we also considered a small size network of four 

nodes with connection structure chosen as defined earlier, and resulting BOLD signals 

with SNR = 2. Once we obtained simulated data with a higher resolution, we considered 

five different sizes of sampling periods TR = 0.5 s, 1 s, 2 s, 3 s, and 5 s, respectively, for 

which we inverted the full model by SCKS. Additionally, we made an adjustment that 
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for TR > 1 s, the integration step applied in SCKS was selected to match the 1 s 

resolution, i.e. for TR = 2 s we apply Ï = 1 2⁄ , etc. Finally, we repeated the entire 

simulation and inversion procedure 10 times. 

Results 

The summary of MC simulations is depicted in Figure 4.14. We were especially 

interested in the effect of sampling period on the accuracy of estimated neuronal signal 

and coupling parameters. Since in our case we know the ground truth, we calculated the 

root-mean-square error (RMSE) between the simulated neuronal signals and our 

estimates obtained by SCKS. There we can clearly see (Figure 4.14, top-left) that with 

lower TR we receive more precise estimates of neuronal signal, even though the 

difference is not that high. Similar trend can be seen also if we compare the true and 

estimated coupling parameter (Figure 4.14, top-right). Here, the difference is even less 

significant. Although, one would like to see more significant improvement, the results 

demonstrate a good performance and robustness of the local linearization scheme, 

which allows an accurate estimation even with high sampling period (by considering 

relatively large integration step 1 s).  

Further, we could have a look at the posterior model probability of the selected 

models. However, because in all cases (including high TR) the models were always 

correctly selected with a very strong evidence, we rather examined the effect of 

sampling period on marginal likelihood approximated by BIC (Figure 4.14, bottom). In 

this plot we can see considerably increased confidence (reflected in lower value of the 

BIC) about the estimates for TR = 0.5 s. This is simply because in this case we 

considered twice the number of time points, but the same number of iterations. If we 

decrease the number of observation to match the three other cases one can expect almost 

a linear trend of the improvement. 

Overall, we did not notice a very significant improvements in the estimates of 

coupling parameters by increasing the temporal resolution of the data. This fact can be 

considered as good news, because it means that the estimation of effective connectivity 

by DCM formulated in continuous time is not sensitive to the temporal resolution of the 

data, which is an important advantage over the lag based method for identification of 

directionality such as GCM, where the temporal resolution plays the crucial role. 
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Nevertheless, we witnessed that the higher temporal resolution of the data (with 

reasonable SNR) can always bring some improvement. 

 

4.3.4 Effect of interregional variability of HRF 

In the introduction of this work, we have emphasized that the main motivation for the 

nonlinear deconvolution approach (or generally approach based on generative model) is 

to eliminate a possible confusion in identifying directional connectivity due to 

variability of hemodynamic response across the brain regions. So far, in Section 4.2.2 

we have discussed an identifiability of the hemodynamic model, and concluded that 

even though the hemodynamic model is not uniquely identifiable by its complete set of 

parameters, we are still able to recover the underlying neuronal signal with a 

satisfactory accuracy. In other words, the identifiability issue does not seriously hurt the 

model inversion (at least in the case of fully stochastic treatment of the model).  

What remains to be answered is whether we can perform a model inversion for 

multiple time courses and simultaneously identify the true effective connectivity at the 

neuronal level if the shape of hemodynamic response significantly varies among the 

 

Figure 4.14 Results of sampling period experiment. The upper plots display the RMS 
errors between the true and estimated neuronal signals (left) and the RMS errors between 
the true and estimated coupling values (right) for different data sampling periods. The 
lower plot show dependence of BIC on sampling period. 
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brain regions. Therefore, in this section we test the performance of the proposed 

algorithm in these clearly difficult conditions. 

Simulations 

For these simulations we considered 5 nodes network with adjacency matrix similar to 

the one described by (4.4), but with an additional node connected to the fourth node 

through bidirectional coupling. Further we used the same generation process as in 

Section 4.3.1., but we considered four different levels of hemodynamic response 

variability assigned to different nodes (regions). This variability was obtained by 

scaling the empirical parameter priors (Table 1.1) using log-normal density function 7� = 7;� exp(�(0, t)), where the variance t was equal to 0 for the case of no 

variability; 0.01 for a small variability; 0.1 for a medium variability; and 0.5 for a large 

variability (see Figure 4.15). The resulting BOLD signal had the temporal resolution TR 

= 3 s and the SNR = 2. The simulation and model inversion was repeated 20 times for 

each level of hemodynamic response variability (considering the same structure of 

adjacency matrix).  

  

 

Figure 4.15 Demonstration of different levels of hemodynamic response variability.  
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Results 

The results from all inverted models by SCKS are plotted in Figure 4.16. Since we 

know that hemodynamic model parameters are not uniquely identifiable, i.e. their effect 

on the output hemodynamic signal can be interchangeable and also partly compensated 

by the neuronal signal, we cannot simply test for the error between estimated and the 

true hemodynamic parameters. However, we considered four levels of hemodynamic 

response shape variability, therefore we can at least check how this variability is 

reflected in hemodynamic parameter estimates. This is depicted at the top of Figure 

4.16. for parameters rate of signal decay (E) and resting oxygen extraction fraction (p), 

which were selected to fit the shape of hemodynamic response (see Section 4.2.2). In 

 

Figure 4.16 Results of interregional variability experiment. The upper plots show the 
effect of increasing variability of hemodynamic response among brain regions that are 
considered for model inversion, on hemodynamic model parameter estimates. Here we can 
see that with increased variability, the variability of estimates increases as well (note that 
this parameter estimates does not provide unique solution). The lower plots show the 
dependence of posterior model probability and RMS errors between the true and estimated 
neuronal signals on the level of hemodynamic response variability.  
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these plots we can see that by increasing variability in simulated data the variability of 

the estimated parameter values increases as well. Now, taking a look at the results of 

posterior model probabilities of selected model (connectivity structure) by post hoc 

BMS (at the bottom of Figure 4.16), we can see that there is almost no difference 

between no, small, medium and high variability of hemodynamic response among 

different network nodes. In all cases, we selected the correct model with high posterior 

model probability. Next, we calculated the average RMSE between the estimated and 

the true neuronal signals. Here we already experience some decrease in accuracy that 

comes with the high variability of hemodynamic response, but the increase in the error 

is negligibly small. 

These results prove that the stochastic DCM based on SCKS is not sensitive to 

variability of hemodynamic response function across different brain regions. This 

statement is valid even in case of longer sampling period, as it was used in these 

simulations (TR = 3), and one can expect an improvement by increasing the temporal 

resolution and SNR of the data. 

4.3.5 Third region influence  

Probably the highest risk of a false positive identification of causal relationship is 

caused by spurious correlations between time courses. This spurious correlation 

represent a mathematical relationship in which two events have no direct causal 

connection, but they are likely to be wrongly inferred that they do, due to the 

coincidence or the presence of a third unseen event (region). Let us imagine two simple 

scenarios of causal influence as shown in Figure 4.17. In the first case, we have a causal 

chain among three regions where region 1 has a causal influence on region 3, mediated 

through region 2; i.e. 1 → 2 → 3. In the second case, we have a common source 

represented by region 2, which causes dynamics in regions 1 and 3, and there is no 

influence between region 1 and 3; i.e. 2 → 1 and 2 → 3. Assuming a bidirectional 

connectivity, then these two cases are always present. From the previous simulations we 

know that if all regions are included in the analyzed network than SCKS is able to 

effectively infer the correct causal relationships. However in the case we neglect some 

of essential regions such as region 2 (the common cause), then we are facing a "missing 

region" problem that might lead to causal fallacy. Therefore, in this section we will try 
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to address a question: what are our chances to identify a correct causal influence in the 

case of missing (essential) region. Additionally, we would like to know if there are any 

properties of fMRI time courses, such as sampling period and amount of observation 

noise, which help to overcome this problem. 

Simulations  

We generated a network composed of 5 nodes as shown in Figure 4.18, where the first 

node has relatively strong causal influence on the second and the third node, where we 

also consider reciprocal connections. There is no influence between the second and the 

third node. The third node is further connected to the fourth node, which is connected to 

the fifth node, all through bidirectional connections. Having this particular network, we 

simulated higher resolution data with integration step 100 ms. Now, in order to test the 

robustness of the algorithm in case that the common (essential) node is missing, we 

considered three following scenarios. In the first scenario we invert the complete 5 

nodes network. In the second scenario we exclude the time course associated with the 

first node and invert model having only time courses 2-5. In the third scenario, we 

consider 3 nodes network, where we further exclude the 5th time course (see Figure 

4.18). These scenarios were tested for three different levels of observation noise (SNR = 

1, 2, and 3) and for two different sampling periods (TR = 1 s and 3 s). Finally, each 

particular case was repeated 10 times considering the same adjacency matrix but 

different innovations.  

  

 

Figure 4.17 Two common connections involving the influence of the third region. (a) The 
influence from the region one to the region three is mediated by region two. (b) The region 
two is influencing both regions one and three. 
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Results 

The results from the above MC simulations are reported in Figure 4.19, for all three 

scenarios, where we scored the performance of the SCKS algorithm by comparing the 

posterior model probabilities of selected models, and by comparing the RMSE between 

the true and estimated network couplings.  

The results obtained during the first scenario, where all five nodes (time courses) 

are included, do not show any new information that we would not know already from 

the previous simulations. Clearly, we were able to estimate and select model that is 

equivalent to the true model, where we can see an improvement in both posterior model 

probabilities and RMSE for higher SNR. Moreover, with a smaller sampling period, one 

can estimate the coupling parameters slightly more precisely.  

The situation is already more interesting when looking at the results of the second 

scenario. In this case, by neglecting a common source of influence on 2nd and 3rd 

regions, we expect a presence of spurious correlations between the 2nd and 3rd region 

that might possibly hurt the performance of estimation procedure. And indeed, we can 

see an overall decrease of posterior model probabilities (approximately by 10 %), where 

among selected models we have several models (blue dots) that were incorrectly 

identified (with false positive couplings). Nevertheless, a majority of the models were 

 

Figure 4.18 Demonstration of missing region problem. The first scenario considers all 
nodes for model inversion (red dashed line). The second scenario leaves out the first node 
for model inversion (blue dashed line) and the third scenario leaves out also the fifth node 
(green dashed line). 
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still correctly identified. There is a very small difference between estimates obtained 

with lower and higher resolution, but increasing the SNR brings an improvement.  

 

Figure 4.19 Results of missing region experiment. Each row in the figure describes one 
particular scenario regarding the missing region problem. The plots on the left side show 
the effect of different sampling period (TR = 1s and 3 s) and the effect of different amount 
of noise added to data on posterior model probability of selected model. The same effects 
are then displayed in the plots on the right side, but with respect to the average RMS error 
between the estimated and the true coupling parameters. 
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Finally, in the third scenario we had similar situation but considered only 3 nodes 

network. Although in this case we scored models with relatively high posterior 

probabilities, the number of incorrectly selected models is the same as in the previous 

case. It means that if we try to identify coupling parameter within a very small network, 

there will be a higher danger of obtaining a very certain (nonzero) estimates even of 

connections that are spurious.  

Obviously, this test represents only a very limited insight into the entire problem. It 

can be more dramatic in real data situation, for example when multiple sources are 

missing, etc. Therefore, we expect further developments to improve the regularization 

process of parameter estimation, which could more effectively eliminate the spurious 

coupling estimates. 

4.3.6 Larger networks 

The problem of missing region described in the previous section could be potentially 

overcome by covering a higher number of brain regions in analysis of effective 

connectivity, where we hope that all important regions are included. Considering larger 

networks is also interesting from the perspective of analyzing resting-state data. In this 

case one usually first applies methods such as independent component analysis [160] to 

the whole brain fMRI data, which summarizes a spatially distributed brain activations 

into a smaller set of components (modes). The relevant components and their associated 

time courses can be then considered as a nodes of analyzed network by stochastic DCM. 

Therefore in this section we want to ask a question: is there a bright future of stochastic 

DCM based on SCKS to by applied also into the larger networks? 

Simulations 

Because it is not that simple to generate a larger network based on random permutations 

of connections in adjacency matrix that would result in a stable matrix, we considered 

an adjacency matrix, which is sometimes called a tandem network. The adjacency 

matrix of the tandem network has non-zero couplings only on the first diagonal above 

the main diagonal and on the first diagonal below the main diagonal; i.e. all nodes are 

connected through bidirectional couplings. This type of network was first created for 8 

nodes and later for 16 nodes. The strengths of connections were in both cases generated 
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randomly from the uniform distribution and from the normal distribution in case of self-

connections as described earlier. The sets of fMRI time courses generated in a standard 

manner (TR = 3 s; SNR = 2) were then used for model inversion by SCKS. 

Results 

The results for the 8 nodes network are depicted at the top of Figure 4.20. There we can 

see the estimated adjacency matrix obtained right after the model inversion by SCKS 

 

Figure 4.20 Results of lager network experiment (part 1.). The upper row displays 
connectivity matrices (for 8 nodes) obtained by model inversion using the SCKS 
algorithm before (left) and after (right) applying model selection based on post hoc BMS. 
The green mesh represents the true connectivity structure used for data simulation. The 
lower row shows the results that one obtains by applying simple pair-wise correlation 
between observed BOLD time courses (left) and by applying Granger causality modeling 
based on standard multivariate autoregressive model of the second order.  
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algorithm, where many of irrelevant couplings were already switched to zero by the 

pruning procedure during model inversion. After applying post hoc BMS we already 

received a result that is very close to the true connectivity structure (green mesh), where 

only one connection (2 → 4) was wrongly identified. Because we have network 

consisting of more than six nodes, we already employed a greedy search procedure to 

perform post hoc BMS.  

At the bottom of the same figure, we also show the result obtained by pair-wise 

correlation between BOLD signals. Correlation is very often used as the simplest 

method for evaluation of functional connectivity (also in resting-state data). The 

correlation will give us a basic picture about interdependences between time courses, 

but from the perspective of effective connectivity, many of these interdependences 

(correlations) are spurious. Critically, just using a correlation with any threshold can 

never recover the real connectivity structure. As the last comparison we also show the 

result obtained by Granger causality modeling (GCM) based on simple multivariate 

autoregressive model, where the order of the model (the lag) was estimated using BIC 

and AIC (both suggested the model order 2). In this case, GCM fails to estimate the 

correct connectivity structure mainly because the temporal resolution of BOLD signals 

is too low (TR = 3). We expect that GCM could do better if higher resolution signals are 

used and if GCM is formulated as a state-space model [127, 128]. 

The result of the second network with 16 nodes is depicted in Figure 4.21. There 

we show already the final result as obtained after post hoc BMS. Although there are 

several irrelevant couplings that were not switched off neither by BMS or by pruning, 

their strength is smaller than any other correctly identified connections. Additionally, 

we have one coupling parameter (12 → 11) that was incorrectly switched off by 

pruning during the model inversion. Just for comparison we again display correlation 

matrix capturing the dependences between BOLD signals. 

In general, these results show that it will be possible to effectively apply stochastic 

DCM also to the larger networks. However, the computational demands increases 

markedly. For example for 5 nodes network one iteration of SCKS takes about 60 s, 

while for 16 nodes one iteration takes already about 30 minutes8. 

                                                 
8 Evaluated on personal laptop HP Pavilon with CPU i7-2630QM at 2.0 GHz and  8GB RAM. 
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Figure 4.21 Results of lager network experiment (part 2.). The upper panel shows the 
estimated connectivity matrix (16 nodes) obtained by model inversion using the SCKS 
algorithm followed by the post hoc BMS. The green mash corresponds to the true 
connectivity structure. The lower panel shows the result obtained by pair-wise correlation. 
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4.3.7 Analysis of empirical fMRI data 

As the last test, we attempt to apply the SCKS algorithm to empirical data. Although, 

we mostly emphasized on application of stochastic DCM to resting-state data, there is 

no reason why this approach should not work also with a task data. Further, since there 

is very little known about effective connectivity in resting state data, we choose to 

demonstrate the algorithm performance on task data, but under the assumption that we 

do not know the exogenous (experimental) input. In particular, we apply SCKS to 

empirical data-set that has been used previously to describe developments in causal 

modeling and related analysis [11, 15, 17, 123, 142, 161].  

Performing model inversion of task data by SCKS  without considering the known 

input is potentially interesting because it allows one to quantify how much neuronal 

activity can be attributed to the evoked responses (i.e., the experimental design or 

exogenous inputs) relative to endogenous activity [15]. In what follows, we will briefly 

describe the data used for our analysis and then report the results. 

Table 4.1 Selected regions for sDCM analysis.range.  

Name Description 
Location 

(mm) 

Number of  

(3 mm3) voxels 

VIS Striate and extrastriate cortex -12  -81  -6 300 

AG Angular gyrus -66  -48  -21 51 

STS Superior temporal sulcus -54  -30  -3 269 

PPC Posterior parietal cortex -21  -57  66 168 

FEF Frontal eye fields -33  -6  63 81 

PFC Prefrontal cortex -57  21  30 48 

 

Data description 

Data were acquired from a healthy subject at 2 Tesla using a Magnetom VISION 

(Siemens, Erlangen) whole body MRI system, during a visual attention study. 

Contiguous multi-slice images were obtained with a gradient echo-planar sequence 

(TE=40 ms; TR=3.22 s; matrix size=64×64×32, voxel size 3×3×3mm). Four 

consecutive 100 scan sessions were acquired, comprising a sequence of ten scan blocks 

of five conditions. The first was a dummy condition to allow for magnetic saturation 

effects. In the second, Fixation, subjects viewed a fixation point at the centre of a 
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screen. In an Attention condition, subjects viewed 250 dots moving radially from the 

centre at 4.7 degrees per second and were asked to detect changes in radial velocity. In 

No attention, the subjects were asked simply to view the moving dots. In a Static 

condition, subjects viewed stationary dots. The order of the conditions alternated 

between Fixation and visual stimulation (Static, No Attention, or Attention). In all 

conditions subjects fixated the centre of the screen. No overt response was required in 

any condition and there were no actual changes in the speed of the dots. The data were 

analyzed using a conventional SPM9 analysis. The regions chosen for network analysis 

were selected in a rather ad hoc fashion to ensure that the regional summaries were 

defined functionally by selecting regions showing evoked responses. Six representative  

regions were defined as clusters of contiguous voxels surviving an F-test for all effects 

of interest at p<0.001 (uncorrected) in the conventional SPM analysis. These regions 

were chosen to cover a distributed network (of largely association cortex) in the right 

                                                 
9 Software available at http://www.fil.ion.ucl.ac.uk/spm. 

 

Figure 4.22 Selected regions for sDCM analysis and their associated time courses. 



VALIDATION AND APPLICATION OF THE METHOD 
 

127 
 

hemisphere, from visual cortex to frontal eye fields (see Table 4.1 for details). The 

activity of each region (node) was summarized with its principal eigenvariate to ensure 

an optimum weighting of contributions for each voxel within the ROI (see Figure 4.22). 

In this example, one can see evoked responses in visual areas (every 60 s) with a 

progressive loss of stimulus-bound activity and a hint of attentional modulation and 

other fluctuations in higher regions [15]. 

Results 

Results were obtained after 24 iterations of SCKS algorithm (using standard 

initialization), when it reached the convergence criteria. Then the best model was 

selected among 32,768 possible models using post hoc BMS with posterior model 

probability about 80 %. The result before and after model selection are depicted in -

Figure 4.23. We can see that the final result has relatively sparse structure of 

 

Figure 4.23 Results of empirical data analysis (part 1.). The upper row shows the results 
of connectivity structures obtained by model inversion using SCKS algorithm before (left) 
and after post hoc model inversion. In this case the best model was selected with more 
than 80 % evidence as depicted in the lower plot. 
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connectivity matrix with four bidirectional connections switched off. The architecture of 

this identified network is then shown also in an anatomical space (Figure 4.24), where 

the color of the arrow reports the source of the strongest bidirectional connection and 

the width represents its absolute (positive or negative) strength. This visualization refers 

to undirected graphs, although our scheme provides separate estimates for both 

directions of reciprocal connections. As maybe expected, there are stronger forward 

connections coming from the visual cortex, which can be considered as a bottom of 

functional hierarchy, to posterior parietal cortex and prefrontal cortex. Interestingly, 

there are also many backward connections that are stronger than the forward ones. For 

example from frontal eye fields, which could be considered as the top of the functional 

hierarchy, to the visual cortex, prefrontal cortex and to superior temporal sulcus. This is 

quite sensible given the greater amount of backward connections (neuronal pathways) 

anatomically, both within the cortical hierarchy and from cortex to subcortical structures 

[15, 162]. Finally, most of identified connections (but not quite all) are in agreement 

with a previous results obtained by analyzing effective connectivity using the same 

data-set [15, 123].  

 

Figure 4.24 Results of empirical data analysis (part 2.). Visualization of identified 
connectivity structure in anatomical space. The color of the lines reports the source of the 
strongest bidirectional connection and the width represents its absolute (positive or 
negative) strength. 
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Besides identification of effective connectivity we can be also interested in 

estimated time courses of neuronal signals (bottom of Figure 4.25). Specifically, 

because we know the experimental paradigm of visual stimulation (grey filled areas - 

high for attention and low for no attention), we can compare it to our estimates. In 

particular, looking at the estimate of neuronal signal associated with the visual cortex 

(highlighted in blue) we can clearly see that the activation and deactivation phase of this 

region match exactly to the start and end phase of the stimulus. This confirms that 

model inversion has effectively estimated neuronal activity from observed BOLD signal 

and that this estimate is veridical in relation to the experimental manipulation. For 

comparison to neuronal estimates we also show the original observed BOLD signals 

 

Figure 4.25 Results of empirical data analysis (part 3.). The upper plot displays the 
estimated neuronal signals, where we highlight the neuronal responds of the visual cortex. 
The shaded represents the paradigm of the visual stimulation. Similarly, the lower plot 
displays predicted BOLD responses. 
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and our predictions (bottom of Figure 4.25), where there is a delay of several seconds 

(about 6 s) between the start of stimulation and actual increase in BOLD signal.  

Before closing we should again emphasize that the model inversion was not 

informed by a known stimulation function but can still recover the evoked responses.  

4.4 Chapter summary 

In this chapter we attempted to validate the proposed estimation framework based on 

the SCKS algorithm for estimation of neuronal signal and effective connectivity from 

simulated and empirical data. The first part of this chapter was focused on the 

estimation of the neuronal signal from single fMRI time course, where it mainly served 

as a tutorial on how to initialize and perform successful model inversion with SCKS. 

We also discussed identification issues of hemodynamic model parameters, and 

suggested a suitable set of parameters, which estimation can lead to the improved 

estimate of the neuronal signal. Note that in future, we might elaborate on this problem 

with more thorough analysis.  

Primary method validation was then carried out for the multivariate case, where we 

tested the performance of SCKS accompanied by a post hoc Bayesian model selection 

as an approach to stochastic DCM. In this case the main results can be summarized as 

follows: the approach seems to be robust enough in situations of very noisy data with 

relatively large sampling period. We expect an improved accuracy of coupling estimates 

by increasing data SNR and temporal resolution. Next, the method is able to account for 

hemodynamic response variability across different brain regions. In other words, our 

method is not sensitive to this sort of variability. This feature makes our approach 

superior to other approaches which do not consider the generative model. The above 

mentioned conclusions generalize also to the inversion of a single time course.  

The results also suggest that it should be possible to apply the method to the 

networks consisting of larger number of nodes. Although it is still not possible to think 

about the application to the whole data consisting of thousands of voxels, one might 

imagine its application to the brain activity summarized by spatially distributed modes 

(often around 20), such as those obtained from the independent component analysis [5, 

128]. 
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The results obtained by testing for the robustness against the missing region 

problem are slightly less promising. In this case we observed a decrease in posterior 

model probability estimates and an increase of false positive identifications. Although 

generally these results are still satisfactory, in future work we expect to enhance 

regularization techniques for parameter estimation that could improve the performance 

in this particular case. 

We have also demonstrated an application of proposed algorithm to empirical (task) 

data and obtained reasonable results, although these results are not deeply discussed, as 

it is difficult to make any conclusion based on only single subject data-set. 

The fact that the simulated data are based on the same model of neuronal 

interaction as later used for model inversion can be considered as a limitation of our 

method validation. Though there are features such as higher integration step and 

modeling of correlated noise for observations and hidden states that are included during 

the data generation, but are not applied or are ignored during the model inversion, it 

would be interesting to see if the approach can maintain the same performance in cases 

of more realistic interaction models (including transmission delays with respect to 

spatial location [138, 163]) are used for data generation (while still keeping the simple 

neuronal interaction model for data inversion). 

Although we did not provide a comparison to other methods, some comparison can 

be found in our published paper [20] that focused on single time course model 

inversion. We should note that at present there is one more approach that can achieve 

the same aim [52], i.e. estimation stochastic DCM without knowing the exogenous 

input. However, this method, which definitely deserves distinction, is also very recent 

and still under development. Clearly, it will be subject of our future research to make 

comparisons and learn more about its properties. Importantly, the existence of these two 

competing methods suggests an interesting possibility for cross-validation when applied 

to real fMRI data. 
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Chapter 5 

5. Conclusions and future work 

In order to evaluate effective connectivity among different brain regions we need to 

model interactions at the neuronal level. In the case of fMRI data this is complicated by 

the fact that the measured BOLD signal is only an indirect representation of neuronal 

activations. The chain of physiological processes that connect the neuronal activation to 

the BOLD signal can be described by a continuous nonlinear hemodynamic model. 

Clearly, no model is perfect, which means that it is very important to allow for random 

fluctuations in unobserved (hidden) neuronal and physiological states by assuming a 

stochastic representation. Moreover, if we are not restricted to a deterministic model, we 

are able to account also for (endogenous) autonomous dynamics that cannot be 

explained by known (exogenous) experimental inputs. We can even throw away the 

prior knowledge about experimental causes of observed responses and make the 

evaluation of effective connectivity completely data-driven. Crucially, this enables us to 

assess causal influence at the neuronal level even from the resting-state fMRI data.  

To allow evaluation of this stochastic model we consider the brain as a learning 

machine that infers information about states and parameters from the observed data. 

This inference requires representation of uncertainty. Probability theory provides a 

language for representing the uncertainty beliefs and a framework for maintaining these 

beliefs in consistent manner. Utilizing probability theory and the general descriptive 

power of dynamic state-space models, recursive Bayesian estimation provides a 

theoretically well founded and mathematically robust framework to facilitate sequential 

probabilistic inference in systems where reasoning under uncertainty is essential. 

However, because the hemodynamic model we employ is nonlinear, the optimal 

Bayesian solution to the probabilistic inference problem under consideration is 

intractable. Therefore, we have to consider only an approximate solution. 

In this thesis, we have focused on an approximate solution provided by the 

Gaussian integration method based on cubature integration rules which was recently 
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introduced to nonlinear Kalman filtering [55]. Specifically, we have proposed a new 

approach based on cubature Kalman filtering and Rauch-Tung-Striebel smoothing to a 

joint estimation problem, where both model states and parameters are estimated 

sequentially, which also models the interaction (conditional dependences) between 

them. This framework was further extended to meet all requirements given by the model 

and the fMRI data we work with. First, we have introduced an extension of this 

approach to the continuous-discrete time systems, where the accurate and stable 

discretization of the process model was achieved by a local-linearization scheme [56]. 

Second, to allow the model inversion in a situation, where we a priori do not know the 

noise statistics of the observed BOLD signal, we have adopted an iterative variational 

Bayesian approach [64] to sequential estimation of measurement noise variance. Third, 

to improve the convergence of joint state and parameter estimation, we have proposed 

an adaptive scheme for the estimation of the parameters and state process noise 

covariance by efficient Robbins-Monro stochastic approximation scheme. Fourth, since 

we deal with observed data of a limited length, the forward cubature Kalman filter pass 

and the backward cubature RTS smoother pass, were wrapped into a simple iterative 

scheme that maximizes the log-likelihood with each iteration and provides fast 

convergence. Finally, to further improve the numerical stability of the filter the entire 

scheme was considered in its square-root form.     

All these developments and extensions, which were in detail described in Chapter 

2, had one common aim: to enable the estimation of the neuronal signal from a noisy 

BOLD signal, while considering a realistic nonlinear generation model of the observed 

signal which also includes stochastic fluctuations contributing to the hidden 

hemodynamic and neuronal states. In addition, the proposed approach to inversion of 

the model has a character of (generalized nonlinear) blind deconvolution, because the 

unknown endogenous neuronal signal (input) to hemodynamic model, which contains 

unknown parameters is estimated (only) from observed BOLD signal. While sufficient 

theoretical description of the methods and particular algorithms was provided in 

Chapter 2, the global validation was shown in the first part of Chapter 4. Additionally, 

several performance tests using toy examples are summarized in Appendix A and 

comparison to a related approach (dynamic expectation maximization) [14] can be 

found in a separate publication [20]. 

Although a very advanced and efficient method was proposed in Chapter 2, it 

fulfils only a first part of the goal that was described in this thesis. The second (main) 

goal was to enable evaluation of effective connectivity at the level of neuronal signals 
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given the observed hemodynamic responses. Clearly, the methodological framework 

described in Chapter 2 solves the more difficult part, i.e. provides estimates of 

(endogenous) neuronal activity. In Chapter 3 we have extended this framework to 

multivariate case, where the main interest is estimation of (effective) coupling 

parameters that inform the neuronal interaction model. In this case we have considered a 

neuronal interaction model in a form of linear stochastic differential equations, which 

define interactions as the communication of slow dynamics among macroscopic 

variables; i.e. brain regions (nodes). By connecting this neuronal model to region-

specific hemodynamic models that link the neuronal activation to observations, we 

enabled full model inversion, which provides conditional estimates of coupling 

parameters, region-specific neuronal signals, hemodynamic states, and associated 

hemodynamic model parameters. All that is possible by applying the approach (iterated 

square-root cubature RTS smoother) developed in Chapter 2. Importantly, this neuronal 

interaction model allows one to estimate bidirectional connectivity (causal influence) 

between different nodes. Further, as an extension to the estimation framework, we have 

introduced an automatic detection of irrelevant coupling parameters using a network 

pruning algorithm based on calculation of scaled Fisher information matrix. This 

addition was necessary to improve the performance of estimating coupling 

(connectivity) parameters, especially in cases when the spurious correlations between 

observed signals are present. A complete form of this model inversion represents a 

stochastic treatment of dynamic causal modeling that makes it possible to estimate 

effective connectivity even in case of unknown model input; i.e. in case of resting-state 

data, where the neuronal signals causing the hemodynamic responses have purely 

endogenous character. This is an important departure from the original dynamic causal 

modeling [11], which was limited to a discrete model of hemodynamic states and 

assumed a priori knowledge of the model input. 

This novel approach represents the first level of inference where we are especially 

interested in conditional estimates of coupling parameters and in the associated error 

covariance matrix. However, it is still necessary to perform the second level of 

inference, where we identify (select) the most likely model candidate, which in the case 

of effective connectivity corresponds to the most likely connectivity matrix. In Chapter 

3 we considered model comparison based on calculation of Bayes factor (defined as a 

ratio of marginal likelihoods of restricted models) and discussed two different 

approximations to marginal likelihood through common Bayesian information criteria 

and through recently introduced concept of reduced free energy [146]. We have 

emphasized the convenience of the later approximation, because it requires only a single 
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inversion of the full model, where all connections all between nodes are allowed. 

Moreover, this approach is also well suited for model selection in larger networks. 

In Chapter 4, we demonstrated the performance of the proposed approach, first 

focusing on estimation of the neuronal signal from a single fMRI time course. We also 

addressed the principal questions one might have regarding the performance of the 

introduced method to correctly infer the coupling parameters of neuronal interaction 

model. In this case we were able to show that the method is robust even when applied to 

data with lower SNR and larger sampling period. Also it is not sensitive to variability of 

hemodynamic response function across different brain regions. These are important 

properties, which make the approach superior to other approaches for the evaluation of 

effective connectivity that are not based on generative models and are not formulated in 

continuous time. We also showed that there is a good perspective for this approach to be 

applied to larger networks, where possibly all relevant brain regions are included. As a 

relative weakness we found that the method is only partly immune to the strong 

spurious correlations caused by exclusion of relevant region (node) from the analysis.  

In conclusion, we have made a significant progress in the development of 

appropriate methodology for evaluation of effective connectivity in fMRI data, however 

it is clear that much work still lies ahead. To point out a few future aims: 

• In this work we have considered a local approximation of Gaussian probability 

density, which might provide only locally optimal estimates. We are certainly 

aware that we could improve identifiability of the inversion problem by 

employing global estimators. However, global approximation methods are not 

practical in our case due to the curse of dimensionality. Nevertheless, we hope 

that the utilization of local approximation based on cubature integration rules, 

which also considers locally distributed sampling points brings significant 

improvement. This direction obviously leaves much space for further tests and 

developments. 

• We expect to investigate other approaches to improve the regularization of 

sequentially optimized parameters. We suspect that significant improvement 

could be obtained by including real priors on parameters (or states) into the 

estimation scheme. Within a fully Bayesian framework we could use the priors 

to regularize or finesse the "ill-possedness" of the inverse problem. Even though 

this might not be possible with the current approach based on Kalman 

filter/smoother, we hope to find a solution in recently introduced generalized 
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filtering [52], which can also enable sequential optimization of both state and 

parameter conditional densities by using the concept of generalized motion 

(coordinates) of hidden states. However, also in this case we expect to apply 

cubature integration rules to approximate Gaussian probability density.   

• There is an increasing evidence that more realistic neurobiological modeling 

could be improved by considering non-Markovian process [15, 164], which 

eschews (implausible) Markovian assumptions about the serial independence of 

random fluctuations. Solution to this problem can be provided again by applying 

the concept of generalized coordinates of motion [52], which assumes random 

differential equations [165] instead of standard stochastic differential equations. 

However, it should be tested whether this assumption can really improve the 

final estimates.  

• Certainly other work can be focused on extending the generative models toward 

further biophysical realism. Each extension means an increase of model 

complexity, which introduces other identifiability problems. Therefore it will be 

very important to make a compromise between the biophysical realism and the 

model identifiability, since both are necessary to answer difficult questions 

about the brain function. 

• We believe that the simulations carried out in this thesis are useful, but they 

should be extended to cover grater realism in neurodynamics [138, 163]. 

Nevertheless, it will be also very useful to have standardized experimental data 

from animals as a resource for model testing [130]. One can imagine a combined 

data-set that provides intracranial recordings of neural sources, higher resolution 

BOLD-fMRI, surface EEG, diffusion tensor imaging tractography, etc., that 

would be hugely beneficial and useful for method developers. 

As a final remark we should very briefly describe the journey that we undertook 

and which led us to the results presented in this thesis.  

At the beginning of this project in 2008 it was not very clear which direction is the 

best to go because we had almost no experience with fMRI data and with the analysis of 

functional and effective connectivity in general. There were two main methodological 

concepts of analyzing effective connectivity introduced to the neuroscience community: 

Granger causality modeling (GCM) [166] and dynamic causal modeling (DCM) [11], 

which were rapidly gaining a wide interest. Since the mathematical background of 
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GCM based on multivariate autoregressive modeling is much simpler than the one 

employed by DCM, GCM seemed to be a good approach to start with. Therefore, we 

chose GCM and focused on its limitation with respect to fMRI data. In particular, we 

tried to improved the GCM performance by considering time-varying estimation, first 

using simple windowing technique [167, 168], and later introducing a state-space 

formulation based on two-pass Kalman filtering [128]. However, there was an 

increasing evidence [9, 126] that a presents of hemodynamic response variability 

between different brain regions can seriously confuse the identification of causal 

relationship. Having the best intentions, we went even further and introduced a new 

GCM approach that considers a generative nonlinear hemodynamic model for 

estimation of neuronal signals [129], from which the connectivity parameters are later 

inferred. Nevertheless, we realized that at this point we were already so close to the 

concept of DCM that it did not have any further sense to rescue a slowly (but surely) 

sinking concept of GCM in the application to fMRI, but rather switch the conceptual 

framework directly to DCM. By experiencing this lesson, we ended up on the trail that 

led us to the development of the nonlinear blind deconvolution technique for the 

estimation of neuronal signal from fMRI data and to the stochastic DCM, as they are 

presented in this thesis.  

 The process undergone while working on this thesis can be described the best by 

the following quote: 

 

"I may not have gone where I intended to go, but I think I have ended up where I 

intended to be." 

— Douglas Adams  
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Appendix A 

A. Toy examples 

A.1 Performance of local linearization scheme 

In this section we test the performance of continuous-discrete cubature Kalman filter 

based on local linearization (LL) scheme with time update described in Algorithm 6 and 

compare it with the recently introduced continuous-discrete cubature Kalman filter 

based on Itô-Taylor expansion of order 1.5 (IT-1.5) [109]. For this comparison, we will 

repeat part of the air-traffic-control experiment described in [109]. It should be noted 

that in [109] the IT-1.5 approach demonstrated superior performance compared to the 

continuous-discrete versions of extended and unscented Kalman filters.  

Radar tracker for coordinated turns  

In this  illustrative example we consider a typical air-traffic-control scenario, where the 

objective is to track the trajectory of an aircraft that executes a maneuver at (nearly) 

constant speed and turn rate in the horizontal plane. Specifically, the motion in the 

horizontal plane and the motion in the vertical plane are considered to be decoupled 

from each other. In the aviation language, this kind of motion is commonly referred to 

as (nearly) coordinated turn. Hence, we may write the coordinated turn in the three-

dimensional space, subject to fairly “small” noise modeled by independent Brownian 

motions as shown by: 

 &!(') = )\!(')]&' + kl&m('), (A.1) 

where the seven-dimensional state of the aircraft ! = 1B	BC	D	DC 	E	EC	�2� with	B, D and E 
denoting positions and BC, DC  and EC denoting velocities in the ü, ^ and 4 Cartesian 

coordinates, respectively; � denotes the turn rate; the drift function )(!) =1BC, (−�DC), DC , �, BC, EC, 0, 02�; the noise term m(') = 1��('),�=('), … ,�F(')2� with 
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o��(')r, ~ = 1, 2, … , 7, being all mutually independent standard Brownian motions, 

accounts for unpredictable modeling errors due to turbulence, wind force, etc.; and 

finally the diffusion matrix l = diag(10, C�=, 0, C�=, 0, C�=, C==2). For the experiment at 

hand, the radar is located at the origin and equipped to measure the range, &, azimuth 

angle, �, and elevation angle, G, at measurement sampling time <. Hence, we write the 

measurement equation: 

 H&*�*G*
I =

J
KKK
L ·B*= + D*= + E*=

tan�� îD'B'ï
tan�� » E*kB*= + D*=½M

NNN
O+ n*, (A.2) 

where the measurement noise is n*~�(0, �).  
The data generation followed exactly the procedure described in [109], where  other 

details can be found. We considered process diffusion matrix l = diag(10, 0.2, 0, 0.2, 0, 0.2,7 ∙ 10�P2) and the variance of measurement noise � = diag(150=, 0.01, 0.012). Further, the true initial state was  !; = 11000	m, 0	ms��, 2560	m, 150	ms��, 200	m, 0	ms��, 4.5°@��2� and the data 

sampling interval was ∆' = 6	s. The independent aircraft trajectories were generated 

using IT-1.5 with á = 1000 integration steps inside sampling interval. 

 

Figure A.1 Change of motion trajectory for the turn rate � = 4.5°.  
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Finally, we are ready to compare performance of CKF based on IT-1.5 and CKF 

based on LL. We considered 50 independent Monte Carlo runs, each collected for time 

interval of 210 s. Example of the motion trajectory is shown in Figure A.1. Both 

Bayesian filters were initialized with the same initial condition for each run. The initial 

state density was assumed to be Gaussian and the two-point differencing method, which 

uses the first two measurements to estimate the states' statistics  [109]. We repeated the 

model inversion 7 times for different number of integration steps (á = 2;, 2�, … , 2P); 

i.e. number of time update iterations, between fixed time interval ∆' = 6	s. 
To compare these two filters, we used the accumulative RMSE of the position, 

velocity and the turn rate. For example, we define the accumulative RMSE in position 

as:  

 R 1<�} } b(B*� − B*̂�)= + (D*� − D̂*�)= + \E*� − ET*�]=f�
���

�
*��  (A.3) 

where (B*�, D*�, E*�) and \B*̂�, D̂*�, ET*�] are the true and estimated positions at time ' and in 

the --th Monte Carlo run. Similarly we consider accumulative RMSE for velocity and 

turn rate. Note that accumulative RMSEs were computed only for a period of 60-210 s. 

 

Figure A.2 Results of air-traffic-control experiment. Accumulative RMSE for position, 
velocity and turn rate with respect to the applied number of integration steps (a) between 
measurements. 
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The results are displayed in Figure A.2., where we can see that for both filters the 

accuracy of estimate (mostly) increases with a smaller integration step and gets stable 

with more than 8 integration steps between measurements. Overall, the estimates 

provided by CKF using local linearization for model discretization are of the same or 

better accuracy than estimates based on CKF using Itô-Taylor expansion of order 1.5. 

However, it should be noted that local linearization, since it requires calculation of 

matrix exponential, is much slower.  

A.2 Performance of joint estimation scheme 

In this section we demonstrate performance of iterated joint estimation scheme based on 

forward pass of square-root cubature Kalman filter and square-root cubature RTS 

smoother (square-root version of Algorithm 8). In particular, we show how this scheme 

is simultaneously able to estimate states and parameters. Additionally, the noise 

statistics are adaptively estimated as well, which means that we are trying to solve a 

triple estimation problem. 

Lorenz attractor 

The model of the Lorenz attractor exhibits deterministic chaos, where the path of 

the hidden states diverges exponentially on a butterfly-shaped strange attractor in a three 

dimensional state-space. There are no inputs in this system; the dynamics are 

autonomous, being generated by nonlinear interactions among the states and their 

motion. The path begins by spiraling onto one wing and then jumps to the other and 

back in chaotic way: 

 

ü�(')&' = ��ü=(') − ��ü�(')ü=(')&' = �gü�(') − 2ü�(')üg(') − ü=(')üg(')&' = 2ü�(')ü=(') + �=üg(').
 (A.4) 

We consider the output to be the simple sum of all three states at any time point, ^* = ü�,* + ü=,* + üg,*. The output observation is further contaminated with additive 

Gaussian noise having zero mean and variance 1. We consider a small amount of the 

state noise with variance equals 1 ∙ 10�5. We generated 120 time samples using this 
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model, with initial state conditions !; = 10.9, 0.8, 302�, parameters 7 = 	 118,−4, 46.922� and an integration step ∆' = 1/32  (using local lineariazation). 

This sort of chaotic system shows sensitivity to initial conditions; which, in the case 

of unknown initial conditions, is a challenge for any inversion scheme. This is even 

more difficult if also the model parameters are unknown (or at least most of them). 

Therefore, we want to test the performance of SCKS algorithm in these difficult 

conditions. Moreover, we will go even further. Besides unknown initial conditions of 

the states and unknown parameters, we also consider the measurement noise variance to 

be unknown. It means we have to solve a triple estimation problem. 

 

Figure A.3 Results of Lorenz attractor model inversion. The plots in the first and  second 
rows display the results obtained by the forward pass and the backward pass of the SCKS 
algorithm, respectively. In the third row we can see the predicted responses compared to 
the clean and observed noisy signals. 
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 We used the initial state conditions ü; = 12, 8, 152� and the parameters �; =	12, −12, 442�, where their true values were the same as above. The error covariance 

matrices for both states and parameters were initialized as x;� = x;µ = ��w ∙ 0.01, and 

the state and parameter noise covariance matrices, l; = ��w ∙ 2 ∙ 10�g, °; = 

diag(10.1, 0.1, 1 ∙ 10�g2), respectively. We allowed the SCKS algorithm to iterate until 

the convergence (with the tolerance 1 ∙ 10��).  

 

Figure A.4 Estimated parameter of Lorenz attractor model. In the first row are the 
estimated model parameters compared to their true values (black lines). In the second row 
we show the estimate of the measurement noise standard deviation that converged very 
close to the ground truth. Finally the third row displays changes in the log-likelihood and 
the convergence rate over successive iterations. 
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The algorithm converged after 50 iterations. This is because we have considered a 

very small threshold on convergence rate, under which the algorithm should be 

automatically terminated. The results of the state estimates are depicted in Figure A.3. 

There we can see that including also backward pass provides more accurate estimates. 

Additionally, one can see that due to iterations of SCKS algorithm we get closer to the 

initial state conditions of the simulated data. 

The results of parameter estimates are depicted at the top of Figure A.4, where we 

were able to correctly estimate the true parameter values. In the same figure we also 

show the (time-varying) estimate of measurement noise variance (displayed as standard 

deviation), which also converged to the true value. In this particular model, the 

sequential estimation of the measurement noise variance is crucial for successful joint 

estimation of the states and parameter in cases where both initial parameters and initial 

state conditions are significantly different from their true values. 

A.3 Performance of measurement noise estimation 

In this section we demonstrate the performance of sequential estimation of measurement 

noise covariance by variational Bayesian approach [119] involved in cubature Kalman 

filter as it was described in Algorithm 7. We employ very similar example as was used 

in original paper that introduced this technique for general  

Range-only tracking in a non-homogeneous noise field 

In this simple example we illustrate the performance of the adaptive filter by tracking a 

moving target with sensors, which measure the distances to the target moving in 2-

dimensional (?, B) space. The measurements are corrupted with noise having time-

varying correlations between the sensors.  

The state vector contains the position and velocity of the target !* = 1?* 	B*	?C * 	BC*2�, 

where the dynamics of the target are modeled by the standard Wiener velocity model. 

The distance measurements from � sensors is given by:  

 ^*� = k(@?~ + ?')= + (@B~ + B')= + u'~ , ~ = 1,… ,�, (A.5) 
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where \@J� , @e�] is the position of i-th sensor and u*� k is the i-th component of a Gaussian 

distributed noise vector n* = �(0, �*). In this experiment we consider a time varying 

covariance matrix of measurement noise that is changed randomly every 50th time step. 

This is generated by �* = U*U*�, where the vector U* is generated from the Gaussian 

distribution having zero mean and variance equal to 1, U* = �(0, �).  The spectral 

density of the process noise was set to C = 2 and the time step to Ï = 0.01. The 

trajectory shown in Figure A.5 was discretized to 1000 time steps and then 

measurements were generated according to the procedure described above. Given the 

measurements, the target was tracked by adaptive cubature Kalman filter with 

estimation of measurement noise variance using variational Bayesian. The parameters 

of inverse-Gamma distribution were set to P = 1, U = 1, and because we expect time-

varying noise covariance the forgetting constant was set to ù = 0.9, to allow faster 

dynamics. Finally, we considered 5 iterations of VB approach at each time step. 

The obtained results for tracked target trajectory are displayed in Figure A.5 (red 

line). The results of estimated measurement noise covariance, which we in this case 

restricted to diagonal elements, are depicted in Figure A.6. We can see that the 

estimated variances (green lines) nicely tracks the true variances (black lines). 

 

 

Figure A.5 Simulation scenario of the Range-Only Tracking. Circle denotes the starting 
position of the target and triangles represent the position of sensor The true trajectory of 
the target is the black line and the estimated trajectory is the red line. 
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Figure A.6 Results of the measurement noise variance estimation. Only diagonal elements 

of measurement covariance matrix are displayed. 
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Appendix B 

B. SCKS toolkit 

B.1 SCKS estimation toolkit for Matlab® 

The SCKS algorithm introduced in this thesis is represented by a set of functions that 

were implemented under Matlab®. This toolkit allows estimation of neuronal signal 

from fMRI data and also evaluation of stochastic dynamic causal modeling. The toolkit 

also contains several examples, which demonstrate how to use this algorithm. The 

algorithm uses several functions that are part of SPM810 toolbox (with update 4290 or 

higher) and requires installation of this freeware software. Although, the SCKS toolkit 

was developed purposely for application to fMRI data, it can be easily applied to any 

problem that is formulated as a continuous-discrete system. The toolkit package was 

tested using Matlab 2009 and 2010. 

Finally, the toolkit can be download from my personal webpage: 

https://sites.google.com/site/havlicekmartin, where also the new updates will be later 

available. 

                                                 
10 http://www.fil.ion.ucl.ac.uk/spm 
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