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Abstract. In the paper, a comparison of MATLAB and CIA2 Genera”y Usable A|gorithm
procedures for computing the poles and zeros of digital

filters is performed. The accuracy of both tools is tested ) _ )
using finite impulse response filters of a higher order — th&.1 An Alternative to the Reduction Algorithm

first was designed by “remez” algorithm and the second for the Digital Filter Poles-Zeros Analysis

came from the area of psychoacoustics. } ] o
A system of linear equations of a digital filter can be

written by means of inversg-transform in the matrix form

Keywords ('"P+Q)X =Y, (1)

MATLAB, digital filter, Z-transform, finite impulse wherez denotes the’-transform operatorX is the vector

response, poles-zeros analysis, general eigenval@ 2 ' images of the digital circuit variables, and is a
problem, sparse-matrix reduction. vector of the sources that excite the circuit.

The poles of all the transfer functions and the zeros of
a transfer function are determined by the equations

1. Introduction det(z7'P + Q) =0 for poles inz~! plane(z)
At present, digital signal processing represents mostly C1p0)) G =
used way of constructing the radio communication systems. det (7" P77 + Q") = 0 for zeros inz™" plane,

One of the most important parts of the digital signal .. o ouiceg©) andQ'“’ arise from the original ones
processing is the analysis of digital filters. Many

_ ; inojith ;
sophisticated requests on the digital filters may cause anthe first by clearing™ column and the second by replac

th i i
enormous complexity of the final realization. Therefore, thén%]ythcolumn t\{wth\f{{hw?ere all its g.lemtenit; are cleared,
precision of the algorithms has to be thoroughly checked. wi € exception ot that corresponding to fisource.

In the poles-zeros analysis of a digital filter transfer, Solving the gener_al_ eigenvalue problem defined by (2)
function two major procedures are applied: is, of course, more difficult task than solving a standard

one. Therefore, a systematic reduction [1] is applied for
* In the first one the transfer function is found initially, transforming (2) to the standard form, which has been de-
and then the polggeros as roots of the transfer scribed in more detail in [2]. After the transformation, the
function denominatginumerator polynomials are determinant can be computed by the classical evolution
determined, respectively. This way can be used in

tools of the MATLAB type. det(:"'"P+Q) =
« The second procedure is based on ugingrse Z- 1)Pexch - det (PPl (2~ 1P _
. — - + = (3
transform, which is known to be more advantageous = Z.Zl;LlQm“ et(PuPii (G Pu+Qu)) = (3

than the standard one, to formulate a general eigen- m n
value problem in the! plane, to reduce the general ("] P, [ @eoy, det(z7 "1+ P Quy),
eigenvalue problem to a standard one, and, finally, to i=1 i=m—+1

solve the standard eigenvalue problem by the Q'ﬁ/heren

: . e . . exch 1S the total number of all the row and column
algorithm. This way is utilized in the CIA algorithms. h

exchanges during the reductioB,; and Q,, are the one-

In both cases, it is convenient to use longer numericaliagonal upper-left and lower-right submatrices obtained
data types together with more precise arithmetic — either adter the reduction, respectively, ahds the unity matrix —
just fully utilizing the given hardware capabilities or by see [2] where the reduction algorithm is thoroughly defined
applying a multiple-precision arithmetic library [2]. including the pivots selection.
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2.2 Solving the Standard Eigenvalue Problem ay = as;s = 000012511398639,
The final step for determining the poles and zeros ofa ~ “ = %7 = 0.00001335284427,
transfer function is the same as that in analog circuits, i.e.,, % = %6 = 0.00016015250121,
to compute the eigenvalues of the matrix az = a;; = —0.00000634686622,
, . ay =ay = 000026201837991,
Q =-P1Qu, (4) a5 = ag; = —0.00007281852105,
where Q;; is the final square matrix. x m, m < n ob- a5 = agp = 000045629795460,
tained by the reduction. The matrix has irregular structure, @ = @ = —0.00022819555936,
and therefore is handled by the full-matrix QR algorithm — as = ay = 0.00071588589103,
(double stepped with automatic shifts of the origin). ag = azg = —0.00047316021190,
ap = ags = 0.00110189764986,
ay = az; = —0.00088563032407,
3. Comparing the Accuracy of Results iy = g5 = 0001841917706,
ay3 = ags = —0.00188050116629,
ayy = as, = 0.00282392666400,
3.1 A Filter Designed by “Remez” Algorithm a5 = a3 = —0.00363976768981,
Let’s consider a 3Border symmetrical finite impulse a6 = azp = 000591155524557,
response (FIR) digital filter (see Fig. 2) designed by the @7 = a3 = —0.00644303257612,
classical “remez” algorithm [3, 4] with the coefficients- ag = azgy = 0.01406190034797,
ass (unspecified in Fig. 2) defined by the expressions ayy = ay = —0.00537162176461,
6 =ty — —000550342349260, gy = ags = 0.03594691432517,
o — or— 000624262031546, ay, = ay; = —0.06164502638211,
o — o — —0D0GS4884T60615, gy = ags = 0.08276620944465,
a; = ay = 0.00897910496988 a3 = (g5 = —0.13009560635626,
s = gy — —0.00897865368875: Aoy = 0.19452719610477. (6)
ag = ay = 001750107253210, A comparison of the zeros of the transfer function
a1y = Ay = —0.00695363594317, “50t circuit variable/ 15t input source” obtained by the
app = a9 = 0.03977449895168, MATLAB and CIA algorithms is shown in Tab. 2. (See the
a1y = a1z = —0.06465598090179, typical module characteristic for high frequencies in Fig. 3.)
my = @y = 008524095225662, The filter has 48 complex (24 pairs) zeros. Comparing
a1y = g = —0.13129215646492, again all the digits in the MATLAB and CIA outputs in
a5 = 0.19514096846301 (5)

(naturally, the relationgyy = a;, ays = ay, and ay; = ag

Tab. 2, we obtain that 6 pairs have equal 6 valid digits and
18 pairs have equal 7 or more valid digits.

are also fulfilled due to the symmetry). A comparison of the
zeros of the transfer function “B2circuit variable/ 15t
input source” obtained by MATLAB and CIA is shown in
Tab.1 (the genuine 15and 7-digit prints usedgee also the
characteristic zeros diagram of this “remez” filter in Fig. 1.

The filter has 28 complex zeros (i.e. 14 pairs) and 2
real zeros. Comparing all the digits in the MATLAB and
CIA outputs in Tab. 1, we obtain that 2 pairs have equal 5
valid digits, 3 pairs have equal 6 valid digits, and 2 real
zeros and 9 pairs have equal 7 or more valid digits.

3.2 A Filter Designed for the Psychoacoustics
— a Part of Physiological Volume Control

Let's consider a 4Border symmetrical finite impulse
response (FIR) filter of the same circuit structure as the

previous one, used as a part of a sequence for the sophisti-

cated physiological volume control [4] — the filter processes
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the higher frequency part of the acoustic range. All the Fig 1. Diagram of the zeros of the FIR “remez” digital filter
transfer function in the~! plane.

coefficients of the filter are defined by the expressions
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as = —0.00530557454473

2

-1| 3

z

Q 1

z

-1

4
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ay = 0.03402554419029
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as = 0.00612868652660

Fig. 2. Digital filter with finite impulse response (FIR) designed by “remez” algorithm.

Algorithm of

Full-pivot matrix deflation

MATLAB and QR algorithm of CTA
0.98762289580755 £+ 0.15684710923928 j 0.9876229 =+ 0.1568471 j
0.95786444294520 + 0.28722066245533 j 0.9578645 =+ 0.2872207 j
0.86485064857005 £+ 0.50202923786167 j 0.8648506 =+ 0.5020292 j
0.75053028577891 + 0.66083605389584 j 0.7505303 =+ 0.6608360 j
0.52542838736165 £+ 0.89769090601108 j 0.5254284 =+ 0.8976910 j
0.48564262387778 + 0.82971719365131 j 0.4856426 =+ 0.8297172 j

0.09771969508857 = 1.04311171951640 j

0.09771969 + 1.043112 3

0.08902780391880 + 0.95032987512232 j

0.08902780 + 0.9503298 j

—1.32239487744419 —1.322395
—0.28137226477781 £ 0.95959869144023 j —0.2813723 =+ 0.9595987 j
—0.34165819858630 £ 0.93982427896856 j —0.3416582 =+ 0.9398243 j
—1.09765883781769 + 0.49181658799519 j —1.097659 £ 0.4918166 j
—0.73860557659139 £ 0.83694986030126 j —0.7386056 =+ 0.8369499 j
—0.59277029289145 + 0.67169681566146 j —0.5927703 =+ 0.6716968 j
—0.75871268555997 £ 0.33994850806526 j —0.7587127 =+ 0.3399485 j
—0.75620377623718 —0.7562038

Tab. 1. Comparison of zeros of the FIR “remez” digital filter transfer function (the unequal digits of the CIA results are underlined).

3.3 An Example of the Irregular Infinite
Impulse Filter Designed by “Chained
Fractions”

Let's consider a S-order infinite impulse response
(IIR) filter [6] which is designed by the method of “chained
fractions”. The filter is irregular — it is shown in Fig. 4. The

z

-1

P1,2

-1

21,2

and zeros of this filter. Generally usable algorithm outlined
in Sec. 2 has no problems with the irregularity — the poles
and zeros i~ ! plane have been easily determined as

= 09588639 & 0.7240575j, 2,,} = 1511628,
= —0.9049098 £ 0.1414979j, =, = —1.192327.
Note that IIR digital filters of very high order may

tools of MATLAB type are able to analyze regular formssometimes have problems to reduce “similar” p(#esos.
(e.g. canonical) only, and thus they cannot determine polés that case, a secondary root polishing [5] can be utilized.
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Algorithm of Full-pivot matrix deflation

MATLAB and QR algorithm of CTA
—1.27851808211318 + 0.62684824819101 j —1.278518 £ 0.6268482 j
—1.36614299238589 + 0.27717114439577 j —1.366143 £+ 0.2771711 j
—1.07284006705681 + 0.91235620647926 j —1.072840 £ 0.9123562 j
—0.77267104757162 + 1.12541933041583 j —0.7726710 £ 1.125419 j
—0.44961436355736 + 1.22363585379352 j —0.4496143 =+ 1.223636 j
—0.20330452525073 + 1.29600355151311 j —0.2033045 =+ 1.296004 j
0.14750702212683 + 1.34841369533889 j 0.147507 4+ 1.348414 j
0.50634734941036 £ 1.25979827310114 j 0.5063474 =+ 1.259798 j
0.83329614995319 + 1.04982507756824 j 0.8332961 =+ 1.049825 j
1.04560310563666 £ 0.67293837999034 j 1.045603 =+ 0.6729383 j
1.20771535897979 + 0.24059979456907 j 1.207715 £+ 0.2405998 j
0.95139216401989 + 0.56315210274529 j 0.9513923 =+ 0.5631522 j
0.77837030003487 + 0.46073626392613 j 0.7783702 =+ 0.4607362 j
0.79640192035334 + 0.15865836018951 j 0.7964019 =+ 0.1586584 j
0.67627030631208 + 0.43523995090672 j 0.6762703 =+ 0.43524 5
0.46384030886663 + 0.58436750039291 j 0.4638403 =+ 0.5843675 j
0.27466939387352 + 0.68338074343342 j 0.2746694 =+ 0.6833807 j
0.08016782642482 + 0.73284236586261 j 0.08016782 £ 0.7328424 j
—0.11813451163119 £ 0.75307102211071 j —0.1181345 =+ 0.753071 j
—0.26456653442537 + 0.72002392155667 j —0.2645665 + 0.7200239 j
—0.41461446573694 + 0.60389882069075 j —0.4146145 =+ 0.6038988 j
—0.70304843505842 + 0.14263861132902 j —0.7030484 + 0.1426386 j
—0.63057376627246 + 0.30916579614562 j —0.6305737 +£ 0.3091658 j
—0.54091513103870 + 0.46000078868751 j —0.5409151 + 0.4600008 j

Tab. 2. Comparison of zeros of the FIR “psychoacoustic” digital filter transfer function (the unequal digits of the CIA resultedireednd
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Fig. 3. Frequency response of the FIR “psychoacoustic” digital Fig. 4. Irregular infinite impulse response (lIR) digital filter de-
filter. (A part of the row operating at higher frequencies.) signed by the method of “chained fractions”.
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