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Abstract. In this paper we investigate the invariance of the
null distribution of the multiple coherence (MC) to the statis-
tics of the examined signals. We show that when the MC is
computed between a group of signals xi[n], i = 1, . . . ,K and
a signal y[n], the null distribution of the MC is independent
of the distribution of xi[n] and y[n] if at a given frequency the
joint distribution of the spectra of the segments of xi[n] and
y[n] is rotationally symmetric with respect to the rotation of
the spectra of the segments of xi[n] or y[n].

The significance of this result lies in the improvement of the
multiple coherence analysis. Hitherto, the null distribution
of the MC was known only for signals with the multivariate
Gaussian distribution; therefore, an MC estimate could be
evaluated for its statistical significance only in this limited
case. With the results presented in this paper, it will be pos-
sible to evaluate the statistical significance of MC estimates
for much wider class of signals.
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1. Introduction
The multiple coherence (MC) is a measure that indi-

cates a relationship between a single signal y[n] and a group
of signals xi[n] (i = 1 . . .K). It has found numerous ap-
plications for example in signal detection (e.g. [19], [20]),
blood flow analysis (e.g. [13], [14]), brain signal processing
(e.g. [3], [8], [9], [11], [17], [18]), data acquisition (e.g. [15],
[16]), geology (e.g. [10]) and many other fields.

A crucial part of the multiple coherence analysis is the
evaluation of the MC estimate for its statistical significance.
A statistical test is employed to detect if the value of the MC
estimate is high enough to indicate that the coupling between
the examined signals is statistically significant and not just
a random occurrence.

To perform such statistical testing the null distribution
of the MC estimate needs to be known. In the past, the
null distribution was derived under the condition that the ex-

amined signals are multivariate Gaussian [2], [5], [6], [7],
[19], [20]. However, the real world signals are often non-
Gaussian; therefore, it would be desirable to know the null
distribution of the multiple coherence for a more general
class of signals.

A partial achievement was already attained in the spe-
cial case, where K = 1. In this case, the MC reflects the
connection between two signals, and becomes equivalent to
the magnitude squared coherence (MSC). The null distribu-
tion of an MSC estimate was shown to have a distribution
invariant to the distribution of the second signal if the sig-
nals are statistically independent and the first signal is sta-
tionary Gaussian [12]. Later, the assumption of Gaussianity
was relaxed, requiring only the spectra of the segments of
one of the signals to have a distribution that is spherically
symmetric at a given frequency [4].

To our knowledge it was never analytically examined,
if such generalization applies to MC estimates for K > 1.
However, such generalization would widen the applicabil-
ity of the known statistical tests, and be beneficial in cases,
where the examined signals are non-Gaussian, or their sta-
tistical distribution is unknown.

In this paper we therefore analyze the null distribution
of the MC. We show that this distribution is in fact invariant
to the distribution of the signals xi[n] and y[n] if at a given fre-
quency the joint distribution of the spectra of the segments
of xi[n] and y[n] is rotationally symmetric with respect to the
rotation of the spectra of segments of xi[n] or y[n].

2. Methods

2.1 MC Definition
If xi[n] and y[n] are zero mean, wide sense stationary,

we can define their power and cross-spectral densities as

SXX (Ω) = F{Rxx[k]}, (1)
SXY (Ω) = F{Rxy[k]}, (2)
SYY (Ω) = F{Ryy[k]} (3)

where F denotes the discrete time Fourier transform, and
Rxx[k], Rxy[k], Ryy[k] are the covariance matrices
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Rxx[k] = E[x∗[n]xT [n + k]], (4)
Rxy[k] = E[x∗[n]y[n + k]], (5)
Ryy[k] = E[y∗[n]y[n + k]] (6)

where x[n] = [x1[n], . . . ,xK [n]]T , and ∗ denotes the complex
conjugate.

The multiple coherence between xi[n] and y[n] is given
as [2]

|γxy(Ω)|2 =
SH

XY (Ω)S−1XX (Ω)SXY (Ω)

SYY (Ω)
(7)

where H denotes the conjugate transpose. In the following
text we shall assume that |γxy(Ω)|2 exists for at least some Ω.

2.2 MC Estimation
If xi[n] and y[n] are finite length records of a wide sense

stationary process, the MC estimate can be computed in the
following way [2].

First, the signals are segmented

xli[n] = xi[(l−1)M + n] , (8)
yl [n] = y[(l−1)M + n] (9)

where M denotes the segment length, and l = 1, . . . ,L, where
L is the number of segments. Next, let Xli(Ω) and Yl(Ω)
be the discrete Fourier transforms of xli[n] and yl [n], respec-
tively (each Fourier spectrum has M frequency points). Also,
let us define

X(Ω) = [Xli(Ω)] l = 1 . . .L
i = 1 . . .K

, (10)

Y(Ω) = [Y1(Ω), . . . ,YL(Ω)]T . (11)

Now, we can compute the estimates of the cross and power
spectral densities

ŜXX (Ω) =
1

L
XH(Ω)X(Ω), (12)

ŜXY (Ω) =
1

L
XH(Ω)Y(Ω) , (13)

ŜYY (Ω) =
1

L
YH(Ω)Y(Ω) , (14)

with which the MC estimate |̂γxy(Ω)|2 will be given as

|̂γxy(Ω)|2 =
ŜH

XY (Ω)Ŝ−1XX (Ω)ŜXY (Ω)

ŜYY (Ω)
(15)

=
YH(Ω)X(Ω)(X(Ω)HX(Ω))−1X(Ω)HY(Ω)

YH(Ω)Y(Ω)
. (16)

2.3 Null Distribution of MC Estimate
The null distribution of the MC estimate is defined as

G0(g) = P
[
|̂γxy(Ω)|2 < g

∣∣∣|γxy(Ω)|2 = 0
]

(17)

where G0(g) is the cumulative distribution function (CDF)
of the null distribution of the MC estimate, and P[.|.] denotes
the conditional probability operator.

In this section we will analyze the invariance of (17).
For this purpose we will assume xi[n] and y[n] to be finite
length records of a strict sense stationary random process.
Further, to simplify the derivation we will drop the argument
(Ω), and assume it implicitly.

Also, we will use the following notation. Let
fXY(X,Y) be the joint probability density function of X and
Y, let fX(X) be the probability density function of X, and let
fY(Y) be the probability density function of Y. In the fol-
lowing subsections we will analyze (17) assuming rotational
symmetry of fXY(X,Y) with respect to the rotation of X or
Y.

2.3.1 Rotational Symmetry of fXY(X,Y) with Respect
to Rotation of Y

In this section we will assume that fXY(X,Y) is invari-
ant to the rotation of the argument Y – that is we will assume
that fXY(X,Y) = fXY(X,BY) if B is a rotation matrix (i.e.
det(B) = 1 and BH = B−1). This means that fXY(X,Y) and
fY(Y) can also be expressed as fXY(X,Y) = f ′XY(X, |Y|)
and fY(Y) = f ′Y(|Y|), where f ′XY and f ′Y are new functions,
and |.| denotes the L2 norm.

With these assumptions the MC estimate CDF (17) can
be expressed as ∫

C
f ′XY(X, |Y|)dXdY (18)

where C is a set of X and Y for which the following holds

X ∈ CLK , (19)
Y ∈ CL , (20)

|̂γxy|2 =
YHX(XHX)−1XHY

YHY
< g (21)

where C denotes the set of the complex numbers. Integral
(18) can be rearranged∫

CLK

(∫
C1

f ′XY(X, |Y|)dY
)

dX (22)

where C1 denotes a set of Y for which conditions (20) and
(21) hold.

Now, let X = RXSXTTT H
X be the singular value decom-

position of X, where RX is a LxL orthonormal matrix, SX
is a LxK diagonal matrix, and TTT X is a KxK orthonormal
matrix. We can make a substitution Y = RXa (where a =
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[a1, . . . ,aL]T ). The numerator in (21) will then become

YHX(XHX)−1XHY (23)
= aHRH

XRXSXTTT H
X(TTT XSH

XRH
XRXSXTTT H

X)−1TTT XSH
XRH

XRXa
= aHSXTTT H

XTTT−H
X (SH

XSX)−1TTT−1X TTT XSH
Xa (24)

= aHSX(SH
XSX)−1SH

Xa = aHΓΓΓa =

K∑
l=1

|al |2 (25)

where the expression SX(SH
XSX)−1SH

X was denoted as ΓΓΓ, and
for X full rank it is a diagonal matrix

ΓΓΓ = diag{[1, . . . ,1︸ ︷︷ ︸
K

,0, . . . ,0]} . (26)

If X is rank deficient, ΓΓΓ is different (some of the trailing ones
get replaced by zeros), but the set of the rank deficient matri-
ces X has zero measure in CKL, does not affect the integral
(22), and so needs not be considered.

The denominator in (21) will be

YHY = aHRH
XRXa = aHa =

L∑
l=1

|al |2 . (27)

With this notation the entire condition (21) will be trans-
formed into ∑K

l=1 |al |2∑L
l=1 |al |2

< g . (28)

Consequently, (22) will become∫
CLK

(∫
D1

f ′XY(X, |a|)da
)

dX (29)

where D1 is a set of a for which (28) holds. Because D1 is
independent of X, we can now change the order of the inte-
gration, and we will get∫

D1

(∫
CLK

f ′XY(X, |a|)dX
)

da =

∫
D1

f ′Y(|a|)da . (30)

So at this point we can see that the MC estimate CDF does
not depend on the distribution of X, which means that it does
not depend on the distribution of xi[n].

Now, we will show that (30) does not depend even on
f ′Y(.). For this purpose we will denote

al = z2l−1 + jz2l , zl ∈ R , (31)
a = [z1 + jz2,z3 + jz4, . . . ,z2L−1 + jz2L]T , (32)
z = [z1, . . . ,z2L]T (33)

where R denotes the set of real numbers, and j is the imagi-
nary unit. Next, we will substitute z with the spherical coor-
dinates [1]

zl = r

(
l−1∏
k=1

sinαk

)
cosαl , l = 1, . . . ,2L−1 , (34)

z2L = r
2L−1∏
k=1

sinαk . (35)

This substitution can be expressed in a simpler form as

zl = rcl(ααα), where ααα = [α1, . . . ,α2L−1]T (36)

where cl(.) is just a shorthand notation for the products of
the trigonometric functions in (34) and (35). Also, note that
we have |a| = |z| = r. Assuming that r is greater than zero,
the inequality in (28) will become∑K

l=1 |al |2∑L
l=1 |al |2

=

∑2K
l=1 z2l
|a|2

=

∑2K
l=1 r2c2l (ααα)

r2
=

2K∑
l=1

c2l (ααα) < g ,

(37)

which does not depend on r, and therefore in our integration
r will not be bound by any condition (it will range from 0
to∞).

The Jacobian of substitution (34), (35) is [1]

J = r2L−1
2L−2∏
k=1

sin2K−1−k
αk , (38)

which we abbreviate by

J = h(ααα)r2L−1 . (39)

Integral (30) thus becomes∫
G

(∫ ∞
0

f ′Y(r)h(ααα)r2L−1dr
)

dααα (40)

where G is a properly constructed set of values of ααα, which
we do not need to express here. This expression can be rear-
ranged into ∫

G
h(ααα)dααα

∫ ∞
0

f ′Y(r)r2L−1dr . (41)

This formula expresses G0(g) in a form that allows to show
its invariance on f ′Y(.). Note that the second integral does
not depend on g, and will evaluate into a scaling constant
(which for any f ′Y(.) must be such that G0(g) = 1 for g > 1,
because MC estimate lies within interval 〈0,1〉, and G0(g) is
a CDF). The shape of G0(g) is therefore given solely by the
first integral, which does not depend on f ′Y(.). Consequently,
(41) is invariant to f ′Y(.), which means that G0(g) does not
depend on the distribution of y[n].

2.3.2 Rotational Symmetry of fXY(X,Y) with Respect
to Rotation of X

In this subsection we will assume that fXY(X,Y) =
fXY(BX,Y) if B is a rotation. This means fXY(X,Y)
and fX(X) can also be expressed as fXY(X,Y) =
f ′′XY(|X1|, . . . , |XK |,Y) and fX(X) = f ′X(|X1|, . . . , |XK |),
where f ′′XY and f ′X are new functions, and Xi denotes the i-th
column of X.

With these assumptions MC estimate CDF (17) can be
expressed as
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G0(g) =

∫
C

f ′′XY(|X1|, . . . , |XK |,Y)dXdY. (42)

This integral can be rearranged into∫
CL

(∫
C2

f ′′XY(|X1|, . . . , |XK |,Y)dX
)

dY (43)

where C2 denotes the set of X, for which conditions (19) and
(21) hold.

Now, we will use steps somewhat similar to those used
in the previous section.

Let Y = QYRY be the QR decomposition of Y, where
QY is a LxL orthonormal matrix, and RY = [σ,0, . . . ,0]T .
We will make a substitution X = QYA (where A = [ali]li is
a LxK matrix). The numerator in (21) will thus become

YHX(XHX)−1XHY (44)
= RH

YQH
YQYA(AHQH

YQYA)−1AHQH
YQYRY (45)

= RH
YA(AHA)−1AHRY (46)

= 1A(AHA)−11AH |σ|2 (47)

where 1A denotes the first row of A. The denominator in
(21) will be

YHY = RH
YQH

YQYRY = RH
YRY = |σ|2 . (48)

Thus, the entire condition (21) will transform into

1A(AHA)−11AH < g . (49)

Consequently, (43) will become∫
CL

(∫
D2

f ′′XY(|A1|, . . . , |AK |,Y)dA
)

dY (50)

where Ai denotes the i-th column of A (note that |Xi|= |Ai|
due to the orthonormality of QY), and D2 is a set of A for
which (49) holds.

Because D2 is independent of Y, we can now change
the order of the integration, and we will get∫

D2

(∫
CL

f ′′XY(|A1|, . . . , |AK |,Y)dY
)

dA

=

∫
D2

f ′X(|A1|, . . . , |AK |)dA . (51)

So at this point we can see that the MC estimate CDF does
not depend on the distribution of Y, which means it does not
depend on the distribution of y[n].

Now, we will show that (51) does not depend even on
fX(.). For this purpose we will denote

ali = z2l−1,i + jz2l,i, zli ∈ R , (52)
A = [z2l−1,i + jz2l,i] l = 1 . . .L

i = 1 . . .K
, (53)

Z = [zli] l = 1 . . .2L
i = 1 . . .K

. (54)

Next, we will substitute Z with the spherical coordinates

zli = ri

(
l−1∏
k=1

sinαki

)
cosαli,

l = 1, . . . ,2L−1
i = 1, . . . ,K , (55)

z2L,i = ri

2L−1∏
k=1

sinαki , i = 1, . . . ,K . (56)

This substitution can be expressed in a simpler form as

zli = ric′l(αααi), where αααi = [α1,i, . . . ,α2L−1,i]
T (57)

where c′l(.) is just a shorthand notation for the product of the
trigonometric functions in (55) and (56). (57) can also be
written as

Z = CR , where (58)
C = [c′l(αααi)] l = 1 . . .2L

i = 1 . . .K
, R = diag{[r1, . . . ,rK ]} . (59)

Further, note that using LxL identity matrices IL, the matrix
A can be expressed as

A = [IL, jIL]Z = [IL, jIL]CR = CcR , (60)

where we denoted Cc = [IL, jIL]C. Thus, the condition in
(49) will become

1A(AHA)−11AH = 1CcR(RHCH
c CcR)−1RH

1CH
c (61)

= 1CcRR−1(CH
c Cc)

−1R−HRH
1CH

c (62)
= 1Cc(CH

c Cc)
−1

1CH
c < g (63)

where 1Cc denotes the first row of Cc, and ri were assumed
to be greater than zero. Note that (63) is independent of ri,
and therefore in our integration ri will not be bound by any
condition (it will range from 0 to ∞). Also, note that we
have |Ai| = |Zi| = ri, for i = 1, . . . ,K (where Zi denotes the
i-th column of Z).

The Jacobian of substitution (55), (56) is [1]

J =

K∏
i=1

(
r2L−1

i

2L−2∏
k=1

sin2L−1−k
αki

)
(64)

=

(
K∏

i=1

r2L−1
i

)(
K∏

i=1

2L−2∏
k=1

sin2L−1−k
αki

)
, (65)

which we abbreviate by

J = h′(ααα)

K∏
i=1

r2L−1
i (66)

where h′(ααα) is just a shorthand notation for the expression in
the second bracket in (65). Integral (51) thus becomes
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∫
E

(∫ ∞
0

. . .

∫ ∞
0

f ′X(r1, . . . ,rK)h′(ααα)

K∏
i=1

r2L−1
i dr1 . . .drK

)
dααα

(67)

where E is a properly constructed set of values of ααα, which
we do not need to express here. This integral can be rear-
ranged into∫
E

h′(ααα)dααα

∫ ∞
0

. . .

∫ ∞
0

f ′X(r1, . . . ,rK)

K∏
i=1

r2L−1
i dr1 . . .drK .

(68)

This formula expresses G0(g) in a form that allows to show
its invariance on f ′X(.). Note that all the integrals except the
first one do not depend on g, and will evaluate into a scaling
constant, which for any f ′X(.) must be such that G0(g) = 1
for g > 1 (because G0(g) is a CDF). The shape of G0(g) is
therefore given solely by the first integral in (68), which does
not depend on f ′X(.). Consequently, (68) is invariant to f ′X(.),
which means that G0(g) does not depend on the distribution
of xi[n].

2.3.3 Alternative Rotational Symmetry in Real and
Imaginary Parts of X or Y

If we denote

Xl,i = U2l−1,i + jU2l,i, Yl = V2l−1 + jV2l (69)

U = [Uli] l = 1 . . .2L
i = 1 . . .K

, V = [V1, . . . ,V2L]T (70)

we have
fXY(X,Y) = fUV(U,V) (71)

where fUV(U,V) is the joint PDF of U and V. We also have
|Y|= |V| and |Xl |= |Ul | (where Ul denotes the l-th column
of U).

Now, if fUV(U,V) = fUV(U,BrV), where Br is a real
rotation matrix, we can write

fXY(X,Y) = fUV(U,V) = f ′UV(U, |V|) = f ′UV(U, |Y|) .
(72)

Consequently, (keeping in mind that the L2 norm is invari-
ant to a rotation) if fUV(U,V) is rotationally symmetric with
respect to the rotation of V, then fXY(X,Y) is rotationally
symmetric with respect to the rotation of Y.

A similar argument applies to the rotational symmetry
in U. If fUV(U,V) = fUV(BrU,V), we can write

fXY(X,Y) = fUV(U,V) = f ′UV(|U1|, . . . , |UK |,V)

= f ′UV(|X1|, . . . , |XK |,Y) , (73)

which shows that fXY(X,Y) is rotationally symmetric with
respect to the rotation of X.

Consequently, instead of the rotational symmetry of
fXY(X,Y) with respect to the rotation of X or Y, we could
require the rotational symmetry of fUV(U,V) with respect to
the rotation of U or V.

2.3.4 Explicit Expression for the Null Distribution

The abovementioned rotational symmetries will be
achieved at a given Ω if the real and imaginary parts of X(Ω)
and Y(Ω) are zero mean independent Gaussian with equal
variance.

Consequently, the explicit expression for the null dis-
tribution is equal to the one derived for this kind of Gaussian
random variables (e.g. in [7])

G0(g) = Beta(g,K,L) (74)

where Beta(.,K,L) denotes the CDF of the Beta distribution
with parameters K and L.

2.3.5 Necessity of Null Assumption

The assumption that |γ(Ω)|2 = 0 did not actually en-
ter the derivation in Sec. 2.3.2 and Sec. 2.3.1. However, our
results are still limited to the null distribution of the MC es-
timate.

Note that if xi[n] and y[n] are M ·L samples long records
of wide sense stationary signals, the number of signals K is
fixed and the number of segments L tends to infinity, then
CDF (74) limits to the Heaviside step function. This means
that the MC estimate limits to zero. This can happen only
if the cross spectral density estimates in (13) limits to zero.
Because (13) is an unbiased estimator of the cross spectral
density, this can happen only if the true cross spectral den-
sities of xi[n] and y[n] are zero, in which case the true MC
is also zero. Therefore, the MC estimate can have distribu-
tion (74) only if the true MC of xi[n] and y[n] is zero. Since
we have showed that our assumption of the rotational sym-
metries provides the MC estimate with distribution (74), our
assumption also implies that the true MC is zero. Therefore,
our results are applicable only for the null distribution of the
MC estimate.

3. Conclusions

3.1 Results and Corollaries
When the multiple coherence estimate is computed be-

tween a group of signals xi[n], i = 1, . . . ,K and a signal y[n],
these signals are segmented into L segments xli[n] and yl [n],
and Xli(Ω), Yl(Ω) are the discrete Fourier transforms of the
individual segments, then the null distribution of the multi-
ple coherence estimate at a given frequency Ω is invariant
to the distribution of xi[n] and y[n] if the joint distribution
the spectra of the segments has either one of the following
rotational symmetries:

i) fXY(X,Y) = fXY(BX,Y)

ii) fXY(X,Y) = fXY(X,BY)

where B is a rotation matrix (det(B) = 1 and BH =
B−1), X = [Xli(Ω)] l = 1 . . .L

i = 1 . . .K
, Y = [Y1(Ω), . . . ,YL(Ω)]T , and
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fXY(X,Y) is the joint PDF of X and Y.

A less general corollary of this finding is that the null
distribution of the multiple coherence estimate will be inde-
pendent of the distribution of xi[n] and y[n] if xi[n] and y[n]
are independent for each i = 1, . . . ,K,1 and if at least one of
the following conditions hold

i) the distribution of [X1i(Ω), . . . ,XLi(Ω)]T is rotationally
symmetric for each i and a given Ω,

ii) the distribution of [Y1(Ω), . . . ,YL(Ω)]T is rotationally
symmetric for a given Ω.

A simpler (but even less general) corollary is that the
null distribution of the multiple coherence estimate will be
independent of the distribution of xi[n] if y[n] is Gaussian
and independent of xi[n], or the null distribution of MC will
be independent of the distribution of y[n] if xi[n] are multi-
variate Gaussian and independent of y[n].

3.2 Hypothesis Testing
Note that even though we have provided our derivation

for a fairly general assumption of the rotational symmetries
of fXY(X,Y), we do not imply that these rotational sym-
metries should be used directly as a null hypothesis in the
hypothesis testing. Assuming these rotational symmetries
automatically implies the fact that the true MC is equal to
zero (Sec. 2.3.5). For the hypothesis testing, we recommend
to use one of the corollaries stated above. For example, the
hypothesis testing can be performed in the following man-
ner:

Prior knowledge: the distribution of [X1i(Ω), . . . ,XLi(Ω)]T

is rotationally symmetric for each i, or the distribution of
[Y1(Ω), . . . ,YL(Ω)]T is rotationally symmetric.

Null hypothesis: xi[n] and y[n] are independent for each
i = 1, . . . ,K,

If the null hypothesis holds, than the MC estimate
should have distribution (74). Now, if the MC estimated
from the data exceeds a chosen quantile of this distribution
the null hypothesis appears unlikely, and we can choose to
reject it, and conclude that the signals are most likely depen-
dent.

3.3 Final Remarks
The significance of this result lies in the improvement

of the multiple coherence analysis. Hitherto, the appli-
cability of the formula for the null distribution (74) was
guaranteed only if all the examined signals were multivari-
ate Gaussian. With the findings presented in this paper, it
will be possible to apply these formulas to a much wider
class of signals. This, we believe, will be fairly beneficial
in numerous fields that use the multiple coherence for sig-
nal detection or examination of relationship between signals.
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