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Abstract
In today’s world, there is an increasing need for automatic reliable mechanisms for detect-
ing and localizing people – from performing people flow analysis in museums, controlling
smart homes to guarding hazardous areas like railway platforms. We propose a method
for detecting and locating people using low-cost FLIR Lepton 3.5 thermal cameras and
a Raspberry Pi 3B+ computers. This thesis describes the continuation of the “Detection of
People in Room Using Low-Cost Thermal Imaging Camera” project, which now supports
modelling of complex scenes with polygonal boundaries and multiple thermal cameras ob-
serving them. In this paper, we introduce an improved control and capture library for the
Lepton 3.5, a new person detection technique that uses the state-of-the-art YOLO (You
Only Look Once) real-time object detector based on deep neural networks, furthermore,
a new thermal unit with automated configuration using Ansible encapsulated in a custom
3D printed enclosure for safe manipulation, and last but not least, a step by step instruc-
tion manual on how to deploy the detection system in a new environment including other
supporting tools and improvements. The results of the new system are demonstrated on
a simple people flow analysis performed in the Czech National Museum in Prague.

Abstrakt
V dnešním světě je neustále se zvyšující poptávka po spolehlivých automatizovaných mech-
anismech pro detekci a lokalizaci osob pro různé účely – od analýzy pohybu návštěvníků
v muzeích přes ovládání chytrých domovů až po hlídání nebezpečných oblastí, jimiž jsou
například nástupiště vlakových stanic. Představujeme metodu detekce a lokalizace osob s
pomocí nízkonákladových termálních kamer FLIR Lepton 3.5 a malých počítačů Raspberry
Pi 3B+. Tento projekt, navazující na předchozí bakalářský projekt “Detekce lidí v místnosti
za použití nízkonákladové termální kamery”, nově podporuje modelování komplexních scén
s polygonálními okraji a více termálními kamerami. V této práci představujeme vylepšenou
knihovnu řízení a snímání pro kameru Lepton 3.5, novou techniku detekce lidí používající
nejmodernější YOLO (You Only Look Once) detektor objektů v reálném čase, založený
na hlubokých neuronových sítích, dále novou automaticky konfigurovatelnou termální jed-
notku, chráněnou schránkou z 3D tiskárny pro bezpečnou manipulaci, a v neposlední řadě
také podrobný návod instalace detekčního systému do nového prostředí a další podpůrné
nástroje a vylepšení. Výsledky nového systému demonstrujeme příkladem analýzy pohybu
osob v Národním muzeu v Praze.
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Rozšířený abstrakt
V dnešním světě je neustále se zvyšující poptávka po spolehlivých automatizovaných mecha-
nismech pro detekci a lokalizaci osob. Tyto mechanismy mohou například pomáhat starším
či zdravotně postiženým osobám s každodenním životem ovládáním chytrých domovů nebo
zvyšovat úroveň bezpečnosti na pracovištích tím, že budou hlídat rizikové zóny. Takové
zóny mohou představovat např. kolejiště na vlakových nástupištích nebo oblasti v blízkosti
nebezpečných strojů ve výrobních halách. Mimo jiné se metody detekce a počítání lidí
používají také k analýze toku lidí v hromadné dopravě, v obchodech či v muzeích, kde se
zjišťuje, které části expozice jsou pro návštěvníky nejzajímavější.

Tento projekt navazuje na předchozí bakalářský projekt “Detekce lidí v místnosti za
použití nízkonákladové termální kamery” a klade si za cíl odstanit některé jeho nedokon-
alosti a implementovat navrhovaná vylepšení. Představujeme vylepšenou metodu detekce
a lokalizace osob s pomocí nízkonákladových termálních kamer FLIR Lepton 3.5 a malých
počítačů Raspberry Pi 3B+.

Tento text v úvodu připomíná motivaci projektu, obecné možnosti použití mechanismů
pro detekci a lokalizaci osob a aktuálně používané technologie, které navzájem srovnává,
a popisuje i jejich konkrétní použití. Tyto mechanismy můžeme obrazně rozdělit do dvou
kategorií: jedna, sloužící primárně k jednoduššímu počítání průchodů osob, a druhá, která
do jisté míry zahrnuje zpracování obrazu a detekci objektů, popřípadě lokalizaci objektů
ve známé scéně. Druhá kategorie představuje dražší pokročilejší technologie jako například
stereovize nebo pokročilé zpracování videa z kamery. Do této kategorie patří i tento systém
pro detekci a lokalizaci osob termokamerou. Oproti ostatním řešením má však výraznou
výhodu, a to, že s termálním kamerovým modulem o malém rozlišení přirozeně nelze provést
rozpoznávání obličeje, tudíž může být vhodným řešením na místa, kde soukromí hraje
důležitou roli, jako domovy nebo pracoviště.

Další část práce popisuje novou termální jednotku systému, složenou z termální kamery
Lepton 3.5, malého počítače Raspberry Pi 3B+ a vlastního obvodu pro řízení napájení
kamery.

Použitý řídicí počítač Orange Pi PC2 byl v novém projektu nahrazen tradičním jedno-
deskovým počítačem Raspberry Pi 3B+, který je na rozdíl od Orange Pi aktivně vyví-
jen velkou komunitou, je kompletní a snadno konfigurovatelný, co se týká hardwarových
rozhraní a linuxových kernelů.

V novém projektu byla použita novější kamera Lepton 3.5 (namísto 3.0), která pod-
poruje tzv. pravou radiometrii. To znamená, že má kamera v sobě zabudovanou a zkali-
brovanou funkci pro převod dopadajícího světelného toku infračerveného záření na teplotu
v Kelvinech. Starší verze kamery vyžadovala dodání takové funkce od uživatele a byla
častým zdrojem nepřesností. Lepton 3 má pouze funkci nepravé radiometrie, což znamená,
že firmware kamery zaručuje při různých teplotách kamery a okolí stále stejnou výstupní
hodnotu pixelu pro stejnou teplotu pozorovaného objektu.

Lepton 3, a bohužel, i 3.5 se potýkají s nepříjemným problémem. Čas od času se stane,
že kamera přestane posílat termální snímky a přijímat řídicí příkazy, tím pádem nemůže být
ani restartována pomocí příkazu ovládacího rozhraní OEM_REBOOT. V takových případech
pomůže pouze kameru odpojit a připojit zpět, což je v naší situaci nepřijatelné, neboť
termální jednotka systému musí být kompletně spravována vzdáleně přes síť; fyzický přístup
k jednotkám není možný. Z tohoto důvodu byla termální jednotka nově vybavena vlastním
obvodem pro řízení napájení kamery pomocí GPIO výstupu počítače Raspberry Pi. Tento
obvod je umístěn na desce plošných spojů a pomocí NPN a P-MOSFET tranzistorů přivádí
napájecí napětí 5 V do kamery. Tento obvod umožňuje kameru úplně odpojit, když není



zrovna potřeba, a také ji restartovat, pokud přestane odpovídat. Občas se stane, že ani
odpojení hlavního napájení nevynutí restart kamery, neboť je spínaný zdroj uvnitř kamery
stále nápájen z datových sběrnic I2C nebo SPI. Při odpojení sběrnic i napájení je však
kamera vždy spolehlivě restartována. Jelikož je tento řídicí obvod ovládán z 3,3V výstupu
počítače Raspberry Pi, je možné kameru zapínat a vypínat vzdáleně.

V předchozím projektu byla kamera a řídicí počítač umístěny na nepájivém poli a spo-
jeny pouze vodiči. To neumožňovalo jakékoliv přenášení nebo demonstraci, protože bylo
toto snímací zařízení velmi křehké. V novém projektu figuruje pojem termální jednotka jako
označení pro Lepton 3.5 kameru, Raspberry Pi 3B+ řídicí počítač a řídicí obvod napájení
umístěné ve speciální schránce vytisknuté na 3D tiskárně. Tento ochranný box byl navržen
a vyroben v rámci tohoto projektu a zajišťuje ochranu pro jeho tři vnitřní komponenty,
dostatečné chlazení pro řídicí počítač a příhodné uchycení termální kamery tak, aby bylo
možné měnit pozorovací úhel scény pomocí ladicího šroubu.

V práci jsou popsány kroky instalace všech potřebných softwarových komponent na
Raspberry Pi k správné funkčnosti termální jednotky. Konfigurační proces byl autom-
atizován pomocí agilního konfiguračního nástroje Ansible. Pro každou novou termální
jednotku je tento nástroj spuštěn a ten podle předem definovaného předpisu zajistí, že
na cílovém zařízení jsou nainstalovány všechny nezbytné součásti, nástroje a knihovny.

Termální kamery Lepton používají SPI rozhraní pro odesílání video snímků a I2C sběr-
nici pro řízení kamery. Pro komunikaci s kamerou pomocí těchto nízkoúrovňových rozhraní
slouží právě malý řídicí počítač, jehož procesor obsahuje hardwarové moduly pro jejich
řízení. Protokoly pro přenos videa a vydávání příkazů pro kameru se ve své podstatě mezi
verzemi 3 a 3.5 nezměnily. Nová verze kamery obsahuje více příkazů, které jsou spojeny
s již zmíněnou pravou radiometrií, a ukázalo se, že v kombinaci s počítačem Raspberry Pi
3B+ vyžaduje urychlení vyčítání snímků až 8 ×, aby nedocházelo k desynchronizaci.

Knihovna pro řízení a snímání v4l2lepton3, která se vyskytovala již v předchozím pro-
jektu, byla zcela přeprogramována a rozdělena na C++ aplikaci a Python3 knihovní balíček.
Software pro ovládání kamery byl přesunut do Python3 balíku a byl výrazně zgeneralizován.
Nově obsahuje definice metodyod a nastavitelných hodnot všech podporovaných příkazů,
výrazně větší množství příkazů a automaticky generované metody pro všechny příkazy, což
výrazně redukuje redundanci předchozího řešení.

Knihovna v4l2lepton3 byla v předchozím projektu navržena pro lokální komunikaci.
Jelikož požadavky nového systému pro detekci a lokalizaci osob zahrnují podporu více
kamer a agregaci detekce na jednom místě, je nutné, aby knihovna zvládala přenášet ter-
mální snímky v surové podobě přes síť, což doposud nebylo možné. Nová C++ aplikace pro
snímání následuje klient-server model a je tedy rozdělena na dvě části. Centrální vyhod-
nocující počítač se chová jako klient a připojuje se na všechny ostatní termální jednotky,
které se chovají jako servery. Serverová část aplikace byla výrazně urychlena redukcí volání
OS a double bufferingem snímků i segmentů. Server umožnuje zapnout ZLIB kompresi,
zotaví se z jakékoliv chyby a neztrácí synchronizaci s kamerou.

Klientská strana je implementována v C++ i v Pythonu jako součást v4l2lepton3
Python3 knihovního balíčku. C++ klient následuje myšlenku využití virtuálního video
zařízení v4l2loopback a zpřístupňuje vzdálený termální stream v lokálním video zařízení.
Python implementace klienta je součástí knihovny, jde ji snadno zahrnout ve vlastních
projektech a je využívána ve zbytku detekčního systému. Součástí repozitáře s knihovnou
v4l2lepton3 jsou také spustitelné Python3 skripty lepton3client.py,
lepton3capture.py a lepton3control.py, které zpřístupňují implementaci snímání videa,
jednotlivých snímku a ovládání z knihovny.



Následující část práce popisuje nedokonalosti v detekčním algoritmu, který byl testován
ve větších prostorách s více lidmi, kde se ukázalo, že v takto náročných prostředích původní
jednoduchý detekční algoritmus selhává. Bylo tedy nutné provést průzkum a srovnání dos-
tupných alternativních detekčních algoritmů, ze kterého byl vybrán nejmodernější YOLO
detektor objektů v reálném čase založený na hlubokých neuronových sítích. V rámci nového
projektu bylo natrénováno a porovnáno několik verzí a velikostí YOLO detektoru, z nichž
nejlépe vyšel nejnovější YOLOv4 o velikosti 320 × 320. Výsledný detektor je výrazně
lepší než původní jednoduchý detektor a bez problému si poradí i s těmi nejnáročnějšími
velkými scénami s velkým množstvím lidí a spoustou překrytí, a tedy představuje významné
vylepšení celého detekčního systému.

K trénování detektoru byla použita speciální databáze termálních snímků, která vznikla
spojením oficiálního datasetu od firmy FLIR a vlastní databáze nasnímané pomocí Lepton
3.5 kamer v Národním muzeu v Praze v průbehu několika měsíců. Celkem k trénování
modelu, založeném na hluboké neuronové síti, bylo využito 13416 termálních snímků s 53628
oanotovanými osobami.

Po aplikaci detektoru na termální snímek získáme obdélníky ohraničující detekované
osoby. Tyto obdélníky se využijí v dalším kroku – lokalizaci objektů ve známé scéně.
Metoda lokalizace je založena na rekonstrukci scény zpětnou projekcí obrazových souřadnic
do 3D modelu scény. Nezbytnou podmínkou pro tuto zpětnou projekci je znalost pozice
kamery ve scéně. Pozicí kamery rozumíme její natočení (rotaci) a posunutí (translaci)
v dané scéně. Určení této pozice popisuje perspektivní problém 𝑛 bodů. Ten řeší perspek-
tivní projekci bodů ze souřadnicového systému scény do systému obrazového (souřadnice
obrazových pixelů) pomocí soustavy lineárních rovnic. Pokud dosadíme do rovnice alespoň
4 body představující projekci z bodů scény do bodů obrazových, jsme schopni vypočítat
translaci a rotaci kamery v dané scéně, a tím i popsat transformaci všech bodů ze scény
do obrazového souřadnicového systému. Způsob projekce obrazových bodů do modelu scény
je matematicky přesný a nemění se od původního bakalářského projektu.

Naproti tomu softwarová implementace abstrakce modelované scény byla přeprogramo-
vána a výrazně vylepšena. Původní model podporoval pouze jednu obdélníkovou scénu s jed-
nou kamerou, kde korespondujicí body mezi termálním obrazem a scénou musely být zadány
manuálně. Novou implementaci lze nalézt v druhém Python3 balíčku ThermoDetection
v druhém repozitáři projektu thermo-person-detection. Scéna je uložena v JSON kon-
figuračním souboru, ve kterém lze vyjádřit libovolný počet polygonálních hranic scény se
jménem a barvou pro účely zobrazování. V souboru jsou taktéž uloženy všechny kamery
se jmény, barvami, IP adresami a polohami v 3D prostoru scény. Druhý repozitář dále
obsahuje vizuální kalibrátor scény, který zobrazí buď živý nebo statický pohled z kamery
a nabídne uživateli vybrat významné body přímo v termálním obrazu a zadat jejich 3D
souřadnice. Tento nástroj poté všechny takto vytvořené mapující body uloží do konfigu-
račního souboru scény a při každém načtení scény jsou tyto body použity pro vypočítání
pozice kamer ve scéně a vytvoření projekčních matic pro zpětnou projekci obrazových bodů
do scény.

Použitá metoda lokalizace objektů ve známé scéně je přirozeně matematicky velmi
přesná, záleží jen na přesnosti dodaných mapujících bodů při kalibraci kamer a přesnosti
detekce.

Závěrečná část práce popisuje typické kroky při instalaci nových termálních jednotek
v novém prostředí sloužící taktéž jako návod a reálné testování výsledného detekčního a
lokalizačního systému v Národním muzeu v Praze, kde byla v rámci vzájemné spolupráce
v průběhu několika měsíců vytvořena rozsáhlá databáze termálních snímků z probíhající



expozice. Tato databáze byla použita jak k trénování nového detektoru, tak následně
k analýze pohybu návštěvníků prostory expozice za pomoci nového detekčního a lokaliza-
čního systému. Cílem analýzy bylo vytvořit mapy nejčastějšího výskytu návštěvníků, které
by pomohly odhalit ty části expozice, které návštěvníci považují za nejzajímavější.

Nejkritičtější částí celého procesu detekce a lokalizace je detekce lidí z termálních snímků
a nově použitá metoda výrazně zvyšuje přesnost systému i ve velmi komplexních situacích.
Další kritickou částí systému ovlivňující přesnost je lokalizace lidí z detekovaného obdélníku.
Zde se nabízí celá řada možných vylepšení. Samotná matematická lokalizace s pomocí
projekční matice je velmi přesná, ale významnou roli zde hrají zastíněné osoby, deformace
obrazu čočkou, malé rozlišení kamery způsobující až metrovou odchylku na jeden pixel při
vzdálenosti 16 metrů od kamery a další. Lze s jistotou říci, že systém pro menší místnosti
(do 8 metrů) s nevelkým počtem osob a kamerou umístěnou v horním části místnosti systém
pro drtivou většinou případů funguje velmi dobře. Pro komplexní scény se spoustou osob
(příkladem může být velká místnost muzea se 17 metry na délku a 50 osobami) dává smysl
uvažovat další rozšíření systému pro zvýšení přesnosti. Například použití stereovize, u níž
by se kamery shodly na detekovaných osobách, by vedlo k významnému zpřesnění nalezené
lokace osob. Jiným zajímavým rozšířením by mohlo být sledování objektů například pomocí
nového algoritmu DeepSORT.
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Chapter 1

Introduction

This thesis deals with the follow-up project to the bachelor’s project [18] with the topic of
Detection of People in Room Using Low-Cost Thermal Imaging Camera, which dealt with
utilizing a single low-cost thermal camera module, a small single-board computer and image
processing to solve the problem of how to detect and locate people in a known environment.

The problem of people detection and localization has found its usage in many areas
of everyday life. It is often used for queue management in shops, people flow analysis in
museums, or in marketing for determining the best product placement. We also encounter
people-detecting mechanisms in smart homes, where they aid to control the environment,
and most importantly, they can help to ensure safety in heavy machinery workplaces,
industry halls or often at railway stations by guarding hazard zones.

Using a small thermal camera module eliminates the possibility of person and/or face
recognition while preserving the functionality of detecting and even locating people. The
solution to the problem of people detection based on thermal imaging is therefore a viable
option for places where privacy plays an important role.

The bachelor’s project finished with:

• a working capture system composed of a Lepton 3 camera and an Orange Pi PC2
single-board computer,

• a C++ capture library allowing to read thermal images from the camera in both raw
format and false color over SPI interface,

• a Python control script allowing to issue commands to the camera over I2C in order
to change a color palette, format, control automatic gain (AGC), perform flat-field-
correction (FFC) and other,

• Python scripts for person detection and single-camera rectangular scene abstraction
allowing for reverse-projecting image points (of detected people) into a 3D scene
model.

Several imperfections and improvement proposals had to be addressed in order to create
a rigid marketable product with clear deployment instructions and a friendly interface.

The capture system was extremely fragile since the camera and the Orange Pi PC2
computer were held together only with wires on a breadboard making it impossible to
carry around, bring to presentations or offer it as a product. The Lepton 3 thermal camera
had a bad habit of seizing indefinitely and did not support true radiometry, meaning, that
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the user had to supply a conversion function in order to obtain pixel temperatures. The
conversion function, unfortunately, allowed for a large temperature error.

The capture library had been designed to work on the small host computer, which would
pull thermal frames from the camera and push them into a local virtual video device. Then,
the idea was to use a tool like ffmpeg to stream the thermal video into a single station
with more computational power for processing. This turned out to be impossible to achieve
for the raw Y14 thermal video, as no lossless codec and format combination would allow
transmitting such stream. Furthermore, the scene abstraction software supported modeling
of only simple rectangular areas with a single camera, and most importantly, the thermal
detector based on simple image processing has been tested in a large complex environment
with a generous number of people, which created all sorts of partial occlusions and overlaps.
In this environment the detector did not perform well at all. Deploying it anywhere beyond
simple small rooms with up to two persons would probably lead to a critical failure of the
detection system.

The objective of this project was to continue the research trying to eliminate flaws
listed above and implement all suggested improvements in order to build a robust, salable
and easy-to-install detection system, that allows for modeling complex scenes with multi-
ple thermal cameras, minimal possibility of false detection and accurate placement of the
detected objects into the scene.

This thesis describes in detail all improvements done to this project, which can be
summarized into:

• upgrading the thermal camera to Lepton 3.5, which supports true radiometry,

• changing the processing computer to the standard Raspberry Pi 3B+ with the Rasp-
bian operating system to avoid many hidden pitfalls of the Armbian developed by
a small community,

• configuring an automated deployment tool allowing for an easy installation of all
required dependencies and configuration of the new Raspberry Pi 3B+ computer to
be used inside the thermal unit,

• designing and 3D-printing an enclosure box for the thermal unit consisting of the
Raspberry Pi 3B+ computer and the Lepton 3.5 thermal camera,

• designing and constructing an additional camera-control printed circuit board allow-
ing for cutting off the power to the camera remotely in case the camera freezes,

• redesigning and reimplementing the v4l2lepton3 capture and control library so that
it supports the new Lepton 3.5 thermal camera, allows for streaming of the raw
thermal video over the network and is significantly faster in order to avoid desynchro-
nization issues, which are even harder to avoid with the Lepton 3.5,

• improving the scene abstraction so that it can model complex boundaries with mul-
tiple cameras in a single scene,

• adding a tool for an easy visual calibration of every camera in a new scene,

• and most importantly, capturing an extensive database of thermal images and creating
a new rigid person detector with the use of the state-of-the-art YOLO real-time object
detector based on deep neural networks trained on the thermal dataset.
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The thesis devotes the first chapter to explain once again possible use cases of person
detection and localization systems, how the thermal solution differs from other solutions and
what are its benefits. The next chapter describes in detail the newly constructed thermal
unit which consists of the upgraded Lepton 3.5, Raspberry Pi 3B+ and a custom control
circuit board, all encapsulated in a 3D-printed enclosure box. Then, the thesis goes through
the new design and implementation of the control and capture library v4l2lepton3 based
on a server-client model, following with the new person detector principle, the process of its
training, and finally, comparison with the old simple thermal detector. The next chapter
reminds the mathematics behind reverse-projecting image points into a 3D scene model and
describes the new extended implementation of the scene abstraction, that allows modeling
of complex scenes with multiple cameras. The last chapter finishes with explaining the
typical steps for deployment of the detection and localization system in a new environment
and summarizes results obtained during a real-world deployment in the Czech National
Museum for the purpose of building heatmaps of people movement throughout exhibition
premises.

The end result of the project should be an easily deployable person detection and local-
ization system based on thermal imaging that supports multiple cameras and can serve as
an input for other systems that take actions by knowing positions of people in the monitored
environment. For example alerting security staff, analyzing flow of people for marketing
purposes or controlling the environment in smart homes.
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Chapter 2

Utilization of people detection and
current technology comparison

This chapter is split into two sections. The first section deals with the usage of people
detection in general and the second one compares currently used technologies in people
counting/detecting/locating disciplines with respect to their use case. The theory in this
chapter is common for both bachelor’s and this project and has been mostly taken over
from the bachelor’s thesis [18].

2.1 Utilization of people detection
As stated in the introduction, counting/detecting/locating people has found its usage in
many areas and is an essential part of many complex systems. The following listing describes
some of the most important areas where these techniques are used.

Mercantile interests

In marketing, it is possible to determine the best placement of a product based on a model
constructed with the data of customer movement. From people detection systems, it is
possible to extract interesting information, such as in which areas customers spend the
majority of time or what path they tend to take in a particular environment (shop, super-
market). The detection and localization system provides us, in this case, with data we can
analyze, and based on that for example, optimize the spot for our advertisement.

Queue management

In shops and at public service places in general, counting and detecting techniques are used
to measure number of customers in premises, estimate queue lengths in real time, measure
an average wait time to be served or staff idle time. The data from the system might serve
to improve customer experience and manage resources of the facility more efficiently. For
supermarkets, number of open desks can vary over time based on actual queue lengths, and
store personnel can be distributed more efficiently or reallocated on the fly.
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Public transport

Similarly to the previous paragraph, detection and counting techniques are vastly used
at airports, in subways, and sometimes at train or bus stations. These automatic people
counting solutions are mostly used for people flow analysis. Analyzing people flow statistics
is the key to maintaining user friendly environment and can start an initiative for improve-
ment. We count the number of passengers being transported, how full a train or bus gets
during which hour of the day, and as with the queue management, we measure time delays
of for example passengers getting in and out of a vehicle.

Guarding dangerous zones

One of the most important areas, where detection of living beings is vital, is undoubtedly
ensuring workplace safety or securing dangerous zones. This might include hazardous areas
at train or subway stations near railway tracks, in heavy machinery, industry halls near
dangerous machines, where no living being should be present at normal circumstances. In
these cases, the people detection mechanism may alert responsible personnel and prevent
severe accidents from happening.

Smart homes

Another usage of systems for detection and localization of people can be in smart homes.
Nowadays, everything from light bulbs, microwave ovens to washing machines can connect
to the network and interact with other devices and humans as well. By getting information
about the presence, location and/or pose of people, the detection system is capable of
commanding these smart devices, i.e., controlling the environment around the people. This
can help elderly or disabled people with everyday life by turning machines on or disabling
them if there is a high chance of them forgetting to do so. In smart-home environments,
there is a possibility to utilize counting, detecting and also locating people techniques. [11]
[31]

2.2 Currently available technologies allowing for people de-
tection

Some of the current technologies being used for purposes of counting, detecting or locating
people might include the following:

• IR/Laser beam interruption

• Laser light burst travel time (LIDAR1)

• GPS/Wi-Fi/Bluetooth tracking

• Projecting structured light

• 3D stereo video analysis

• Monocular video analysis
1LIDAR (Light Detection And Ranging) – method for measuring distances (ranging) by illuminating the

target with laser light and measuring the reflection with a sensor. https://en.wikipedia.org/wiki/Lidar
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The following paragraphs describe these technologies, point out their weaknesses and
determine their most suitable use case.

IR/Laser beam interruption

Infrared/laser beam interruption technique can be used only for counting people passing
through a narrow passage, for example a doorway. A transmitter device is installed on one
side of the narrow passage and a receiver on the other as illustrated in figure 2.1. The two
devices are connected together and form an invisible barrier of light. When an object breaks
the connection between transmitter and receiver, the system registers plus one count. This
general solution yields inaccurate results in case more people are allowed to pass through
the sensor close to each other or when they decide to turn around. This problem is usually
solved by installing more advanced sensors. The accuracy of the system can be increased by
using multiple barriers and analyzing measured intensities of each sensor to detect special
cases, as when people turn around right between the sensors. [53] In order to achieve even
higher success rate, we might consider using for example a LIDAR based solution.

Figure 2.1: Infrared/laser barrier sensor for counting people passing through. (Source:
[42].)

LIDAR

Figure 2.2 demonstrates the usage of a LIDAR device. A LIDAR-based detection device
consists of only a single sensor usually placed above a passage. The sensor acts a transmitter
and a receiver at the same time. The device casts laser beams into several directions and
measures precisely the time required for each reflected beam to get back into the sensor.
This way it is possible to calculate the distance each laser beam has traveled, and therefore
create a depth map revealing objects in its field of view.

The LIDAR approach makes counting people in a doorway way more accurate than using
the beam interruption method. This type of detection system can deduct the direction of
the passing object, and since the sensor is usually installed above the passage, it has no
problem with detecting multiple people passing next to each other, which was a major
problem with the infrared/laser barrier. This solution is widely used at airports or in
sliding doors opening mechanisms and has a guaranteed accuracy over 95 %. [9] [13]
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Figure 2.2: LIDAR-based device for counting people entering and leaving through a door-
way. (Source: [9].)

GPS/Wi-Fi/Bluetooth smart device tracking

With the growth of smart devices supporting wireless technologies such as Wi-Fi or Blue-
tooth, a new method of tracking people has been adopted. Devices with these technologies
make it easy to triangulate their position. Obviously not every living being needs to carry
a smart device at all times, however if they do, their smart device offers valuable infor-
mation about their owner’s whereabouts. Although it can not be reliably used to detect
people, as we would get plenty of false negatives, the tracked paths of detected devices can
be used to create a map of customer movements, which can help to promote products or
optimize advertisement in general. An illustration of a heatmap2, representing the duration
of people’s presence throughout a shop, is depicted in figure 2.4.

Figure 2.3: Intensity map representing duration of people’s presence at a certain location.
(Source: [58].)

2A heat map (or heatmap) is a data visualization technique that shows magnitude of a phenomenon as
color in two dimensions, giving obvious visual cues to the reader about how the phenomenon is clustered or
varies over space. https://en.wikipedia.org/wiki/Heat_map
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Projecting structured light

The method of projecting structured light is not used directly for purposes of detecting
or locating people, but more often for obtaining 3D models of relatively small objects or
continuous depth maps.

The system usually consists of two parts – a camera and a projector. The projector
casts structured light on the scene. The structured light is usually a horizontal black-and-
white-line pattern or a checkerboard pattern. The camera is then used to view the scene,
and by analyzing deformations in the projected pattern, a depth map is constructed.

On its own, this technique may be used in the same use case as LIDAR sensors – people
counting. This setup has one advantage when compared to the LIDAR solution. The
LIDAR sensors cast rays only into several directions. By projecting the light pattern, the
device covers a continuous area and has a potential to be more accurate. As with LIDAR
devices, this sensor would be placed above a passage and would often use structured light
from the invisible infrared spectrum.

The structured light sensors, however, have major disadvantages. Such system requires
extremely precise calibration, is bigger in size and more complex.

Figure 2.4: Example setup of a depth mapping system composed of a single camera and a
projector casting structured light. (Source: [35].)

3D stereo vision

Stereo video analysis is quite often used in high end solutions. The system consists of
two precisely calibrated cameras viewing a scene. The technology is somewhat similar
to human vision – two eyes viewing a scene with the brain extracting depth information
from differences in the two shifted images. By combining video frames from two cameras,
the system constructs the depth dimension of the scene, which generally provides accurate
object-to-camera distance measurement.

This approach can be seen in cutting edge solutions designed for airports, big train sta-
tions, where accurate detection and localization is crucial. The current solutions using this
technology tend to be very expensive, due to their complexity and calibration requirements.

When compared with the LIDAR and structured light approach for counting people,
this technology has one drawback. It has much narrower field of view, which means it is
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challenging to find a proper location for installing the stereoscopic device at places with
a low ceiling. Another drawback, which also applies to the monocular video analysis,
is privacy issues. With the use of regular cameras for purposes of detecting, locating or
counting people, it is also possible to perform facial recognition, which may be unacceptable
in certain situations.

Monocular video analysis

The monocular video or single frame analysis is quite similar to the 3D stereoscopic vision,
however, for monocular video analysis, no depth map is used, as the monocular video
analysis uses only a single camera.

By video analysis and digital image analysis (used in both monocular and stereoscopic
vision), we understand a process of extracting meaningful information from video or images
respectively. Nowadays various techniques and approaches are being used. The process can
be somewhat generalized into few steps:

1. Image preprocessing – preparing the image for analysis by digital image processing.
This might include filtering, adjusting contrast, dynamic range of the image and so
on.

2. Feature extraction – extracting indices that are meaningful for the type of analysis
we want to perform. This might include finding binary contours in the image, lines,
corners, extracting the histogram of oriented gradients (HOG) [19] and so on.

3. Final stage of the analysis – the actual algorithm used to achieve the goal of video
or image analysis. The goal might be object detection, classification, recognition or
similar. In this stage, we encounter various algorithmic approaches – often from the
machine learning family – from simple thresholding, linear binary classifiers all the
way to support vector machines and deep neural networks.

Using a thermal imaging camera module to help solving the problem of detecting people
also belongs to the monocular video analysis section and brings several advantages when
compared with other approaches. [40] Firstly, we need only a single camera, so there is
no need for extremely precise hardware calibration of the system, as with stereo vision or
structured-light projection. We can detect and also locate living beings in contrast with
infrared/laser beam or light travel techniques, which can only count objects entering and
leaving an area. The biggest advantage is however the fact that by using a thermal camera
with small image resolution, it is impossible to perform facial or person recognition. This
makes this approach more suitable for places, where privacy plays an important role, e.g.
at workplaces or homes. Thermal images are not dependent on lighting conditions of the
scene, which makes the system very effective during the night. The largest disadvantage
of monocular image analysis is the missing depth dimension. Low camera resolution with
the missing depth dimension cause locations of the detected objects to be only a rough
approximate, as the missing dimension has to be estimated based on some assumption like
that the object is touching ground.

The idea behind detection and localization of people using a thermal camera is to
capture a thermal image, detect objects corresponding to people in the image and estimate
locations of each object in a model of the scene using perspective projection.
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Chapter 3

Thermal capture unit

This chapter describes the thermal capture unit, which can be used for standalone or re-
mote capture of thermal data. The unit can be placed anywhere with electric and network
connection and consists of FLIR’s Lepton 3.5 [5] thermal camera module, a custom PCB
with a circuit controlling the thermal module and a Raspberry Pi 3B+ single-board com-
puter, which communicates directly with the camera and provides the user with higher level
access. All these three parts are enclosed in a custom-designed 3D-printed enclosure box.
The following sections go in detail through each part of the thermal capture unit.

3.1 FLIR Lepton 3.5
In previous experiments and the bachelor’s project [18], the earlier version of the thermal
module – Lepton 3 – has been used. In this project, the thermal camera module has
been replaced with version 3.5. This section describes the Lepton 3.5 with all differences
between the previous version of the thermal camera as well as all necessary adjustments to
the capture and control library v4l2lepton3 designed to communicate with the camera.
An in-depth documentation of all new features in the v4l2lepton3 library can be then
found in chapter 4.

Figure 3.1: Lepton 3/3.5 with breakout board. (Source: [25].)
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3.1.1 Lepton 3.5 specifications

In this project we use a Lepton 3.5 thermal camera module3 made by the company FLIR4

which is currently one of the leading manufactures of thermal camera solutions. The camera
contains a sensor sensitive to long wave infrared (LWIR) light in range from 8 to 14 𝜇m.
The camera module is smaller than a dime and provides images with decent resolution of
160 by 120 pixels. The effective frame rate of the camera is only 8.7 Hz, however for our
needs, it is sufficient. The camera only requires low voltage supply and has small power
consumption of around 160 mW. See table 3.1 for more detailed specifications.

For better manipulation with the camera module we use a breakout board (figure 3.7)
with a housing for the Lepton camera module. Lepton 3 and 3.5 both have the exact
same dimensions and pinout, therefore both versions fit into the same breakout board.
The breakout board provides better physical accessibility, improves heat dissipation and
increases the input voltage supply range to 3-5 V using its built-in regulated power supply.
This power supply provides the camera module with three necessary voltages: 1.2, 2.8 and
2.8-3.1 V. The breakout board also supplies the camera with master clock signal. [25] The
camera uses two interfaces for communication:

• SPI for transferring video frames from the camera to the SPI master device.

• I2C for receiving control commands from the I2C master device.

Even though the name of the project include the keyword low-cost, we need to think of
this statement with respect to the thermal imaging market. The Lepton 3.5 thermal cam-
era module can be considered low-cost when compared to other thermal camera devices
available, as it costs around $230 (20205). This could however be considerably more expen-
sive when compared to other non-thermal solutions, for example when a simple infrared
counting sensor is used.

Spectral range 8 to 14 𝜇m
Array format 160× 120 pixels

Pixel size 12 𝜇m
Thermal sensitivity <50 mK
Temperature range −10 to +400∘C

FOV horizontal 56∘
FOV diagonal 71∘
Depth of field 28 cm to ∞

Lens type f/1.1 silicon doublet
Output format 16-bit Y16 raw temperature or 24-bit RGB888 false color

Clock speed 25 MHz
Input voltage 2.8 V, 1.2 V, 2.8-3.1 V

Power dissipation 160 mW operating, 5 mW shutdown mode, 800 mW shutter event
Dimensions 11.8× 12.7× 7.2 mm

Table 3.1: Lepton 3.5 camera module specifications. (Source [4].)
3FLIR Lepton homepage https://lepton.flir.com/
4FLIR homepage http://www.flir.eu/
5FLIR Lepton 3.5 supplier e-shop https://groupgets.com/manufacturers/flir/products/lepton-3-5
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Table 3.1 summarizes the parameters of the new 3.5 version of the Lepton camera.
From the version 3.0 it differs among others in temperature range and power consumption.
The camera has increased temperature range and consumes a little bit more power during
shutter events.

3.1.2 Lepton 3 vs 3.5 - false/true radiometry

The previously used version 3.0 is a non-radiometric camera or so-called false radiometric.
It does have an option and a command for turning the radiometric feature on, however, this
feature only ensures that the output values from the sensor stay the same when the internal
temperature of the camera changes. This behavior is depicted in figure 3.2. This way one
can be sure that for any given temperature of a pixel, there is a specific value on the output
no matter the internal condition of the camera. It has false radiometry because it does
not provide the function for converting incident flux of a pixel into the real temperature in
Kelvin. This nonlinear function has to be supplied by the user.

Figure 3.2: Hypothetical illustration of camera output vs camera temperature. (Source:
[26-27].)

The mapping function is usually an output of a calibration process which involves an ac-
curate spot thermometer. Mapping points between pixel values of the Lepton 3 module and
actual temperatures taken by the thermometer are constructed over a wider temperature
range and used for interpolation in order to obtain the calibrated mapping function. The
documentation [4] mentions that the mapping function is close to linear but not completely.

The Lepton 3 camera module has been replaced by the newest version 3.5 mostly be-
cause of its true radiometry capability. The conversion function is provided internally and
applied by the camera firmware, so that the output of the camera already contains the final
temperature of each pixel in Kelvin.

The real temperature coming from Lepton 3.5 is scaled by a scalar, that can be set to
either 100 or 10. To get the temperature from a pixel in Kelvin, the 16-bit integer pixel
value needs to be divided by the scalar. See conversion examples in the table 3.2.

Note that the true radiometric mode is essential for the problem of people detection
because knowing the exact temperature of a scene allows us to filter out regions of the scene
that have temperatures outside the human-body-temperature range, which can simplify
the computation. Alternatively, we can reject a potential detected object (person) after
checking its temperature distribution.
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Scalar 10 Scalar 10016 bit pixel value [𝐾] [∘𝐶] [𝐾] [∘𝐶]
16, 000 1, 600.0 1, 326.85 160.0 −113.15
65, 535 6, 553.5 6, 280.35 655.35 328.2
30, 315 3, 031.5 2, 758.35 303.15 30

Table 3.2: Lepton 3.5 16-bit pixel value conversion example using true radiometry for given
resolutions (scalars).

3.1.3 Lepton 3.5 control protocol (CCI)

The command and control interface (CCI) is used to control the camera and is hosted
on a two-wire interface (TWI), which is almost identical to I2C. The protocol had been
implemented in Python and supported essential commands for the Lepton 3 thermal camera.

For the Lepton 3.5 version, the protocol itself did not change, however, some new
commands have become available – mostly connected with the new true radiometry feature.
These commands had to be included into the control software. Both Lepton 3 and 3.5 have
the same command RAD_ENABLE to enable or disable the false radiometric feature. The
Lepton 3.5 comes with a set of three new commands setting the TLINEAR feature which
corresponds with the true radiometry.

If the TLINEAR feature is left off while having radiometry enabled, the camera behaves
like Lepton 3 with the false radiometry. The TLINEAR option enables the inner calibrated
mapping function for converting the incident flux into real temperature in Kelvin, which
the camera then returns for each pixel.

For Lepton 3.5, the following three essential commands have been added to the control
software with respect to the true radiometry:

• RAD_TLINEAR_ENABLE: tlinear is the name of the feature that enables the incident
flux to temperature conversion, in other words, makes true from false radiometry, as
mentioned in subsection 3.1.2.

• RAD_TLINEAR_SCALE: this command sets or gets the scalar for the pixel values in
Kelvin. The scalar may be set to 100 or 10.

• RAD_TLINEAR_AUTO_SCALE: turns on or off an automatic scalar selection between 100
and 10, based on the observed temperatures in the scene, which effectively increases
or decreases resolution as well as measurement error.

An OEM_REBOOT command has also been included among others, as it turned out that
issuing a reboot command over the I2C interface deals with the camera seizing problem in
the least invasive way. Though, it does not always work, as is mentioned later in section
3.2.

Furthermore, the previous implementation contained plenty of redundancy when adding
a new command. Each command may have GET, SET or RUN method (in most cases at
least two), plus for a SET command, several options are usually available. In the old
implementation, with each newly added command, it was necessary to create a function for
each available method and SET option. This redundancy and inelegance of the process of
adding new commands have been addressed and as a part of the v4l2lepton3 capture and
control library. The camera control software comes reimplemented almost from scratch.
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The implementation details with a listing of all currently available commands can be found
in chapter 4.

3.1.4 Lepton 3.5 video transfer protocol (VoSPI)

The Video Over SPI (VoSPI) protocol did not change between version 3.0 and 3.5 of the
Lepton camera. From this point of view, the code pulling frames out of the thermal camera
should work without any change also with the version 3.5. This, however, was not the case,
as there were major synchronization issues. Desynchronized camera is one of the biggest
problems of Lepton modules reported by the community. The controlling computer or the
code running on it is simply not fast enough to read out all packets from the camera in time,
which causes the camera to reset. As a result, it is not possible to read even a single frame
out of the camera. From the packet numbering, I calculated that in my case, the reading
process would have to be 8 times faster to run smoothly with the old implementation.

Also the new use case of the project requires collecting continuous video feeds from
multiple cameras and processing them in a single place. This leads to a completely different
architecture, therefore, the capture library had to be redesigned and sped up significantly.
The new version of the v4l2lepton3 library is described in detail in chapter 4.

3.2 Thermal camera control PCB
The Lepton 3 thermal camera module used to have one really bad habit – from time to
time it would seize operation indefinitely. The camera stops sending frames over SPI and
any attempt to read data from it results in a timeout. In such state, the camera also does
not respond to any commands over I2C claiming it is busy or not ready to receive any new
command. Unfortunately, this problem also occurs in the 3.5 variant of the camera module,
however not that often. In most cases, even though the camera does not return nor set
any control registers and claims to be busy, the reboot command does reboot the camera
completely fixing the broken state.

There are situations, however, when not even the reboot command works, and the
camera gets in a state in which it simply can not be used anymore. This poses a real
problem because the system is meant to be working remotely and physically unplugging
and plugging the camera back in is not plausible. It was essential to provide a workaround
in order to be able to manage the thermal capture system remotely. The camera used to
be powered directly from the host computer. Being able to remotely disconnect the camera
from the circuit would force a cold boot of the camera and would also come in handy when
the camera is not needed. Turning the camera off when it is not needed would prolong its
lifespan, save power and eliminate the clicking shutter noise.

In order to solve this problem, a custom power switch has been designed and built on
a printed circuit board that allows for disconnecting the power from the camera and then
reapplying it remotely. That effectively forces the camera to perform a full reboot.

3.2.1 The first design of the control circuit

The first design of the circuit contained an N-channel MOSFET transistor with a pull-down
resistor on its gate that was controlled by a digital signal coming from a GPIO pin of the
Raspberry Pi. The circuit also contained a couple of capacitors with values of 100 𝜇F and
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100 nF to improve power supply stability. The plan was to use Raspberry Pi’s GPIO to
apply 5 V to the camera through the transistor. The first design can be seen in figure 3.3.

The first design however proved itself not to be functioning properly because log1 of
3.3 𝑉 coming from the Raspberry Pi’s GPIO output would not saturate the N-channel
MOSFET enough to turn the camera on, despite the typical gate-source threshold voltage
of the IRFZ44N MOSFET [2] of 2-4 𝑉 .

Figure 3.3: The first design of the MOSFET switch circuit.

3.2.2 The second design of the control circuit

The second design contained a standard power switch with the use of P-channel MOSFET
and a second transistor – this time an NPN bipolar transistor BC337 [3] that is current-
driven, and thus has no problem operating at the 3.3-V level. The bipolar transistor
grounds the gate of the IRF9Z34N MOSFET [1], which then applies 5 V to the thermal
camera supply rail. The second design was successful, and with its help, it is possible to
turn the camera’s power supply on or off remotely using a Raspberry Pi’s GPIO pin. The
second design can be seen in figure 3.4 and the physical custom PCB6 in figure 3.5.

Figure 3.4: The second design of the MOSFET switch circuit.
6PCB – printed circuit board
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Figure 3.5: PCB of the second design of the MOSFET switch circuit.

3.2.3 GPIO control library WiringPi
For controlling GPIO pins of the Raspberry Pi computer, we are using the wiringPi library
[28]. The standard Raspbian image has the library wiringPi preinstalled, however, on the
Raspbian Lite operating system the library needs to be installed first using the following
command:

$> sudo apt-get install wiringpi

This library provides a C API as well as an easy terminal access for controlling the GPIO
pins of the Raspberry Pi computer. The API syntax is identical to the Arduino library
having functions like pinMode() or digitalWrite(). An example C code of turning on
and off the virtual GPIO pin 15 can be examined in listing 1.

GPIO pins can be controlled directly from the terminal using the gpio tool. The mode
of pin 15 to output can be set using:

$> gpio mode 15 out # 15=GPIO pin, modes=in/out/pwm/clock/up/down/tri

Writing log1 to pin 15 can be done using:

$> gpio write 15 1 # 15=GPIO pin, values=1/0

1 #include <wiringPi.h>
2 #include "unistd.h"
3 #define PIN 15
4

5 int main(int argc, char **argv)
6 {
7 wiringPiSetup();
8 pinMode(PIN, OUTPUT);
9 while(true)

10 {
11 digitalWrite(PIN, HIGH); sleep(1);
12 digitalWrite(PIN, LOW); sleep(1);
13 }
14 return 0;
15 }

Listing 1: One second blink example on the virtual GPIO pin 15.

18



Some GPIO pins are also connected to a special hardware modules of the processor like
I2C or SPI. In that case the mode of such pin is displayed as ALTX (alternative function X).
Modes and current digital values of all available GPIO pins of the Raspberry Pi computer
can be read using command gpio readall which is demonstrated in figure 3.6.

Figure 3.6: Exammple result of gpio readall command on a thermal unit.

The custom circuit described in subsection 3.2 allows us to remotely disconnect the
camera from the power supply. In our case, the power switch is controlled with the wPi
virtual GPIO pin 15 visible in figure 3.6. Unfortunately, if the camera is in the corrupted
frozen state in which it does not send frames nor can be rebooted using I2C control interface,
cutting off its power supply does not do the trick and the camera does not reboot. Even
though the switch transistor is fully off, there is still around 2 V on the camera power rail,
which most likely causes the camera to sustain its internal broken state, and when 5 𝑉 is
reapplied to the positive rail, the camera keeps not responding.

After the transistor turns off, the camera most likely starts stealing power from SPI
or I2C interfaces and its switching power supply keeps the camera’s internal voltage from
dropping all the way to 0 V. So in order to fully disconnect the camera, we must use the
custom transistor switch, disable both interfaces and set all pins connected to the camera
to output log0. This effectively pulls all pins of the camera to ground and discharges the
camera completely leading to a full reset. After re-enabling data interfaces and applying
power to the supply pin, the camera boots up normally and starts working as it is supposed
to. This procedure needs to be done in around 5 % of the cases when the camera freezes.
For the rest, issuing a simple oem_reboot command via ICC does the trick.
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3.2.4 Segmentation fault on I2C kernel module unload

Another tricky part is disabling and re-enabling the data interfaces. Disabling these in-
terfaces effectively means unloading kernel modules from the linux operating system. At
this time, there is unfortunately a known issue7 with disabling the I2C hardware interface.
Around 25 % of attempts to unload the kernel module i2c_bcm2835 fails on segmenta-
tion fault (NULL pointer dereferencing) inside the kernel which has catastrophic effect on
the Raspberry Pi 3B+, as no other modules can be loaded or unloaded and the Raspbian
operating system can not be rebooted because the command sudo reboot [-f] hangs in-
definitely. The only way to revive the Raspberry Pi from this state is unplugging it and
plugging it back in. (hard restart)

A snippet from the terminal output of the segmentation fault during unloading the
kernel module using rmmod can be seen in listing 2. More information about the fault
obtained from kernel message buffer using dmesg8 is depicted in listing 3. The issue has
been already fixed9, however, it is going to take some time until the fix is merged into the
official Raspbian kernel. Till then, the safer way is simply to reboot the whole Raspberry
Pi straight away. During the reboot, all pins of the Raspberry Pi are, for a brief moment,
set to log0, which cuts off the power to the camera through the custom transistor switch
and the whole camera reboots.

1 pi@thermal3:~ $ sudo rmmod i2c-bcm2835
2 Message from syslogd@thermal3 at Oct 26 00:31:13 ...
3 kernel:[ 105.607954] Internal error: Oops: 17 [#1] SMP ARM
4 (...)
5 Message from syslogd@thermal3 at Oct 26 00:31:13 ...
6 kernel:[ 105.697356] Code: e8bd4000 e2504000 089da818 ebfff6c8 (e5943014)
7 Segmentation fault

Listing 2: Terminal snippet of the segmentation fault when unloading I2C kernel module
using rmmod.

1 [ 185.993328] Unable to handle kernel NULL pointer dereference at virtual
address 00000012→˓

2 [ 185.998257] Internal error: Oops: 17 [#1] SMP ARM
3 [ 185.999511] Modules linked in: i2c_bcm2835(-) (...)
4 [ 186.009776] CPU: 1 PID: 790 Comm: rmmod Tainted: G C 4.19.80-v7+ #1274
5 [ 186.013013] Hardware name: BCM2835
6 [ 186.014681] PC is at clk_rate_exclusive_put+0x20/0x5c
7 [ 186.029528] Process rmmod (pid: 790, stack limit = 0x7989f0fb)

Listing 3: dmesg snippet from after the kernel segmentation fault on unloading I2C kernel
module.

7Report of the I2C kernel module segmentation fault https://www.raspberrypi.org/forums/
viewtopic.php?f=28&t=255294

8dmesg (display message or driver message) – unix-like command printing the kernel message buffer
9[PATCH RFC] i2c: bcm2835: Store pointer to bus clock: Null pointer dereference fix commit https:

//marc.info/?l=linux-arm-kernel&m=157209334808763&w=2
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3.3 Raspberry Pi 3B+

Compared with the bachelor’s project [18], we have migrated from Orange Pi PC2 (Arm-
bian) to Raspberry Pi 3B+ (Raspbian). The change has been made to improve portability,
increase computational power and avoid some of the pitfalls connected with using cloned
Chinese single-board computers with small community and many OS features still waiting
to be completed.

It was necessary to reconfigure the whole image from the beginning. The thermal unit
is currently using Raspbian Bustler Lite10 which is a minimal operating image with only
435 MB in size. Since it is a minimal image, it is necessary to install all dependencies and
libraries manually. The exact same steps would have to be performed on every thermal
unit and repeated for every new unit in the future. Therefore, it only makes sense to use
a tool to automatize the steps of preparing the environment on thermal units for running
the detection and localization system.

This section describes the configuration and properties of the Raspberry Pi 3B+ com-
puter, which is used to directly communicate with the thermal camera, and is therefore the
brain of the thermal unit.

Figure 3.7: Raspberry Pi 3B+ single board computer. (Source: [45].)

3.3.1 Raspberry Pi 3B+ specifications

The Raspberry Pi 3B+ is the last revision of the third generation single-board computer.
It is a low-cost, credit-card sized computer capable of performing everything one might
expect from a regular desktop computer.

The Raspberry Pi runs a Debian-based operating system Raspbian Bustler Lite. The
Raspberry Pi platform has a massive community base, and it is widely used by all sorts of
hobbyists for their DIY projects. Its biggest upside is its size and hardware interfaces. The
computer has a built-in hardware support for SPI, I2C, UART, Bluetooth and Wi-Fi com-
munication. Its general purpose input/output (GPIO) pins are also extremely important for
interfacing with other electronic devices. Even for its size, the Raspberry Pi has nowadays
a quite decent computation power. See table 3.3 with Raspberry Pi 3B+ parameters.

10Raspbian official operating system image download page https://www.raspberrypi.org/downloads/
raspbian/
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CPU Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit @ 1.4 GHz × 4
RAM 1 GB LPDDR2 SDRAM
Wi-Fi 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac

Bluetooth 4.2, BLE
Ethernet Gigabit, but max 300 Mb/s, PoE support

GPIO Extended 40-pin header
USB 2.0 4x

Power supply 5 V @ 2.5 A DC
Interfaces CSI, DSI, SPI, I2C, UART, stereo output, composite video output

Table 3.3: Raspberry Pi 3B+ specifications. (Source [45].)

3.3.2 Automation with Ansible

For the automatic deployment, it has been decided to use the tool Ansible11. It is an
agentless tool, which temporarily connects to its targets via ssh to perform tasks specified in
so-called Ansible playbooks. An Ansible playbook specifies actions that should be performed
on the target machine. Some of the most common tasks in an Ansible playbook might
include:

• managing users

• creating, delete files or directories

• copying a configuration file from local storage to the target

• making sure a dependency/library is installed on the target system

• cloning a git repository and compile a program from sources

• executing shell commands

and a lot more. The advantage of Ansible is in its flexibility. There does not have to
be a master service running permanently that would be constantly checking the state of
the target devices according to a given configuration like for example when using Puppet12.
Ansible performs tasks from the playbook only when it is asked to and it works straight
out of the box. The only requirement is that the target device is accessible through an ssh
connection. Ansible will do the rest according to the given Ansible playbook.

3.3.3 Preparing the Raspbian image for the new thermal unit

After writing the Raspbian Bustler Lite image to an SD card using for example the bale-
naEtcher tool13, the first thing to configure is the ssh daemon. The daemon is enabled by
creating an empty file /boot/ssh.

In case the thermal unit should automatically connect to a wireless network, the /boot/
wpa_supplicant.conf file shall be edited with the content from listing 4.

11Ansible – software provisioning, configuration management, and application-deployment tool https:
//www.ansible.com/

12Puppet – open-source configuration management tool https://puppet.com/
13balenaEtcher – free open-source utility for creating live SD cards and USB flash drives https:

//www.balena.io/etcher/
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country=CZ
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={

ssid="the-internet-ssid"
psk=069c6f3318349...eaf0077fa2f7

}

Listing 4: Contents of /boot/wpa_supplicant.conf file enabling auto-connection to a
prespecified wireless network.

If the thermal unit will be connected to a wired network via an ethernet cable, the
Wi-Fi (and Bluetooth) modules can be disabled by adding a lines from listing 5 to /boot/
config.txt file.

dtoverlay=pi3-disable-wifi # disable Wi-Fi
dtoverlay=pi3-disable-bt # disable Bluetooth

Listing 5: Lines of /boot/config.txt file which disable Wi-Fi and Bluetooth modules on
boot.

If there will be no DHCP server in the network, it is possible to specify static connection
parameters in /etc/dhcpcd.conf file. An example code for setting a static IP address to
the Raspberry Pi’s interface eth0 can be seen in listing 6.

# Example static IP configuration:
interface eth0
static ip_address=192.168.2.205/24
# static ip6_address=fd51:42f8:caae:d92e::ff/64
static routers=192.168.2.101
static domain_name_servers=8.8.8.8

Listing 6: Lines of /etc/dhcpcd.conf setting up a wired connection without a DHCP
server.

At this stage, it is possible to copy an ssh public key into
/home/pi/.ssh/authorized_keys file for easy access via ssh using asymmetric cryptogra-
phy.

3.3.4 Ansible playbook

The knowledge used in this chapter comes from [30] and [26]. After taking care of the
configuration on the SD card, it can be inserted into the Raspberry Pi. The computer
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should boot up and connect to the network according to the configuration from the previous
steps. After that, Ansible can take over. From the master computer, the thermal units are
configured by running the Ansible playbook with the following command:

$> ansible-playbook -i hosts thermal_deploy.yml

The hosts file contains information about the target hosts – devices on which Ansible
performs tasks specified in the playbook. In the example hosts file in listing 7, there is a
group thermal_clients with 3 devices.

[thermal_clients]
th1 ansible_host=192.168.1.31 ansible_user=pi # UNIT 1
th2 ansible_host=192.168.1.32 ansible_user=pi # UNIT 2
th3 ansible_host=192.168.1.33 ansible_user=pi # UNIT 3

Listing 7: Example hosts file for Ansible with 3 devices.

The playbook thermal_deploy.yml itself contains list of tasks to be performed on
specified hosts. A snippet from this file can be seen in listing 8. Setting up the environment
for thermal units can be, in our case, summarized into the following steps:

1. run sudo apt update, sudo apt upgrade

2. install the following apt packages: git, python-dev, python3-dev, python-pip, python3-
pip, wiringpi, python-opencv, python3-opencv, libboost-all-dev, v4l-utils, v4l2loopback-
dkms, v4l2loopback-utils

3. install python/python3 packages using pip/pip3: smbus2, SPI-Py14

4. clone the v4l2lepton3 library and and compile it

5. run sudo apt autoclean, sudo apt autoremove

6. run sudo raspi-config with arguments to enable SPI and I2C interfaces

After executing all tasks from the playbook, the thermal unit is ready to operate. If
any changes need to be done globally to all deployed thermal units, they can be stated in
the Ansible playbook and Ansible will make sure they are applied to all the devices.

14SPI-Py library https://github.com/lthiery/SPI-Py.git
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---
- hosts: thermal_clients

tasks:
- name: Running apt upgrade

become: true
apt:

upgrade: yes
update_cache: yes
cache_valid_time: 86400

- name: Install apt packages.
become: true
apt:

name: "{{item}}"
state: present

with_items:
- git
- python-dev
- python3-dev

Listing 8: Snippet from an Ansible playbook.

3.3.5 Enabling SPI and I2C hardware interfaces

In order to communicate with the camera using SPI and I2C hardware modules on the
Raspberry Pi, they need to enabled on the kernel level. On the previously used Orange
Pi board, this was a very tedious process that led to decompiling the device tree overlay,
manually specifying pins where the hardware modules are connected, recompiling it and
ensuring the overlay gets loaded during boot up.

On the Raspberry Pi computer all of this can be done using the raspi-config utility,
which allows to enable and disable specific modules of the processor using graphical interface
or simply by executing the script with arguments as in listing 9. Note that this shell
command can also be specified as an Ansible task in a playbook.

1 sudo raspi-config nonint do_spi 0 # enable SPI
2 sudo raspi-config nonint do_i2c 0 # enable I2C
3

4 sudo raspi-config nonint do_spi 1 # disable SPI
5 sudo raspi-config nonint do_i2c 1 # disable I2C

Listing 9: Enabling SPI and I2C interfaces using a shell command.
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As a result, there are corresponding character devices permanently visible in the /dev
directory and they will also be present after reboot. These devices can be manipulated
using ioctl system calls. Whether are these devices available in the operating system can
be checked using commands in listing 10.

pi@raspberrypi:~ $ ls /dev/spi*
/dev/spidev0.0 /dev/spidev0.1
pi@raspberrypi:~ $ ls /dev/i2c*
/dev/i2c-1

Listing 10: Demonstration of character devices in the /dev directory.

3.4 Thermal unit enclosure
The Lepton camera sends video frames over the SPI interface on 20 MHz which implies
that the length of wires connecting the Lepton camera to the Raspberry Pi needs to be
as short as possible – maximum of 20 cm in order to provide a stable connection without
interference and transmission errors. This condition enforces the Lepton camera and the
Raspberry Pi to be physically close to each other. Together, they form a thermal unit.

In order to make the whole thermal unit transferable, protected and professionally
looking for quick demonstrations or real life deployment, an enclosure has been designed
to fit and mount all of its components—the Raspberry Pi 3B+, the custom camera switch
circuit board and the Lepton 3.5 camera. The thermal unit case is composed of two parts
– an enclosure box for the Raspberry Pi with the power switch and a camera chassis that
is mounted to the top of the first part with a bit of slack that allows the camera chassis
to be moved along the horizontal axis. This way it is possible to adjust the viewing angle
of the camera using a screw and a rubber band that applies a back force to the camera
case against the screw. The unit’s enclosure box has hexagonal holes from top and bottom
to provide air flow to cool down the Raspberry Pi, as it gets quite hot even with a rather
small load.

Figure 3.8: Lepton Breakout Case .stl model.

The enclosure box was designed in the Sketchup15 software and exported into the .stl
format for 3D-printing. The Lepton 3.5 camera chassis model, created by the official Lepton

15Sketchup – Trimble design software https://www.sketchup.com/
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Breakout Board manufacturer GroupGets16, has been taken from the portal Thingiverse17.
The model can be seen in figure 3.8. Two pins were added in the lower part of the back
side of the chassis to serve as a pivot points around which the camera could move. The
3D-printed chassis with the Lepton 3.5 camera in a breakout board can be seen in figure
3.9.

Figure 3.9: 3D-printed case for the Lepton 3.5 in a breakout board.

The unit’s enclosure comes from a Raspberry Pi 3B+ .stl model18 also published at
Thingiverse. The model has been edited and enlarged to fit the Raspberry Pi, the custom
PCB with the transistor switch, the moving camera chassis and all wiring needed to connect
all components together. The .stl model of the bottom piece of the thermal unit enclosure
can be seen in figure 3.10 and the top piece in figure 3.11.

Figure 3.10: Thermal unit enclosure model – bottom.
16Lepton Breakout Case .stl model https://www.thingiverse.com/thing:1563825
17Thingiverse – a website dedicated to the sharing of user-created digital design files https://

www.thingiverse.com/
18Raspberry Pi 3B+ Case .stl model http://www.thingiverse.com/thing:3361218

27

https://www.thingiverse.com/thing:1563825
https://www.thingiverse.com/
https://www.thingiverse.com/
http://www.thingiverse.com/thing:3361218


Figure 3.11: Thermal unit enclosure model – top.

The camera chassis with the Lepton camera gets inserted into the hole on the right side
of the top piece of the enclosure. The SPI and I2C interfaces are connected directly to the
Raspberry Pi via approximately 10 cm long jumper wires. Two power wires are connected
to the custom PCB with the switch, which is mounted in the enclosure underneath the
camera, right next to the Raspberry Pi. From the custom PCB, there are three wires going
to the Raspberry Pi directly – to GND, 5 V and a virtual GPIO-15 pin. An assembled
thermal unit can be seen in figure 3.12 on the right side, and on the left side, there is
a connected thermal unit just without the top cover. Total of four thermal units were
constructed for testing purposes.

Figure 3.12: A finished thermal unit with Raspberry Pi 3B+, custom power switch and a
Lepton 3.5 thermal camera in a chassis.
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Chapter 4

v4l2lepton3 capture and control
library

The v4l2lepton3 library is the main software part of the project. It is a library that
takes care of controlling the camera and retrieving thermal video feed from it. It has been
initially presented as a part of the bachelor’s thesis [18], however, because of the issues
connected with the previous implementation described in subsections 3.1.3 and 3.1.4, it has
been redesigned and reimplemented almost from scratch. The library consists of two parts:
the C++ application for thermal video manipulation and a Python3 package for camera
control and single frame manipulation.

This chapter goes in detail through the capture and control parts of the new version of
the library. The old implementation that still relates to the bachelor’s thesis can be found
in a separate branch19 of the v4l2lepton3 repository. The new implementation is in the
master branch20 of the same repository.

4.1 Controlling the camera over CCI
The Lepton camera provides a command and control interface (CCI) via a two-wire interface
almost identical to I2C with the only difference being that all transactions must be 16 bits
in length. Lepton’s I2C address is 0x2A and during communication behaves as a slave
device. All Lepton’s registers are 16 bits wide. Lepton camera offers 4 control registers
and 16 data registers which are all 16-bit wide and are used by the host (master) device
to issue commands to the camera. A command is issued by writing and reading particular
registers in the camera via I2C. The exact process is described in the CCI documentation
[7]. The protocol has been implemented in the bachelor’s project and analyzed in detail in
the bachelor’s thesis [18] [subsection 3.1.4].

The CCI protocol has not changed from Lepton version 3 to 3.5, however, the imple-
mentation of the control library has been redone to remove redundancy and inelegance
mentioned in subsection 3.1.3. Furthermore, significantly more commands were added
including essential commands for the true radiometry feature. This section explains dif-
ferences between the old and new implementation, how the redundancy has been removed
and which commands the control library currently supports.

19v4l2lepton3 git repository – old implementation https://gitlab.com/CharvN/v4l2lepton3/-/tree/
bp

20v4l2lepton3 git repository – new implementation https://gitlab.com/CharvN/v4l2lepton3
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4.1.1 Old implementation of the CCI

As mentioned in subsection 3.1.3, the previous implementation contained plenty of redun-
dancy when adding a new command. An example may be the VID_PCOLOR_LUT command,
which controls the false color palette used for artificial coloring of the thermal image. The
command has two methods – GET and SET. The value of the property, which the commands
sets or gets, ranges from 0 to 8 – each representing a predefined color palette. In the old
implementation, this led to having 9 functions for the SET method of the command and
one other for the GET method. The GET function also returned a raw value of the currently
set palette, which had to be looked up in the Lepton IDD manual [7]. The actual values
that can be set or get with the VID_PCOLOR_LUT command are listed in table 4.1, and an
example of the command functions in the old implementation is depicted in listing 11.

Color palette Option values in list of bytes
wheel6 [0x00, 0x00]
fusion [0x00, 0x01]

rainbow [0x00, 0x02]
glowbow [0x00, 0x03]

sepia [0x00, 0x04]
color [0x00, 0x05]
icefire [0x00, 0x06]
rain [0x00, 0x07]

user defined [0x00, 0x08]

Table 4.1: Options with their respective values in lists of bytes for the VID_PCOLOR_LUT
command setting false color palette for the Lepton 3/3.5 thermal camera.

1 def vid_pcolor_lut_get(self):
2 return self._command(Lepton3Control.VID, Lepton3Control.VID_PCOLOR_LUT,

Lepton3Control.GET, 2)→˓

3

4 def vid_pcolor_lut_set_fusion(self):
5 return self._command(Lepton3Control.VID, Lepton3Control.VID_PCOLOR_LUT,

Lepton3Control.SET, [0x00, 0x01])→˓

6

7 def vid_pcolor_lut_set_rainbow(self):
8 return self._command(Lepton3Control.VID, Lepton3Control.VID_PCOLOR_LUT,

Lepton3Control.SET, [0x00, 0x02])→˓

9

10 def vid_pcolor_lut_set_icefire(self):
11 return self._command(Lepton3Control.VID, Lepton3Control.VID_PCOLOR_LUT,

Lepton3Control.SET, [0x00, 0x06])→˓

12

13 (...)

Listing 11: Example of Lepton 3/3.5 color palette command functions for GET and SET
methods with 3 out of 10 options in the old implementation.
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This redundancy and inelegance of the process of adding new commands has been
addressed, and as a part of the v4l2lepton3 library, the camera control software comes
reimplemented almost from scratch.

4.1.2 New implementation of the CCI

In the new implementation, each command has exactly one definition, which automati-
cally generates allowed methods and contains a translation map for each option that the
command can set.

If we take for example the previously mentioned command VID_PCOLOR_LUT, in the new
implementation, those 10 functions covering this command shrink all the way to 1. The
function created according to the command description in the CCI documentation [7] and
illustrated in figure 4.1 is depicted in listing 12.

Figure 4.1: VID_PCOLOR_LUT command description in the CCI documentation [7] (page 72).
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Constructing the command object from the CCI documentation

From the part of the documentation in figure 4.1, the following information for the
VID_PCOLOR_LUT command is extracted:

• The command addresses the VID hardware module of the camera with the 16-bit
address of 0x0300.

• The command ID is 0x04 (base).

• The command has two available methods: GET and SET.

• There are 9 values ranging from 0 to 8, which can be set using the command.

Using the extracted information, a single object representing the command with auto-
matically generated underlying methods is constructed. The object is depicted in listing
12.

1 class Lepton3Control(object):
2 (...)
3 COMMANDS: Dict[str, Lepton3Command] = {
4 'vid_pcolor_lut': Lepton3GetSetCommand(Lepton3Command.Module.VID, 0x04,
5 {
6 'wheel6': [0x00, 0x00],
7 'fusion': [0x00, 0x01],
8 'rainbow': [0x00, 0x02],
9 'glowbow': [0x00, 0x03],

10 'sepia': [0x00, 0x04],
11 'color': [0x00, 0x05],
12 'icefire': [0x00, 0x06],
13 'rain': [0x00, 0x07],
14 'user_defined': [0x00, 0x08]
15 }),
16 (...)
17 }

Listing 12: Definition of the VID_PCOLOR_LUT command in the new implementation of the
v4l2lepton3 library.

CCI implementation in v4l2lepton3 Python3 package

The control software is implemented in the v4l2lepton3.control Python3 module as a
part of the v4l2lepton3 Python3 package available in the git repository21. The module
contains Lepton3Control class, which can be imported to a custom project or inherited
from and extended with more commands. The module also includes addresses for I2C
registers and command hardware modules as well as base classes for general commands,
which eases their definition. The following list summarizes all important entities in the
v4l2lepton3.control module, which is the control part of the v4l2lepton3 library. They
may be imported and utilized in any other project that requires controlling of the Lepton
3/3.5 thermal camera.

21v4l2lepton3 control and capture library git repository https://gitlab.com/CharvN/v4l2lepton3
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• Lepton3Command – base class defining a Lepton command. Holds supported methods,
command id, command module (address of the hardware module that the command
is issued to), length in bytes of the command’s parameter and parameter mappings.

• Lepton3GetCommand – derived class from Lepton3Command, supports only the GET
method.

• Lepton3GetSetCommand – derived class from Lepton3GetCommand, this class adds the
SET method.

• Lepton3RunCommand – similarly, class inheriting from Lepton3Command supporting
the RUN method.

• Lepton3EnableDisableCommand – helper class, which inherits from
Lepton3GetSetCommand and automatically supplies the enabled/disabled command
parameters as 1/0 values.

• Lepton3Control – class containing the implementation of the CCI protocol having
instantiated commands with their methods and parameters, routines for writing and
reading any register via I2C and also for executing a command.

• Lepton3Command.Module – enumeration class containing addresses of all Lepton 3
and 3.5 hardware modules, which can be addressed by a command.

• Lepton3Command.Method – enumeration class with GET, SET and RUN command meth-
ods.

• Lepton3Control.Register – enumeration class containing addresses of the most
commonly used registers in Lepton thermal cameras.

In the repository, there is the lepton3control.py script that can be executed using a
Python3 interpreter. This allows to quickly get, set or run any supported command with
predefined options from the console. Listing 13 contains a complete list of all currently
supported commands with their respective methods.

An interaction sample with getting and setting the false color lookup table (using the
command VID_PCOLOR_LUT mentioned earlier) is shown in listing 14. Getting a currently
set value for the color palette is in the new implementation translated back to the name
of the option. The previous implementation would return a list of bytes and its meaning
would have to be looked up in the CCI documentation.
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1 Use lepton3control.py <i2c_number> <command> <method> [<data>]
2 <i2c_number> -- for /dev/i2c-1 use 1
3 <command> -- one of the commands below
4 <method> -- one of the get, set, run - see available methods next to

commands below→˓

5 <data> -- parameter only for the set method, leave empty to see
available options→˓

6 Commands:
7 agc_calc_enable -- ['GET', 'SET']
8 agc_enable -- ['GET', 'SET']
9 agc_policy -- ['GET', 'SET']

10 oem_bad_pixel_replacement_enable -- ['GET', 'SET']
11 oem_calc_status -- ['GET']
12 oem_customer_part_number -- ['GET']
13 oem_flir_part_number -- ['GET']
14 oem_output_format -- ['GET', 'SET']
15 oem_reboot -- ['RUN']
16 oem_sw_revision -- ['GET']
17 oem_temporal_filter_enable -- ['GET', 'SET']
18 oem_thermal_shutdown_enable -- ['GET', 'SET']
19 oem_video_out_enable -- ['GET', 'SET']
20 rad_enable -- ['GET', 'SET']
21 rad_ffc_run -- ['RUN']
22 rad_tlinear_auto_scale -- ['GET', 'SET']
23 rad_tlinear_enable -- ['GET', 'SET']
24 rad_tlinear_scale -- ['GET', 'SET']
25 rad_tshutter_mode -- ['GET', 'SET']
26 sys_aux_temp_k -- ['GET']
27 sys_camera_up_time -- ['GET']
28 sys_customer_serial_number -- ['GET']
29 sys_ffc_run -- ['RUN']
30 sys_ffc_status -- ['GET']
31 sys_flir_serial_number -- ['GET']
32 sys_fpa_temp_k -- ['GET']
33 sys_frames_to_average -- ['GET', 'SET']
34 sys_frames_to_average_run -- ['RUN']
35 sys_gain_mode -- ['GET', 'SET']
36 sys_ping -- ['RUN']
37 sys_scene_statistics -- ['GET']
38 sys_shutter_position -- ['GET', 'SET']
39 sys_telemetry_enable -- ['GET', 'SET']
40 sys_telemetry_location -- ['GET', 'SET']
41 vid_focus_calc_enable -- ['GET', 'SET']
42 vid_freeze_enable -- ['GET', 'SET']
43 vid_low_gain_pcolor_lut -- ['GET', 'SET']
44 vid_output_format -- ['GET', 'SET']
45 vid_pcolor_lut -- ['GET', 'SET']

Listing 13: List of all currently supported commands with their methods in the
v4l2lepton3 library.
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1 pi@th4:~/py/v4l2lepton3 $ python3 lepton3control.py 1 vid_pcolor_lut get
2 Opening i2c device: 1
3 Booted: True Ready: True ErrorCode: 0
4 Error code: 0
5 Result: wheel6
6

7 pi@th4:~/py/v4l2lepton3 $ python3 lepton3control.py 1 vid_pcolor_lut set
8 Opening i2c device: 1
9 Booted: True Ready: True ErrorCode: 0

10 Error: For SET method for command: vid_pcolor_lut you must specify one of this
parameters: {'wheel6': [0, 0], 'fusion': [0, 1], 'rainbow': [0, 2],
'glowbow': [0, 3], 'sepia': [0, 4], 'color': [0, 5], 'icefire': [0, 6],
'rain': [0, 7], 'user': [0, 8]}

→˓

→˓

→˓

11

12 pi@th4:~/py/v4l2lepton3 $ python3 lepton3control.py 1 vid_pcolor_lut set fusion
13 Opening i2c device: 1
14 Booted: True Ready: True ErrorCode: 0
15 Error code: 0
16 Done.
17

18 pi@th4:~/py/v4l2lepton3 $ python3 lepton3control.py 1 vid_pcolor_lut get
19 Opening i2c device: 1
20 Booted: True Ready: True ErrorCode: 0
21 Error code: 0
22 Result: fusion

Listing 14: Demonstration of getting and setting the false color lookup table using the new
implementation of the VID_PCOLOR_LUT command from the lepton3control.py file.

4.2 Capturing thermal frames: server-client model
As mentioned in the subsection 3.1.4, there were several issues with the previous implemen-
tation of the capture software. Even though the video over SPI (VoSPI) protocol has not
changed from version 3 to 3.5, the old implementation was showing major desynchronization
issues with the new camera. Furthermore, previously, the capture software in C++ was
implemented with the idea that the frames would go into a local v4l2 virtual video device
where they could be manipulated by common linux tools like ffmpeg, vlc or gstreamer. This
would include sending the thermal video over a network using for example an RTP stream.

First of all, this method was quite slow. It required the capture application to pull
frames from the camera and copy it over to the v4l2 virtual video device. Moreover, there
had to be an ffmpeg (or similar) application running, which would copy the frames out of
the virtual video device, compress them and send them over the network. The whole process
copies each frame two times more than necessary. Additionally, in order to have a smooth
fluent capture, the master computer (Raspberry Pi) has to be dedicated to operating the
I2C only. Any delay, caused by a different process using process time, might result in a
camera desynchronization.

Secondly, the idea of sending the thermal video over the network using ffmpeg-like
tool works only for false color RGB888 format. I was unable to find out a combination
of format and lossless codec to transmit the raw Y16 thermal feed, whose each pixel is a
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16-bit value representing real temperatures. Either the combination of codec and format
was not supported by the tool or the codec fell back to a lossy one and the video came
out with artifacts on the receive side. The RGB888 format comes already nonlinearly
normalized from the camera for displaying purposes, and thus, is unusable for reconstructing
temperatures of the scene.

The new project’s requirement was to collect thermal feed from multiple cameras, detect
and locate people and merge them into a single scene. Real temperatures are needed for
the thermal detector, therefore, the whole capture part of the library had to be redesigned
to be able to reliably transmit raw 16-bit thermal images over the network. On top of that,
the whole capture process had to be sped up about 8 times to avoid losing synchronization
with the camera.

The new implementation of the capture software follows the server-client model. It
is written in C++ and forms a single process that runs on the Raspberry Pi computer to
achieve maximum speed. The thermal unit behaves like a synchronous server. Its server
process listens on a port and waits for a client to connect. Once a client is connected, it
initializes the SPI interface and starts pulling frames from the camera and sending them
over the open socket. When a connection is lost to the client, the thermal unit stops
communicating with the Lepton camera and starts listening for another client.

Figure 4.2: Sequential graph of the server-client model.

The central station for aggregating all thermal data acts in this case as a client. It
connects to the port of the server and immediately starts receiving frames in the raw Y16
format. The communication between the client and the server is shown in figure 4.2. The
server:capture and client:receive threads are free running, which means that they
are continuously receiving frames from the Lepton camera or server respectively, and they
hand over a frame to the main thread of the server or client process only when requested
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using the getFrame call. This way it is ensured that the Lepton camera does not lose
synchronization and that the client always gets the most recent frame. In case there is a
new frame available before it has been requested by the main thread, the frame gets simply
discarded. Discarding frames lowers the effective frame rate, which is being logged by the
process and optionally by the client as well.

The connection between the server and the client is realized using a TCP connection.
The TCP transport protocol has been chosen because it ensures in-order delivery of every
packet. If packets got lost or arrived out of order, it would not be possible to assure proper
reconstruction of each frame. The server is sending frame by frame, pixel by pixel. The
client keeps receiving bytes until 160 × 120 × 2 bytes are obtained. From this data, the
client reconstructs the thermal frame in its raw format (Y16). Since the stream may be
compressed by the zlib stream compressor, it is important to receive every frame and then
decompress it.

The following subsections describe implementation, features and usage of both sides of
the client-server implementation of the capture library.

4.3 Server side
Both server and client sides are available in the v4l2lepton3 git repository22. In order to
get the server up and running on the thermal unit manually without the use of Ansible,
the following steps must be performed:

• Clone the v4l2lepton3 repository into the Raspberry Pi.

• Install the server from sources using the following commands:

1 cd v4l2lepton3 && mkdir build && cd build
2 cmake ..
3 make server

In order to compile the server, its dependencies must be installed first. The library
depends on libboost C++, CMake >= 3.6 and zlib.

• Run the server with custom arguments using the following command:

1 ./server [-p <port>] [-s <spi_device>] [-t <timeout_ms>] [-h] [-c]

– -h --help: shows help
– -p --port <port>: sets server TCP port, default 2222
– -s --spi <spi_device>: SPI device, default /dev/spidev0.0
– -t --timeout <timeout_ms>: frame acquisition timeout in ms, default 5000
– -c --compress: turns on zlib compression

The server by default starts listening on port 2222. The SPI device may also be changed
from the default /dev/spidev0.0. There is a timeout in the server set to 5,000 ms, which
prevents the server from freezing up when it is impossible to obtain a frame from the camera.

22v4l2lepton3 control and capture library git repository https://gitlab.com/CharvN/v4l2lepton3
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If for some reason the frame is not read from the camera in time (set by the timeout), the
server assumes that there has been a critical problem with connection to the camera and
shuts down with an error code 2. The connection problem may arise by having a loose wire
or by the camera freezing up. This error code indicates that there has been a problem with
the connection to the camera and a supervisor (a system service for example) may decide to
reboot the camera using the CCI OEM_REBOOT command or by disconnecting it completely
through the custom power switch.

When the -c argument is used, the server turns on zlib stream compression, which
reduces the amount of transmitted data from 360 KB/s to 130-160 KB/s. Turning the
compression on has a negative side effect because it puts strain on the CPU. With the
compression on, the server drops the frame rate a little bit from 8.7 FPS to 7.8 FPS and
sometimes causes a desynchronization event. The desynchronization is however temporary
and the server quickly recovers, reinitializes the camera and starts transmitting frames once
again.

The server is logging events into the server.log.N file. There can be up to 5 log files,
and when the log file is full, the server rotates the log files so that server.log.0 always
contains the most recent log messages. An example of a single session captured in the
log can be seen in listing 15. The server logs: starting of the server, waiting for a client,
receiving a connection, an average frame rate of the transmitted thermal video, the event
of a client disconnecting or an exit signal.

1 [2020-06-03 01:39:48.321926 [info] Waiting for a client on port: 2222
2 [2020-06-03 01:40:02.662328] [info] Client 192.168.1.2:47070 connected.
3 [2020-06-03 01:40:02.662926] [trace] Starting SPI capture thread.
4 [2020-06-03 01:42:23.939730] [trace] FPS: 8.77543
5 [2020-06-03 01:42:25.535755] [trace] Lost connection with the client: write:

Broken pipe→˓

6 [2020-06-03 01:42:25.536103] [info] Client disconnected.
7 [2020-06-03 01:42:25.536243] [trace] Stopping SPI capture thread.
8 [2020-06-03 01:42:25.536383] [trace] Closing SPI.
9 [2020-06-03 01:42:25.536793] [info] Waiting for a client on port: 2222

10 [2020-06-03 01:42:27.983937] [info] Received SIGINT. Exiting.

Listing 15: Session example from a v4l2lepton3 server log.

The communication between the server and the client in this case goes only one way.
Consequently, the client may disconnect at any point without notifying the server (as might
happen unintentionally when there is a network connection problem). In order to handle
such situation, the server is expecting possible errors when sending each frame to the
client. When any error occurs, the server logs it and assesses the situation as the client has
disconnected, stops its dedicated thread for SPI communication, resets its internal state
and starts waiting for a new client.

In order to read a single frame from the camera, the capture process must read out 4
segments of 60 packets of 64 bytes (for raw Y16 format without telemetry). During this
process, several problems may arise as follows:

• SPI error: When there is an SPI problem with either opening the device or transceiv-
ing the data, the server tries to reopen the SPI device and reinitialize the camera every
2 seconds until the per-frame-timeout limit is reached. After that, the server exits
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with error code 2, which may trigger some outer events, for example a forced restart
of the thermal unit.

• Invalid packet: Lower 4 bits of the first byte having the value of 0xF signifies an
invalid packet. The camera sends invalid packets when it is in not in the ready state
and can not send data. This may happen after startup, during resynchronization event
(for example when the host fails to read the whole frame in time before the next one is
ready) or when the camera is calibrating itself– during the flat field correction (FFC)
event. When the capture process detects an invalid packet, it sleeps for 1 𝜇s and tries
reading a packet again. A valid packet usually appears after few attempts.

• Lost synchronization: An invalid packet may also be received in the middle of a
segment transaction. This means that the host has not been able to read all segments
of a frame in time (most likely because the host has been too slow) and the camera
is in an unknown state. In this situation, the server forces resynchronization, which
translates into idling the SPI communication for 200 milliseconds. This assures that
the camera is reset and ready to start the transmission over. After a few invalid
packets, the server starts receiving a new frame from the beginning.

• Unexpected segment: A frame consists of 4 segments. Each segment has a segment
number stored in the header of the 20th packet. Segments must be received in order
from segment number 1 to 4. If a segment number is 0, the whole segment is invalid
and should be discarded. The server keeps receiving segments until it gets segments
with numbers from 1 to 4 in order. If the server receives an unexpected segment, it
logs the accident and tries pulling another one. After all 4 segments are received in
order, they get assembled into a frame and sent over to the client.

The server can handle well each issue that might occur during the thermal video feed
transmission. If desynchronization happens, the server quickly recovers and starts sending
frames soon after so that it is not even observable on the client side. The only time, when a
client side experiences an interruption, is when the camera performs the automatic flat field
correction. During that time, the camera is not sending any frames, it closes its shutter and
briefly exposes the camera’s sensor to a uniform thermal scene allowing itself to recalibrate,
and thus, produce highly uniform images. The FFC process takes about 1 second.

Optimizations

The server C++ implementation had to be optimized and sped up in order to avoid constant
desynchronizations with the camera. The following changes have been made when compared
to the original code of the capture software:

• Dual segment buffering: There is a dedicated thread that is in charge of capturing
a whole segment (60 packets of 164 bytes). After the segment is received, segment
buffers are swapped and a new capture is started straight away. The caller thread
meanwhile processes the received segment, strips the packet header and places the
segment into the frame.

• Dual frame buffering: When the frame is complete, frame buffers are swapped
and a new frame is being constructed asynchronously in the new buffer while the old
buffer is used for sending the frame to the client.
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• Reduced OS calls: Every SPI operation translates in an ioctl system call. The old
implementation used to transceive one packet at a time (164 bytes) and then checked
its header to see if the packet was valid. This naturally adds plenty of overhead and
delays. In the new implementation, the server pulls a single packet at a time until
the packet is valid (starting packet with number 0). Then the rest of the segment
(59 packets) is pulled at once using a single large transaction. The SPI transaction is
59× 164 = 9676 bytes long.
On a standard Raspberry Pi, an SPI transaction this large can not be performed
straight away because the system SPI device buffer is set to only 4 kB. The transaction
fails or hangs indefinitely. The size of the SPI buffer can be obtained by running the
following command:

1 $> cat /sys/module/spidev/parameters/bufsiz
2 4096

The size of the system SPI buffer can be increased up to 64 kB by placing

1 spidev.bufsiz=65536

parameter to the end of the /boot/cmdline.txt file and rebooting. After increasing
the buffer size, the large SPI transaction succeeds and gains valuable time.

These optimizations helped to speed up the server capture process to run smoothly without
any desynchronizations.

4.4 Client side
On the client side, the following two implementations were created:

• Python client: The Python implementation is more generic and agile. The client
is placed in the v4l2lepton3.client Python3 module, which can be easily used in
other projects. In our case, we are going to be using this client implementation in the
detection and localization process.

• C++ client: The C++ implementation is designed for a more specific use case. The
C++ client works similarly as in the bachelor’s project. It connects to the server and
pushes every frame it receives into a local virtual video device, so that the thermal
stream may be locally manipulated by generic video processing tools like the ffmpeg,
vlc, gstreamer and so on.

The following subsection describes specific features, design and usage of these two client
implementations.

4.4.1 Client implementation: Python

The python implementation can be found in the Lepton3Client class in the
v4l2lepton3.client module. Its constructor only takes two arguments: ip and port
and has one essential function get_frame(), which returns the most recent frame from
the camera as a numpy np.ndarray object with 160 × 120 16-bit unsigned integers. The
typical usage of this class is demonstrated in listing 16.
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The Python package containing the client, control and single frame manipulation func-
tionality can by installed into the system by running:

python3 -m pip install .

in the v4l2lepton3 directory. The library is then used by the rest of the system to interact
with the camera directly.

In the repository, there is the lepton3client.py file that imports from the module and
can be directly executed. When interpreted with the Python3 interpreter, it is expecting
two positional parameters ip and port. The script instantiates the Lepton client and starts
receiving frames in an infinite loop. Each frame is normalized using OpenCV to increase
its dynamic range and rendered in an OpenCV window. Every 2 seconds, the script prints
average frame rate of processed thermal images, and using the spacebar key, the current
frame can be saved.

The Python client automatically recognizes whether the server is using compression or
not. At first, it tries to use the zlib decompression and if it fails, the client continues to
receive frames with decompression disabled.

1 from v4l2lepton3.client import Lepton3Client
2 with Lepton3Client('192.168.1.51', 2222) as client:
3 while True:
4 frame = client.get_frame()
5 # process, normalize, print etc

Listing 16: Example of a typical usage of the Python client implementation.

4.4.2 Client implementation: C++

The C++ client is designed in more of a standalone manner. It is used by simply running
it in the background and the result is having a thermal video stream available in a virtual
video device in the local system. The client connects to the remote server and pushes every
frame it receives into the video device.

Before compiling the client, there must be c++ libboost, zlib and cmake installed on
the client system as well as a virtual video kernel module v4l2loopback. The v4l2loopback
repository23 contains all necessary installation steps.

After loading the kernel module with

1 $> sudo modprobe v4l2loopback

there is going to be a video device visible in the linux device tree, for example /dev/video0.
After cloning the v4l2lepton3 capture and thermal library, the C++ capture client

can be compiled using the following commands:

1 cd v4l2lepton3 && mkdir build && cd build
2 cmake ..
3 make client

23v4l2loopback virtual video kernel module – git repository https://github.com/umlaeute/
v4l2loopback
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The typical usage of the C++ client is demonstrated below:

1 ./client -i <ipv4> [-p <port>] [-v <video_dev>] [-c]

• -h --help: shows help

• -i --ip <ipv4>: IP address of the server

• -p --port <port>: TCP port of the server, default 2222

• -v --video <video_dev>: name of the video loopback device, default /dev/video0

• -c --compress: turns on zlib frame decompression

The C++ client initializes the virtual video loopback device to accept RAW color space
and Y16 (a single 16-bit intensity value per pixel) format. It connects to the server and every
frame it receives pushes into the virtual video device. For the C++ client, it is necessary
to configure the compression the same way as for the server.
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Chapter 5

Person detection

This chapter describes the development and evolution of the person detector from the
version in the bachelor’s project to the new detector that is used now. The first section
summarizes the method used in the old legacy detector and pinpoints its defects and draw-
backs. The next section goes theoretically through the current general methods that can
be used for person detection purposes. The sections that follow from then on describe
the newly chosen method for person detection and the process connected with getting the
method to work for our use case, its usage and results.

5.1 Legacy thermal detector
The person detector used in the bachelor’s project was a simple one based on filtering tem-
peratures outside the human-body-temperature range and image processing. The camera
used in the old project was the Lepton 3, which does not have the true radiometry fea-
ture, so it was necessary to provide the mapping function between incident flux and real
temperature. This function has been only an approximation with relatively large error.

5.1.1 Detector method

The old detector was designed to work in the following steps:

1. Convert pixel values to real temperatures using our approximate mapping function.

2. Filter out pixels that have temperatures outside the human-body-temperature range.

3. Increase the dynamic range of the thermal image using linear normalization.

4. Apply adaptive binary mean thresholding to obtain a binary image with white areas
containing potentially detected objects.

5. Reduce noise using morphological transformations (opening and closing).

6. Find contours of compact white areas in the binary image.

7. Create border boxes around found contours.

8. Filter out boxes with insufficient area.

9. Draw found boxed into the original image.
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A more detailed description of the legacy thermal detector can be looked up in the
bachelor’s thesis [18] [chapter 5]. An example of the detector in work is depicted in figure
5.1.

Figure 5.1: Example of the legacy thermal detector at work.

5.1.2 Detector hyper parameter calibrator

The legacy detector has various parameters and opportunities for adjustments. In the
bachelor’s project, it has been empirically calibrated for the particular dataset captured in
quite a small room usually with a few people in it using the false radiometric Lepton 3
thermal camera. Since the detector was showing very good results in such environments
and was extremely fast, it was planned to continue using this detection technique also in
the new project, in which we are trying to create a large system that covers wide open areas
with complex borders and multiple thermal cameras. In order to use the detector with the
new Lepton 3.5 thermal camera in a larger area and achieve the best results possible, it
was necessary to adjust the hyperparameters of the detector.

The parameters of the legacy thermal detector are the following:

• temperature filtering MIN, MAX

• adaptive thresholding BLOCK SIZE, CONSTANT

• kernel sizes for OPENING and CLOSING

• minimal detected object bounding box AREA and TEMPERATURE

In order to calibrate the hyperparameters of the detector, a calibration script for visual
adjustments was created. The usage of the calibration script can be seen in listing 17. In
order to run the calibrator, the --directory parameter has to be specified. The calibrator
goes through all .tiff raw thermal images from the directory and displays results of the
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thermal detector with the current hyperparameters. Detector parameters can be adjusted
by pressing keys specified in listing 18. Every parameter change takes immediate visual
effect.

1 python3 calibrate_thermo_detection_params.py -d DIR [-h] [-s SCENE] [-c CAMERA]
2

3 Arguments:
4 -h, --help # Show this help message and exit.
5 -d DIR, --dir DIR # Directory containing .tiff raw thermal images.
6 -s SCENE, --scene SCENE # Scene model in .JSON format.
7 -c CAMERA, --camera CAMERA # Name of a calibrated camera in the loaded scene.

Listing 17: Arguments of the thermal detector hyperparameter calibrator.

Optionally, by running the script with --scene and --camera arguments, it is possible
to load a scene and project detected objects into it using the specified camera in the later
argument. The scene abstraction and its implementation is described later in this thesis,
specifically in chapter 6. For now, the only important part is how well the detector detects
and encloses detected objects in bounding boxes.

1 Controls +/-:
2 - UP/DOWN - adaptive temp MAX
3 - LEFT/RIGHT - adaptive temp MIN
4 - Q/A - thresholding BLOCK SIZE
5 - W/S - thresholding CONSTANT
6 - E/D - kernel size OPEN
7 - R/F - kernel size CLOSE
8 - T/G - min box area
9 - U/J - min BOX TEMP threshold

10 - SPACE - next image
11 - ESC - exit and print parameters

Listing 18: List of active control keys for the detector hyperparameter calibrator.

By pressing SPACE the script loads a next thermal image and displays detected objects
and optionally their position in world space. By pressing ESC, the calibrator exits and prints
out the current detector hyperparameters. An example of visual output of the calibrator
can be seen in figure 5.2 and text console output in listing 19.
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Figure 5.2: Visual example output of the detector parameter calibrator.

1 $> calibrate_thermo_detection_params.py -d ../DATA/th1 -s nm_scene.json -c th1
2 File: 20191213_1554_05.raw
3 Min: 19.27000000000004 °C Max: 29.430000000000007 °C
4 Normalizing: min 29242 max: 30258
5 ->[ESC]
6 Parameters: DETECTOR:
7 - TEMP: min: 21.0 °C max 37.0 °C
8 - KERNEL SIZE: open: 2 close: 5
9 - THRESHOLDING: block size: 95 constant: -30

10 - BOX AREA: 54
11 - MIN BOX TEMP: 25.0 °C

Listing 19: Text example output of the detector parameter calibrator.

5.1.3 Detector issues

As mentioned previously, the detector did a really good job on detecting simple and more
importantly smaller scenes. Additionally, the detector is extremely fast, thus, it would be
perfect for a real-time operation in a larger, complex environment with multiple cameras.

Unfortunately, after some testing in a large museum hall with higher amount of people
with all sorts of occlusions, the detector started failing. The hall was 15.8 × 5.7 meters
which is quite a large area for a camera with the resolution of only 160 × 120 pixels. When
there were multiple people standing further away from the camera, their heat signature
started creating a single interconnected object, which confused the detector into classifying
a whole group of people as a single person. This problem is well visible in every part of
figure 5.5.

Another problems are occlusions in general, if a person is standing in front of another,
any software or even a person is going to have a hard time telling them apart. This is
especially true for thermal imagery, where boundaries between similarly warm objects are
not distinct enough. An example of such difficult thermal image can be seen in subfigures
a), b) and c) of figure 5.5.

46



(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Examples of the failing legacy thermal detector in a more challenging environ-
ment.
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Moreover, the detector is prone to make false positive detections. If there is an object
in the scene with about the same temperature as a human – like for example a TV, an
information board with backlight or a radiator – the detector often classifies it as a person.
It basically considers any large enough object in the allowed temperature range as a person.
This issue can be noticed in subfigure f) of figure 5.5.

There is one more issue, which is more connected to the thermal imagery than the legacy
detector itself, and that is thermal reflections. As a standard camera and object detector
would classify a mirror image of a person as a real person, the same thing happens also in
thermal imagery. Only it is a bit more unpredictable for humans because we can not see
which surface happens to be a good thermal mirror. Usually flat and shiny surfaces, or for
example a polished floor, reflect heat (as a long wave infrared radiation) very well. This
kind of problem is noticable on the left side of subfigures c), d) and e) of figure 5.5.

These issues make the simple legacy thermal detector unusable for the new project,
as one of the requirements is being able to detect individual persons in a larger area with
more than a few people, for example in a museum exhibition hall. Therefore, a new detector
based on a completely different method has been chosen, designed and implemented to suit
the needs of the new project. The following sections focus on image detection methods in
general, and later, on the method chosen for this project.

5.2 Object detection
Object detection is in simple words a task of placing boxes around objects in an image and
saying what those objects are. Humans are extremely good in object detection, where on
the other hand, computers struggled quite a lot historically. Even though object detection
as a problem has been around since the sixties, the first actually good facial detector was
released less than 20 years ago. The Viola-Jones algorithm [60], released in 2001, was
using hand-coded features that were fed into an support vector machine (SVM) classifier.
The hand-coded features for facial detection would be positions of eyes, nose, mouth and
their relation with respect to each other. The algorithm performed well in detecting faces
matching with the hand-coded features, however, struggled with detecting rotated faces or
faces in any other orientation. [46]

(a) Viola-Jones algorithm (b) Histograms of Oriented Gradients
(HOG)

Figure 5.6: Illustration of the first facial detectors using hand-coded features and histograms
of oriented gradients. (Source [46].)
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In 2005, a new HOG-based detection algorithm was released. The histogram of oriented
gradients (HOG) [19] was used as a feature descriptor, where each pixel of the image was
replaced by a gradient showing the direction of decreasing pixel intensity with respect
to surrounding pixels. The image was then divided into squares and all gradients inside
each square merged into a single most dominant gradient. During this process, an image
was replaced by a simple representation of the essence of the image using gradients. The
algorithm would then use a similarity metric to determine how close an image is to the
object we are looking for by comparing their gradient patterns. These two techniques are
illustrated in figure 5.6. [46]

The biggest breakthrough came in 2012, when the deep learning era began. The CNN
based AlexNet [33] from Alex Krizhevsky outperformed every other solution at that time
and won multiple image classification contests. Convolutional neural networks had been
known since the nineties, however it has been only recently with the immense increase
of processing power and amount of data when the neural networks began to show their
potential. The convolutional neural network in essence learns the feature descriptors on its
own during the training process as opposed to the previous two methods in which they had
to be crafted by hand.

These three algorithms, as described, correspond more to object classifiers, meaning,
that they can tell what the object in an image is if there is nothing but one object in it. It
can not detect and classify multiple objects in a single image. This has however been proven
to be possible by repurposing any image classifier. The classifier can sequentially classify
every part of an image through a sliding window, and detections with the highest confidence
score, in that case, represent the output of the detector. This approach is however extremely
computationally expensive.

In 2014, the popular R-CNN object detector [23] was released followed by Fast R-
CNN [22] and Faster R-CNN [51] (2015), which were using the selective search technique
instead of a sliding window to create sets of bounding boxes that were later fed into the
classifier to cut down the number of operations. Even though the R-CNN was the most
accurate detector on the market at the time, it had to look from thousand up to hundred
thousand times at a single image to perform the detection, and that was still very far from
real-time. The R-CNN model is illustrated in figure 5.7 and speed comparison with other
models can be seen in table 5.1.

Figure 5.7: Illustration of the R-CNN detector pipeline. (Source [23].)

In 2015, there was a revolution in the field of object detection with the new YOLO
algorithm which took a completely different approach and outperformed R-CNN and all of
its variants.

49



Detector Pascal dataset mAP24 % Speed
DPMv525 33.7 14 s/image
R-CNN 66.0 20 s/image

Fast R-CNN 70.0 2 s/image
Faster R-CNN 73.2 7 image/s

YOLOv1 69.0 45 image/s

Table 5.1: Speed and accuracy comparison of relevant object detectors in 2016. (Source
[47].)

5.3 YOLO – You Only Look Once
You Only Look Once (YOLO) is the state-of-the-art real-time object detection system
originally presented by Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi
in 2015. When compared to all other detectors at the time, it took a completely different
approach. Instead of repurposing an image classifier and using it to classify different regions
in the image, it uses a neural network that takes an image as an input and in a single pass
outputs regions with detected classes and confidence scores for each region as well as class.

The new approach required redefining parametrization of object detection. Every image
is split into a grid, where each grid cell is responsible for predicting several bounding boxes
and confidence scores for each bounding box, saying, how sure the detector is that a certain
bounding box actually contains an object, and if there is an object, what kind of object it
is.

If the image is split into 7 × 7 grid, each cell is responsible for predicting 2 bounding
boxes and the detector should detect 20 classes, then the output of the neural network has

7× 7× (2× 5 + 20) = 1,470 values,

where 5 is the total number of parameters for each bounding box – namely x, y, width,
height and confidence. This particular example shows how the YOLO version 1 is con-
structed.

To summarize, the YOLOv1 detector is a neural network trained to predict tensors with
1,470 values, which contain detected bounding boxes with corresponding class probabilities
and detection confidence scores all at once. With this approach, the detector pipeline can
be as quick as a classification pipeline. Moreover, since the whole image is processed at
once, the model can incorporate global context of the image, which increases its accuracy.
The detection process of the first version of YOLO is illustrated in figure 5.8.

24mAP – mean average precision, popular metric for measuring the accuracy of object detectors in %
25DPMv5 (Deformable Parts Model version 5) – one of the base legacy detection models using the sliding

window approach
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Figure 5.8: Illustration of the YOLOv1 detection process. (Source [48].)

In 2016, the second version of YOLO was released [49] featuring important improve-
ments that increase its overall accuracy. The detector finished training on images with
higher resolution and changed the way of representing bounding boxes. The YOLOv2 uses
dimension clusters to represent bounding boxes. Using unsupervised learning, the creators
extracted 5 most common shapes and sizes of bounding boxes occuring in the VOC 2007
image dataset26, and used them as templates for bounding boxes that each cell in the
YOLOv2 detector can detect. The new representation makes the problem easier to learn.
The YOLOv2 also uses multi-scale training, meaning, that the input image size is not fixed
throughout the training process but changes on the fly resulting in a more robust detector,
as it works better on differently sized images.

The YOLOv3 [50] brought even more improvements in 2018. One of them is the support
for multiple labels, as not every time are two different classes exclusive – like a pedestrian
and a child. More importantly, the YOLOv3 is using a new backbone (or feature extractor
part of the network) Darknet-53. The network has 53 convolutional layers with short-cut
connections, allowing for extraction of finer-grained information from the image, which
significantly improves detection accuracy of small objects. Unlike the previous versions,
YOLOv3 makes bounding box predictions at 3 different scales further improving accuracy
of the detector.

In February 2020, the original author of YOLO Joseph Redmon announced that he
would stop his research in the field of computer vision. On his Twitter account he wrote:

“I stopped doing CV research because I saw the impact my work was having.
I loved the work but the military applications and privacy concerns eventually
became impossible to ignore.“ — Joseph Redmon, 20. February 202027

This post raised a lot of questions about what we are actually doing here and what
consequences it might have. It also proves just how good the YOLO model is. Fortunately,

26PASCAL Visual Object Classes 2007 image dataset http://host.robots.ox.ac.uk/pascal/VOC/
voc2007/

27Twitter post from J. Redmon https://twitter.com/pjreddie/status/1230524770350817280?lang=en

51

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://twitter.com/pjreddie/status/1230524770350817280?lang=en


our system uses thermal cameras just so that facial or person recognition is not possible,
therefore, privacy is not in danger in this case.

By the end of April 2020, the fourth version of YOLO [15] was released by Alexey
Bochkovskiy and his team promising even better accuracy and speed, effectively dominating
every other solution in the field of real-time object detection. The creators performed
an ablation study28 to test and select the most effective training optimization methods,
which can lead to huge improvements in accuracy, yet, with no or minimal additional
computational cost.

The tested methods were mostly data augmentation techniques that could potentially
increase the descriptive power of the feature extracting part of the network. Some of the
data augmentation methods are the following: edge map, flip, rotate, detexture, cutmix,
mosaic, dropblock regularization and so on. A new activation function mish has been tested
as well as other specialized techniques like cross stage partial connections or multi-input
weighted residual connections. The optimizations also covered selecting the optimal hyper-
parameters of the model like number of training steps, batch size, learning rate, momentum,
weight decay or minibatch size. As a result, the YOLOv4 is superior to all other object
detectors in terms of both speed and accuracy, which can be observed in figure 5.9.

For the new person detector used in this project, the YOLO object detection model
has been chosen. More information about the specific YOLO implementation used in our
project is located in section 5.5 of this chapter.

Figure 5.9: Speed and accuracy comparison of different object detectors. (Source [15].)

5.4 Training on a thermal dataset
Every object detector requires a set of labeled images on which the detector can be tested,
and most of the time, even trained if the detector belongs to the category of supervised
machine learning. Our chosen detector requires the labeled dataset for both training and
testing. A labeled dataset contains images with information about objects we want to
detect. This information is called labels or annotations, and there are different ways to
store this information. A label stores information about: in which image the object is, in
which region of the image the object is and what the object is (which class).

28Ablation study has its roots in the field of experimental neuropsychology of the 1960s and
1970s, where parts of animals’ brains were removed to study the effect that this had on their be-
haviour. (Source: https://stats.stackexchange.com/questions/380040/what-is-an-ablation-study-
and-is-there-a-systematic-way-to-perform-it)
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5.4.1 Object annotation types

There are several different labeling formats. Every labeling format supports different types
of objects, can be used with different image processing technique and is stored in a different
way. Some formats support more types of objects, some are simpler and designed for a
single purpose only. Some annotation formats may also be used in different disciplines than
object detection. This subsection has been inspired by [24], [43].

(a) bounding boxes (b) lines

(c) key-points or landmarks (d) pixel-wise segments

Figure 5.10: Object annotation type examples. (Source [43].)

Some of the most commonly used object types are the following:

• Bounding boxes: simplest and most commonly used object type. For each object
in an image, an enclosing border box is recorded. This object type is usually used for
standard object detection.

• Polynomial segments: objects do not always have to be enclosed in a rectangular
box. This object type allows the object to be circumscribed by a more complex shape
made of polygons.

• Pixel-wise segments: an annotated object is described by a set of pixels that belong
to it. This type of label is usually used for semantic segmentation of an image, where
the segmentation algorithm is trying to classify each pixel into a particular class of
objects. When compared with the previous techniques, the pixel-wise segmentation
has the highest resolution.

• Key-points: this kind of annotation stores several interconnected points creating a
skeleton of the object. This kind of label is often used for facial expression detection,
human body parts, poses and similar.
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• Lines and curves: often used for training autonomous vehicle systems for detection
of road lanes.

Examples of these object annotation types are demonstrated in figure 5.10.

5.4.2 Annotation formats

Object annotations may be stored using several different formats. The most common la-
beling formats are COCO, PascalVOC and YOLO. Each format supports different object types
and has its specific way to store them.

• COCO Dataset Format: The COCO format has been developed for the large,
publicly available annotated image set COCO29. It supports several different object
types and is usable for the broadest variety of digital image processing tasks includ-
ing object detection, image segmentation, keypoint detection, image captioning and
others. Annotations are all in a single JSON file with the following structure:

1 {
2 "info": {
3 "description": "COCO 2017 Dataset", "year": 2017
4 },
5 "licenses": [...],
6 "images": [{
7 "file_name": "img1.jpg",
8 "height": 427, "width": 640, "id": 397333
9 }],

10 "annotations": [{
11 "category_id": 1,
12 "area": 702.1057499999998,
13 "id": 154235421, "image_id": 397333,
14 "bbox": [473.07,395.93,38.65,28.67]
15 }],
16 "categories": [
17 {"supercategory": "person","id": 1,"name": "person"}
18 ]
19 }

• PascalVOC: Another commonly used annotation format is PascalVOC. This format
is very popular for object detection. Unlike COCO, the PascalVOC format uses
XML encoding, and annotations are not stored in a single file, as instead, there is a
dedicated annotation file with labeled objects for each image. Another difference is
the way how border boxes are represented. A bounding box in the COCO dataset
format is represented by x, y of the top-left corner plus width and height, while the
PascalVOC format uses x, y of the top-left and bottom-right corners. The PascalVOC
annotation file has the following structure:

1 <annotation>
2 <filename>img1.jpg</filename> <segmented>0</segmented>
3 <size>

29COCO image dataset http://cocodataset.org/#home
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4 <width>640</width>
5 <height>427</height>
6 <depth>3</depth>
7 </size>
8 <object>
9 <name>397333</name> <pose>Frontal</pose>

10 <occluded>0</occluded>
11 <difficult>0</difficult> <truncated>0</truncated>
12 <bndbox>
13 <xmin>473</xmin>
14 <xmax>511</xmax>
15 <ymin>395</ymin>
16 <ymax>423</ymax>
17 </bndbox>
18 </object>
19 </annotation>

• YOLO: The YOLO annotation format is by far the most simple and easy to use, but
it can be used to annotate only rectangular objects. A regular .txt plain annotation
file must be created for every image in the dataset with the same file name as the
image it stores annotations for. Each line of the annotation file represents one object
and has the following pattern:

1 <class_id> <x> <y> <width> <height>

Coordinates x and y are referring to the top-left corner of the bounding box, so from
this point of view, the notation is similar to the COCO dataset format. YOLO,
however, has all 4 coordinates in relative units with respect to the image size. This
means that x, y, width and height are all floating point numbers between 0 and
1. class_id is an index of a user-defined class starting at 0. Class translations are
then placed in a separate file and utilised by the specific image processing algorithm.
The YOLO implementation described later in this chapter requires a .names text file,
where each line contains a class name. For example, the class name on the first line
corresponds with class_id 0, the second line with class_id 1 and so on.

5.4.3 Custom thermal dataset

There are currently no pretrained YOLO models for thermal data. The only way how to
utilize the YOLO object detector to detect people in thermal images is to create a custom,
annotated, thermal dataset and use it for retraining the YOLO detection model, which has
been originally trained on the large COCO image dataset. In other words, an extensive
thermal image set had to be captured and manually annotated.

The YOLOv4 documentation [14] suggests to have at least 2,000 images in the custom
dataset for each class we want to detect. In order to construct the custom thermal dataset,
two different thermal datasets were combined. The first one is the only publicly available
thermal dataset from FILR and the second one was created using previously constructed
thermal units with Lepton 3.5 thermal cameras.
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FLIR’s thermal dataset

FLIR, as the world’s largest company specializing in the design and production of thermal
imaging cameras, offers a free thermal dataset30 for algorithm training usage. The dataset
contains thermal images and video from the FLIR’s high-end TAU 231 thermal camera
mounted to the front of a car. The thermal images in the FLIR’s dataset come from a
significantly better device costing over 200 times more than the Lepton 3.5. This means
that the data is of higher resolution and significantly different characteristics, and using
only the FLIR’s dataset would presumably yield poor results.

Since the trained model would be used exclusively with the low-cost Lepton 3.5 camera
module, it makes sense to combine the FLIR’s thermal dataset with one captured using the
Lepton 3.5 camera. This way it is possible to harvest features specific to the Lepton 3.5
and also essential characteristics of people on generic high resolution thermal images.

The FLIR’s thermal dataset includes over 14,000 thermal images with 5 annotated
classes in raw Y16 and normalized grayscale RGB888 formats. Since we are specifically
interested in people, only thermal images containing people were selected. That sums up to
7,044 thermal images with 28,151 annotated person objects. An example from the FLIR’s
thermal dataset is visible in figure 5.11.

The FLIR’s dataset is using the COCO annotation format to store object annotations
for images. This format is not supported by the YOLO implementation that we are using
in this project, and therefore, the annotations had to be converted into the YOLO format
using a custom script.

Figure 5.11: Examples from the FLIR’s thermal datset. (Source [8].)

Lepton 3.5 custom dataset

The total of 3 thermal units were deployed in the Czech National Museum32 in Prague.
The cameras were capturing thermal images in two larger halls (15.8 × 5.7 meters) every
minute during opening hours for over several months. As a result, an extensive database
of raw thermal images has been created.

30FREE FLIR Thermal Dataset for Algorithm Training https://www.flir.com/oem/adas/adas-dataset-
form/

31FLIR’s TAU 2 thermal camera – product page https://www.flir.com/products/tau-2/
32Czech National Museum in Prague https://www.nm.cz/en
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During this process, the thermal units were behaving as independent units executing
a script that was programmed to capture and save a single thermal frame at a time. The
script is located in the scripts directory of the v4l2lepton3 library under the name of
capture_periodical.py. When the script is interpreted by the Python3 interpreter, it
opens the preconfigured SPI device and reads out one frame in the raw Y16 format. The
thermal image is then saved under the current timestamp name in both – .tiff format
(raw) and .png format after normalization.

The Python interpreter is very slow on its own, and when combined with many system
calls to interact with the SPI device, it is unusable for continuous capturing of the thermal
feed. Capturing a single frame is however possible. The script has the total of 45 seconds
to pull and save each thermal image. If it fails to do so before the timeout runs out, the
script logs an error and quits.

The script is designed for a single run at a time, and therefore, has its own log file
where it logs successfully saved frames and any errors that might have occurred, including
timeouts which often mean that a camera froze and has to be rebooted.

The script has been scheduled to run every minute during opening hours of the Museum,
which is from 10 to 18 hours. The ideal way to schedule such task is to use the built-in
linux tool cron33. Cron is a linux daemon to execute scheduled commands. Scheduling a
command in linux can be done by running

1 crontab -e

and inserting a scheduling configuration as a new line. In order to run the sequential capture
script every minute every day from 10 to 18 hours, the following configuration has been
inserted:

1 * 10-18 * * * python3 /home/pi/v4l2lepton3/scripts/capture_periodical.py

Scheduled commands can be listed using the crontab -l command.

From the captured thermal dataset, the total of 6,372 images were selected for annotation.
Rejected images were often either empty or overcrowded scenes, which were not suitable
for manual annotation process. On these 6,372 selected images, I annotated 25,477 person
objects by hand. The annotating process took about a man-week of work.

For labeling the images, the labelImg tool has been used. LabelImg is a free graphical
image annotation tool supporting PascalVOC and YOLO annotation formats. Graphical
interface of this tool is shown in figure 5.12.

33cron(8) - linux man page https://linux.die.net/man/8/cron
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Figure 5.12: Example of the LabelImg graphical interface.

Merging the FLIR’s and the custom thermal dataset resulted in having 13,416 thermal
image files with 53,628 annotated person objects. This amount is significantly more than
the minimum of 2,000 suggested by the YOLOv4 manual, which is a good predisposition
for training a rigid and reliable object detector.

5.5 Darknet implementation of YOLO
For training the YOLO object detection models, the official YOLOv4 Darknet [14] imple-
mentation has been chosen. It is written in C and CUDA and has been forked from the
original YOLO branch34 created by Joseph Redmon and Ali Farhadi. The fourth version
of the YOLO real-time object detection system is however implemented and maintained by
Alexey Bochkovskiy in his forked repository [14]. By the time I was choosing an object de-
tector, the YOLOv4 detector had been released for only 2 weeks and was already raising a
wave of enthusiasm. Also at that time, the only YOLOv4 implementation was the Darknet
one, which was perfectly fine, as it is well documented, remarkably fast, allows for GPU
acceleration and contains a step-by-step official manual on how to train YOLO models on
custom datasets.

5.5.1 Transfer learning

The Darknet framework comes with pretrained YOLO models, which have been trained on
the COCO image dataset to detect up to 80 classes from regular color images. A YOLO
model can not be used for thermal data straight away for obvious reasons. On the other
hand, it is also not necessary to train the YOLO model from scratch, which would require
a huge dataset, computational resources and plenty of time.

In this case, the pretrained model can be retrained and repurposed for our specific task
– that is to detect person objects in thermal images. The retraining process is often called
transfer learning. Repurposing pretrained models is a common process, as it saves a
large portion of computation and time when compared with training from scratch.

34Darknet: Open Source Neural Networks in C https://pjreddie.com/darknet/

58

https://pjreddie.com/darknet/


Most detector models based on convolutional neural networks can be simplified into
two sections. The first section, which receives the input image, creates and extracts feature
maps from the image, which are then used for the detection itself in the second section.
These feature maps are pieces of information about the visual world – like individual in-
terconnected shapes, color changes, contrast transitions, context of an object and so on.
Analogically, a human seeing a round object of the skin color, with two evenly spaced eyes
and wavy shaped red-colored lips underneath classifies the object as a human head. It is
those little details and their context (distance, ratios, colors), which determine the classifi-
cation result. These details correspond to the feature maps extracted in the first ”section“
of detection or classification models.

The idea behind transfer learning is that a pretrained network trained on a large dataset
has built-in itself a generic model of the essence of the visual world. Retraining takes
advantage of these learned feature maps and continues training from the point after the
first section has converged. This significantly reduces training time, necessary amount of
training images and improves overall accuracy. By transfer learning, we effectively train
only the last part of the model. As the model already understands the essence of an image,
the training focuses only on the custom task, which is in our case person detection on
thermal images.

The Darknet repository contains a step-by-step manual35 on how to perform transfer
learning and retrain pretrained YOLO models for detection of custom objects. This manual
has been used to prepare the custom training dataset for transfer learning.

5.5.2 Preparing custom dataset for training in Darknet

From the previous step, there are 13,416 thermal images and 13,416 annotation files in the
same folder. For training the detector, the RGB888 normalized grayscale thermal image
format has been selected.

Image format

The Darknet framework is able to work with single channel images, however, this feature
must be enabled in the source code and the framework must be recompiled. We decided not
to go down this path, as the community had been reporting issues, bugs and interestingly
loss of accuracy when using a single channel input data. Even though the YOLO pretrained
model has been trained on a color dataset, it has been proven that it can well handle gray
scale images as well. In our case, the model is being fed by gray scale images with three
channels, meaning, that each channel of every pixel has the same 8-bit value.

As a consequence to this decision, normalized 8-bit gray scale images have been selected
from the FLIR’s thermal dataset. From the custom Lepton 3.5 thermal dataset, the raw
Y16 images had to be normalized and converted to 8-bit gray scale .jpg. Since it is desired
to utilize the feature map from the pretrained YOLO model as is, it only makes sense to
provide the model with images visually as close as possible to human readable images –
images on which a human could perform the detection task quickly and accurately.

If we were to input raw Y16 thermal images, the model would probably first have to
adjust the feature map and develop the image normalization function in order to start

”seeing“ the image as it was trained to with the regular color dataset. In order to prevent
35How to train (to detect your custom objects) using yolov4 manual https://github.com/AlexeyAB/

darknet#how-to-train-to-detect-your-custom-objects
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this, and therefore speed up the convergence and increase accuracy, the images fed into the
model are preprocessed by a custom normalization function.

Thermal image normalization functions

Raw thermal images in the Y16 format have the theoretical range of pixel values from 0 to
655.35 K. For a common room temperature scene, this range is too wide and only a small
portion of the available pixel values are used. When displaying such raw image, the scene
appears uniform with minor color differences. For displaying or feeding the image into the
detection model, it is better to increase its dynamic range by first clipping temperatures
outside some reasonable range that are not of interest, and then applying a normalization
algorithm. Some of the most common normalization algorithms are listed bellow:

• Linear normalization: Linear normalization is the simplest algorithm for dynamic
range expansion. It takes the minimum and maximum pixel value from the image and
linearly spreads all values in between into the new range. If we aim for 8-bit images,
the new pixel values are between 0 and 255.

• Histogram equalization (HEQ): Histogram equalization is a bit more complex
normalization technique. It solves one problem of the linear normalization. If there
is a relatively cold scene with a small very hot object, all pixel values corresponding
with temperatures between the cold scene and the hot object are left unused. This
results in a small white object on a monolithic black background.
Histogram normalization is one of the best methods for image enhancement without
the loss of information. It spreads out more frequent pixel values, flattens the his-
togram. This results in areas of lower local contrast to gain higher contrast. It is
a nonlinear normalization yielding unrealistic images, however, it is great for object
detection as it highlights outlines of objects.

• Contrast limited adaptive histogram equalization (CLAHE): CLAHE is an
advanced method that is not using a single global histogram but normalizes several
local histograms throughout the image. In an image with two large parts – one cold
and other hot – the adaptive algorithm increases the contrast in both areas separately
revealing the finest details.
The regular adaptive histogram equalization algorithm tends to overamplify regions
with near constant pixel values. The contrast limited variant reduces this noise ampli-
fication problem. The CLAHE algorithm limits the contrast amplification by clipping
the histogram above a predefined threshold and distributing the values above equally
into every bin of the histogram. This method yields the most desirable results and
is also implemented in the Lepton camera itself under the automatic gain control
(AGC) feature name. This feature can however be used only for RGB false color
camera output.

All these three normalization algorithms are implemented using numpy and OpenCV in
the ThermoDetection/ThermoHelper.py file in the second project’s repository36 containing
the detection system. The comparison between normalization algorithms is shown in figure
5.13.

36thermo-person-detection – detection system git repository https://gitlab.com/CharvN/thermo-
person-detection
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(a) Linear normalization (b) Histogram equalization (c) CLAHE

Figure 5.13: Comparison of normalization algorithms for increasing dynamic range.

5.5.3 Configuring a custom YOLO model

This subsection summarizes steps required to prepare the custom thermal dataset for trans-
fer learning according to the Darknet YOLOv4 manual35.

1. Clone and install the Darknet framework from repository [14].

2. Create a copy of cfg/yolov4-custom.cfg model configuration file into the cfg/
yolov4-thermal.cfg.

3. Alter the cfg/yolov4-thermal.cfg configuration file for the custom dataset as fol-
lows:

(a) Set batch=64.
(b) Set subdivisions=32. The manual suggests 16, however, with 6 GB of GPU

RAM, the graphics card was running out of memory.
(c) Set max_batches=4000. It is recommended to set the number of iterations to

2,000 × the number of classes, but not less than 6,000 or number of images for
training. Since we have around 13,000 images in total, the parameter has been
set to 12,000 at first, but after a few experimental runs, 4,000 iterations were
well enough in this case. More on that later.

(d) Set steps=3200,3600 which correspond to 80 and 90 % of max_batches param-
eter.

(e) Set the network size to width=320 height=320. The dimension must be a mul-
tiple of 32, images from the Lepton 3.5 have resolution of 160 × 120 but FLIR’s
thermal dataset contains images of resolution 640 × 512 pixels. A reasonable
size of the network in between has been chosen, so that resources are not wasted
on a large network, yet, detailed information from the FLIR’s dataset are not
lost.

(f) Set classes=1 for each of three [yolo] layers in the config.
(g) Set filters=18 for each of three [convolutional] layers before every [yolo]

layer. The recommended value is (the number of classes + 5) × 3.

4. Create a data/thermal.names plain text file containing class names. Each line con-
tains a single class name, the first line corresponds to a class_id 0. In our case, the
file only contains the word person on the first line.
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5. Create a cfg/thermal.data plain text file with the following content:

1 classes = 1
2 train = data/thermal.train.txt
3 valid = data/thermal.test.txt
4 names = data/thermal.names
5 backup = backup/

backup is the directory where the training checkpoints of the model will be stored.
train and valid parameters point to text files with image locations intended for
training and testing respectively.

6. Place all images and annotation files from the merged thermal custom dataset into
the data/thermal directory.

7. Create data/thermal.train.txt and data/thermal.test.txt files containing links
to all image files in the data/thermal directory split by a reasonable ratio. We have
chosen 80 % training and 20 % testing.

8. Download pretrained weights for the specific YOLO model according to the configu-
ration file. For YOLOv4 template, the yolov4.conv.137 weights file is suggested.

For purposes of this project, steps 1, 2 and 8 were repeated to prepare other YOLO mod-
els for comparison. In total, yolov4, yolov3-spp and yolov3-tiny models were prepared
for transfer learning with the custom thermal dataset. After the configuration process, the
Darknet directory contains new files as demonstrated in listing 20.

1 darknet
2 |-- backup
3 |-- cfg
4 | |-- thermal.data
5 | |-- yolov3-spp-thermal.cfg
6 | |-- yolov3-tiny-thermal.cfg
7 | |-- yolov4-thermal.cfg
8 |-- data
9 | |-- thermal.names

10 | |-- thermal_all_test.txt
11 | |-- thermal_all_train.txt
12 | |-- thermal
13 | |-- img1.jpg
14 | |-- img1.txt
15 | |-- img2.jpg
16 | |-- img2.txt
17 | |-- (...)
18 |-- yolov4.conv.137
19 |-- darknet53.conv.74
20 |-- yolov3-tiny.conv.15

Listing 20: Tree of new files created during the configuration of the custom YOLO model
in the darknet directory.
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5.5.4 Training custom YOLO models on thermal images

The training of the YOLO detection models has be performed on a laptop with specifications
listed in table 5.2.

CPU Intel® Core™ i7-9750H CPU @ 2.60 GHz 12×
RAM 16 GB DDR4 @ 2,666 MHz

Storage 1 TB SSD NVMe
Graphics 1× NVIDIA GeForce GTX 1660 Ti

Graphical memory 6 GB GDDR6
NVIDIA Driver version 435.21
NVIDIA CUDA version 10.1

NVIDIA CUDA compute capability 7.5 (Turing)
NVIDIA cuDNN version 7.6.5

Table 5.2: Specifications of a laptop used for training custom YOLO models.

In order to properly utilize the power of this machine, it was important to edit the
Darknet’s Makefile before compilation. The modified parameters in the Makefile are
shown in listing 21.

1 GPU=1
2 CUDNN=1
3 CUDNN_HALF=1
4 OPENCV=1
5 AVX=1
6 OPENMP=1
7

8 # GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000,
Quadro RTX 5000, Tesla T4, XNOR Tensor Cores→˓

9 ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]

Listing 21: GPU-specific changes in the Darknet’s Makefile.

Setting the graphics specific compute capability using the ARCH parameter to 7.5 made
the largest impact on performance. Setting the computation capability higher than 7 makes
the nvcc CUDA compiler utilize mixed-precision on tensor cores of the GPU, which can
improve performance more than 3 times. During some testing, the GPU version of Darknet
was measured to be up to 6 times faster than the CPU version.

After the configuration of the custom thermal dataset and YOLO models, the training
is started by running the following command:

1 ./darknet detector train cfg/thermal.data cfg/yolov4-thermal.cfg yolov4.conv.137

Current information about the training process is displayed in real time in a dedicated
window. The course of training is represented by a graph of loss for current iteration.
The information panel also contains: current iteration, maximum iterations and estimated
remaining time. Additionally, the mean average precision mAP metric can be turn on
and displayed in real time by using the -map argument. A loss function represents the
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current error of the model on the training data and should decrease with iterations. The
mean average precision is a widely used representative metric for measuring wellness and
accuracy of the model on testing data – here, the higher the better. The training process
saves weights every 1,000 iterations into the backup folder. After the training is completed,
the most recently updated loss graph is stored as a detailed look on the training process.

After training is complete, one model should be selected from all the checkpoints along
the way – the most accurate yet general. The Darknet’s manual recommends to select
model weights from a so called early stopping point as demonstrated in figure 5.14. This
way we avoid selecting an overfitted model.

Figure 5.14: Loss development graphs on training and testing data throughout iterations
demonstrating the problem of overfitting the model. (Source [14].)

Figure 5.15: Graph of performance of the yolov3-tiny-thermal model on testing data
throughout iterations.

64



The first training session was performed on the yolov3-tiny-thermal with the size
of 320 × 320 and 12,000 recommended iterations. The tiny model was chosen because
it was designed to run on embedded devices and is very small, thus, really fast to train.
Its training chart is visible in figure 5.16 as well as its accuracy development throughout
iterations in figure 5.15.

Figure 5.16: Loss and mAP development graphs throughout training of the
yolov3-tiny-thermal model.

From the training graphs, it is noticeable that from iteration 2,000 onward the loss
function stops decreasing and the mean average precision metric stops rising. In fact, it
does not get significantly higher even after twice as much iterations. With this being said,
the number of iterations can be safely reduced to around 4,000 iterations. In this training
session, the model weights from iteration 2,000 (or 3,000) would be used as output if we
wanted to follow the early stopping point strategy in order to achieve the highest level of
generalization (avoid overfitting).

The number of iterations required for the full training of a YOLO model most likely
correlates with the dataset being used, or the fact that all used YOLO models behave
quite alike, which is observable in figure 5.17. The loss graphs of the other models –
yolov4-thermal and yolov3-spp-thermal – show similar behavior, therefore, it is safe
to assume that 4,000 iterations is enough for every one of them. This way we can set the
number of iterations to 4,000 and experiment with the size of the models in order to find the
best performing one. Firstly, all three different types of the YOLO model has been trained
having the same size. From these three models, yolov4 performs the best, so experiments
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with larger model size have been done only for the YOLOv4 object detector. The maximum
size of the YOLO model trainable using the reference computer is 512, which requires just
under 6 GB of graphics memory.

(a) yolov4-thermal (b) yolov3-spp-thermal (c) yolov3-tiny-thermal

Figure 5.17: Loss development graphs of custom YOLO detection models during the first
4,000 iterations.

Training of the neural networks was surprisingly fast, most likely because the detector
was trained only for one class and because of the GPU acceleration with the compute
capability 7.5.

Complete characteristics of each custom YOLO model trained on the thermal dataset are
summarized in tables 5.3 and 5.4. From these three detectors, the one based on yolov4,
is the fastest and yields the best results. The yolov4-thermal-320 object detector has
therefore been chosen as the flagship for person detection in this project. The model with
size 320 × 320, even though has lower mAP, has higher precision and seems more reliable
and accurate on thermal images from the Lepton 3.5 camera, as the larger models would
sometimes tend to incorrectly detect small objects, for example an arm of a person can
sometimes get detected as a person far away from the camera.

Feature yolov3-tiny yolov3-spp yolov3-tiny yolov3-spp
Size 160 × 160 160 × 160 320 × 320 320 × 320

Stopping iteration 2,000 2,000 3,000 2,000
Detection FPS 8.70 6.70 8.70 6.62

Training time [hours] 0.25 2.1 2.5 6.3
Precision 0.40 0.69 0.67 0.80

Recall 0.38 0.61 0.60 0.76
F1-score 0.39 0.65 0.63 0.78

Average IoU 27.09 % 49.69 % 47.53 % 58.33 %
Mean average precision 24.38 % 57.74 % 56.21 % 77.51 %

Table 5.3: Results and characteristics of each custom YOLOv3 detection model trained for
4,000 iterations on the custom thermal dataset.
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Feature yolov4 yolov4 yolov4
Size 320 × 320 416 × 416 512 × 512

Stopping iteration 2,000 2,000 2,000
Detection FPS 8.70 8.70 8.70

Training time [hours] 5.2 5.9 7.8
Precision 0.87 0.85 0.84

Recall 0.80 0.87 0.90
F1-score 0.83 0.86 0.87

Average IoU 66.30 % 66.19 % 64.58 %
Mean average precision 85.66 % 89.98 % 91.50 %

Table 5.4: Results and characteristics of each custom YOLOv4 detection model trained for
4,000 iterations on the custom thermal dataset.

5.6 Usage of the trained YOLO detector
The result of the transfer learning is a model trained to detect persons on thermal images.
From the three trained models, the best one has been chosen to be used in this project. The
model is represented by two files: yolov4-thermal.cfg and yolov4-thermal.weights. The
yolov4-thermal.weights file is obtained from the backup directory, where all intermediate
checkpoints created during training are stored.

These two files can be easily used for detection using the DNN module of the OpenCV
library. The DNN module implements forward pass (inferencing) with deep networks,
pretrained using deep learning frameworks like Caffe, TensorFlow, Torch or Darknet. The
DNN module has been supporting YOLO models trained by the Darknet framework for
a long time, however, the YOLOv4 was added to the list of supported networks only 1
day before I considered using OpenCV for the detection itself. Consequently, the OpenCV
library had to be compiled from sources in order to have the most recent updates including
the YOLOv4 support.

The Python code in listing 22 demonstrates the simple usage of the retrained custom
YOLOv4 thermal detector using the DNN module of the OpenCV library.

1 import cv2
2

3 yolo = cv2.dnn_DetectionModel(yolov4-thermal.cfg, yolov4-thermal.weights)
4 yolo.setInputSize(width = 160, height = 160)
5 yolo.setInputScale(1.0 / 255)
6

7 classes, confidences, boxes = yolo.detect(img, confThreshold=0.1,
nmsThreshold=0.4)→˓

Listing 22: Demonstration of the DNN module of OpenCV library performing detection on
an image using the custom YOLOv4 thermal detector.

The DNN module and the way it operates has been abstracted into the YoloDetector
class in the ThermoDetection/YoloDetector.py file of the thermo-person-detection
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repository37. The class automatically loads the custom YOLOv4 model and can be just
imported and used for the detection.

The confThreshold parameter sets a confidence threshold. Based on this threshold,
the detector filters out potential objects with the confidence score less than 0.1. The
nmsThreshold (non-maximum suppression threshold) parameter is used to reduce the num-
ber of proposed objects that are overlapping up to a certain level. The detector often
proposes multiple objects of the same class that are just slightly misaligned, which creates
duplicate detections. All of these proposed detections are in reality a single object. The
non-maximum suppression algorithm calculates the intersection over union (IoU) of every
two proposed objects, then, if the calculated IoU is larger than a specific threshold, the
proposal with smaller confidence score is removed. [16] An exaple of the non-maximum
suppression algorithm in action can be seen in figure 5.18.

Figure 5.18: Example of the non-maximum suppression (NMS) algorithm in action. (Source
[16].)

The Darknet library can be compiled into a shared library with a python binding,
however, using it inside the Lepton 3.5 client is not as neat and clean as using the DNN
module of the OpenCV library. The Darknet approach is definitely a way to go for high
performance use cases. The Lepton 3.5 camera however has an effective frame rate of only
8.7 FPS, so detection speed is not crucial in this case. The CPU version of OpenCV used
to slow down the live stream with the detection about 1 FPS, however, the most recent
OpenCV update with YOLOv4 optimizations solved the throttling completely, and the live
thermal feed with the YOLOv4 detector is at full speed.

Interestingly, the OpenCV library compiled to run on a GPU is in this case slower and
gives out only about 6.3 frames per second. I attach the speed reduction to the fact that
the OpenCV has to frequently copy a small amount of data back and forth between the
graphics and main memory.

The YoloDetector class has been used in an upgraded lepton3client implemented
in the lepton3client_detect.py file. The script connects to a remote Lepton 3.5 server
and every frame it receives runs through the custom YOLO detector. Detected objects are
highlighted in the image shown to the user inside an OpenCV window in real time.

37thermo-person-detection – detection system git repository https://gitlab.com/CharvN/thermo-
person-detection
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Figure 5.22: Comparison between the legacy and the new YOLOv4 detector.

69



The detector proved itself very well. When compared with object detection models, the
YOLOv4 is the state-of-the-art real-time detector. Our custom YOLO thermal detector
is fast, has a remarkable accuracy and solves almost all problems that the legacy thermal
detector based on trivial image processing had. It deals well with larger groups of people,
occlusions and eliminates false detections of warm objects like radiators, TVs and so on.
The thermal reflections are however still problematic and there is no easy fix for that. The
YOLOv4 detector does a surprisingly good job even for a very complex scenes that poses
a real challenge even to humans. A side by side comparison with the legacy detector can
be seen in figure 5.22.
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Chapter 6

Scene reconstruction

The detection process yields bounding boxes around detected people represented by image
coordinates. The next step is to create an abstraction of the environment monitored by
the camera, and then, translate each detected object into an approximate location in the
model of the environment. This chapter describes the implemented scene abstraction and
explains the solution to the problem of how to programmatically compute correspondence
between image coordinates of a bounding box and 3D coordinates in the scene model.

Theoretical parts of this chapter are almost identical to those in the bachelor’s thesis
[18] (section 5.3) and have been taken over. The implementation part has been however
revised completely with the exception of the mathematics behind the theory. Changes to
the implementation have been forced by the fact that the output of this project should
be a system capable of utilizing multiple thermal cameras to compute somewhat accurate
locations of people in a complex environment. The old implementation was capable to
project only into a simple rectangular plane from a single camera.

6.1 Projecting objects from image to 3D scene model
In order to approximate coordinates of an image object in world space, it is necessary to
understand the camera location and orientation in world space. Knowing the pose of the
camera allows us to reconstruct the 3D scene and display the camera and detected objects in
it. The camera pose estimation problem is often referred to as Perspective-n-point problem
or PnP.

After obtaining the pose of the camera – more specifically its rotation and position
(translation) – it is possible to cast rays from the camera origin into world space using pixel
coordinates of the detected bounding boxes, and therefore, approximate their location in
the monitored environment.

The knowledge used to write this section comes from [27], [36], [56], [57], [39], [20], [38],
[41], [56], [59] and [17].

6.1.1 Perspective-n-point problem

The perspective-n-point problem (PnP) is a problem of estimating the pose of a calibrated
camera. By pose, we understand the camera position and orientation with respect to
another coordinate system. We will represent the camera pose by rotation matrix R and
translation vector t. Solving the PnP problem requires pairs of corresponding 3D to 2D
(world to image) mapping points. Given those mapping points, estimating the pose is a
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matter of solving a system of linear equations. At least 4 pairs of points are required to find
a solution. The perspective-n-point problem can be expressed by equation 6.1, which comes
from the perspective projection (world to screen or world to image transformation).

Pi = K
[︀
R t

]︀
Pw (6.1)

where Pi is an image point (2D), K is a matrix of intrinsic camera parameters, R is a
rotation matrix, t is a translation vector and Pw is a world point (3D).

The expanded form of equation 6.1 can be found in equation 6.2.
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⎤⎥⎥⎦ (6.2)

where the 𝑓𝑥 and 𝑓𝑦 are focal lengths, 𝑐𝑥 and 𝑐𝑦 are center point coordinates of the
image (principal point) and 𝛾 is axis skew (usually assumed 0).

The [R|t] matrix is usually extended into a single 4×4 matrix for the sake of convenience
(equation 6.3). This matrix allows to project points from world to camera space (coordinate
system), and thus, is sometimes referred to as world to camera, world to view or simply
view matrix.

[︀
R t

]︀
=

⎡⎢⎢⎣
𝑟00 𝑟01 𝑟02 𝑡𝑥
𝑟10 𝑟11 𝑟12 𝑡𝑦
𝑟20 𝑟21 𝑟22 𝑡𝑧
0 0 0 1

⎤⎥⎥⎦ (6.3)

The matrix of intrinsic camera parameters K represents the transformation of a point
from camera to screen (or alternatively image) space. The matrix can be assembled from
known camera parameters such as resolution and field of view or focal lengths (more on
that later).

By plugging image points (2D) and corresponding world points (3D) into equation 6.2, it
is possible to compute rotation and translation vectors, and therefore construct the world
to camera or view matrix (6.3) that can be used to transform points from world into
camera space.

6.1.2 Solving PnP problem using OpenCV

By solving the perspective-n-point problem, it is possible to determine the rotation and po-
sition of the camera in world space based on pairs of 3D world and 2D corresponding image
coordinates. The pose of the camera can be calculated using the function cv2.solvePnP()
or cv2.solvePnPRansac() in the OpenCV library. [38] The function takes, along with the
mentioned 2D and 3D mapping points, also the intrinsic camera matrix K and distortion
coefficients.

K =

⎡⎣𝑓𝑥 𝛾 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎦ (6.4)

The intrinsic camera matrix (equation 6.4) can be constructed with focal length in each
axis and usually camera resolution – width 𝑥 and height 𝑦. In this case, the focal lengths
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𝑓𝑥, 𝑓𝑦 are calculated from the horizontal and vertical field-of-view (FOV), which are known
parameters of the Lepton 3.5 camera.

For the intrinsic camera parameter matrix K, we also need the principal point (or center
point) 𝑐𝑥, 𝑐𝑦, which is a relative center point to the image origin. In equation 6.5, the center
point is calculated using the camera image resolution 𝑥 and 𝑦.

𝑐𝑥 =
𝑥

2
(6.5)

𝑐𝑦 =
𝑦

2

𝑓𝑥 =
𝑐𝑥

tan
ℎ𝑓𝑜𝑣

2

(6.6)

𝑓𝑦 =
𝑐𝑦

tan
𝑣𝑓𝑜𝑣
2

The variable 𝛾 represents the axis skew causing shear distortion in the projected image.
For simplicity, we assume 𝛾 = 0. In this project, we are also not taking into count radial nor
tangential distortion of the camera, which means that we keep the distortion coefficients
equal to 0.

With the world points, image points, intrinsic camera parameters and distortion coef-
ficients, the cv2.solvePnP() function returns the rotation and translation vectors of
the camera, which represent its pose.

From the rotation vector, it is possible to construct a rotation matrix using the Ro-
drigues’ algorithm38, and after that, express the whole transformation from world to cam-
era space using a single matrix – the world to camera matrix. The Rodrigues’ algorithm
is also available in the OpenCV library as cv2.Rodrigues().

6.1.3 Reversing world to screen transformation

The world to camera matrix, when combined with the intrinsic parameter matrix, rep-
resent the complete world to screen transformation. This transformation can be reversed,
which allows for points to be projected from the image back to world space. To reverse the
transformation, equation 6.1 (or 6.2) needs to be rearranged. The rearranged form can be
seen in equation 6.7. ⎡⎢⎢⎣

𝑥𝑤
𝑦𝑤
𝑧𝑤
𝑤𝑤

⎤⎥⎥⎦ =

[︂
R−1 −R−1 · t
0 1

]︂
K−1

⎡⎣𝑥𝑖𝑦𝑖
1

⎤⎦ (6.7)

where −R−1 · t can be expressed as in equation 6.8.

−R−1 · t = −

⎡⎣𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎤⎦−1 ⎡⎣𝑡𝑥𝑡𝑦
𝑡𝑧

⎤⎦ (6.8)

38Rodrigues’ rotation formula – allows to compute a rotation matrix from an axis-angle representation
(rotation vector).
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Since the rotation matrix R is an orthogonal matrix with its determinant equal to 1,
its inverse is equal to its transpose.

R−1 = R𝑇

The rearranged equation 6.7 describes the process of a point transformation from im-
age space back to world space. The intrinsic camera matrix inverse K−1 represents the
transformation from screen (image) space into camera space. Again, a single 4 × 4 matrix
can be assembled to simplify the transformation from the camera coordinate system to the
world coordinate system. This matrix would be called camera to world matrix and is the
key to reverse-projecting points from the image to the world coordinate system.

It is important to note that projecting points from world space (3D) to screen space
(2D) always causes a loss of one dimension (depth). When reverse-projecting a point from
image space of a single camera, it is impossible to determine the original world point, as
infinite number of world points with varying depth gets projected into that single image
point. In other words, for any image point, a line exists in the scene model.

For our use case, it would be helpful to obtain a single point in world space instead of
a line. For any image point that we want to reverse project we can cast a ray in world
space from the camera origin and look for interesting intersection points in the scene. The
ray is effectively a line in the world coordinate system whose all points get projected into
the same one image point. If we find an intersection of this ray with an interesting other
object in world space – for example the ground plane with the third coordinate equal to 0
– such intersection point may be declared as the result of the reverse transformation. This
means that for any image point we are able to assign a single point in world space. This is
particularly useful for estimating location of objects from a single camera. This is of course
only possible provided that we have an additional information about those objects – for
example that those objects are people and they stand on the floor.

6.1.4 Reverse projection process of an image point

For any image (2D) point Pi we want to reverse-project into a single world 3D point P,
the following steps are preformed:

1. Multiply the inverted matrix of intrinsic camera parameters K−1 and image point
Pi = [𝑥𝑖, 𝑦𝑖, 1]

𝑇 . This effectively projects the image point into camera space resulting
in point Pc.

2. Project point in camera space Pc = [𝑥𝑐, 𝑦𝑐, 𝑧𝑐, 1]
𝑇 into world space by multiplying the

camera to world matrix with it. This results in an arbitrary world point Pw that
gets projected to initial image point Pi.

3. Use step 2 to project camera origin in camera space Cc = [0, 0, 0, 1]𝑇 into point in
world space Cw. (This step can be done only once for each camera.)

4. Calculate euclidean vector R (ray direction) pointing the direction from camera origin
Cw to point Pw – both in world space. This vector effectively describes the ray or
line in world space whose points get projected into initial image point Pi. We obtain
the vector by subtracting the camera origin from the projected point as in equation
6.9

R = Pw −Cw (6.9)

74



5. By scaling vector R using scalar 𝑠 and adding it to the camera origin in world space,
it is possible to find single point P on the ray in world space (equation 6.10).

P = Cw + 𝑠 ·R (6.10)

Scalar 𝑠 can be adjusted so that the result point meets our specific requirements. For
example, scalar 𝑠 can be set in such way that the 𝑧 coordinate of the point on the
ray has a specific value 𝑧. For the value of 𝑧 = 0, the computed point in world space
both gets projected into the initial image point and coincides with the ground plane
of the scene. The scalar is computed in equation 6.11.

𝑠 =
𝑧 − 𝑧𝐶𝑤

𝑧𝑅
(6.11)

6.1.5 Placing a detected person into the scene

The previous subsection described how to reverse-project an image point into a line (camera
ray) in the scene coordinate system. The ray can be collapsed using an additional informa-
tion about the object placement. In this case, the detected object is a person, therefore, we
may select a ray that intersects the position of their feet or head. We can then assume that
the person is standing on the ground or we can calculate with an average person height in
order to collapse the ray into a single point in world space. In other words, we are explicitly
searching for a point on the ray in world space with a particular z coordinate – height from
the ground. For any detected object in the thermal image enclosed by a bounding box, we
can either assume its lower edge is touching the ground or its upper edge is located the
average-human-height above the ground.

6.2 Scene abstraction software
One of the outputs of the bachelor’s project [18] was a scene abstraction script allowing
to model a rectangular scene with a single camera and reverse-project detected people
into it. In order to model a multi-room exposition or any larger complex environment
with multiple cameras, the scene abstraction had to be rewritten almost from scratch and
improved significantly.

In the new implementation, the scene model is stored in a JSON configuration file, which
contains among others positions of cameras and a list of boundaries with their respective
names and displayed colors. The boundaries are stored as a list of vertices that are con-
nected one by one. A vertex is a tuple of x and y coordinates of the integer type. The scene
abstraction is programmed in the ThermoDetection/Scene.py. An example of the scene
configuration file is depicted in listing 23. Each camera has three additional attributes: ip,
port and mapping_points. The first two are used for enabling a live connection during
calibration or for production usage, and the mapping_points attribute contains mapping
points from the image (2D) to the world (3D) coordinate system that are used for cali-
brating each camera in the scene every time it is loaded by solving the perspective-n-point
problem.

These mapping points can be either added manually into the configuration file or in-
serted automatically using a visual scene calibrator implemented in the ThermoDetection/
SceneCalibrator.py file.
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1 {
2 "scene": {
3 "boundaries":[{
4 "name": "room1",
5 "color": "blue",
6 "vertices": [[0, 0], [1582, 0], [1582, 570], [0, 570], [0, 0]]
7 }],
8 "cameras":[{
9 "name": "unit1",

10 "color": "green",
11 "ip": "192.168.1.111",
12 "port": 2222,
13 "position": [1582, 17, 250],
14 "mapping_points": {
15 "image_points": [[81, 28], [19, 36], [147, 57], [102, 15], [81, 6],

[17, 12], [25, 117]],→˓

16 "world_points": [[0, 570, 0], [5, 5, 0], [1059, 570, 0], [529, 570,
170], [0, 570, 250], [0, 0, 250], [1250, 0, 0]]→˓

17 }
18 }]
19 }
20 }

Listing 23: Example of a scene JSON configuration file.

By calibrating a scene, we understand creating mapping points between the image and
the world for each camera in the scene model. The mapping points are then used to calculate
the screen to world transformation matrix for every camera when the scene is loaded. The
transformation matrix is then used to project detected objects into the scene model.

A scene can be visually calibrated by running the calibrate_scene.py script, which
utilizes both static and dynamic scene calibrator. The usage of the calibration script is
depicted in listing 24. The calibration script has to be always provided with a path to the
scene configuration file. Optionally, if the --camera argument is supplied, the calibrator
connects to the camera and starts the calibration process using a live feed from the camera.
In that case, the connection parameters have to be stored in the configuration file for the
particular camera. Alternatively, the --file argument can be used for calibrating the
camera using a static raw .tiff image.

1 python3 calibrate_scene.py [-h] -s SCENE [-c CAMERA] [-f FILE]
2

3 Arguments:
4 -h, --help # show this help message and exit
5 -s SCENE, --scene SCENE # Path to a scene .JSON config file.
6 -c CAMERA, --camera CAMERA # Camara name to be calibrated.
7 -f FILE, --file FILE # Calibration .TIFF file for static calibration.

Listing 24: Arguments of the scene calibrator from calibrate_scene.py.
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When launching the calibrator, the .json configuration file must be specified using the
--scene parameter. After either connecting to the live camera feed or loading the static
thermal image from a file, the calibration process begins. The calibrator shows a view from
the camera (static or live) and a ground plan of the scene model with all cameras in their
respective locations. The calibration process consists of clicking points in the window with
the camera view and entering 3D corresponding world coordinates.

The typical step by step process of calibrating a new scene is the following:

1. Create a scene.json configuration file with boundaries and cameras with their asso-
ciated colors, names and vertices in the world coordinate system. Optionally add ip
and port for each camera for live calibration.

2. Run the scene calibrator without any arguments other than --scene to confirm the
configuration corresponds to a valid scene. The calibrator will only display the ground
plane of the scene.

3. Run the scene calibrator to calibrate one camera from the scene using the --camera
parameter. Use static or dynamic calibration. Example in figure 6.1 shows the cali-
brator in action calibrating the th1 camera from the static th1.tiff image executed
by

./calibrate_scene.py -s scene.json -c th1 -f th1.tiff

4. Adjust brightness and contrast of the image using the arrow keys.

5. Click an image point on the camera view and enter x,y,z corresponding coordinates
in world space.

6. Repeat step 5 at least 4 times. A previously added pair of mapping points can be
removed by pressing BACKSPACE.

7. Close the calibrator using the ESC key and press any key to overwrite the scene.json
configuration file. During this step, all mapping points created in step 5 will be
stored in the configuration file, and next time the scene is loaded, the camera will be
automatically calibrated. (The screen to world projection matrix will be computed.)

8. Repeat from step 3 for every camera in the scene.

Figure 6.1: Example of the visual scene calibrator calibrating camera th1.
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The result of the scene calibration is a configuration file of a scene model in a single
coordinate system with cameras with known projection matrices. A calibrated camera
shows its field of view using visible arms on the ground plan. An example of a scene with
calibrated cameras can be seen in figure 6.2. With the screen to world projection matrices,
it is possible to assign a line in the same 3D world coordinate system to each image pixel
of every camera. These lines are then used for localizing detected people and placing them
into the scene.

Figure 6.2: Example of a scene with calibrated cameras displaying their field of view.
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Chapter 7

Real use-case deployment

This chapter summarizes and demonstrates real-world application possibilities of the new
system for detection and localization of people. The first section goes step by step through
the installation process of the detection system in a new environment and the second section
describes an ongoing cooperation with the Czech National Museum in Prague, which had
expressed interest in using the system for movement analysis of its visitors.

7.1 Deployment process
This section describes the steps of a typical installation of the detection system in a new
environment.

1. Based on the size and complexity of the monitored area, choose the number of thermal
units. For larger areas, it is important to be aware that the Lepton 3.5 thermal camera
has resolution of 160 × 120, which means that localization accuracy will suffer. If a
thermal unit is placed 2 meters above ground on one side of a 16-meter-long hall, a
single image pixel difference can result in almost 1 meter difference on the opposite
side of the hall. In this particular example, it would be worth considering placing a
second camera to the opposite side of the hall to improve accuracy.

2. Obtain or assemble the thermal units.

3. For every thermal unit, download and burn a Raspbian image into an SD card. Having
the SD card connected to a computer, configure a network connection for the thermal
unit and install an ssh key for easy and secure access over the network.

4. Install thermal units at their stable positions in the monitored area and connect them
to the network and power.

5. Try to ssh into each thermal unit to see if everything works properly. While connected
to the thermal unit, it is advised to change the default Raspberry Pi password and
the name of the device.

6. Clone v4l2lepton339 and thermo-person-detection40 repositories.
39v4l2lepton3 control and capture library git repository https://gitlab.com/CharvN/v4l2lepton3
40thermo-person-detection – detection system git repository https://gitlab.com/CharvN/thermo-

person-detection
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7. Change the Ansible hosts file to match the number of deployed thermal units with
their respective IP addresses for ssh connection under the [thermal_units] section.

8. Run the Ansible playbook to install all required dependencies and configure the ther-
mal units with the following command:

$> ansible-playbook -i hosts thermal_deploy.yml -v --forks 4

The forks parameter sets the number of concurrent connections, so it should be set
to the number of thermal units. This step automatically clones the v4l2lepton341

repository into the /home/pi directory and installs the v4l2lepton3 server in the
/home/pi/v4l2lepton3/build directory.

9. Turn the camera on by running the ./on script from the v4l2lepton3 directory in the
thermal unit. The script enables SPI and I2C interfaces and sets the virtual GPIO pin
15 to high, which activates the custom power switch that applies 5 V to the camera.
The camera can be turned off using the ./off script.

10. The Lepton 3.5 should be shipped with the default options set from the factory
that do not require any modifications. However, it does not hurt to check that all
camera parameters are the way they should using the get command method. To
set everything correctly, these commands can be executed from the thermal unit’s
/home/pi/v4l2lepton3/ directory:

$> ./lepton3control.py 1 vid_output_format set raw14
$> ./lepton3control.py 1 oem_output_format set raw14
$> ./lepton3control.py 1 sys_gain_mode set low
$> ./lepton3control.py 1 sys_telemetry_enable set off
$> ./lepton3control.py 1 agc_enable set off
$> ./lepton3control.py 1 rad_enable set on
$> ./lepton3control.py 1 rad_tlinear_enable set on
$> ./lepton3control.py 1 rad_tlinear_scale set 100
$> ./lepton3control.py 1 rad_tlinear_auto_scale set off

11. Turn on the v4l2lepton3 server by running the /home/pi/v4l2lepton3/build/
server in the background.

12. On the configurating computer, create a scene.json file with the borders of the
monitored area, camera locations, colors, names, connection data, according to the
description in section 6.2.

13. Run the visual scene calibration script first only with the --scene argument to verify
that the scene configuration file is valid. Then, for each camera in the scene, run the
calibration script as follows:

$> ./thermo-person-detection/calibrate_scene.py -s scene.json
$> ./thermo-person-detection/calibrate_scene.py -s scene.json -c cam1
$> ./thermo-person-detection/calibrate_scene.py -s scene.json -c camX

41v4l2lepton3 control and capture library git repository https://gitlab.com/CharvN/v4l2lepton3
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After each run, save and overwrite the configuration .json file. The calibrator saves
the mapping points for each camera, which are used for constructing its screen to world
projection matrix. A calibrated camera can be spotted by its two arms showing its
field of view on the scene ground plan.

14. At this point, everything is set up and ready. It is possible to connect to any cam-
era and view its thermal feed in real time using the C++ v4l2lepton3 client in
a v4l2loopback virtual video device. Alternatively, the lepton3client.py Python
implementation can display the feed in an OpenCV window. The extended client
lepton3client_detect.py can do the same thing with the addition of loading the
YOLO detector and highlighting people detected in the feed. Another possibility is
to setup a cron scheduled task, capture a single frame at a time and save it locally
or remotely using the v4l2lepton3/scripts/capture_periodical.py script.

(a) th1 (b) th2

(c) ground plan

Figure 7.1: Demonstration of the live detector and locator tool in action.
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15. For the actual production usage and real-time monitoring with detection and localiza-
tion, the control computer may run the detect_live.py live detector and localizator
from the thermo-person-detection directory with the scene.json calibration file:

$> ./detect_live.py -s scene.json

The script builds the scene abstraction according to the configuration file supplied,
calibrates all cameras with defined mapping points, connects to their live feed, displays
the view from each camera in a separate window with the detector running and plots
every detected object into the ground plan. The ground plan is updated with every
frame, again, in a separate window. The live detector and locator in action with two
active cameras and merged locations of detected people is demonstrated in figure 7.1.

7.2 People flow analysis in the Czech National Museum
There is an ongoing project between the STRaDe42 research group at the university and
the Czech National Museum in Prague regarding people detection, localization, heatmap
generation, group detection and other. It is in the museum’s interest to learn hidden
information about the flow of people through its premises.

Using a thermal system for monitoring people has two great advantages. Firstly, the
system performs exactly the same way regardless of light conditions during the day and
during the night, which makes it also usable as a security system that can trigger an alarm
during the night when there is a person detected while the system is armed. The second
advantage is that the resolution and characteristics of thermal imagery make the system
unable to perform person recognition as a matter of principle. Consequently, it is safe to
use the system on daily basis without potential accusations of spying or personal privacy
breach. This however also means that it will not be able to create any valuable evidence
when used as a security system.

Figure 7.2: Illustration of the thermal unit installation process in the Czech National
Museum in Prague.

Within the scope of this project, the total of three thermal units have been assembled
and deployed in two large exhibition halls. The thermal units were installed in the National

42STRaDe Research group - part of Department of Intelligent Systems at Faculty of Information Tech-
nology of Brno University of Technology https://strade.fit.vutbr.cz/en/
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Museum in Prague to overwatch an ongoing exposition with the aim of extracting informa-
tion about the visitor’s movement. More specifically, the outcome of utilizing thermal units
at this stage was to extract heatmaps corresponding to visitors common whereabouts. The
heatmap can potentially yield hidden information about visitor’s interest in specific parts
of the exposition, which is a very valuable information for the management of the museum.
Figure 7.2 demonstrates the installation process in the Czech National Museum in Prague.

The cooperation is mutually beneficial because in exchange we were allowed to capture
an extensive database of thermal images, and therefore, construct the custom thermal
dataset for Lepton 3.5, which led to the creation of the new enhanced detector. The new
detection and localization system has been used to construct a heatmap of the exposition
revealing the most favorite areas. The heatmap is depicted in figure 7.3.

Figure 7.3: Heatmap illustration constructed with the new custom YOLO thermal detector.

The heatmap reveals interesting information about the common whereabouts of people.
The dark red color shows spots in the exposition that were occupied by people more often.
These hotspots can be associated with specific parts of the exhibition that were particularly
interesting to the visitors. The white spots in the middle of the larger hall correspond with
no or very small amount of detections, and in fact, these areas were obstructed by show-cases
and panels. It is however noticeable that there are larger gaps between detected positions
further away from the camera in the lower hall. This has to do with the small resolution
of the camera as mentioned previously. One pixel change in the camera view can translate
up to one meter large step in the scene, which introduces artifacts into the heatmap. No
person can ever be detected in the white regions of the checkerboard pattern visible on the
bottom left side of the heatmap in figure 7.3, as they correspond with positions in between
two pixels in the thermal image. There was a third camera installed on the opposite side of
the exposition hall (th2 marked gray) that would eliminate this problem, however, not long
after the deployment, the camera went offline and could not be revived before the end of the
exhibition. The system was supposed to be reinstalled in a new exhibition, unfortunately,
this was prevented by the COVID-19 outbreak forcing museums to close down completely.

The museum represents the ultimate challenging environment for the detection and
localization system that uses a Lepton camera with relatively small resolution. The modeled
scene is large and contains many people. If we considered a smaller room with less people
and therefore not so many occlusions, with the new YOLO detector, the new system would
not have any problems and yield reasonably accurate positions at all times.
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Chapter 8

Conclusion

The goal of the whole project was to utilize small low-cost thermal imaging cameras to
create a system solving the problem of detecting and locating people, which shall find its
usage in many areas like hazardous area guarding, security systems, people flow analysis for
marketing purposes and others. The advantage of using a system based on thermal imaging
is that lighting conditions are irrelevant for correct functioning and that the system may be
deployed to locations where privacy plays an important role because the camera resolution
and thermal imagery in principle prevent facial recognition, yet, allow for detecting of
people.

The master’s project was a continuation of the bachelor’s project documented in [18],
and its goal was to eliminate flaws from the final solution of the bachelor’s project, imple-
ment suggested improvements and extend it into an easily deployable system supporting
large complex scenes with multiple thermal cameras.

In the master’s project, the Lepton 3 thermal camera has been upgraded to the version
3.5, which supports true radiometry, meaning, that the user does not have to supply a tem-
perature conversion function anymore, which used to be very error-prone. The Orange Pi
PC2 computer used in the previous project has been replaced with the more traditional
and well maintained Raspberry Pi 3B+. In order to provide a way to manage the camera
remotely, a custom power switch circuit has been designed allowing to turn the camera on
or off remotely using a GPIO pin on the Raspberry Pi. The printed circuit board with the
control circuit placed in between the camera and the Raspberry Pi enables the camera to
be turned on and off remotely forcing a full reboot that solves the problem with freezing
up. The Lepton 3.5 together with the Raspberry Pi 3B+ and the custom printed circuit
board were placed and encapsulated in a custom 3D-printed enclosure box, which repre-
sents a single thermal unit. The thermal unit is now robust and can be safely transported,
presented or deployed to a new environment.

Since it is expected that more thermal units will be assembled in the future, the process
of configuring each thermal unit has been automated using the Ansible tool. A custom
Ansible playbook has been created taking care of all installation steps, libraries and depen-
dencies. The Ansible playbook is used to prepare each new thermal unit.

With the upgrade of the camera, new commands had to be implemented in the control
software in order to be able to utilize the new features of the camera. At this occasion, the
control script has been rewritten almost from scratch, which helped removing some code
redundancies when defining new commands, especially commands with multiple methods
and various available options. The total of 38 commands with all methods have been added
to the control tool.
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The old capture library could not be utilized anymore because it was not fast enough
to maintain synchronization with the new Lepton 3.5, and most importantly, transferring
the raw thermal video from multiple cameras into a single computer for processing turned
out to be impossible using the old approach. The capture library has been therefore re-
designed according to the client-server model with built-in data transfer via TCP sockets.
The thermal unit now runs a server implementation written in C++ and sped up by dual
segment and dual frame buffering. When a client connects to the server, it starts pulling
raw thermal frames from the camera and sends them directly through the open TCP con-
nection, or optionally, through a zlib compressor beforehand. The server does not have
synchronization issues, not even with the new Lepton 3.5 thermal camera, recovers from
any unexpected event and does its own logging.

As a part of the new v4l2lepton3 capture library, two clients have been implemented.
The first one in C++ preserves the original usage of the virtual video device allowing
for a remote thermal unit to be connected as a local video device. The second client is
implemented in Python, can be used on its own to display a live thermal feed, but more
importantly, it is used in the rest of the detection system as it is very simple, easy to
include, yet sufficiently fast.

As a part of an ongoing cooperation with the Czech National Museum in Prague, three
thermal units were assembled and deployed to one of their expositions. Using the in-
cluded single-thermal-frame capture script and cron scheduling, an extensive custom ther-
mal database from a complex real-world scene has been acquired over the period of several
months. The data has proven that the old simple thermal detector can not be used in such
complex environment because of its poor performance. Therefore, it had to be upgraded.

The custom thermal dataset has been manually annotated and merged with the FLIR’s
official thermal database creating the total of 13,416 thermal images with 53,628 anno-
tated person objects in it. The merged thermal dataset has been used to train several
different YOLO object detectors with different network sizes including the recently released
state-of-the-art YOLOv4 real-time object detector based on a deep neural network. From
the trained models, the YOLOv4-320 has been chosen to be used in the final detection
system as it performed the best. On testing thermal images and also on a real-time ther-
mal video, the detector performs incomparably better than the old simple one, and is able
to reliably detect a dozen people regardless of their pose in a complex scene with partial
occlusions. Everything the detector needs is a single 160 × 120 thermal image enhanced by
temperature filtering and contrast limited adaptive histogram equalization (CLAHE). Even
though the new YOLOv4 detector is significantly slower than the old detector, it is still
faster than any other currently available object detector based on a neural network and fast
enough to process the thermal video at full speed (at 8.7 Hz) without decreasing the frame
rate.

The mathematics behind reverse-projecting image points into a 3D scene model stayed
the same, however, the scene abstraction software has been redone from scratch. The scene
is stored in a JSON configuration file, supports multiple cameras and multiple polygonal
boundaries with different colors and names. The scene abstraction software also includes
a visual camera calibrator tool, which simplifies the calibration process of every newly
installed camera. The tool connects to a camera, displays its thermal feed in real time,
then, the user selects significant points in the thermal image and enters corresponding
real-world coordinates of those points. The mapping coordinates are then stored in the
configuration file of the scene and used every time the scene is loaded for computing the
projection matrix of each configured camera.
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The project also contains plenty of supporting scripts that can be used for testing or
troubleshooting the system. This includes a script for disconnecting the camera completely,
for turning it back on, the Python v4l2lepton3 client implementation with the detection
performed on every frame with the option to save the frame, scripts for single-frame cap-
turing (used with scheduling locally and remotely), a script for running the detector on raw
thermal images from a specified directory an so on. The complete system is implemented in
the detect_live.py file, which loads the preconfigured and calibrated scene, connects to
every calibrated camera in the scene, shows their live feed in separate windows and draws
locations of detected people in the ground plan of the observed scene.

Within the scope of the cooperation with the Czech National Museum in Prague, the
detector has been applied to the collected thermal dataset with the aim of constructing
a heatmap of visitor’s frequent occurrence within the exposition. The heatmap reveals
hidden information about which particular sections of the exposition interest the visitors
the most.

To summarize

A new thermal unit has been designed with a custom enclosure box, a new upgraded camera,
a custom control circuit and an upgraded host computer. The process of configuring a new
thermal unit has been automated using Ansible. The v4l2lepton3 control and capture
library has been redesigned from scratch. The control part supports many more commands
with all methods and translated options. The capture part has been split into two parts –
a server and a client. The C++ multithreaded implementation of the server has been sped
up by double segment buffering, double frame buffering and reduced number of system calls.
It does not lose synchronization with the camera, can recover from any kind of error and
allows for zlib compression. There are two client implementations available. The C++
one uses a virtual video device to bring the remote thermal feed into the local machine
for generic processing, the Python implementation is simple and easy to use or include in
other projects. It is used in the detection software, but can also be used for quick previews.
The scene abstraction software has been redesigned so that now a scene is abstracted in
a JSON configuration file, supports multiple polygonal boundaries and multiple cameras,
which can be calibrated visually using a visual calibrator tool. Finally, the old thermal
detector showing poor results in larger scenes with more people has been replaced by the
new state-of-the-art YOLOv4 real-time object detector trained on custom thermal dataset
that has been created by merging the FLIR’s public thermal dataset and a custom one
created in the Czech National Museum within the scope of an ongoing cooperation. The
new detector is far superior to the old detector and can reliably detect people even in some
of the most challenging situations. The final detection system loads a preconfigured scene,
connects to all cameras, displays their real-time thermal feeds, and after the detection has
been performed, the detected persons are marked in the ground plan representation of the
scene. The new detector has been applied to the captured data from the Czech National
Museum in Prague with the aim of constructing a heatmap of visitor’s movements. The
built heatmap proves the capabilities of the detection system and may be beneficial to the
management of the museum.

Drawbacks and potential improvements

By having the new detector, the process of estimating locations of detected objects from
their bounding boxes becomes the largest area for possible improvements. The accuracy
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of an estimated location rapidly decreases with distance because of the low resolution of
the thermal camera. About 16 meters away from the camera, a difference of 1 image pixel
can easily translate into a 1-meter difference in the scene model. If a bounding box around
a person is moved even by a few image pixels, its estimated location can change drastically.

In order to reverse-project an image point into a single point in the scene model, it
is necessary to provide some additional information – for example the 𝑧 coordinate of the
searched point. For reverse-projecting feet of a detected person, the 𝑧 coordinate would
be set to 0, alternatively, 170 (cm) would be used for the head position (to represent an
average person height). Using the head position is usually less accurate than feet, as the
height of people varies naturally. The position of feet works well when the camera is located
high above ground or there are not many people in the scene. If neither condition is met,
there is a higher possibility that a person would have its feet occluded by a different object.
In that case, the system would assume that the person is further away and misplace him
completely. When a bounding box is touching the bottom of an image, the system expects
that the feet of the detected person is not visible and uses the head position instead. This
however does not solve the issue with occlusions.

One solution might be to train the detector to detect two classes – a torso and a whole
person. That would require reannotating the whole dataset and longer training with unsure
results because the detector would then detect both the torso and the whole person and the
system would have to identify that those two detections belong to the same person, which
adds more room for error.

Both problems could be solved by adding another camera to observe the same scene from
a different angle. The camera would have a priority to localize objects closer to it and both
cameras could agree on the same objects. That additional coordinate required for placing
the detected object into the scene would be provided from the two cameras using stereo
vision. This feature was planned to be included in this project, however after the COVID-19
outbreak, the Czech National Museum was closed down along with our testing environment
with several thermal units, therefore, this feature could not be properly implemented nor
tested. This feature shall remain on the top of the list of future upgrades.

Another possible improvement could be implementing allowed and blocked area concept
for localization. In the current implementation, there are no rules saying which section of
the scene is marked for possible occurrence of people and there is no way to tell which part
of the scene is actually observable from which camera. By being able to determine which
area of the scene is observable, it would become possible to exclude incorrect locations of
detected people that lie outside the observable part of the scene. These outliers are often
caused by thermal reflections, large occlusions or the small resolution of the camera.

The future improvements might also tackle with lens distortion of Lepton cameras, as it
becomes apparent for some particular modules. Another interesting feature to implement
in the system could be person tracking. Each detected person would obtain an ID and his
movement through the scene would be stored in a database. This kind of data could be
used for a more specific type of people flow analysis where we could, for example, calculate
the most typical direction of the movement of people. The candidate technology for object
tracking could be the new DeepSORT [63].

87



Bibliography

[1] HEXFET® Power P-MOSFET IRF9Z34N Datasheet. International Rectifier, 1997.
Datasheet PD - 9.1485B [Accessed: 20-06-2020]. Available at:
https://cdn.instructables.com/ORIG/FNM/2CI9/I5ZZY6BI/FNM2CI9I5ZZY6BI.pdf.

[2] HEXFET® Power N-MOSFET IRFZ44N Datasheet. International Rectifier, 2001.
Datasheet PD - 94053 [Accessed: 20-06-2020]. Available at:
pdf.datasheetcatalog.com/datasheet/irf/irfz44n.pdf.

[3] ON Semiconductor® NPN amplifier transistor BC337. Semiconductor Components
Industries, LLC, 2013. Publication order number: BC337/D Rev. 8 [Accessed:
20-06-2020]. Available at: https://www.onsemi.com/pub/Collateral/BC337-D.PDF.

[4] FLIR LEPTON® 3 Long Wave Infrared (LWIR) Datasheet. FLIR Commercial
Systems, Inc., 2014. Document number: 500-0726-01-09 rev. 100.

[5] FLIR LEPTON® 3.5 Long Wave Infrared (LWIR) Datasheet. FLIR Commercial
Systems, Inc., 2018. Document number: 500-0659-00-09 Rev: 203.

[6] FLIR LEPTON® Lepton 3 Lepton 3.5 Application Note. FLIR Commercial Systems,
Inc., 2018.

[7] FLIR LEPTON® Software Interface Description Document (IDD). FLIR
Commercial Systems, Inc., 2018. Document number: 110-0144-04 Rev: 303.

[8] Free Thermal Dataset for Algorithm Training. FLIR Commercial Systems, Inc., 2020.
Product page. Available at: https://www.flir.com/oem/adas/adas-dataset-form/.

[9] Airport Suppliers, Acorel SAS. Automatic High Accuracy Passenger Counting
Systems. 2016. [Online; Accessed: 21-06-2020]. Available at:
https://www.airport-suppliers.com/supplier/acorel/.

[10] Albawi, S., Mohammed, T. A. and Al-Zawi, S. Understanding of a convolutional
neural network. In: 2017 International Conference on Engineering and Technology
(ICET). 2017, p. 1–6.

[11] Alhamoud, A., Nair, A. A., Gottron, C., Böhnstedt, D. and Steinmetz, R.
Presence detection, identification and tracking in smart homes utilizing bluetooth
enabled smartphones. In: 39th Annual IEEE Conference on Local Computer
Networks Workshops. Sep 2014, p. 784–789. DOI: 10.1109/LCNW.2014.6927735.

[12] Ačkar, H., Almisreb, A. and Saleh, M. A Review on Image Enhancement
Techniques. Southeast Europe Journal of Soft Computing. april 2019, vol. 8. DOI:
10.21533/scjournal.v8i1.175.

88

https://cdn.instructables.com/ORIG/FNM/2CI9/I5ZZY6BI/FNM2CI9I5ZZY6BI.pdf
pdf.datasheetcatalog.com/datasheet/irf/irfz44n.pdf
https://www.onsemi.com/pub/Collateral/BC337-D.PDF
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.airport-suppliers.com/supplier/acorel/


[13] Bansal, M., Southall, B., Matei, B., Eledath, J. and Sawhney, H.
LIDAR-based Door and Stair Detection from a Mobile Robot. Proceedings of SPIE -
The International Society for Optical Engineering. april 2010, p. 2–. DOI:
10.1117/12.849926.

[14] Bochkovskiy, A. YOLOv4 - Neural Networks for Object Detection (Windows and
Linux version of Darknet ). 2020. Github repository. Available at:
https://github.com/AlexeyAB/darknet.

[15] Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y. M. YOLOv4: Optimal Speed and
Accuracy of Object Detection. 2020. Available at: https://arxiv.org/abs/2004.10934.

[16] Bodla, N., Singh, B., Chellappa, R. and Davis, L. S. Improving Object
Detection With One Line of Code. CoRR. 2017, abs/1704.04503. Available at:
http://arxiv.org/abs/1704.04503.

[17] Bradski, G. and Kaehler, A. Learning OpenCV. O’Reilly Media, Inc., september
2008. ISBN 978-0-596-51613-0. First edition.

[18] Charvát, M. Detection of People in Room Using Low-Cost Thermal Imaging
Camera. Jun 2018. Bachelors thesis. Brno University of Technology, Faculty of
InformationTechnology. Supervisor prof. Ing., Dipl.-Ing. Martin Drahanský, Ph.D.

[19] Dalal, N. and Triggs, B. Histograms of oriented gradients for human detection.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). June 2005, vol. 1, p. 886–893. DOI:
10.1109/CVPR.2005.177. ISSN 1063-6919.

[20] DeMenthon, D. F. and Davis, L. S. Model-Based Object Pose in 25 Lines of Code.
International Journal of Computer Vision. june 1995, vol. 15, no. 2, p. 123–141.

[21] Devert, A. Matplotlib Plotting Cookbook. Packt Publishing, 2014. ISBN
1849513260, 9781849513265.

[22] Girshick, R. B. Fast R-CNN. CoRR. 2015, abs/1504.08083. Available at:
http://arxiv.org/abs/1504.08083.

[23] Girshick, R. B., Donahue, J., Darrell, T. and Malik, J. Rich feature
hierarchies for accurate object detection and semantic segmentation. CoRR. 2013,
abs/1311.2524. Available at: http://arxiv.org/abs/1311.2524.

[24] Gough, A. Image Annotation Types For Computer Vision And Its Use Cases
[Hackernoon – An Independent Tech Media Publication platform]. 2019. [Online;
Accessed: 06-06-2020]. Available at: https://hackernoon.com/illuminating-the-
intriguing-computer-vision-uses-cases-of-image-annotation-w21m3zfg.

[25] GroupGets LLC. FLIR Lepton Breakout Board Official Page, Schematics,
Specifications. 2018. [Online; Accessed: 25-05-2018]. Available at: https:
//groupgets.com/manufacturers/getlab/products/flir-lepton-breakout-board-v1-4.

[26] Hall, D. Ansible Configuration Management. Packt Publishing, 2013. ISBN
1491915323, 9781491915325.

89

https://github.com/AlexeyAB/darknet
https://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1704.04503
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2524
https://hackernoon.com/illuminating-the-intriguing-computer-vision-uses-cases-of-image-annotation-w21m3zfg
https://hackernoon.com/illuminating-the-intriguing-computer-vision-uses-cases-of-image-annotation-w21m3zfg
https://groupgets.com/manufacturers/getlab/products/flir-lepton-breakout-board-v1-4
https://groupgets.com/manufacturers/getlab/products/flir-lepton-breakout-board-v1-4


[27] Hartley, R. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge
University Press, 2004. ISBN 354049698X.

[28] Henderson, G. Wiring Pi- GPIO Interface library for the Raspberry Pi. 2020.
[Online; Accessed: 10-01-2020]. Available at: http://wiringpi.com/.

[29] Herrmann, C., Ruf, M. and Beyerer, J. CNN-based thermal infrared person
detection by domain adaptation. Autonomous Systems: Sensors, Vehicles, Security,
and the Internet of Everything. International Society for Optics and Photonics. 2018.
p. 1064308.

[30] Hochstein, L. Ansible Up and Running. O’Reilly Media, Inc., 2015. ISBN
1491915323, 9781491915325.

[31] Ivanov, B., Ruser, H. and Kellner, M. Presence detection and person
identification in Smart Homes. [Neubiberg, University of Bundeswehr Munich and
Passau, FORWISS, University Passau]. Jul 2014.

[32] Kamal, A. YOLO, YOLOv2 and YOLOv3: All You want to know [Medium.com –
online publishing platform]. 2019. [Online; Accessed: 18-06-2020]. Available at:
https://medium.com/@amrokamal_47691/yolo-yolov2-and-yolov3-all-you-want-to-
know-7e3e92dc4899.

[33] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C. J. C., Bottou,
L. and Weinberger, K. Q., ed. Advances in Neural Information Processing Systems
25. Curran Associates, Inc., 2012, p. 1097–1105. Available at:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

[34] Kroah Hartman, G. Linux Kernel in a Nutshell. O’Reilly Media, Inc.„ 2006. ISBN
0596100795,9780596100797.

[35] Kyle McDonald. Structured Light 3D Scanning [Instructables website], 29. Dec
2009. [Online; Accessed: 21-06-2020]. Available at:
http://www.instructables.com/id/Structured-Light-3D-Scanning/.

[36] Kyle Simek. Dissecting the Camera Matrix: Part 1,2,3 – Extrinsic/Intrinsic
Camera Matrix [Kyle Simek’s Computer Vision Blog]. 2012-2013. [Online; Accessed:
18-06-2020]. Available at: http://ksimek.github.io/2012/08/14/decompose/.

[37] Lienhart, R. and Maydt, J. An extended set of Haar-like features for rapid object
detection. In: Proceedings. International Conference on Image Processing. 2002, vol.
1.

[38] Mallick, S. Head Pose Estimation using OpenCV and Dlib [Learn OpenCV blog],
26. Sep 2016. [Online; Accessed: 25-05-2018]. Available at:
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/.

[39] Mordvintsev, A. and K., A. OpenCV-Python Tutorials. 2013. [Online; Accessed:
26-05-2018, Revision 43532856]. Available at: http://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html.

90

http://wiringpi.com/
https://medium.com/@amrokamal_47691/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
https://medium.com/@amrokamal_47691/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.instructables.com/id/Structured-Light-3D-Scanning/
http://ksimek.github.io/2012/08/14/decompose/
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html


[40] Negied, N. K., Hemayed, E. E. and Fayek, M. B. Pedestrians’ detection in
thermal bands – Critical survey. Journal of Electrical Systems and Information
Technology. september 2015, vol. 2, no. 2, p. 141–148.

[41] OpenCV Dev Team. OpenCV 3 official documentation. Feb 2018. [Online; Accessed:
26-05-2018]. Available at: https://docs.opencv.org/3.4.1/.

[42] People Counting PRO. Smart Counter DATA: wireless, data logging by 365 days,
infrared beam – product page [People Counting PRO eshop]. 2018. [Online; Accessed:
27-06-2018]. Available at:
https://peoplecounting.pro/product/condor-8-people-counter-with-data-logging/.

[43] Pokhrel, S. Image Data Labelling and Annotation [Towards Data Science – A
Medium publication sharing concepts, ideas, and codes.]. 2020. [Online; Accessed:
06-06-2020]. Available at: https://towardsdatascience.com/image-data-labelling-
and-annotation-everything-you-need-to-know-86ede6c684b1.

[44] Raj, S., Raj, S. and Kumar, S. An Improved Histogram Equalization Technique for
Image Contrast Enhancement. In:. July 2015.

[45] Raspberry Pi Foundation. Raspberry Pi 3 Model B+ product description. 2016.
[Online; Accessed: 26-05-2020]. Available at:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

[46] Raval, S. YOLO Object Detection, 16. Nov 2017. [Online; Accessed: 21-06-2020].
Available at: https://github.com/llSourcell/YOLO_Object_Detection/blob/master/
YOLO%20Object%20Detection.ipynb.

[47] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. You Only Look Once:
Unified, Real-Time Object Detection. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[48] Redmon, J., Divvala, S. K., Girshick, R. B. and Farhadi, A. You Only Look
Once: Unified, Real-Time Object Detection. CoRR. 2015, abs/1506.02640. Available
at: http://arxiv.org/abs/1506.02640.

[49] Redmon, J. and Farhadi, A. YOLO9000: Better, Faster, Stronger. CoRR. 2016,
abs/1612.08242. Available at: http://arxiv.org/abs/1612.08242.

[50] Redmon, J. and Farhadi, A. YOLOv3: An Incremental Improvement. CoRR.
2018, abs/1804.02767. Available at: http://arxiv.org/abs/1804.02767.

[51] Ren, S., He, K., Girshick, R. B. and Sun, J. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. CoRR. 2015, abs/1506.01497.
Available at: http://arxiv.org/abs/1506.01497.

[52] Rodger, I., Connor, B. and Robertson, N. M. Classifying objects in LWIR
imagery via CNNs. In: Proc. SPIE: Electro-Optical and Infrared Systems: Technology
and Applications XIII. October 2016, vol. 9987, p. 99870–99884. DOI:
10.1117/12.2241858. Winner of Best Student Paper prize.

91

https://docs.opencv.org/3.4.1/
https://peoplecounting.pro/product/condor-8-people-counter-with-data-logging/
https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-need-to-know-86ede6c684b1
https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-need-to-know-86ede6c684b1
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://github.com/llSourcell/YOLO_Object_Detection/blob/master/YOLO%20Object%20Detection.ipynb
https://github.com/llSourcell/YOLO_Object_Detection/blob/master/YOLO%20Object%20Detection.ipynb
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497


[53] Ruser, H. and Pavlov, V. People counter based on fusion of reflected light
intensities from an infrared sensor array. Jan 2006, vol. 1, p. 379–383. Conference:
Informatik 2006 - Informatik für Menschen.

[54] Schulte, S. and Demuynck, S. Thermal-image based object detection and heat map
generation systems and methods. U.S. Patent Application No 16/014,112. 2018.

[55] Singh, S. Beginning Google Sketchup for 3D Printing (Expert’s Voice in 3D
Printing). Apress, 2010. ISBN 9781430233619, 9781430233626.

[56] Solem, J. E. Programming Computer Vision with Python: Tools and algorithms for
analyzing images. O’Reilly Media, Inc., 2012. ISBN 1449316549,9781449316549.
First edition.

[57] Szeliski, R. Computer Vision: Algorithms and Applications. Springer Science &
Business Media, 2011. ISBN 1848829345,9781848829343.

[58] The Economist. In-store detecting – A new industry has sprung up selling
“indoor-location” services to retailers [The Economist newspaper], 24. Dec 2016.
[Online; Accessed: 21-06-2020]. Available at:
https://www.economist.com/business/2016/12/24/a-new-industry-has-sprung-up-
selling-indoor-location-services-to-retailers.

[59] Umbaugh, S. E. Digital Image Processing and Analysis: Human and Computer
Vision Applications with CVIPtools, Second Edition. CRC Press Taylor & Francis
Group, 2010. ISBN 14-398-0205-X.

[60] Viola, P. and Jones, M. Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001. 2001, vol. 1.

[61] Viola, P. and Jones, M. Robust Real-time Object Detection. In: International
Journal of Computer Vision. 2001.

[62] Wojke, N. and Bewley, A. Deep Cosine Metric Learning for Person
Re-identification. In: IEEE. 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV). 2018, p. 748–756. DOI: 10.1109/WACV.2018.00087.

[63] Wojke, N., Bewley, A. and Paulus, D. Simple Online and Realtime Tracking with
a Deep Association Metric. In: IEEE. 2017 IEEE International Conference on Image
Processing (ICIP). 2017, p. 3645–3649. DOI: 10.1109/ICIP.2017.8296962.

[64] Yadav, G., Maheshwari, S. and Agarwal, A. Contrast limited adaptive
histogram equalization based enhancement for real time video system. In: 2014
International Conference on Advances in Computing, Communications and
Informatics (ICACCI). 2014, p. 2392–2397.

92

https://www.economist.com/business/2016/12/24/a-new-industry-has-sprung-up-selling-indoor-location-services-to-retailers
https://www.economist.com/business/2016/12/24/a-new-industry-has-sprung-up-selling-indoor-location-services-to-retailers

	Introduction
	Utilization of people detection and current technology comparison
	Utilization of people detection
	Currently available technologies allowing for people detection

	Thermal capture unit
	FLIR Lepton 3.5
	Lepton 3.5 specifications
	Lepton 3 vs 3.5 - false/true radiometry
	Lepton 3.5 control protocol (CCI)
	Lepton 3.5 video transfer protocol (VoSPI)

	Thermal camera control PCB
	The first design of the control circuit
	The second design of the control circuit
	GPIO control library WiringPi
	Segmentation fault on I2C kernel module unload

	Raspberry Pi 3B+
	Raspberry Pi 3B+ specifications
	Automation with Ansible
	Preparing the Raspbian image for the new thermal unit
	Ansible playbook
	Enabling SPI and I2C hardware interfaces

	Thermal unit enclosure

	v4l2lepton3 capture and control library
	Controlling the camera over CCI
	Old implementation of the CCI
	New implementation of the CCI

	Capturing thermal frames: server-client model
	Server side
	Client side
	Client implementation: Python
	Client implementation: C++


	Person detection
	Legacy thermal detector
	Detector method
	Detector hyper parameter calibrator
	Detector issues

	Object detection
	YOLO – You Only Look Once
	Training on a thermal dataset
	Object annotation types
	Annotation formats
	Custom thermal dataset

	Darknet implementation of YOLO
	Transfer learning
	Preparing custom dataset for training in Darknet
	Configuring a custom YOLO model
	Training custom YOLO models on thermal images

	Usage of the trained YOLO detector

	Scene reconstruction
	Projecting objects from image to 3D scene model
	Perspective-n-point problem
	Solving PnP problem using OpenCV
	Reversing world to screen transformation
	Reverse projection process of an image point
	Placing a detected person into the scene

	Scene abstraction software

	Real use-case deployment
	Deployment process
	People flow analysis in the Czech National Museum

	Conclusion
	Bibliography

