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Abstract. This paper presents a novel three-point modula-
tion technique for fractional-N frequency synthesizer appli-
cations. Convention modulated fractional-N frequency
synthesizers suffer from quantization noise, which degrades
not only the phase noise performance but also the modula-
tion quality. To solve this problem, this work proposes
a three-point modulation technique, which not only cancels
the quantization noise, but also markedly boosts the chan-
nel switching speed. Measurements reveal that the imple-
mented 2.4 ~ 2.6 GHz fractional-N frequency synthesizer
using three-point modulation can achieve a 2.5 Mbps
GFSK data rate with an FSK error rate of only 1.4 %. The
phase noise is approximately -98 dBc/Hz at a frequency
offset of 100 kHz. The channel switching time is only 1.1 us
with a frequency step of 80 MHz. Comparing with conven-
tional two-point modulation, the proposed three-point
modulation greatly improves the FSK error rate, phase
noise and channel switching time by about 10 %, 30 dB
and 126 us, respectively.
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1. Introduction

In recent years, wireless technologies have been de-
veloped to eliminate the need for wire-links between con-
sumer products, such as computers, digital cameras, video
cameras and digital TVs. For such applications, low power
consumption, high integration, high efficiency and a mod-
erate system throughput are always the dominant design
considerations [1]. Numerous modulator architectures are
utilized to satisfy these requirements.

Although quadrature modulation is the most popular
method of constant envelope modulation, some more at-
tractive approaches are available [2]. Since constant enve-
lope modulations, such as GMSK and GFSK, contain base-
band information in the frequency or phase of the carrier

signal, a frequency synthesizer can be utilized to modulate
the signal directly without the use of mixers. Based on this
idea, an offset phase-locked loop (OPLL) modulation tech-
nique was developed [3], [4]. The baseband signal modu-
lates the reference signal of an OPLL-based synthesizer for
up-conversion. The synthesizer acts as a low-pass filter to
filter out the image signals and spurious noise. Therefore,
the RF band-pass filter at the output can be eliminated, not
only reducing the cost of implementation, but also making
the system more integrable. The main drawback of this
architecture is that it utilizes two RF voltage-controlled
oscillators (VCO) and consequently consumes more power
than the single-VCO architecture. Moreover, the loop
bandwidth limits the data rate of OPLL modulation.

To solve the problem of the high power consumed
OPLL modulation, a closed-loop modulation technique is
developed [5], [6]. This architecture utilizes a delta-sigma
modulation (DSM) based fractional-N frequency synthe-
sizer to provide sufficiently high frequency resolution that
the baseband signals can directly modulate the synthesizer.
However, the data rate is limited by the loop bandwidth in
a similar way to the OPLL modulation. To increase the
data rate, a two-point modulation technique was developed
[7], [8]. The two-point modulation has one more modula-
tion point than the closed-loop modulation. This modula-
tion point is at the VCO of the fractional-N frequency syn-
thesizer. Since a VCO is inherently a frequency or phase
modulator, it can be modulated directly [9]. Accordingly,
the modulated frequency synthesizer ceases to be a closed
loop for the baseband signal, and consequently it has an
unlimited modulation bandwidth. Such two-point modu-
lated synthesizers have been widely adopted in GSM,
DECT, and Bluetooth applications [7], [8].

The main problem of the two-point modulated frac-
tional-N frequency synthesizer is suppression of the quanti-
zation noise [7], [8]. Since a first-order DSM results in
many fractional spurs in the output spectrum, a higher-
order DSM is utilized in a two-point modulated fractional-
N frequency synthesizer. Although a higher-order DSM
consumes more power, it can randomize the quantization
noise and push it to a higher offset frequency [10]-[13].
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The loop bandwidth of the synthesizer must be small
enough to suppress effectively this shaped quantization
noise. However, a lower loop bandwidth results in a slower
channel switching speed and a higher in-band phase noise
[14]. Fig. 1 presents suppression of the quantization noise
and the locking process of a two-point modulated frac-
tional-N frequency synthesizer. Both of the channel switch-
ing speed and the DSM quantization noise increase with
the loop bandwidth. The increased DSM quantization noise
substantially degrades the modulation quality. This tradeoff
makes the conventional two-point modulated fractional-N
frequency synthesizer difficult to optimize for wireless
systems. This paper proposes a novel three-point modula-
tion technique to solve this problem.
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Fig. 1.

2. Proposed Architecture

Fig. 2 shows the proposed fractional-N frequency syn-
thesizer using three-point modulation. The third modula-
tion point that is not present in conventional two-point
modulation is at the end of the loop filter (LPF) of the syn-
thesizer. The quantization noise is extracted from the modi-
fied first-order DSM. Both the channel selection informa-
tion and the extracted quantization noise are then injected
into the fractional-N frequency synthesizer via the third
modulation point. Therefore, both the frequency switching
speed and the phase noise of the synthesizer can be im-
proved. In contrast with a traditional three-point modula-
tion technique that only uses phase-interpolation in a frac-
tional-N synthesizer to reduce quantization noise [15], the
proposed synthesizer resembles a traditional three-point
modulated synthesizer except that its frequency switching
speed is also greatly boosted while cancelling the quantiza-
tion noise.
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Fig. 2. Modulated fractional-N frequency synthesizer using
three-point modulation.

In the proposed architecture, the DSM is the core of
the three-point modulation because the signal that is ap-
plied to the third modulation point originates from the
DSM. Accordingly, a conventional DSM should be modi-
fied to provide additional signal to the third modulation
point. Fig. 3 shows a modified first-order DSM as an exam-
ple; the quantization output can be derived as

M[n]= fIn]+d[n]+(1-27")Q,[n] (1)

where .f [n] denotes channel selection information; d[n]
denotes the baseband signal; Q.[n] denotes the original
quantization noise of the DSM, and (1 - Z™")Q.[n] denotes
the shaped quantization noise of the DSM. The extracted
quantization noise can then be derived as

M, [n]1=(1-2")Q,[n]. )

which is exactly the quantization noise of the DSM. For an
m"™-order DSM, equations (1) and (2) can be modified as

M,[n]=fln]+d[n)+(1-2")" O[], ()

and
M, [n]=(1-2")"0.[n], )
respectively. These output signals are injected into the frac-
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Fig. 3. Modified first-order DSM for three-point modulation.
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tional-N frequency via three modulation points. The first
modulation point is the divider of the synthesizer. The
quantization output M,,[n] is injected into the fractional-N
frequency synthesizer by controlling the modulus of the
divider. The second modulation point is the VCO of the
synthesizer. The baseband signal d[r] is converted from
digital to analog and then injected into the synthesizer by
directly modulating the VCO. The third modulation point is
the LPF of the synthesizer. The extracted quantization
noise My, [n] is processed using the digital signal proces-
sor (DSP) and a read-only memory (ROM). The DSP not
only inverts the phase of the quantization noise but also
adjusts its magnitude. The DSP also predicts the frequency
tuning voltage of the VCO by using a lookup-table which is
stored in the ROM. The DSP combines the predicted tuning
information with the processed quantization noise, and then
applies it to the end of the LPF.

Fig. 4 shows the circuit design of the third modulation
point. The processed signals are injected into the synthe-
sizer using a two-stage voltage adder behind the LPF. Since
the first stage adds and inverts the signals simultaneously,
the second stage inverts the added signal to a proper phase.
Therefore, the three-point modulation technique not only
cancels out the DSM quantization noise but also increases
the channel switching speed, making the proposed synthe-
sizer more attractive for use in advanced wireless systems.

Channel selection +
quantization noise

LPF

Fig. 4. Circuit design of the third modulation point.

3. System Analysis

Fig. 5 presents the phase noise model of the three-
point modulated fractional-N frequency synthesizer that is
shown in Fig. 2. F(s) represents the transfer function of the
LPF. K, denotes the combined gain of PFD and CP, and K,
denotes the sensitivity of VCO. The baseband signal is
denoted @gi,(s). The phase noise from the VCO and refer-
ence signal is denoted @, yco(s) and @, ,.(s), respectively.
The term @, psis), which denotes the DSM quantization
noise in the frequency domain can be obtained from (4) as

j”f;fef . s !
= 2 (5)
¢n,DSM (s) \/gNS ( S jzﬂefJ

where f,., represents the reference frequency, and N denotes
the division ratio [7], [8]. The output phase of the
modulated frequency synthesizer can be derived as

B (5) {;H<s>+He<s)}¢ﬂg(s>

+¢n,r¢f' (S)H(S) + ¢n,vco (S)He (S) (6)
where
3 NK K, F (S) 7
()= Ns+K K,F(s) @
Ns
= "= . 8
He(5) Ns+K K F(s) ®
¢n,DSM (s) ¢n,VCO (s) ¢sig (s)
LPF VCO ¢RF (S)
—>

B..p5n (5)

B (5)

Fig. 5. Phase noise model of fractional-N frequency synthe-
sizer using three-modulation.

Equation (6) shows that the proposed three-point
modulation successfully cancels out the DSM quantization
noise @, psi(s) regardless of the variation of the synthe-
sizer’s parameters which include the synthesis frequency,
division ratio, loop bandwidth and the order of the synthe-
sizer. Therefore, the loop bandwidth of the synthesizer can
be optimized to suppress the phase noise from the VCO
and that from the reference signal. Since a frequency syn-
thesizer inherently has the characteristic:

%H(s) +H (s)=1. ©)

Equation (6) can be simplified as

Do () = Bio () + B, (VH(5) + 8, ., (VH (5) . (10)

In (10), the coefficient of the signal phase is exactly unity.
Hence, the system acts like an all-pass filter, which modu-
lates the input signal without any limitation on the band-
width.

Fig. 6 shows the signal modulation and noise suppres-
sion of the three-point modulated fractional-N frequency
synthesizer. Three-point modulation cancels out the DSM
quantization. The system transfer function H(s) acts like
a low-pass filter that can filter out the reference phase noise.
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The error transfer function H,(s) acts like a high-pass filter
that can filter out the VCO phase noise. Therefore, the
three-point modulated fractional-N frequency synthesizer
can output a modulation signal with optimized phase noise.
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Fig. 6. Signal modulation and noise suppression of the frac-
tional-N frequency synthesizer using three-point mo-
dulation.

4. Experimental Results

To confirm the effectiveness of the proposed tech-
nique, a three-point modulated fractional-N frequency
synthesizer is implemented, as presented in Fig. 7. The
synthesizer is designed to operate at 2.4 ~ 2.6 GHz with
GFSK modulation. The reference frequency and the loop
bandwidth are set as 20 MHz and 100 kHz, respectively.
The division ratio and the frequency resolution of the frac-
tional-N frequency synthesizer can then be found as
120 ~ 130 and 305 Hz, respectively. The data rate of the
GFSK modulation reaches 2.5 Mbps, where the bandwidth-
time (BT) product of Gaussian filter and modulation index
is set at 0.5 and 0.312, respectively. Both three-point
modulation and two-point modulation techniques are
applied to the implemented fractional-N frequency synthe-
sizer for comparison.

Fig. 7. Implementation of fractional-N frequency synthesizer

using three-point modulation.

Fig. 8 (a) and (b) shows the simulated output spec-
trum of the implemented fractional-N frequency synthe-

sizer, obtained using a first-order DSM and a second-order
DSM, respectively. The simulator of these simulations is
the Agilent Advanced Design System (ADS). The simula-
tion results show that the three-point modulation technique
improves the phase noise by approximately 20 dB over
those obtained using two-point modulation. It also elimi-
nates over 45 dB of fractional spurs which appear when the
conventional two-point modulation is used.
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Fig. 8. Simulated output spectrum of modulated fractional-N

frequency synthesizer using (a) first-order DSM, and
(b) second-order DSM.

Fig. 9 (a) and (b) present the measured output spec-
trum of the three-point modulated frequency synthesizer
using a first-order DSM and a second-order DSM, respec-
tively. The instrument of these measurements is the Agilent
N9020A MXA Spectrum Analyzer. The measured output
spectra match the simulated results in Fig. 8. The proposed
three-point modulation technique effectively cancels out
the DSM quantization noise and therefore yields a purer
output spectrum than the conventional two-point modula-
tion.

Fig. 10 (a) and (b) present the measured phase noise
of the three-point modulated frequency synthesizer using
first-order DSM and second-order DSM, respectively. Both
Fig. 9 and 10 demonstrate that the three-point modulation
approach perfectly eliminates the quantization noise and
fractional spurs. When a first-order DSM is utilized, the
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Fig. 11 (a) and (b) present the measured channel
switching times using the conventional two-point modula-
tion and the proposed three-point modulation, respectively.
The instrument of these measurements is the Tektronix
TDS2000 Oscilloscope. The frequency step of channel
switching is set to 80 MHz. Since the three-point modula-
tion blends modulation signal with the channel selection
information in the third modulation point, Fig. 11 (b) pre-
sents a lock-in process rather than a pull-in progress, which
is presented in Fig. 11 (a). The measured channel switching
time is only 1.1 ps, so the switching speed is around
115 times faster than that of two-point modulation.

Fig. 12 (a) and (b) present the measured modulation
quality of a first-order-DSM based fractional-N frequency
synthesizer that is achieved using conventional two-point
modulation and the proposed three-modulation, respec-
tively.

fractional-N frequency synthesizer using (a) first-order
DSM, and (b) second-order DSM.
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Fig. 11. Measured channel switching time using (a) conven-
tional two-point modulation, and (b) proposed three-
point modulation.
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Fig. 12. Measured modulation quality of first-order-DSM
based fractional-N frequency synthesizer using (a)
conventional two-point modulation, and (b) proposed
three-point modulation.

Fig. 13 (a) and (b) present the measured modulation
quality of a second-order-DSM based fractional-N fre-
quency synthesizer that is achieved using the conventional
two-point modulation and the proposed three-modulation,
respectively. The modulation quality achieved by three-
point modulation is much better than that achieved by con-
ventional two-point modulation, since the phase noise of
the system is markedly better, as presented in Fig. 10.
When a first-order DSM is utilized, three-point modulation
improves the FSK error rate by about 10 %. When a sec-
ond-order DSM is utilized, three-point modulation im-
proves the FSK error rate by about 14 %. Both achieve
a very low FSK error rate of only 1.4 % when the proposed
three-point modulation is used.

These comparisons reveal that the three-point modu-
lated fractional-N frequency exhibits remarkable perform-
ance, regardless of whether a first-order DSM or a second-
order DSM is utilized. Therefore, a simple first-order DSM
can be utilized instead of a higher-order DSM in the pro-
posed three-point architecture to reduce both cost and
power consumption. Tab. 1 compares the performance
achieved using the proposed three-point modulation with
that achieved using the conventional two-point modulation.
It can be found that the proposed three-point modulation
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Fig. 13. Measured modulation quality of second-order-DSM
based fractional-N frequency synthesizer using (a)
conventional two-point modulation, and (b) proposed
three-point modulation.

Proposed Conventional
Modulation scheme three-point two-point
modulation modulation
Operating frequency (GHz) 24~2.6 24~2.6
Reference frequency (MHz) 20 20
Loop bandwidth 100 kHz 100 kHz
Frequency resolution 305 Hz 305 Hz
Modulation type GFSK GFSK
Data rate (Mbps) 2.5 2.5

DSM type

First-order

Second-order

DSM DSM
100kH - -
Phase noise @100kHz %8 38
(dBc/Hz)
@3MHz -131 -125
Channel switching time (us) 1.1 127
FSK error rate (%) 1.4 15

Tab. 1. Comparison between performance of proposed three-point
modulation and conventional two-point modulation.
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achieves a much better performance than that achieved
using conventional two-point modulation.

5. Conclusion

A modulated fractional-N frequency synthesizer that
is based on the proposed three-point modulation technique
was implemented. This approach increases not only the
channel switching speed but also the modulation quality
over those achieved using the conventional two-point
modulation technique. The experimental results demon-
strate that the channel switching speed and FSK error rate
are improved by approximately 115 times and 10 %, re-
spectively. The phase noise is improved by more than
30 dB. These remarkable improvements make the three-
point modulated fractional-N frequency synthesizer highly
suited to use in advanced wireless systems.
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